JP2005040704A - Purification sterilization method for drinking water, and purification sterilization vessel for drinking water - Google Patents
Purification sterilization method for drinking water, and purification sterilization vessel for drinking water Download PDFInfo
- Publication number
- JP2005040704A JP2005040704A JP2003277281A JP2003277281A JP2005040704A JP 2005040704 A JP2005040704 A JP 2005040704A JP 2003277281 A JP2003277281 A JP 2003277281A JP 2003277281 A JP2003277281 A JP 2003277281A JP 2005040704 A JP2005040704 A JP 2005040704A
- Authority
- JP
- Japan
- Prior art keywords
- drinking water
- composite material
- container
- porous composite
- clay mineral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000020188 drinking water Nutrition 0.000 title claims abstract description 103
- 239000003651 drinking water Substances 0.000 title claims abstract description 103
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 71
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 56
- 238000000746 purification Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 92
- 230000001699 photocatalysis Effects 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 45
- 239000002734 clay mineral Substances 0.000 claims abstract description 41
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 238000010304 firing Methods 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 36
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 23
- 241000282414 Homo sapiens Species 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000004033 plastic Substances 0.000 claims description 13
- 229920003023 plastic Polymers 0.000 claims description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052622 kaolinite Inorganic materials 0.000 claims description 6
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 claims description 4
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 claims description 4
- 229910001919 chlorite Inorganic materials 0.000 claims description 4
- 229910052619 chlorite group Inorganic materials 0.000 claims description 4
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052621 halloysite Inorganic materials 0.000 claims description 4
- 229910052900 illite Inorganic materials 0.000 claims description 4
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 4
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910021647 smectite Inorganic materials 0.000 claims description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 229910052902 vermiculite Inorganic materials 0.000 claims description 4
- 239000010455 vermiculite Substances 0.000 claims description 4
- 235000019354 vermiculite Nutrition 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims 1
- 230000009471 action Effects 0.000 abstract description 12
- 238000001179 sorption measurement Methods 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000011086 high cleaning Methods 0.000 abstract 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000011941 photocatalyst Substances 0.000 description 12
- 239000008399 tap water Substances 0.000 description 10
- 235000020679 tap water Nutrition 0.000 description 10
- 244000052616 bacterial pathogen Species 0.000 description 7
- 239000004927 clay Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 238000010828 elution Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- -1 preferably Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 230000003385 bacteriostatic effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Landscapes
- Packages (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
- Catalysts (AREA)
- Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
Abstract
Description
本発明は飲料水の浄化滅菌方法及び飲料水の浄化滅菌容器に関し、更に詳しくは、簡単な手段によって、水道水等の飲料水中に含まれる滅菌用の塩素系化合物を除去したり、プラスチック製容器内に保管中の飲料水に対して容器壁から溶出し得る有害成分を除去したりして、同時にそれらの飲料水の滅菌状態を維持する浄化滅菌方法及び浄化滅菌容器に関する。 TECHNICAL FIELD The present invention relates to a drinking water purification sterilization method and a drinking water purification sterilization container. More specifically, a chlorinated compound for sterilization contained in drinking water such as tap water is removed by a simple means, or a plastic container. The present invention relates to a purification sterilization method and a purification sterilization container that remove harmful components that can be eluted from the container wall with respect to drinking water being stored therein and maintain the sterilized state of the drinking water at the same time.
近年、酸化チタンその他の光触媒材料と、粘土鉱物その他の吸着材料とを混合して焼成した多孔質複合材料が注目されている。このような多孔質複合材料は、多くの場合、大気や室内空気の浄化、家庭排水や産業排水の浄化等に利用され、吸着材料による有害成分の吸着と、吸着された有害成分の光触媒材料による分解とを相乗的に期待したものである。 In recent years, porous composite materials obtained by mixing and baking titanium oxide or other photocatalytic materials and clay minerals or other adsorbing materials have attracted attention. Such porous composite materials are often used for purification of air and indoor air, purification of domestic wastewater and industrial wastewater, etc., by adsorption of harmful components by adsorbent materials and by photocatalytic materials of adsorbed harmful components. This is a synergistic expectation of decomposition.
ところで従来、このような光触媒材料と粘土鉱物等とを混合して焼成した多孔質複合材料は、前記したように、専ら大気浄化や排水処理等に利用されており、人間が栄養等として直接に摂取する飲食物に対して適用された事例は、余り見聞したことがない。 Conventionally, porous composite materials obtained by mixing and baking such photocatalytic materials and clay minerals have been used exclusively for air purification, wastewater treatment, etc., as described above. I haven't heard much about the cases that have been applied to food and drink.
その第1の理由は、近年において人間の飲食物に対する衛生管理が著しく向上した点にある。即ち、一般論としては、吸着材料で吸着し光触媒で分解・除去すべきであるような有害成分が、そもそも人間が摂取する飲食物中に含有されていると言う事態は、想定し難いからである。 The first reason is that the hygiene management for human food and drink has been remarkably improved in recent years. In other words, as a general rule, it is difficult to assume that harmful ingredients that should be adsorbed with an adsorbing material and decomposed / removed with a photocatalyst are originally contained in food and drink consumed by humans. is there.
第2の理由は、代表的な光触媒材料の中には、ガリウム砒素、硫化カドミウム等のような人体に非常に有害な材料が包含されていることもあり、人間の飲食物に対して光触媒材料を適用すると言う発想がなかったからである。 The second reason is that typical photocatalyst materials include materials that are very harmful to the human body, such as gallium arsenide and cadmium sulfide. It was because there was no idea to apply.
しかしながら、上記第1の理由については、重大な例外がある。即ち、人間が栄養等として直接に摂取する飲食物の内、最も多量に利用されている水道水には、周知のように塩素系化合物(次亜塩素酸ナトリウム等)が滅菌もしくは静菌の目的で使用されている。勿論、水道水における塩素系化合物の濃度は、人体に対する障害が実質的に出ない範囲に調節されてはいるが、有害であることに変わりはない。 However, there are significant exceptions to the first reason. That is, among tap foods that are directly consumed by human beings as nutrients, etc., tap water that is used in the largest amount is chlorinated compounds (such as sodium hypochlorite) as sterilized or bacteriostatic, as is well known. Used in. Of course, the concentration of the chlorinated compound in the tap water is adjusted to a range that does not substantially cause damage to the human body, but is still harmful.
