JP5428439B2 - Coke production method - Google Patents

Coke production method Download PDF

Info

Publication number
JP5428439B2
JP5428439B2 JP2009075383A JP2009075383A JP5428439B2 JP 5428439 B2 JP5428439 B2 JP 5428439B2 JP 2009075383 A JP2009075383 A JP 2009075383A JP 2009075383 A JP2009075383 A JP 2009075383A JP 5428439 B2 JP5428439 B2 JP 5428439B2
Authority
JP
Japan
Prior art keywords
coke
coal
atmospheric pressure
pressure
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009075383A
Other languages
Japanese (ja)
Other versions
JP2010229195A (en
Inventor
喜代志 深田
泉 下山
孝思 庵屋敷
英和 藤本
広行 角
勇介 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009075383A priority Critical patent/JP5428439B2/en
Publication of JP2010229195A publication Critical patent/JP2010229195A/en
Application granted granted Critical
Publication of JP5428439B2 publication Critical patent/JP5428439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、石炭乾留時における脱泡を促進して、高強度のコークスを製造する、コークスの製造方法に関するものである。   The present invention relates to a method for producing coke, which promotes defoaming during coal dry distillation to produce high-strength coke.

石炭を乾留して製造されるコークスは、高炉内の通気性を維持する重要な役割を担っており、安定した微粉炭多量吹込み操業、高出銑比操業あるいは低還元材比操業を達成するためには、高炉内での粉発生を抑制できる高い強度を有するコークスが必要であると考えられている。   Coke produced by dry distillation of coal plays an important role in maintaining air permeability in the blast furnace and achieves stable pulverized coal large-injection operation, high output ratio operation, or low reductant ratio operation. For this purpose, it is considered that coke having high strength capable of suppressing the generation of powder in the blast furnace is necessary.

一般に、コークス原料石炭中の粘結炭の配合割合を増やすことで、コークスの高強度化を図ることが可能である。特に、良質な粘結炭を増やすほどその効果は大きくなる。しかし、粘結炭は、資源量が少なく価格も高いため、資源制約およびコークス製造コスト削減の観点から、粘結炭の使用割合を単純に増加させることは難しい。   Generally, it is possible to increase the strength of coke by increasing the blending ratio of caking coal in coke raw material coal. In particular, the effect increases as the quality of caking coal increases. However, since caking coal has a small amount of resources and is expensive, it is difficult to simply increase the proportion of caking coal used from the viewpoint of resource constraints and coke production cost reduction.

また、粘結炭は軟化溶融時に大きく膨張しようとするが、コークス炉内では、その膨張が拘束されることによる圧密作用により、コークス内の粗大気孔が減少することで、コークスの高強度化に寄与している。しかし、拘束力を受けるコークス炉の炉壁は、使用年数の経過とともに損傷が進行していくため、老朽コークス炉においては、拘束力の耐圧限界の観点からも、粘結炭の使用量を制約することを視野に入れる必要がでてきている。そこで、粘結炭がもつ圧密作用に依存せずに、コークス中に残留する粗大気孔を抑制することができれば、資源面、コスト面ならびに設備面に及ぼす効果は大きいものとなる。   In addition, caking coal tends to expand greatly when softened and melted, but in the coke oven, the expansion of coke by constraining the expansion reduces the number of coarse air holes in the coke, thereby increasing the strength of the coke. Has contributed. However, because the damage to the coke oven wall that receives the binding force progresses over the years of use, the amount of caking coal in the old coke oven is limited from the viewpoint of the pressure limit of the binding force. There is a need to consider what to do. Therefore, if the rough air holes remaining in the coke can be suppressed without depending on the consolidation action of caking coal, the effect on resources, costs, and facilities will be great.

粘結炭に依存せずにコークス中に残留する粗大気孔量を減少させる技術として、乾留炉内での加熱中に圧縮状態で保持する(例えば、特許文献1参照。)、あるいは突き固めた石炭の上面表層部に重力を付加し加圧しながら乾留する方法(例えば、特許文献2、3参照。)、また、乾留炉内の石炭に対して、外から加熱方向と同一の方向から強制的に機械的圧力を付与する方法(例えば、特許文献4参照。)、さらには、乾留炉内の雰囲気圧力を高め加熱する方法(例えば、特許文献5参照。)などが提案されている。   As a technique for reducing the amount of coarse atmospheric pores remaining in coke without depending on caking coal, it is held in a compressed state during heating in a dry distillation furnace (for example, see Patent Document 1) or tamped coal. (For example, refer to Patent Documents 2 and 3). Further, the coal in the carbonization furnace is forced from the same direction as the heating direction from the outside. A method of applying a mechanical pressure (for example, see Patent Document 4), a method of increasing the atmospheric pressure in the dry distillation furnace and heating (for example, see Patent Document 5), and the like have been proposed.

