JP5426867B2 - Polybutylene terephthalate resin molded product with weld - Google Patents

Polybutylene terephthalate resin molded product with weld Download PDF

Info

Publication number
JP5426867B2
JP5426867B2 JP2008286995A JP2008286995A JP5426867B2 JP 5426867 B2 JP5426867 B2 JP 5426867B2 JP 2008286995 A JP2008286995 A JP 2008286995A JP 2008286995 A JP2008286995 A JP 2008286995A JP 5426867 B2 JP5426867 B2 JP 5426867B2
Authority
JP
Japan
Prior art keywords
weight
injection
molded product
parts
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008286995A
Other languages
Japanese (ja)
Other versions
JP2010111816A (en
Inventor
直史 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2008286995A priority Critical patent/JP5426867B2/en
Publication of JP2010111816A publication Critical patent/JP2010111816A/en
Application granted granted Critical
Publication of JP5426867B2 publication Critical patent/JP5426867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、機械的強度、摺動性、耐加水分解性、成形流動性に優れた充填剤強化のポリブチレンテレフタレート樹脂組成物を用いて製造された、高いウェルド強度を有する射出成形品に関する。   The present invention relates to an injection-molded article having high weld strength, produced using a filler-reinforced polybutylene terephthalate resin composition having excellent mechanical strength, slidability, hydrolysis resistance and molding fluidity.

ポリブチレンテレフタレート樹脂(以下、PBT樹脂と略記することがある。)は、機械的特性、電気特性に優れているほか、耐薬品性、耐熱性などにも優れているので、エンジニアリングプラスチックとして、自動車、鉄道車両などの車両用各種部品、各種の電気・電子機器部品、さらには一般工業製品の製造用材料として、広く使用されている。なかでもPBT樹脂に繊維状強化材を配合した、いわゆる繊維強化PBT樹脂組成物は、機械的特性が大幅に向上するため、その利用範囲が拡大している。 Polybutylene terephthalate resin (hereinafter sometimes abbreviated as PBT resin) has excellent mechanical and electrical properties, as well as chemical resistance and heat resistance. It is widely used as a material for manufacturing various parts for vehicles such as railway vehicles, various electrical / electronic equipment parts, and general industrial products. In particular, a so-called fiber reinforced PBT resin composition in which a fibrous reinforcing material is blended with a PBT resin has greatly improved mechanical properties, and therefore has an expanded range of use.

しかしながら、一般的な繊維強化材を配合した繊維強化PBT樹脂組成物からなる射出成形品は、ウェルド部の強度が低く、これに起因して成形品に割れが発生することがしばしば見られる。ウェルド部の強度は、ウェルド部の密着性や強化繊維の配向などの影響を受けるため、単に配合する繊維強化材の量を多くしただけでは十分な効果が得られない場合が多い。 However, an injection molded product made of a fiber reinforced PBT resin composition blended with a general fiber reinforcing material often has a low weld strength, which often causes cracks in the molded product. Since the strength of the weld portion is affected by the adhesion of the weld portion and the orientation of the reinforcing fibers, a sufficient effect is often not obtained simply by increasing the amount of the fiber reinforcing material to be blended.

ウェルド部の密着性を向上させる方法としては、PBT樹脂の分子量を下げて流動性を良くすることが考えられるが、この方法はあまり好ましい方法ではない。なぜならば、この方法では、成形時に発生する分解ガスによりウェルド部の密着性が阻害されることがあり、また加水分解による劣化で成形品の使用中に強度が低下することがあるという問題があるからである。 As a method for improving the adhesion of the weld part, it is conceivable to improve the fluidity by lowering the molecular weight of the PBT resin, but this method is not a preferable method. This is because, in this method, there is a problem that the adhesion of the weld portion may be hindered by the decomposition gas generated at the time of molding, and the strength may decrease during use of the molded product due to degradation due to hydrolysis. Because.

特に近年の小型化・薄肉化が進んだ成形品では、いっそう高いウェルド強度を与える樹脂組成物を用いることが求められており、従来の処方では解決できない事例が多く見られるようになってきている。 In particular, molded products that have become smaller and thinner in recent years are required to use a resin composition that gives higher weld strength, and there are many cases that cannot be solved by conventional formulations. .