そこで、例えば水道の蛇口等に取り付ける、吸着性材料等を充填した浄水器が提供されている。しかし、このような浄水器等で水道水中の塩素系化合物を除去してしまうと、塩素系化合物による滅菌もしくは静菌の作用も失われる。従って、その水道水を直ちに飲用したり食物調理等の用途に利用する場合には問題がないが、水道水を種々の目的(例えば、地震や台風等の災害時に備えた保管等)で一定期間保管する場合には、却って雑菌やカビの繁殖を招き危険である。 Therefore, for example, a water purifier filled with an adsorbent material or the like attached to a water faucet or the like is provided. However, if the chlorine compound in tap water is removed with such a water purifier or the like, the sterilization or bacteriostatic action of the chlorine compound is lost. Therefore, there is no problem when the tap water is immediately used for drinking or food cooking, but the tap water is used for various purposes (for example, storage for disasters such as earthquakes and typhoons) for a certain period of time. In the case of storage, on the contrary, it is dangerous because it causes the propagation of germs and mold.
更に近年、特段に清浄度が高いことを売り物にする各種の「清浄飲料水」が、PETボトル等で容器販売され、人気を博している。これらのプラスチック製ボトルに充填された飲料水は、充填されてから商品流通過程を経て消費者に飲用されるまでに相当の保管期間を経過する場合が多い。従って、その保管期間中に、プラスチック容器の容器壁から多少の有害物質(老化防止剤、重合触媒、酸化防止剤等)が溶出する恐れがある。又、「清浄飲料水」との触れ込みから、滅菌剤や静菌剤を使用しない場合が多いため、保管期間が長引けば雑菌やカビの繁殖を招く恐れもある。 Furthermore, in recent years, various “clean drinking water” which is sold for its particularly high cleanliness is sold in containers such as PET bottles, and is gaining popularity. In many cases, the drinking water filled in these plastic bottles passes a considerable storage period from filling to drinking through the merchandise distribution process. Therefore, some harmful substances (anti-aging agent, polymerization catalyst, antioxidant, etc.) may be eluted from the container wall of the plastic container during the storage period. In addition, since sterilizing agents and bacteriostatic agents are often not used due to contact with “clean drinking water”, if the storage period is prolonged, there is a possibility of causing propagation of germs and mold.
本願発明者は、特定種類の飲用水における上記のような問題点を解決するため、本発明を完成した。 This inventor completed this invention in order to solve the above problems in specific kind of drinking water.
(第1発明の構成)
上記課題を解決するための本願第1発明(請求項1に記載の発明)の構成は、塩素系化合物で滅菌された飲料水を、少なくとも粘土鉱物と人体に無害な光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料に対して接触状態で保管することにより、該飲料水中の塩素系化合物を除去すると共に飲料水の滅菌状態を維持する、飲料水の浄化滅菌方法である。
(Configuration of the first invention)
In order to solve the above problems, the first invention of the present application (the invention described in claim 1) is a mixture of drinking water sterilized with a chlorinated compound containing at least a clay mineral and a photocatalytic material that is harmless to the human body. It is a method for purifying and sterilizing drinking water by storing the raw material in contact with a porous composite material obtained by firing, thereby removing the chlorine-based compounds in the drinking water and maintaining the sterilized state of the drinking water.
(第2発明の構成)
上記課題を解決するための本願第2発明(請求項2に記載の発明)の構成は、飲料水をプラスチック製容器内に保管するに当たり、該飲料水を、少なくとも粘土鉱物と人体に無害な光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料に対して接触状態で保管することにより、プラスチック製容器から飲料水中に溶出する有害成分を除去すると共に飲料水の滅菌状態を維持する、飲料水の浄化滅菌方法である。
(Configuration of the second invention)
The structure of the second invention of the present application (the invention described in claim 2) for solving the above-described problem is that when storing drinking water in a plastic container, the drinking water is at least a clay mineral and a photocatalyst that is harmless to the human body. By storing the mixed raw material containing the material in contact with a porous composite material obtained by firing, harmful components eluted in the drinking water from the plastic container are removed and the sterilized state of the drinking water is maintained. It is a method for purification and sterilization of drinking water.
(第3発明の構成)
上記課題を解決するための本願第3発明(請求項3に記載の発明)の構成は、前記第1発明又は第2発明に係る粘土鉱物が層状粘土鉱物である、飲料水の浄化滅菌方法である。
(Configuration of the third invention)
The configuration of the third invention of the present application (the invention according to claim 3) for solving the above-mentioned problems is a drinking water purification and sterilization method in which the clay mineral according to the first invention or the second invention is a layered clay mineral. is there.
(第4発明の構成)
上記課題を解決するための本願第4発明(請求項4に記載の発明)の構成は、前記第1発明〜第3発明のいずれかに係る層状粘土鉱物が、カオリナイト、ハロイサイト、モンモリロナイト、イライト、スメクタイト、バーミキュライト、合成マイカ又は緑泥石のいずれか1種以上である、飲料水の浄化滅菌方法である。
(Configuration of the fourth invention)
In order to solve the above problems, the fourth invention of the present invention (the invention described in claim 4) is the layered clay mineral according to any one of the first to third inventions, wherein kaolinite, halloysite, montmorillonite, illite. A method for purifying and sterilizing drinking water, which is at least one of smectite, vermiculite, synthetic mica and chlorite.
(第5発明の構成)
上記課題を解決するための本願第5発明(請求項5に記載の発明)の構成は、前記第1発明〜第4発明のいずれかに係る光触媒材料が、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化鉄又は酸化タングステンのいずれか1種以上である、飲料水の浄化滅菌方法である。
(Structure of the fifth invention)
The structure of the fifth invention of the present application (the invention according to claim 5) for solving the above problems is that the photocatalytic material according to any one of the first to fourth inventions comprises titanium oxide, zinc oxide, zirconium oxide, This is a method for purifying and sterilizing drinking water, which is at least one of iron oxide and tungsten oxide.
(第6発明の構成)
上記課題を解決するための本願第6発明(請求項6に記載の発明)の構成は、前記第5発明に係る酸化チタンが、アナターゼ型の、及び/又は、薄片状の形態を有する酸化チタンである、飲料水の浄化滅菌方法である。
(Structure of the sixth invention)
The structure of the sixth invention of the present application (the invention according to claim 6) for solving the above-described problem is that the titanium oxide according to the fifth invention has anatase type and / or flaky shape. This is a method for purifying and sterilizing drinking water.