特開昭55−5981号公報JP 55-5981 A 特開昭61−87783号公報Japanese Patent Application Laid-Open No. 61-87783 特開昭61−87785号公報JP 61-87785 A 特許第2864585号公報Japanese Patent No. 2864585 特開平3−179084号公報Japanese Patent Laid-Open No. 3-179084

海保守、牧野三則、小林光雄、木村英雄、加藤勉著 「加圧下における石炭の粘結特性の検討(I)」燃料協会誌、第63巻、1984年、p.48−53Sea maintenance, Sannori Makino, Mitsuo Kobayashi, Hideo Kimura, Tsutomu Kato “Examination of caking properties of coal under pressure (I)”, Japan Fuel Association, Vol. 63, 1984, p. 48-53

特許文献1に記載された手段では、石炭、コークスに直接圧力を加えるためには加熱壁を動かす必要があるが、工業炉では技術的に非常に困難である。また、特許文献2、3については、突き固め、さらに突き固めた石炭の上面表層部に重力を付加し加圧しながら加熱乾留することで、強度向上が期待できるが、突き固めた石炭の上面表層部近傍にその効果は限定される。また、特許文献4の加熱乾留中、強制的に機械的圧力を付与する方法も効果は機械的圧力を付与できる領域に限定される。さらに、特許文献5に記載された方法では、粘結炭に依存せずに石炭の自由膨張を効率的に抑制することができるため、コークス強度を大幅に増加することが可能となる。しかし、既存のコークス炉は高い圧力に対するシール性を考慮していないため、雰囲気圧力保持は事実上困難であり、また、炉蓋からのガス漏れなどによる環境上の問題も新たな解決すべき課題となる。   In the means described in Patent Document 1, it is necessary to move the heating wall in order to directly apply pressure to coal and coke, but this is technically very difficult in an industrial furnace. Moreover, about patent document 2, 3, although strength improvement can be anticipated by adding gravity to the upper surface layer part of the tamped and further solidified coal and heating and distilling it while applying pressure, the upper surface layer of the tamped coal can be expected. The effect is limited to the vicinity of the portion. In addition, the method of forcibly applying a mechanical pressure during heating and dry distillation in Patent Document 4 is limited to an area where the mechanical pressure can be applied. Furthermore, in the method described in Patent Document 5, since the free expansion of coal can be efficiently suppressed without depending on caking coal, the coke strength can be greatly increased. However, since the existing coke oven does not consider the sealing performance against high pressure, it is practically difficult to maintain the atmospheric pressure, and environmental problems such as gas leakage from the furnace lid are also new issues to be solved. It becomes.

以上のように、従来の技術を用いては、粘結炭に依存せずにコークス中に残留する粗大気孔量を十分に減少させることは困難である。   As described above, it is difficult to sufficiently reduce the amount of rough atmospheric pores remaining in the coke without depending on caking coal using the conventional technology.

したがって、本発明の目的は、このような従来技術の課題を解決し、粘結炭に依存せずに、コークス中に残留する粗大気孔量を減少させて、高強度なコークスを製造することを可能とする、コークスの製造方法を提供することにある。   Therefore, an object of the present invention is to solve such problems of the prior art and reduce the amount of rough atmospheric pores remaining in the coke without depending on caking coal, and to produce high strength coke. An object of the present invention is to provide a method for producing coke, which is possible.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)石炭を加熱空間に装入して乾留し、コークスを製造するに際し、前記加熱空間内における雰囲気圧力を振動制御した雰囲気下において石炭の乾留を行うことを特徴とするコークスの製造方法。
(2)少なくとも石炭が軟化溶融状態にある時期を含むように雰囲気圧力の振動制御を行うことを特徴とする請求項1に記載のコークスの製造方法。
(3)加熱空間内の雰囲気圧力の最大値と最小値の差が100Pa以上であり、最大値と最小値の間隔が10秒以下となるように圧力振動制御を行うことを特徴とする(1)または(2)に記載のコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing coke, characterized in that, when coal is charged into a heating space and carbonized to produce coke, coal is carbonized in an atmosphere in which the atmospheric pressure in the heating space is controlled by vibration.
(2) The method for producing coke according to claim 1, wherein vibration control of the atmospheric pressure is performed so as to include at least a time when the coal is in a softened and molten state.
(3) The pressure vibration control is performed so that the difference between the maximum value and the minimum value of the atmospheric pressure in the heating space is 100 Pa or more, and the interval between the maximum value and the minimum value is 10 seconds or less (1 ) Or the method for producing coke according to (2).