特許文献1には、通常の円形断面のガラス繊維に比して扁平な非円形断面のガラス繊維の配合が、熱可塑性樹脂組成物の強度を一層向上させること、特に繊維の配合量が多いときに補強効果が大きいことが記載されている。 In Patent Document 1, when the glass fiber having a flat non-circular cross-section is compared with the glass fiber having a normal circular cross-section, the strength of the thermoplastic resin composition is further improved, especially when the fiber content is large. Describes that the reinforcing effect is large.

特許文献2には、断面が扁平なガラス繊維を、成形品中における平均長さが1mm以上となるように含有させると、強度に優れた成形品となることが記載されている。
特許文献3には、イソフタル酸ユニットを含有する変性PBT樹脂とポリカーボネート樹脂からなる樹脂組成物に、扁平断面を持つガラス繊維を配合することが記載されている。
然しながら、いずれの文献にも、これらの樹脂組成物を用いた成形品のウエルド部の強度に関する記載はない。
Patent Document 2 describes that when a glass fiber having a flat cross section is contained so that the average length in a molded product is 1 mm or more, a molded product having excellent strength is obtained.
Patent Document 3 describes that a glass fiber having a flat cross section is blended with a resin composition composed of a modified PBT resin containing an isophthalic acid unit and a polycarbonate resin.
However, none of the documents describes the strength of the weld part of a molded product using these resin compositions.

特公平2−60494号公報Japanese Patent Publication No. 2-60494 特開2008−95066号公報JP 2008-95066 A 特開2008−120925号公報JP 2008-120925 A

本発明は、繊維状強化材含有ポリブチレンテレフタレート樹脂組成物からなる成形品において、高いウェルド強度に加え、優れた機械的強度、耐加水分解性を有し、さらに小型化・薄肉化(軽量化)された成形品においても、優れた強度を発揮できる成形品を提供することを目的とする。 The present invention is a molded article comprising a fibrous reinforcing material-containing polybutylene terephthalate resin composition, which has not only high weld strength but also excellent mechanical strength and hydrolysis resistance, and further downsizing and thinning (weight reduction). The object of the present invention is to provide a molded product that can exhibit excellent strength.

本発明者は、ポリブチレンテレフタレート樹脂の物性と、これに扁平な繊維状強化材を含有させた樹脂組成物からなる射出成形品のウエルド部、特に薄いウエルド部の強度との関係について検討した結果、特定の固有粘度を有するポリブチレンテレフタレート樹脂を用いた樹脂組成物が、ウエルド部強度の大きい射出成形品を与えることを見出し、本発明を完成した。 As a result of examining the relationship between the physical properties of polybutylene terephthalate resin and the strength of the weld part of an injection-molded product made of a resin composition containing a flat fibrous reinforcing material, particularly the thin weld part. The present inventors have found that a resin composition using a polybutylene terephthalate resin having a specific intrinsic viscosity gives an injection-molded product having a high weld strength.

即ち、本発明の要旨は、フェノールと1,1,2,2−テトラクロロエタンとの等重量混合溶媒中、30℃で測定した固有粘度が0.60〜0.78dL/gのポリブチレンテレフタレート樹脂(A)100重量部に対し、繊維の長さ方向に直角な断面の長径と短径との比である扁平率が2.5〜10の繊維状強化材(B)65〜150重量部、及びエポキシ化合物(C)0〜3重量部を含有させたことを特徴とする樹脂組成物から成るウエルド部を有する射出成形品に存する。 That is, the gist of the present invention is a polybutylene terephthalate resin having an intrinsic viscosity of 0.60 to 0.78 dL / g measured at 30 ° C. in an equal weight mixed solvent of phenol and 1,1,2,2-tetrachloroethane. (A) Fibrous reinforcing material (B) 65 to 150 parts by weight with a flatness ratio of 2.5 to 10 which is the ratio of the major axis to the minor axis of the cross section perpendicular to the length direction of the fiber with respect to 100 parts by weight, And 0 to 3 parts by weight of the epoxy compound (C). The present invention resides in an injection-molded article having a weld part made of a resin composition.