(第7発明の構成)
上記課題を解決するための本願第7発明(請求項7に記載の発明)の構成は、液体用容器の内部において、少なくとも粘土鉱物と光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料が前記容器に収容される飲料水と接触する部位に保持されている、飲料水の浄化滅菌容器である。
(Structure of the seventh invention)
The structure of the seventh invention of the present application (the invention according to claim 7) for solving the above-mentioned problem is a porous material obtained by firing a mixed raw material containing at least a clay mineral and a photocatalyst material inside a liquid container. A drinking water purification and sterilization container in which a composite material is held at a site in contact with drinking water contained in the container.
(第8発明の構成)
上記課題を解決するための本願第8発明(請求項8に記載の発明)の構成は、前記第7発明に係る容器が、次の(1)及び/又は(2)の構成を備えている、飲料水の浄化滅菌容器である。
(1)容器壁部の少なくとも一部が光透過性の材料からなる。
(2)容器内部に、前記多孔質複合材料に対する光照射用の光源を備える。
(Configuration of the eighth invention)
In order to solve the above-mentioned problem, in the configuration of the eighth invention of the present application (the invention described in claim 8), the container according to the seventh invention has the following configurations (1) and / or (2). A drinking water purification and sterilization container.
(1) At least a part of the container wall is made of a light transmissive material.
(2) A light source for light irradiation with respect to the porous composite material is provided inside the container.
(第9発明の構成)
上記課題を解決するための本願第9発明(請求項9に記載の発明)の構成は、前記第7発明又は第8発明に係る多孔質複合材料が、前記容器の内部に設けた通水構造の保持部材によって保持されている、飲料水の浄化滅菌容器である。
(Structure of the ninth invention)
The structure of the ninth invention of the present application (the invention according to claim 9) for solving the above-described problem is that the porous composite material according to the seventh invention or the eighth invention is provided with a water flow structure provided inside the container. This is a drinking water purification and sterilization container held by the holding member.
(第10発明の構成)
上記課題を解決するための本願第10発明(請求項10に記載の発明)の構成は、前記第7発明〜第9発明のいずれかに係る多孔質複合材料が粉状、粒状、モノリス状又はハニカム状の形状を有する、飲料水の浄化滅菌容器である。
(Configuration of the tenth invention)
The structure of the tenth invention of the present application (the invention according to claim 10) for solving the above problems is that the porous composite material according to any one of the seventh to ninth inventions is powdery, granular, monolithic or A drinking water purification and sterilization container having a honeycomb shape.
(第1発明及び第2発明の効果)
粘土鉱物と光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料は、その多孔構造に基づく吸着作用により、飲料水中の有害成分を吸着し排除することができる。
(Effects of the first and second inventions)
A porous composite material obtained by firing a mixed raw material containing a clay mineral and a photocatalytic material can adsorb and eliminate harmful components in drinking water by an adsorption action based on the porous structure.
又、吸着された有害成分には、光触媒による分解を受け付けないものもあるが、多くの場合、多孔質複合材料中の光触媒成分により分解される。従って、一旦吸着された有害成分成分の飲料水中への再溶出は起こり難い。又、一般的に飲料水中の有害成分は絶対量としては僅かな量である。以上の点から、多孔質複合材料を多量の飲料水に対して長期に又は繰り返して使用しても、有害成分が多孔質複合材料の吸着容量を超えることは考え難い。 Further, some adsorbed harmful components cannot be decomposed by the photocatalyst, but in many cases, they are decomposed by the photocatalytic component in the porous composite material. Therefore, the re-elution of the harmful component once adsorbed into the drinking water hardly occurs. Moreover, generally the harmful | toxic component in drinking water is a very small amount as an absolute amount. From the above points, even if the porous composite material is used for a long time or repeatedly for a large amount of drinking water, it is difficult to think that harmful components exceed the adsorption capacity of the porous composite material.
第1発明の飲料水の浄化滅菌方法においては、塩素滅菌された飲料水を、少なくとも粘土鉱物と人体に無害な光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料に対して接触させた状態で保管する。この場合、飲料水中の有害成分である滅菌用塩素化合物は多孔質複合材料中に吸着され、あるいは更に光触媒成分により分解される。 In the method for purifying and sterilizing drinking water according to the first aspect of the present invention, the chlorine-sterilized drinking water is brought into contact with a porous composite material obtained by firing a mixed raw material containing at least a clay mineral and a photocatalytic material that is harmless to the human body. Store in the condition that it was allowed to. In this case, the sterilizing chlorine compound, which is a harmful component in the drinking water, is adsorbed in the porous composite material or further decomposed by the photocatalytic component.
しかし、多孔質複合材料中の光触媒成分は、例えば活性な水酸基のようなラジカルを生成させて抗菌・抗カビ作用を示すことが知られている。従って、滅菌用の塩素化合物が除去されるにも関わらず、飲料水の滅菌状態は維持される。なお、本発明において「滅菌状態」とは、雑菌及びカビ類の繁殖が衛生管理上十分に許容できる程度に抑制されている状態を言う。 However, it is known that the photocatalytic component in the porous composite material exhibits an antibacterial / antifungal action by generating radicals such as active hydroxyl groups. Accordingly, the sterilized state of the drinking water is maintained even though the sterilizing chlorine compound is removed. In the present invention, the term “sterilized state” refers to a state where propagation of germs and molds is suppressed to a level that is sufficiently acceptable for hygiene management.
第1発明において重要な点は、通常の大気浄化や排水処理等の場合と異なり、飲料水中の有害成分である塩素系化合物は単なる有害不純物ではなく、一定の衛生上の目的から必要な成分として、意図的に添加されている、と言う点である。従って、通常の悪臭/有害成分の除去の場合のように、単に塩素系化合物を除去しただけでは、却って衛生上の問題を生じる。つまり、塩素系化合物を除去すると共に、同時に衛生上有効な補償措置を講ずる必要がある、と言う特殊な事情がある。第1発明は、簡単な手段により、この困難な問題を解決している。 The important point in the first invention is that unlike ordinary air purification and wastewater treatment, chlorinated compounds that are harmful components in drinking water are not mere harmful impurities, but are necessary components for certain hygiene purposes. It is a point that it is intentionally added. Therefore, simply removing the chlorinated compound as in the case of removing a normal malodor / hazardous component causes a hygienic problem. In other words, there is a special circumstance that it is necessary to remove chlorine-based compounds and at the same time to take hygienic effective compensation measures. The first invention solves this difficult problem by simple means.