本発明によれば、良質かつ高価な粘結炭の使用を前提とせずに、高強度なコークスの製造が可能となるため、安価な資源を活用して、低コストでコークスを製造できる。また、設備への負荷が過大な方法ではないので、設備の維持管理が容易であり、コークスの安定製造が実現できる。さらに、高品質のコークスが供給できるようになるため、高炉の安定操業も期待できる。   According to the present invention, it is possible to produce high-strength coke without assuming the use of high-quality and expensive caking coal. Therefore, coke can be produced at low cost by utilizing inexpensive resources. In addition, since the load on the equipment is not excessive, maintenance and management of the equipment is easy and stable production of coke can be realized. Furthermore, since high-quality coke can be supplied, stable operation of the blast furnace can be expected.

特に本発明は、雰囲気圧力を振動制御する方法であるため、高い圧力に対するシール性を考慮していない既存のコークス炉においても実施することができ、装入石炭内部まで雰囲気圧力振動の効果が及ぶため、強度のばらつきの少ないコークスを製造することができる。   In particular, since the present invention is a method for controlling vibration of the atmospheric pressure, it can also be implemented in an existing coke oven that does not consider sealing performance against high pressure, and the effect of atmospheric pressure vibration extends to the inside of the charged coal. Therefore, coke with little variation in strength can be produced.

異なる石炭銘柄の軟化溶融時における剪断速度と最小見掛粘度の関係を示すグラフ。The graph which shows the relationship between the shear rate at the time of softening and melting of different coal brands, and minimum apparent viscosity. 雰囲気圧力振動を与えない場合と与えた場合におけるギーセラー流動度曲線を示すグラフ。The graph which shows the Gieseller flow rate curve in the case where it does not give atmospheric pressure vibration and when it gives. 雰囲気圧力振動を与えない場合と与えた場合におけるギーセラー流動度曲線を示すグラフ。The graph which shows the Gieseller flow rate curve in the case where it does not give atmospheric pressure vibration and when it gives. 雰囲気圧力振動を与える場合の圧力制御パターンのイメージを示すグラフ。The graph which shows the image of the pressure control pattern in the case of giving atmospheric pressure vibration. 雰囲気圧力振動の圧力差および切替間隔とコークス間接引張強度の関係を示すグラフ。The graph which shows the relationship between the pressure difference and switching interval of atmospheric pressure vibration, and coke indirect tensile strength.

コークス内部気孔の大部分は、石炭乾留過程における軟化溶融状態から再固化に至るまでに、熱分解により生成した気泡、あるいは石炭充填時の空隙が系外に排出されずに留まることで形成されている。コークスは気孔率が50体積%前後の多孔材料であり、コークス強度は気孔量に大きく影響されることから、気泡や空隙をコークスの外に効率よく排出(脱泡)することができれば、コークス強度を向上させることができる。   Most of the pores in the coke are formed by bubbles generated by pyrolysis or voids during coal filling without being discharged out of the system from the softened and melted state in the coal dry distillation process to resolidification. Yes. Coke is a porous material with a porosity of around 50% by volume, and the strength of coke is greatly influenced by the amount of pores. Therefore, if coke can be efficiently discharged (defoamed) out of coke, coke strength Can be improved.