本発明に係る射出成形品は、特に高い強度、剛性、摺動性、耐加水分解性が要求され、且つ薄肉のウェルド部と複雑な構造を有する、自動車用内外装部品や機構部品に好適に使用でき、その産業上の利用価値は極めて大きい。 The injection-molded article according to the present invention is particularly suitable for automotive interior / exterior parts and mechanism parts that are required to have high strength, rigidity, slidability, and hydrolysis resistance and have a thin weld portion and a complicated structure. It can be used and its industrial utility value is extremely high.

以下、本発明を詳細に説明する。
本発明の成形品に用いる樹脂組成物を構成するポリブチレンテレフタレート樹脂(A)は、ブチレンテレフタレート(−OOC−C−COOーC−)を主たる構造単位とする熱可塑性樹脂である。周知のようにPBT樹脂は、テレフタル酸又はそのエステル形成性誘導体と、1,4−ブタンジオールとを重縮合させることにより工業的に大規模に生産されている。
Hereinafter, the present invention will be described in detail.
The polybutylene terephthalate resin (A) constituting the resin composition used in the molded article of the present invention is a thermoplastic resin whose main structural unit is butylene terephthalate (—OOC—C 6 H 4 —COO—C 4 H 8 —). It is. As is well known, PBT resins are industrially produced on a large scale by polycondensation of terephthalic acid or an ester-forming derivative thereof and 1,4-butanediol.

PBT樹脂の製造にさいしては、上記の原料に加えて、他のカルボン酸やアルコールを少量併用し得ることも知られており、本発明ではこのようなPBT樹脂も用いることができる。このような共重合成分としては、フタル酸、メタフタル酸、シクロヘキサンジカルボン酸、アジピン酸、エチレングリコール、プロピレングリコール、ジエチレングリコール、シクロヘキサンジオールなどのジカルボン酸やジオール;グリコール酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフタレンカルボン酸、及びp−β−ヒドロキシエトキシ安息香酸などのヒドロキシカルボン酸;アルコキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t−ブチル安息香酸、およびベンゾイル安息香酸などの単官能化合物;トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロールおよびペンタエリスリトールなどの三官能以上の多官能化合物などが挙げられる。 In the production of the PBT resin, it is known that a small amount of other carboxylic acid or alcohol can be used in combination with the above raw materials. In the present invention, such a PBT resin can also be used. Examples of such copolymer components include phthalic acid, metaphthalic acid, cyclohexanedicarboxylic acid, adipic acid, ethylene glycol, propylene glycol, diethylene glycol, cyclohexanediol, and other dicarboxylic acids and diols; glycolic acid, m-hydroxybenzoic acid, p- Hydroxycarboxylic acids such as hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid, and p-β-hydroxyethoxybenzoic acid; alkoxycarboxylic acid, stearyl alcohol, benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid And monofunctional compounds such as benzoylbenzoic acid; tricarballylic acid, trimellitic acid, trimesic acid, pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane, glycerol Such polyfunctional compound having three or more functional, such as fine pentaerythritol.

PBT樹脂に占めるテレフタル酸単位の割合及び1,4−ブタンジオール単位の割合が低いと、PBT樹脂の結晶化度が低下し、強度や成形性が低下する。本発明では、テレフタル酸成分又は1,4−ブタンジオール成分から算出されるブチレンテレフタレート(−OOC−C−COO―C−)単位が、いずれもPBT樹脂全体の少なくとも80重量%、通常は90重量%以上を占めるものを用いる。好ましくは、この単位がいずれもPBT樹脂全体の95重量%以上、を占めるものを用いる。上記に加えて、いずれかから算出されるこの単位が98重量%以上を占めるものを用いるのが、最も好ましい。 If the proportion of terephthalic acid units and the proportion of 1,4-butanediol units in the PBT resin are low, the crystallinity of the PBT resin is lowered, and the strength and moldability are lowered. In the present invention, the units of butylene terephthalate (—OOC—C 6 H 4 —COO—C 4 H 8 —) calculated from the terephthalic acid component or 1,4-butanediol component are at least 80% by weight of the entire PBT resin. %, Usually 90% by weight or more. Preferably, the unit occupies 95% by weight or more of the whole PBT resin. In addition to the above, it is most preferable to use a unit in which this unit calculated from any one occupies 98% by weight or more.