第2発明の飲料水の浄化滅菌方法においては、飲料水(特に好ましくは、清浄度の高い飲料水)をプラスチック製容器内に保管するに当たり、該飲料水を、少なくとも粘土鉱物と人体に無害な光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料に対して接触状態で保管する。この場合、保管期間中にプラスチック製容器の容器壁から飲料水中に有害成分が溶出する恐れがあるが、このような有害成分は多孔質複合材料中に吸着され、あるいは場合により更に光触媒成分により分解される。 In the method for purifying and sterilizing drinking water according to the second aspect of the invention, when drinking water (particularly preferably, drinking water with high cleanliness) is stored in a plastic container, the drinking water is harmless to at least clay minerals and the human body. The mixed raw material containing the photocatalytic material is stored in contact with a porous composite material obtained by firing. In this case, harmful components may be eluted in the drinking water from the container wall of the plastic container during the storage period, but such harmful components are adsorbed in the porous composite material or, if necessary, further decomposed by the photocatalytic component. Is done.
しかも、多孔質複合材料中の光触媒成分による第1発明の場合と同様な抗菌・抗カビ作用により、飲料水の滅菌状態は維持される。 Moreover, the sterilized state of the drinking water is maintained by the antibacterial / antifungal action similar to that of the first invention by the photocatalyst component in the porous composite material.
(第3発明の効果)
第3発明においては、多孔質複合材料の原料成分たる粘土鉱物が層状粘土鉱物である。層状粘土鉱物を用いると、多孔質複合材料における多孔構造が特に良好に発達することが知られている。よって、飲料水中の有害成分に対する多孔質複合材料の吸着能力が特に高い。
(Effect of the third invention)
In the third invention, the clay mineral as the raw material component of the porous composite material is a layered clay mineral. It is known that when a layered clay mineral is used, the porous structure in the porous composite material develops particularly well. Therefore, the adsorption capacity of the porous composite material with respect to harmful components in drinking water is particularly high.
(第4発明の効果)
第4発明においては、多孔質複合材料の原料成分たる層状粘土鉱物が、カオリナイト、ハロイサイト、モンモリロナイト、イライト、スメクタイト、バーミキュライト、合成マイカ又は緑泥石のいずれか1種以上である。これらの層状粘土鉱物の1種、又は2種以上を用いると、多孔質複合材料における多孔構造がとりわけ良好に発達する。
(Effect of the fourth invention)
In the fourth invention, the layered clay mineral as a raw material component of the porous composite material is at least one of kaolinite, halloysite, montmorillonite, illite, smectite, vermiculite, synthetic mica, or chlorite. When one or more of these layered clay minerals are used, the porous structure in the porous composite material develops particularly well.
(第5発明の効果)
第5発明においては、多孔質複合材料の原料成分たる光触媒材料が、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化鉄又は酸化タングステンのいずれか1種以上である。これらの光触媒材料は、人体に対して無害であり、しかも良好な光触媒作用を発揮することができる。
(Effect of the fifth invention)
In the fifth invention, the photocatalytic material that is a raw material component of the porous composite material is at least one of titanium oxide, zinc oxide, zirconium oxide, iron oxide, and tungsten oxide. These photocatalytic materials are harmless to the human body and can exhibit a good photocatalytic action.
(第6発明の効果)
第6発明においては、多孔質複合材料の原料成分たる酸化チタンが、アナターゼ型の酸化チタン、薄片状の形態を有する酸化チタン、あるいはアナターゼ型でしかも薄片状の形態を有する酸化チタンである。
(Effect of the sixth invention)
In the sixth invention, the titanium oxide as a raw material component of the porous composite material is anatase-type titanium oxide, titanium oxide having a flaky shape, or titanium oxide having an anatase-type and flaky shape.
アナターゼ型の酸化チタンは特に良好な光触媒作用を発揮することが知られており、薄片状の形態を有する酸化チタンを用いると多孔質複合材料における多孔構造がとりわけ良好に発達する。 Anatase-type titanium oxide is known to exhibit particularly good photocatalytic action. When titanium oxide having a flaky shape is used, the porous structure in the porous composite material develops particularly well.
(第7発明の効果)
第7発明の飲料水の浄化滅菌容器においては、液体用容器の内部において、少なくとも粘土鉱物と光触媒とを含有する混合原料を焼成してなる多孔質複合材料が、前記容器に収容される飲料水と接触する部位に保持されている。
(Effect of the seventh invention)
In the drinking water purification and sterilization container according to the seventh aspect of the invention, the drinking water in which the porous composite material formed by firing a mixed raw material containing at least a clay mineral and a photocatalyst is contained in the liquid container. It is held at the site where it comes into contact.
従って、この浄化滅菌容器に、塩素滅菌された飲料水や、商品販売の対象となる特に清浄な飲料水を収容して保管しておくと、前記第1発明又は第2発明の効果が容易に確保される。 Therefore, if the purified sterilization container contains and sterilized drinking water and particularly clean drinking water to be sold, the effects of the first invention or the second invention can be easily obtained. Secured.
(第8発明の効果)
第8発明のように、浄化滅菌容器が、その容器壁部の少なくとも一部が光透過性の材料からなるものである場合、容器の外部から入射する自然光や各種の人工光源による光によって多孔質複合材料中の光触媒成分が励起され、光触媒作用が効率的に発揮される。
(Effect of the eighth invention)
As in the eighth invention, when the sterilization container is made of a light transmissive material, at least part of the container wall is porous by natural light incident from the outside of the container or light from various artificial light sources The photocatalytic component in the composite material is excited, and the photocatalytic action is efficiently exhibited.
又、浄化滅菌容器が、その容器内部に前記多孔質複合材料に対する光照射用の光源を備える場合、浄化滅菌容器を暗所に保管する場合や外部の人工光源による照明のない場所で夜間に保管している場合にも、光触媒成分を励起させて光触媒作用を発揮させることができる。 If the sterilization container is equipped with a light source for irradiating light to the porous composite material inside the container, the sterilization container should be stored in the dark or in the absence of illumination by an external artificial light source at night. Even in such a case, the photocatalytic component can be excited to exhibit a photocatalytic action.
(第9発明の効果)
第9発明においては、多孔質複合材料が、浄化滅菌容器の内部に設けた通水構造の保持部材によって保持されている。従って、粉粒状の多孔質複合材料が飲料水中に分散することを防止できる。
(Effect of the ninth invention)
In the ninth invention, the porous composite material is held by a holding member having a water flow structure provided inside the purification sterilization container. Therefore, it is possible to prevent the powdery porous composite material from being dispersed in the drinking water.