一般的な脱泡方法としては、自然上昇を狙った静置法、加熱法、遠心脱泡法、減圧あるいは真空脱泡法、超音波脱泡法などが一般的である。しかし、コークス製造はもともとが加熱プロセスであり、加熱空間内の同じ位置における軟化溶融状態の平均存在時間は30分から60分程度と短いことから、加熱法や静置法は明らかに適さない。また、遠心脱泡法や超音波脱泡法は、高炉で使用するコークスの製造プロセスで用いるような超大型の反応炉に対して容易に利用できる技術が開発されていないため、現状での導入は難しいと考えられる。一方で、減圧あるいは真空脱泡法については大型の炉でも実施可能であると考えられる。コークス炉における加熱空間内の雰囲気圧力に関しては、現行プロセスにおいても小さな範囲ではあるが制御可能な仕様となっている。そこで、本発明者らは、雰囲気圧力を制御するコークスの製造方法について検討した。   As a general defoaming method, a stationary method aiming at natural rise, a heating method, a centrifugal defoaming method, a reduced pressure or vacuum defoaming method, an ultrasonic defoaming method and the like are common. However, coke production is originally a heating process, and the average existence time of the softened and melted state at the same position in the heating space is as short as about 30 to 60 minutes, so the heating method and the standing method are clearly unsuitable. In addition, the centrifugal defoaming method and the ultrasonic defoaming method have not been developed as a technology that can be easily used for ultra-large reactors used in the manufacturing process of coke used in blast furnaces. Is considered difficult. On the other hand, the reduced pressure or vacuum defoaming method can be implemented even in a large furnace. Regarding the atmospheric pressure in the heating space in the coke oven, the specification is controllable although it is a small range even in the current process. Therefore, the present inventors examined a method for producing coke that controls the atmospheric pressure.

雰囲気圧力が石炭軟化溶融性に及ぼす影響に関してはすでに検討が行われており、雰囲気圧力の低下に伴い、石炭の軟化溶融性は大幅に失われることが報告されている(非特許文献1参照。)。これは、雰囲気圧力の減少に伴い、熱分解ガスが強制的に排出され揮発成分が沸騰揮散することで、液相を形成する成分が減少することが一因となっている。このように、単純に減圧処理を行った場合には、軟化溶融性が悪化して、脱泡効果が得られず、逆にコークス強度の低下を招くことになる。   The influence of the atmospheric pressure on the coal softening and melting property has already been studied, and it has been reported that the softening and melting property of coal is largely lost as the atmospheric pressure decreases (see Non-Patent Document 1). ). This is partly due to a decrease in the components that form the liquid phase by forcibly discharging the pyrolysis gas and boiling off the volatile components as the atmospheric pressure decreases. As described above, when the decompression treatment is simply performed, the softening and melting property is deteriorated, the defoaming effect cannot be obtained, and conversely, the coke strength is lowered.

そこで、本発明者らは、単なる減圧処理ではなく、雰囲気圧力を振動させることにより、軟化溶融性を低下させずに脱泡効果を得る方法を見出した。   Therefore, the present inventors have found a method for obtaining a defoaming effect without reducing the softening and melting property by oscillating the atmospheric pressure, rather than simply reducing the pressure.

まずは、石炭軟化溶融物のレオロジー特性の測定および解析を行った。図1に一例として性状の異なる3種類の石炭についての剪断速度と最小見掛粘度の関係を示す。尚、石炭加熱時の軟化溶融物の粘度は、温度上昇に伴い一旦は低くなるが、再固化温度に近づくにつれて再び高くなる、という特有の温度依存性を有していることから、一般的に重要視されている最小粘度を採用している。   First, the rheological properties of the coal softened melt were measured and analyzed. FIG. 1 shows, as an example, the relationship between shear rate and minimum apparent viscosity for three types of coal having different properties. It should be noted that the viscosity of the softened melt during heating of coal once decreases as the temperature rises, but increases again as it approaches the resolidification temperature. Employs minimum viscosity, which is regarded as important.