PBT樹脂の製造は常法に従って行えばよい。触媒としてはチタン化合物、周期率表第1族金属化合物、第2族金属化合物、スズ化合物など常用のものを用いればよい。なお触媒としてチタン化合物を用いる場合には、生成する樹脂中に残存する触媒が、チタン原子換算で10〜80ppmとなるように用いる。残存量がこれより多くても少なくても樹脂組成物の物性が低下する傾向がある。チタン原子換算の残存量は、20〜60ppm、特に30〜50ppmであるのが最も好ましい。 The production of the PBT resin may be performed according to a conventional method. As the catalyst, a conventional catalyst such as a titanium compound, a periodic table group 1 metal compound, a group 2 metal compound, or a tin compound may be used. In addition, when using a titanium compound as a catalyst, it uses so that the catalyst which remains in the resin to produce | generate may be 10-80 ppm in conversion of a titanium atom. Even if the residual amount is larger or smaller than this, the physical properties of the resin composition tend to be lowered. The residual amount in terms of titanium atoms is most preferably 20 to 60 ppm, particularly 30 to 50 ppm.

触媒として周期率表第1族や第2族の金属化合物を用いる場合には、生成する樹脂中に残存する触媒が、金属原子換算で1〜50ppmとなるように用いる。多すぎると樹脂組成物の耐加水分解性が低下することがある。逆に少なすぎると、樹脂組成物から得られる成形品の表面外観が低下することがある。金属原子換算の残存量は、5〜30ppm、特に5〜20ppmであるのが好ましい。 When a metal compound belonging to Group 1 or Group 2 of the periodic table is used as the catalyst, the catalyst remaining in the produced resin is used so as to be 1 to 50 ppm in terms of metal atoms. If the amount is too large, the hydrolysis resistance of the resin composition may decrease. On the other hand, if the amount is too small, the surface appearance of a molded product obtained from the resin composition may be deteriorated. The residual amount in terms of metal atoms is preferably 5 to 30 ppm, particularly 5 to 20 ppm.

またスズ化合物を用いる場合には、残存量がスズ原子換算で200ppm以下となるように用いる。残存量が多いと樹脂の色調が悪化する。スズ原子換算の残存量は100ppm以下、特に10ppm以下であるのが好ましい。なお残存金属量は、湿式灰化法などで樹脂中の金属を回収し、原子発光法で測定するが、原子吸光、Inductiveiy Coupled Plasma(ICP)などで測定することもできる。 Moreover, when using a tin compound, it uses so that a residual amount may be 200 ppm or less in conversion of a tin atom. If the remaining amount is large, the color tone of the resin deteriorates. The residual amount in terms of tin atoms is preferably 100 ppm or less, particularly preferably 10 ppm or less. The amount of the remaining metal is measured by an atomic emission method after collecting the metal in the resin by a wet ashing method or the like, but can also be measured by atomic absorption, Inductively Coupled Plasma (ICP) or the like.

PBT樹脂の製造に際しては、末端カルボキシル基濃度が10〜80eq/トンとなるようにするべきである。末端カルボキシル基濃度が高すぎると樹脂組成物の滞留熱安定性や耐加水分解性が低下することがある。逆に低すぎても摺動特性や耐磨耗性が低下することがある。末端カルボキシル基濃度は10〜30eq/g,特に10〜25eq/gであるのが好ましい。なお末端カルボキシル基濃度は、ベンジルアルコール25mLにPBT樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定法により測定することができる。 In producing the PBT resin, the terminal carboxyl group concentration should be 10 to 80 eq / ton. If the terminal carboxyl group concentration is too high, the thermal stability and hydrolysis resistance of the resin composition may be lowered. On the other hand, if it is too low, the sliding characteristics and wear resistance may be reduced. The terminal carboxyl group concentration is preferably 10 to 30 eq / g, particularly preferably 10 to 25 eq / g. The terminal carboxyl group concentration can be measured by a titration method by dissolving 0.5 g of PBT resin in 25 mL of benzyl alcohol and using a 0.01 mol / L benzyl alcohol solution of sodium hydroxide.