又、浄化滅菌容器から飲料水を注ぎ出すために浄化滅菌容器を倒立状態に保持しても、飲料水に伴って多孔質複合材料が容器外部に出てしまう恐れを防止できる。更に、浄化滅菌容器を運搬・移動させる際等に多孔質複合材料の動揺や転動を防止し、以て多孔質複合材料の破損等を防止することもできる。 In addition, even if the purified sterilization container is held in an inverted state in order to pour drinking water from the purified sterilization container, it is possible to prevent the porous composite material from coming out of the container along with the drinking water. Furthermore, when the purification sterilization container is transported or moved, the porous composite material can be prevented from being shaken or rolled, thereby preventing the porous composite material from being damaged.
(第10発明の効果)
浄化滅菌容器内部に保持する多孔質複合材料の形状は限定されないが、例えば第10発明のように、粉状、粒状、モノリス状又はハニカム状の形状とすることが好ましい。
(Effect of the tenth invention)
The shape of the porous composite material held inside the purification sterilization container is not limited, but for example, as in the tenth aspect, it is preferable to have a powdery, granular, monolithic or honeycomb shape.
次に、本願の第1発明〜第10発明を実施するための形態を、その最良の形態を含めて説明する。以下において、単に「本発明」と言う時は、本願の各発明を一括して指している。 Next, modes for carrying out the first invention to the tenth invention of the present application will be described including the best mode. In the following, the term “present invention” refers to each invention of the present application collectively.
〔飲料水の浄化滅菌方法〕
本発明に係る飲料水の浄化滅菌方法は、要するに、対象となる飲料水を、少なくとも粘土鉱物と人体に無害な光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料に対して接触状態で保管する、と言う方法である。
[Purification and sterilization of drinking water]
The method for purifying and sterilizing drinking water according to the present invention is, in short, contacting the target drinking water with a porous composite material obtained by firing a mixed raw material containing at least a clay mineral and a photocatalytic material that is harmless to the human body. It is a method of storing in a state.
対象となる飲料水の種類は特段に限定されない。但し、塩素系化合物で滅菌された飲料水(例えば、水道水)が好ましく例示される。又、プラスチック製容器に充填して販売される飲料水(特に、清浄度が高いことを売り物する飲料水)も、好ましく例示される。前者の場合には前記第1発明の効果を、後者の場合には前記第2発明の効果を、それぞれ期待することができる。 The kind of the drinking water used as object is not specifically limited. However, drinking water (eg, tap water) sterilized with a chlorinated compound is preferably exemplified. Moreover, the drinking water with which it fills and sells a plastic container (especially the drinking water which sells that a cleanliness is high) is illustrated preferably. In the former case, the effect of the first invention can be expected, and in the latter case, the effect of the second invention can be expected.
〔多孔質複合材料〕
多孔質複合材料は、少なくとも粘土鉱物と人体に無害な光触媒材料とを含有する混合原料を任意の形状において焼成してなるものである。多孔質複合材料の形状としては、粉状、粒状、モノリス状又はハニカム状等を好ましく例示することができる。
[Porous composite materials]
The porous composite material is obtained by firing a mixed raw material containing at least a clay mineral and a photocatalytic material harmless to the human body in an arbitrary shape. Preferable examples of the shape of the porous composite material include powder, granule, monolith, and honeycomb.
多孔質複合材料の使用形態としては、多孔質複合材料をそのまま対象となる飲料水に接触させることもできるし、通水構造のフレーム状又はメッシュ状の保持部材によって多孔質複合材料を保持又は封入した状態において対象となる飲料水に接触させることもできる。前者の使用形態はモノリス状又はハニカム状の多孔質複合材料に好適であり、後者の使用形態は粉状又は粒状の多孔質複合材料に好適である。 As a usage form of the porous composite material, the porous composite material can be brought into contact with the target drinking water as it is, or the porous composite material is held or enclosed by a frame-like or mesh-like holding member having a water flow structure. It can also be brought into contact with the target drinking water in the finished state. The former use form is suitable for a monolithic or honeycomb porous composite material, and the latter use form is suitable for a powdery or granular porous composite material.
モノリス状又はハニカム状の多孔質複合材料においては、その形状を棒状、円筒状又は板状等の任意の形状とすることができる。なお、「ハニカム状」とは、多孔質複合材料がそのミクロポアよりも著しく大きい多数の通水孔を備える構造であることを言う。 In the monolithic or honeycomb-like porous composite material, the shape thereof can be any shape such as a rod shape, a cylindrical shape or a plate shape. The “honeycomb shape” means that the porous composite material has a structure having a large number of water passage holes that are significantly larger than the micropores.
多孔質複合材料の焼成に当たっては、少なくとも粘土鉱物と人体に無害な光触媒材料とを含み、更に必要に応じて任意の副成分を追加した混合原料を適宜な組成比のもとに調製し、これを粉粒状で、あるいは必要に応じて所望の形状に成形・乾燥した後、適宜な焼成条件で焼成する。副成分としては、例えば水、有機バインダー、活性炭等を例示できる。上記の粘土鉱物と光触媒材料との混合比は任意に設定することができるが、例えば、重量比で粘土鉱物:光触媒材料=6:4程度とすることが好ましい。 When firing the porous composite material, a mixed raw material containing at least a clay mineral and a photocatalytic material that is harmless to the human body and further added with optional subcomponents as necessary is prepared based on an appropriate composition ratio. After being shaped and dried into a desired shape if necessary, it is fired under appropriate firing conditions. Examples of subcomponents include water, organic binders, and activated carbon. The mixing ratio of the above clay mineral and the photocatalytic material can be arbitrarily set. For example, it is preferable that the weight ratio of clay mineral: photocatalytic material is about 6: 4.
多孔質複合材料の焼成条件は、粘土鉱物の種類、光触媒材料の種類、これら両者の混合比、焼成される多孔質複合材料における吸着能力や光触媒能力等を総合的に考慮して決定する必要があり、一律には限定されない。 The firing conditions of the porous composite material must be determined by comprehensively considering the type of clay mineral, the type of photocatalyst material, the mixing ratio of both, the adsorption capacity and photocatalytic capacity of the fired porous composite material, etc. There is no uniform limitation.