図1によれば、レオロジー特性を解析した結果、石炭軟化溶融物の粘度は剪断速度の増加に伴い小さくなり、剪断速度の影響度は石炭性状により異なることが確認できた。この結果は、石炭軟化溶融物に対し剪断速度を与えることができれば、軟化溶融物の見掛粘度を低下させることができ、その結果として気泡の排出速度を増加させることができることを示唆していると考えられる。そして、雰囲気圧力制御により剪断速度を生み出す方法として、気泡や閉じた空隙を膨張・収縮させ、その周囲に剪断速度を発生させる方法、すなわち、雰囲気圧力を振動させる方法を想起するに至った。   According to FIG. 1, as a result of analyzing the rheological characteristics, it was confirmed that the viscosity of the coal softening melt decreases as the shear rate increases, and the influence of the shear rate varies depending on the coal properties. This result suggests that if the shear rate can be applied to the coal softened melt, the apparent viscosity of the softened melt can be reduced, and as a result, the bubble discharge rate can be increased. it is conceivable that. As a method for generating a shear rate by controlling atmospheric pressure, the inventors have come up with a method for expanding and contracting bubbles and closed voids and generating a shear rate around them, that is, a method for vibrating the atmospheric pressure.

したがって、加熱空間内の雰囲気圧力制御は、少なくとも石炭が軟化溶融状態にある時期の一部を含むように行なうことで効果がある。石炭が軟化溶融状態にある時期の全体を含むように行なうことが好ましい。もちろん、加熱空間内での乾留中の全時期について石炭、石炭が乾留されて生成した軟化溶融物、コークスに雰囲気圧力制御を行なっても差し支えない。350〜550℃の温度領域を、石炭の軟化溶融状態域として雰囲気圧力制御を行なうことが好ましい。   Therefore, the atmospheric pressure control in the heating space is effective by performing at least part of the time when the coal is in the softened and melted state. It is preferable to carry out so as to include the entire period when the coal is in the softened and molten state. Of course, atmospheric pressure control may be performed on coal, a softened melt produced by dry distillation of coal, and coke for all periods during carbonization in the heating space. It is preferable to perform atmospheric pressure control using a temperature range of 350 to 550 ° C. as a softened and molten state region of coal.

次に、雰囲気圧力振動が石炭軟化溶融特性に及ぼす影響を図2、3に示す。これは、性状の異なる2種類の石炭についてのギーセラー流動度曲線を示している。図2、3においては、雰囲気圧力振動を加えずJIS M8801に準拠して測定した結果と、最大ゲージ圧が0Pa、最小ゲージ圧が−1000Paとなるように3秒間隔で最大ゲージ圧と最小ゲージ圧を切り替えながら測定を行った、雰囲気圧力振動を加えた場合の結果を併せて示している。図2、3のどちらにおいても、雰囲気圧力振動を加えた場合は、加えない場合と比較して流動性、すなわち軟化溶融性の低下は確認されなかった。また、再固化温度が若干高温側に移動する傾向が認められた。尚、再固化温度の高温化は炭素微細構造の発達に寄与するため、コークス基質強度の向上が期待できる。   Next, FIGS. 2 and 3 show the influence of the atmospheric pressure vibration on the coal softening and melting characteristics. This shows a Gieseller flow rate curve for two types of coal with different properties. In FIGS. 2 and 3, the measurement result according to JIS M8801 without applying atmospheric pressure vibration, and the maximum gauge pressure and the minimum gauge at intervals of 3 seconds so that the maximum gauge pressure is 0 Pa and the minimum gauge pressure is −1000 Pa. The results when the atmospheric pressure vibration was applied, which was measured while switching the pressure, are also shown. 2 and 3, when atmospheric pressure vibration was applied, no decrease in fluidity, that is, softening and melting property was confirmed as compared with the case where no atmospheric pressure vibration was applied. Moreover, the tendency for the resolidification temperature to move slightly to the high temperature side was observed. In addition, since the increase in the resolidification temperature contributes to the development of the carbon microstructure, an improvement in the strength of the coke substrate can be expected.

雰囲気圧力振動効果は、減圧にともなう気泡生成速度の増加を抑制することにより、軟化溶融特性の低下を起こさないことに加えて、気泡や閉じた空隙を膨張・収縮させ、それら周辺の剪断速度を大きくして見掛粘度を低下させることを目的としているため、雰囲気圧力振動の最大圧力と最小圧力の差(振幅)および最大圧力と最小圧力の間隔(振動数)には最適範囲が存在する。   The atmospheric pressure vibration effect suppresses the increase in bubble generation rate due to decompression, and in addition to not causing deterioration in softening and melting characteristics, expands and contracts bubbles and closed voids, and reduces the shear rate around them. Since it is intended to reduce the apparent viscosity by increasing it, there is an optimum range for the difference (amplitude) between the maximum pressure and the minimum pressure of the atmospheric pressure vibration and the interval (frequency) between the maximum pressure and the minimum pressure.

雰囲気圧力振動の振幅を大きくすることにより、気泡が膨張・収縮する範囲が大きくなり、気泡の周囲の広い範囲で見掛粘度の低下効果を得ることができるため、気泡の排出促進につながる。しかし、圧力の最小値を小さくする場合、すなわち顕著に減圧する場合は、雰囲気圧力と軟化溶融物の飽和蒸気圧の差が大きくなり、軟化溶融物からの気泡生成速度が増加するため、減圧保持時間が長くなるほど新たな気泡が多数生成して、軟化溶融性の低下につながることから、振動数を大きくして減圧保持時間を短くすることで、減圧に起因して生成する気泡の量を制御することが望ましい。   By increasing the amplitude of the atmospheric pressure vibration, the range in which the bubbles expand and contract is increased, and the effect of lowering the apparent viscosity can be obtained in a wide range around the bubbles, leading to the promotion of bubble discharge. However, if the minimum pressure value is reduced, that is, if the pressure is significantly reduced, the difference between the atmospheric pressure and the saturated vapor pressure of the softened melt will increase, and the bubble generation rate from the softened melt will increase. The longer the time, the more new bubbles are generated, leading to a decrease in softening and melting properties. By increasing the frequency and shortening the decompression holding time, the amount of bubbles generated due to decompression is controlled. It is desirable to do.

一方、雰囲気圧力振動の振動数を大きくすることにより、気泡の膨張・収縮速度が増加するため、気泡周囲の剪断速度が増加する。また、雰囲気圧力と軟化溶融物の飽和蒸気圧の差が大きくなる時間が短くなるため、軟化溶融物成分のガス成分への移行が抑制され、気泡の生成抑制に働くため、振動数は大きければ大きいほど望ましい。   On the other hand, by increasing the frequency of the atmospheric pressure vibration, the bubble expansion / contraction rate increases, so the shear rate around the bubble increases. In addition, since the time during which the difference between the atmospheric pressure and the saturated vapor pressure of the softened melt becomes large is shortened, the transition of the softened melt component to the gas component is suppressed, and the bubble generation is suppressed. Larger is desirable.

雰囲気圧力の振動条件としては、雰囲気圧力の最大値と最小値の差は100Pa以上、最大値と最小値の間隔は10秒以下とすることが、より望ましい。雰囲気圧力の測定は、石炭の加熱空間内に所定の測定点を設定し、同じ位置で行なうことが望ましい。   As vibration conditions of the atmospheric pressure, it is more desirable that the difference between the maximum value and the minimum value of the atmospheric pressure is 100 Pa or more, and the interval between the maximum value and the minimum value is 10 seconds or less. The atmospheric pressure is preferably measured at the same position by setting a predetermined measurement point in the coal heating space.

また、雰囲気圧力振動の付与には、図4(a)のようにパルス状に制御する方法および図4(b)のように周期関数状に制御する方法があるが、いずれの方法で行っても構わない。   In addition, there are a method of controlling the atmospheric pressure vibration in a pulse shape as shown in FIG. 4A and a method of controlling it in a periodic function shape as shown in FIG. 4B. It doesn't matter.

雰囲気圧力振動の付与方法としては、専用の圧力制御装置を設置して加熱空間内の雰囲気圧を制御する方法がもっとも制御性は高いが、大きな投資を伴うことになる。そこで、低圧、中圧、高圧など圧力の異なる2つ以上の安水スプレーを交互に使用する方法などで雰囲気圧力を振動させることが低コストで好ましい。   As a method for applying the atmospheric pressure vibration, a method of controlling the atmospheric pressure in the heating space by installing a dedicated pressure control device has the highest controllability, but it involves a large investment. Therefore, it is preferable at low cost to vibrate the atmospheric pressure by a method of alternately using two or more water-resistant sprays having different pressures such as low pressure, medium pressure, and high pressure.