一般的には、焼成温度が過剰に高いと多孔質複合材料における多孔構造が潰れ易く、光触媒能力も低減する恐れがある。逆に焼成温度が過剰に低いと多孔質複合材料の物理的強度が不足する恐れがある。このような点から、例えば、粘土鉱物がカオリナイト又はこれを主成分とする粘土(いわゆる木節粘土等)であり、光触媒材料がチタニアである場合には、一般的に600°C〜900°C。程度で焼成するのが適当である。 In general, if the firing temperature is excessively high, the porous structure in the porous composite material tends to be crushed and the photocatalytic ability may be reduced. Conversely, if the firing temperature is excessively low, the physical strength of the porous composite material may be insufficient. From such a point, for example, when the clay mineral is kaolinite or a clay (so-called kibushi clay or the like) containing this as a main component and the photocatalytic material is titania, the temperature is generally 600 ° C. to 900 °. C. It is appropriate to bake at a degree.
〔粘土鉱物〕
多孔質複合材料の原料成分として用いる粘土鉱物の種類は限定されず、各種の層状粘土鉱物、針状粘土鉱物、繊維状粘土鉱物の1種類を単独で用い、又はそれらの2種類以上を併用することができる。
[Clay mineral]
The kind of clay mineral used as a raw material component of the porous composite material is not limited, and one kind of various layered clay minerals, needle-like clay minerals, and fibrous clay minerals are used alone, or two or more kinds thereof are used in combination. be able to.
層状粘土鉱物を用いると、多孔質複合材料における多孔構造が良好に発達するので、特に好ましい。層状粘土鉱物としては、例えばカオリナイト、ハロイサイト、モンモリロナイト、イライト、スメクタイト、バーミキュライト、合成マイカ又は緑泥石のいずれか1種、又はそれらの2種以上を好ましく用いることができる。 The use of a layered clay mineral is particularly preferred because the porous structure in the porous composite material develops well. As the layered clay mineral, for example, any one of kaolinite, halloysite, montmorillonite, illite, smectite, vermiculite, synthetic mica or chlorite, or two or more thereof can be preferably used.
〔光触媒材料〕
多孔質複合材料の原料成分として用いる光触媒材料の種類は、人体に無害なものである限りにおいて限定されないが、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化鉄又は酸化タングステンのいずれか1種、又はそれらの2種以上を好ましく用いることができる。
[Photocatalytic material]
The type of the photocatalytic material used as the raw material component of the porous composite material is not limited as long as it is harmless to the human body. For example, any one of titanium oxide, zinc oxide, zirconium oxide, iron oxide, or tungsten oxide, Alternatively, two or more of them can be preferably used.
優れた光触媒作用及び滅菌作用の面からは、アナターゼ型の酸化チタンが特に好ましい。多孔質複合材料の吸着能力の向上の面からは、薄片状の形態を有する酸化チタンが特に好ましい。薄片状の形態を有する酸化チタンは特開平9−67124号公報等に開示されている。アナターゼ型で、かつ薄片状の形態を有する酸化チタンは、とりわけ好ましい。 From the viewpoint of excellent photocatalytic action and sterilization action, anatase type titanium oxide is particularly preferable. From the viewpoint of improving the adsorption capacity of the porous composite material, titanium oxide having a flaky shape is particularly preferable. Titanium oxide having a flaky shape is disclosed in JP-A-9-67124. Titanium oxide having anatase type and flaky morphology is particularly preferred.
〔飲料水の浄化滅菌容器〕
本発明に係る飲料水の浄化滅菌容器においては、液体用容器の内部において、少なくとも粘土鉱物と光触媒材料とを含有する混合原料を焼成してなる多孔質複合材料が、前記容器に収容される飲料水と接触する部位に保持されている。浄化滅菌容器における液体用容器の構成材料は限定されず、ガラス容器、金属容器、プラスチック容器等であり得る。
[Purification and sterilization containers for drinking water]
In the drinking water purification and sterilization container according to the present invention, a beverage in which a porous composite material obtained by baking a mixed raw material containing at least a clay mineral and a photocatalytic material is contained in the liquid container. It is held at a site that comes into contact with water. The constituent material of the liquid container in the purification and sterilization container is not limited, and may be a glass container, a metal container, a plastic container, or the like.
これらの容器内に飲料水を長期にわたり収容する場合、容器壁中の可溶性成分が飲料水中に微量に溶出する恐れがある。このような恐れは、プラスチック容器の場合に特に大きい。しかし、このような溶出成分は多孔質複合材料によって吸着され、溶出成分の種類によっては、更に多孔質複合材料中の光触媒成分によって分解される。 When drinking water is stored in these containers for a long time, soluble components in the container wall may be eluted in a minute amount in the drinking water. Such a fear is particularly great in the case of plastic containers. However, such an elution component is adsorbed by the porous composite material, and depending on the type of the elution component, it is further decomposed by the photocatalytic component in the porous composite material.
又、飲料水が水道水等の塩素系化合物で滅菌された飲料水である場合、その塩素系化合物は多孔質複合材料によって吸着され、更に多孔質複合材料中の光触媒成分によって分解される。一方、塩素系化合物が吸着によって飲料水中から除去された後も、多孔質複合材料中の光触媒成分に基づく滅菌作用により、飲料水における雑菌やカビの繁殖は有効に抑制される。 When the drinking water is sterilized with a chlorinated compound such as tap water, the chlorinated compound is adsorbed by the porous composite material and further decomposed by the photocatalytic component in the porous composite material. On the other hand, even after the chlorine-based compound is removed from the drinking water by adsorption, the propagation of germs and molds in the drinking water is effectively suppressed by the sterilization action based on the photocatalytic component in the porous composite material.
浄化滅菌容器における液体用容器の形状、サイズ等も限定されない。例えば、100〜1000mL程度の容量のボトル形状、500mL〜30L程度の容量の携帯型タンク形状、数十リッター〜数十トン程度の容量の家庭用、ビル用もしくは集合住宅用の据え置き型タンク形状等を例示することができる。 The shape, size, etc. of the liquid container in the purification sterilization container are not limited. For example, a bottle shape with a capacity of about 100 to 1000 mL, a portable tank shape with a capacity of about 500 mL to 30 L, a household tank shape with a capacity of several tens of liters to several tens of tons, a stationary tank shape for buildings or apartment buildings, etc. Can be illustrated.
飲料水の浄化滅菌容器は、好ましくは、容器壁部の少なくとも一部が光透過性の材料からなる。又、好ましくは、容器内部に多孔質複合材料に対する光照射用の光源を備える。これらの構成により、多孔質複合材料の光触媒成分による有害成分の分解作用や雑菌やカビに対する滅菌作用が常に確保される。 In the drinking water purification and sterilization container, preferably, at least a part of the container wall is made of a light-transmitting material. Preferably, a light source for irradiating light to the porous composite material is provided inside the container. With these constitutions, the decomposition action of harmful components by the photocatalytic component of the porous composite material and the sterilization action against germs and molds are always ensured.
〔保持部材〕
浄化滅菌容器に設ける通水構造の保持部材は、浄化滅菌容器の不可欠の構成要素ではない。「通水構造」とは、要するに多孔質複合材料を任意の形態で保持でき、かつ内部に飲料水を流通させ得る構造を言う。種々の形態の保持部材によって多孔質複合材料を保持しておくと、次のような利点を期待できる。
[Holding member]
The water-permeable holding member provided in the sterilization container is not an essential component of the sterilization container. In short, the “water-permeable structure” means a structure that can hold the porous composite material in an arbitrary form and allow the drinking water to flow inside. If the porous composite material is held by holding members of various forms, the following advantages can be expected.
1)多孔質複合材料が容器内部で位置決めされて、浄化滅菌容器の移動や運搬の際に多孔質複合材料の転動や動揺を起こし難い。 1) The porous composite material is positioned inside the container, and the porous composite material is unlikely to roll or shake when the purification sterilization container is moved or transported.
2)多孔質複合材料が粉状や粒状である場合において、これを通水構造の保持部材の内部に収容もしくは封入することにより、多孔質複合材料の機能を確保しつつ、これが飲料水中にバラケで分散することを防止できる。 2) When the porous composite material is in the form of powder or granules, the porous composite material is accommodated or enclosed in a holding member having a water-permeable structure, so that the function of the porous composite material is ensured and the Can be prevented from being dispersed.
3)保持部材を浄化滅菌容器の注水口に懸架する形式にしておけば、浄化滅菌容器内の多孔質複合材料を取り替える際に、保持部材ごと多孔質複合材料を容易に取り出せるため、便利である。 3) If the holding member is suspended from the water injection port of the sterilization container, it is convenient because the porous composite material can be easily taken out together with the holding member when replacing the porous composite material in the sterilization container. .
次に、本発明の一実施例を図面に基づいて説明する。本発明の技術的範囲が、この実施例によって限定されないことは言うまでもない。 Next, an embodiment of the present invention will be described with reference to the drawings. Needless to say, the technical scope of the present invention is not limited by this embodiment.
図1は、本実施例に係る浄化滅菌容器1の各構成要素を互いに分離して示した斜視図であり、図2は、浄化滅菌容器1の使用状態を示す断面図である。
FIG. 1 is a perspective view showing components of a
浄化滅菌容器1の液体容器2は、1.8リッター容量の透明なPET(ポリエチレンテレフタレート)ボトルであり、容器本体部3と注水口であるボトルネック4とを備えている。ボトルネック4には雄ネジ5が形成され、これに対して内周に雌ネジを設けたキャップ6を螺合するようになっている。
The
保持部材7は、プラスチック材等の適宜な透明材料からなり、有底で上端が開口した所定の長さの筒状体である。保持部材7において、その筒状の壁部には液体を自由に出入りさせる複数のスリット8が切り欠き形成され、上端の開口部には外周側へ拡張したフランジ9が形成されている。
The holding
多孔質複合材料10は、上記の保持部材7の筒状部に収容できる長さと太さを有する棒状の無機質焼成体である。多孔質複合材料10は、図示のものと同様の長さと太さを有する筒状体であっても良い。この多孔質複合材料10は、層状粘土鉱物たるカオリナイトを主成分とする木節粘土約60重量%と、光触媒材料である酸化チタン約40重量%とを混合した原料を焼成したものである。
The porous
上記の混合原料には、多孔体材料としての発泡スチロール粒の配合等の適宜な手段が施され、そのため多孔質複合材料10は多数の気泡孔11を伴うハニカム構造に仕上がっている。そして気泡孔11はいわゆる連通型の連続気泡孔であるため、その内部を液体が自由に流通できる。
Appropriate means such as blending of polystyrene foam as a porous material is applied to the mixed raw material, so that the porous
又、多孔質複合材料10は約700°Cで焼成されているため、焼成材料の強度が十分である一方で、酸化チタンはアナターゼ型であり、かつ木節粘土の配合に基づく非常に小さい細孔(図示しない)が豊富に発達した多孔質材料となっている。従って、飲料水中の有害成分に対する吸着能力が高く、また吸着した有害成分に対する光触媒作用に基づく分解能力も高く、しかも雑菌やカビの繁殖を抑制する能力も高い。
In addition, since the porous
このように構成された浄化滅菌容器1は、図2に示すようにして使用される。即ち、まず保持部材7の筒状部に多孔質複合材料10を収容する。そして飲料水12が充填された液体容器2のボトルネック4から、この保持部材7を液体容器2の内部に差し込む。その時、保持部材7のフランジ9がボトルネック4の開口部に係止され、保持部材7は液体容器2中に懸架された状態となる。次に、内部にシール材13を内装したキャップ6をボトルネック4に螺合することにより液体容器2を密封し、この状態で浄化滅菌容器1を保管するのである。
The purified
上記のような飲料水12の保管中において、飲料水12は保持部材7のスリット8を通過して多孔質複合材料10に自由に接触する。更に、ハニカム構造である多孔質複合材料10の内部を自由に流通する。又、外部の各種の自然光や人工光源による光は、透明な液体容器2及び保持部材7を透過して、多孔質複合材料10に対して照射される。
During storage of the
その結果、飲料水12中の有害成分、例えば水道水における塩素系化合物や、PET製である液体容器2から飲料水12中に溶出した溶出成分は、多孔質複合材料10によって吸着される。又、場合によって多孔質複合材料10に含まれるアナターゼ型酸化チタンの光触媒作用により分解される。一方、保管中の飲料水12においては、アナターゼ型酸化チタンの滅菌作用により、雑菌やカビの繁殖が有効に抑制される。
As a result, harmful components in the
本発明は、水道水等の飲料水中に含まれる滅菌用の塩素系化合物を除去したもとで同時にそれらの飲料水の滅菌状態を維持することができる、有益な飲料水の浄化滅菌手段を提供できる。 The present invention provides beneficial drinking water purification and sterilization means capable of maintaining the sterilized state of drinking water at the same time while removing sterilizing chlorine compounds contained in drinking water such as tap water. it can.
1 浄化滅菌容器
2 液体容器
4 ボトルネック
6 キャップ
7 保持部材
8 スリット
10 多孔質複合材料
11 気泡孔
12 飲料水
DESCRIPTION OF
Claims (10)
(1)容器壁部の少なくとも一部が光透過性の材料からなる。
(2)容器内部に、前記多孔質複合材料に対する光照射用の光源を備える。 The said container is equipped with the structure of following (1) and / or (2), The purification | cleaning sterilization container of the drinking water of Claim 7 characterized by the above-mentioned.