本発明において行う、雰囲気圧力に振動を加える方法は、乾留ガスの炉体からの洩れを防ぐためのシール性しか考慮されていない既存のコークス炉においても実現が可能である。例えば、加圧手段を圧力制御手段として用いる場合、シール性が悪くても、加圧すれば、減圧が生じ、加圧の繰り返しにより雰囲気圧力に振動を加えることになる。減圧手段利用の場合も同様であり、減圧後シール性が悪く復圧が生じこの雰囲気圧力の振動を利用することが可能である。このように、既存のコークス炉においても雰囲気圧力振動の付与の実現が可能となり、シール性の十分でない点が利点となる。加圧手段と減圧手段の併用ももちろん可能である。   The method of applying vibration to the atmospheric pressure performed in the present invention can be realized even in an existing coke oven in which only sealing properties for preventing leakage of dry distillation gas from the furnace body are considered. For example, when the pressurizing means is used as the pressure control means, even if the sealing property is poor, if the pressure is applied, the pressure is reduced, and the atmospheric pressure is vibrated by repeated pressurization. The same applies to the case where the decompression means is used, and it is possible to utilize the vibration of the atmospheric pressure due to the poor sealing performance after decompression and the return pressure. As described above, it is possible to realize the application of atmospheric pressure vibration even in an existing coke oven, which is advantageous in that the sealing performance is not sufficient. Of course, the pressurizing means and the decompression means can be used in combination.

また、雰囲気圧力を振動させる方法であるため、装入された石炭、あるいは乾留過程のコークス内部まで雰囲気圧力振動の効果が達することになることも利点である。   Moreover, since it is a method of vibrating the atmospheric pressure, it is also advantageous that the effect of atmospheric pressure vibration reaches the inside of the charged coal or the coke in the dry distillation process.

さらに、図1に示す結果は、雰囲気圧力振動を付与したコークス製造プロセスにおいては、剪断速度の増加にともない粘度が大きく低下する石炭に対して大きな効果が期待できることを示している。すなわち、劣質な石炭の中でも、剪断速度の増加にともなう粘度低下幅の大きな石炭、あるいは当該剪断速度において粘度が低い石炭を優先的に選択して本発明方法を用いることが効果的である。   Furthermore, the results shown in FIG. 1 indicate that a great effect can be expected for coal whose viscosity is greatly reduced as the shear rate is increased in the coke production process to which atmospheric pressure vibration is applied. That is, among the poor quality coals, it is effective to preferentially select coal having a large viscosity decrease width with an increase in shear rate or coal having a low viscosity at the shear rate and use the method of the present invention.

石炭を乾留してコークスを製造し、得られたコークスの評価試験を行った。   Coke was carbonized to produce coke, and the obtained coke was evaluated.

乾留試験には、Ro(ビトリニット最大平均反射率)が0.71、logMF(最高流動度)が1.0の性状を有する石炭を使用した。尚、Roの測定はJIS M8816、logMFの測定はJIS M8801に準拠して行った。   For the dry distillation test, coal having a property of Ro (Vitrinite maximum average reflectance) of 0.71 and log MF (maximum fluidity) of 1.0 was used. Note that Ro was measured according to JIS M8816, and log MF was measured according to JIS M8801.

石炭は、内径18mm、高さ24mmの容器に800kg/m3の嵩密度で充填後、室温から1000℃まで5℃/分で加熱してコークス化した。 Coal was coked by filling a container having an inner diameter of 18 mm and a height of 24 mm with a bulk density of 800 kg / m 3 and heating from room temperature to 1000 ° C. at 5 ° C./min.

乾留過程において雰囲気圧力振動を行わない場合を基準とし、雰囲気圧力条件とコークス品質の関係を比較検討した。尚、雰囲気圧力振動条件としては、最大圧力と最小圧力の差が100Paおよび1000Paの2水準について検討した。また、最大圧力と最小圧力の切替間隔は3秒および0.1秒の2水準について検討した。   The relationship between atmospheric pressure conditions and coke quality was compared based on the case of no atmospheric pressure vibration during the dry distillation process. In addition, as atmospheric pressure vibration conditions, the difference between the maximum pressure and the minimum pressure was examined at two levels of 100 Pa and 1000 Pa. The switching interval between the maximum pressure and the minimum pressure was examined in two levels of 3 seconds and 0.1 seconds.

コークスは三等分し、3つの円柱状のサンプルを得て、これを間接引張強度により強度評価を行った。   The coke was divided into three equal parts, and three cylindrical samples were obtained, and the strength was evaluated by indirect tensile strength.

図5に雰囲気圧力振動条件とコークス強度の関係を示す。雰囲気圧力振動が無い場合と比較して、雰囲気圧力振動を与えることでコークス強度は高くなった。圧力差および切替間隔の影響に関しては、圧力差が大きいほど、切替間隔が短いほど大きな強度向上効果が得られた。   FIG. 5 shows the relationship between atmospheric pressure vibration conditions and coke strength. Compared with the case where there was no atmospheric pressure vibration, the coke strength was increased by applying atmospheric pressure vibration. Regarding the influence of the pressure difference and the switching interval, a greater strength improvement effect was obtained as the pressure difference was larger and the switching interval was shorter.

Claims (1)

石炭を加熱空間に装入し、
記加熱空間内における雰囲気圧力を振動させ、
該雰囲気圧力が振動した雰囲気下において前記石炭の乾留を行い、コークスを製造するコークスの製造方法であって、
少なくとも石炭が軟化溶融状態にある時期には、前記雰囲気圧力を振動させ、
前記雰囲気圧力の最大値と最小値の差が100Pa以上であり、最大値と最小値の間隔が10秒以下となるように前記雰囲気圧力を振動させることを特徴とするコークスの製造方法。
Charging coal into the heating space ,
Vibrating the ambient pressure before Symbol heating space,
There line carbonization of the coal in an atmosphere in which the ambient pressure is vibrated, a process for the preparation of coke producing coke,
At least when the coal is in a softened and molten state, the atmospheric pressure is vibrated,
A method for producing coke , wherein the atmospheric pressure is vibrated so that a difference between a maximum value and a minimum value of the atmospheric pressure is 100 Pa or more and an interval between the maximum value and the minimum value is 10 seconds or less .
JP2009075383A 2009-03-26 2009-03-26 Coke production method Active JP5428439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075383A JP5428439B2 (en) 2009-03-26 2009-03-26 Coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075383A JP5428439B2 (en) 2009-03-26 2009-03-26 Coke production method

Publications (2)

Publication Number Publication Date
JP2010229195A JP2010229195A (en) 2010-10-14
JP5428439B2 true JP5428439B2 (en) 2014-02-26

Family

ID=43045312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075383A Active JP5428439B2 (en) 2009-03-26 2009-03-26 Coke production method

Country Status (1)

Country Link
JP (1) JP5428439B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565063B2 (en) * 1992-09-17 1996-12-18 住友金属工業株式会社 Coke oven carbonization chamber pressure control method
JPH08283723A (en) * 1995-04-14 1996-10-29 Sumitomo Metal Ind Ltd Production of coke for blast furnace
JPH11349955A (en) * 1998-06-11 1999-12-21 Kawasaki Steel Corp Pressure control method and device for carbonizing chamber of coke oven

Also Published As

Publication number Publication date
JP2010229195A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5657103B2 (en) Carbon body, method for producing carbon body and use thereof
CA2766032C (en) Method for producing carbon materials
RU2006145706A (en) COAL ELECTRODE AND METHOD FOR ITS MANUFACTURE
JPWO2009001610A1 (en) Method for producing petroleum coke
JP6299332B2 (en) Coking coal for coke production
JP5428439B2 (en) Coke production method
JP2005516880A (en) Blended pitch / charcoal based carbon foam
KR20150021543A (en) Coke and method for producing same
JP5434185B2 (en) Coke production method
JP4299680B2 (en) Coke strength estimation method
US20180222803A1 (en) Methods for producing polygranular graphite bodies
JP6065510B2 (en) Method of blending coke raw material for blast furnace
CA2997712C (en) Method for lining a cathode of a reduction cell for production of primary aluminum
JP6992625B2 (en) Manufacturing method of binder for coke manufacturing
JP4023577B2 (en) Press-fitting material for blast furnace furnace wall gap filling
CN101048481A (en) Coke pushing method and coke pusher machine
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP5011833B2 (en) Coke manufacturing method
RU2762192C1 (en) Method for producing coking product
JP2009096659A (en) Press fitting material
JP2014168909A (en) Method for manufacturing graphite material
JP2008007538A (en) Coke extruding method and coke producing method
JP6413614B2 (en) Coke oven operation method
JP6834278B2 (en) Coke making equipment
JP2008156661A (en) Method for producing coke for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250