(1) At least a part of the container wall is made of a light transmissive material.
(2) A light source for light irradiation with respect to the porous composite material is provided inside the container.
The drinking water purification and sterilization container according to any one of claims 7 to 9, wherein the porous composite material has a powdery, granular, monolithic or honeycomb shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003277281A JP2005040704A (en) | 2003-07-22 | 2003-07-22 | Purification sterilization method for drinking water, and purification sterilization vessel for drinking water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003277281A JP2005040704A (en) | 2003-07-22 | 2003-07-22 | Purification sterilization method for drinking water, and purification sterilization vessel for drinking water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005040704A true JP2005040704A (en) | 2005-02-17 |
Family
ID=34264051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003277281A Pending JP2005040704A (en) | 2003-07-22 | 2003-07-22 | Purification sterilization method for drinking water, and purification sterilization vessel for drinking water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005040704A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009056391A (en) * | 2007-08-31 | 2009-03-19 | National Institute For Materials Science | Photocatalytic material of octahedron seat structure |
JP2009195772A (en) * | 2008-02-19 | 2009-09-03 | Nakamura Bussan Kk | Water treatment apparatus and water treatment method |
CN103156528A (en) * | 2013-03-11 | 2013-06-19 | 吉林市友好环保科技有限公司 | Sterilizer arranged in front of water inlet of drinkable water |
JP2013158658A (en) * | 2012-02-01 | 2013-08-19 | Mitsubishi Rayon Cleansui Co Ltd | Portable simplified water purifier |
CN103588214A (en) * | 2013-10-17 | 2014-02-19 | 华南理工大学 | Preparation methods of illite/montmorillonite clay nanometer slurry and illite/montmorillonite clay nanometer powder |
CN103585951A (en) * | 2013-10-17 | 2014-02-19 | 华南理工大学 | Illite/montmorillonite clay heavy metal ion adsorbent and preparation method thereof |
WO2017001591A1 (en) * | 2015-06-30 | 2017-01-05 | Courtin Karine | Container having a bactericidal insert |
CN110560089A (en) * | 2019-08-16 | 2019-12-13 | 南京理工大学 | Zinc-cadmium-sulfur-bismuth doped halloysite composite photocatalyst and preparation method thereof |
-
2003
- 2003-07-22 JP JP2003277281A patent/JP2005040704A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009056391A (en) * | 2007-08-31 | 2009-03-19 | National Institute For Materials Science | Photocatalytic material of octahedron seat structure |
JP2009195772A (en) * | 2008-02-19 | 2009-09-03 | Nakamura Bussan Kk | Water treatment apparatus and water treatment method |
JP4676996B2 (en) * | 2008-02-19 | 2011-04-27 | 中村物産有限会社 | Water treatment apparatus and water treatment method |
JP2013158658A (en) * | 2012-02-01 | 2013-08-19 | Mitsubishi Rayon Cleansui Co Ltd | Portable simplified water purifier |
CN103156528B (en) * | 2013-03-11 | 2017-08-15 | 吉林市友好环保科技有限公司 | Drink sterilizer before water inlet |
CN103156528A (en) * | 2013-03-11 | 2013-06-19 | 吉林市友好环保科技有限公司 | Sterilizer arranged in front of water inlet of drinkable water |
CN103588214A (en) * | 2013-10-17 | 2014-02-19 | 华南理工大学 | Preparation methods of illite/montmorillonite clay nanometer slurry and illite/montmorillonite clay nanometer powder |
CN103585951A (en) * | 2013-10-17 | 2014-02-19 | 华南理工大学 | Illite/montmorillonite clay heavy metal ion adsorbent and preparation method thereof |
WO2017001591A1 (en) * | 2015-06-30 | 2017-01-05 | Courtin Karine | Container having a bactericidal insert |
FR3038302A1 (en) * | 2015-06-30 | 2017-01-06 | Karine Courtin | CONTAINER COMPRISING A BACTERICIDE INSERT |
CN107743471A (en) * | 2015-06-30 | 2018-02-27 | K·考汀 | container with sterilization insert |
CN107743471B (en) * | 2015-06-30 | 2020-07-03 | K·考汀 | Container with sterilizing insert |
CN110560089A (en) * | 2019-08-16 | 2019-12-13 | 南京理工大学 | Zinc-cadmium-sulfur-bismuth doped halloysite composite photocatalyst and preparation method thereof |
CN110560089B (en) * | 2019-08-16 | 2022-06-28 | 南京理工大学 | Zinc-cadmium-sulfur-bismuth doped halloysite composite photocatalyst and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5541096A (en) | Photocatalyst and process for purifying water with same | |
US6180548B1 (en) | Environment-purifying material and its manufacturing method | |
US7615152B2 (en) | Water filter device | |
JP2005040704A (en) | Purification sterilization method for drinking water, and purification sterilization vessel for drinking water | |
JP2012036072A (en) | Product shape and component composition of chlorine dioxide generator at using time | |
CN103752298A (en) | Nanoscale photocatalyst and preparation method thereof | |
JP2006110470A (en) | Water cleaning agent | |
JP2012111673A (en) | Composition of visible light responsive chlorine dioxide generator and chlorine dioxide releasing product based on the composition | |
JP3117334U (en) | Water purification tool | |
CA2402074C (en) | Method for flushing particle-bearing filter beds, to sterilize and decontaminate the same | |
KR20070098763A (en) | War-weariness bottom of commodore function re- | |
JP2003212754A (en) | Bathing agent composition | |
JP3126287U (en) | Water reformer | |
KR20030034742A (en) | Light catalyst filter and water purifier | |
JP2004321982A (en) | Hydrogen water generator | |
JPH11267637A (en) | Sterilization of water in water tank | |
JP2017131360A (en) | Chemical liquid spray device sealed with solid chemical | |
KR200426332Y1 (en) | Photocatalyst Tile | |
KR200424909Y1 (en) | hygienic courage | |
JP3145358U (en) | Water container | |
JP2002052386A (en) | Water cleaning method and water cleaner | |
ES2916381B2 (en) | Photocatalyst element for fluid decontamination | |
KR200297279Y1 (en) | Container for food | |
KR200379040Y1 (en) | A capsule for clean water | |
JPS6295193A (en) | Implement for producing mineral water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081104 |