本発明では、上記のPBT樹脂のうち、フェノールと1,1,2,2−テトラクロロエタンとの重量比が1:1の混合溶媒中、30℃で測定した固有粘度が0.60〜0.78dL/gの範囲のものを用いる。固有粘度が0.60dL/g未満のものを用いたのでは、PBT樹脂の分子量が小さいためか、成形品に十分な機械的強度を与える樹脂組成物が得られない。また成形時に分解ガスが発生しやすくなるため、ウェルド部の密着が不十分になりウェルド強度が低下しやすい。 In the present invention, among the PBT resins described above, the intrinsic viscosity measured at 30 ° C. in a mixed solvent in which the weight ratio of phenol to 1,1,2,2-tetrachloroethane is 1: 1 is 0.60 to 0.00. The thing of the range of 78 dL / g is used. If a material having an intrinsic viscosity of less than 0.60 dL / g is used, a resin composition that gives sufficient mechanical strength to the molded product cannot be obtained because the molecular weight of the PBT resin is small. Further, since decomposition gas is easily generated during molding, the weld portion is not sufficiently adhered, and the weld strength is likely to be lowered.

逆に固有粘度が0.78dL/gを超えると、PBT樹脂の溶融粘度が大きくなるため、樹脂組成物を調製する混練時や樹脂組成物から成形品を製造する際に繊維状強化材が過度に破砕されるようになり、そのため成形品の機械的強度が低下する。また樹脂組成物の流動性が悪くなるため、成形時にウェルド部に十分な圧力がかからないためか、ウェルド部強度の大きい成形品が得られない。 On the other hand, if the intrinsic viscosity exceeds 0.78 dL / g, the melt viscosity of the PBT resin increases, so that the fibrous reinforcing material is excessive when kneading the resin composition or manufacturing a molded product from the resin composition. And thus the mechanical strength of the molded product is reduced. Moreover, since the fluidity | liquidity of a resin composition worsens, since a sufficient pressure is not applied to a weld part at the time of shaping | molding, a molded article with a large weld part intensity | strength cannot be obtained.

この現象はウエルド部の厚さが薄くなるほど著しい。固有粘度の範囲としては、0.65〜0.75dL/gがより好ましい。なおPBT樹脂は一種類でも二種以上の混合物であっても良い。例えば固有粘度が異なる二種類以上のPBT樹脂を混合して所望の固有粘度となるようにしても良い。 This phenomenon becomes more remarkable as the weld portion becomes thinner. The range of intrinsic viscosity is more preferably 0.65 to 0.75 dL / g. The PBT resin may be a single type or a mixture of two or more types. For example, two or more types of PBT resins having different intrinsic viscosities may be mixed to obtain a desired intrinsic viscosity.

本発明における繊維状強化材(B)は、本発明に係る強化樹脂組成物から得られる成形品の機械的特性(引張強度、曲げ強度、耐衝撃強度など)を向上させ、同時に成形品におけるウェルド部の強度を向上させるように機能する。 The fibrous reinforcing material (B) in the present invention improves the mechanical properties (tensile strength, bending strength, impact strength, etc.) of a molded product obtained from the reinforced resin composition according to the present invention, and at the same time welds in the molded product. It functions to improve the strength of the part.

本発明では、繊維状強化材として、繊維の長さ方向に直角な断面の長径とこれに直交する短径との比である扁平率が2.5〜10の範囲のものを用いる。このような繊維状強化材は、一般的な円形断面形状の強化材に比べ、樹脂組成物の機械的特性を向上させる作用が大きい。繊維状強化材としては、ガラス繊維、炭素繊維、玄武岩繊維、金属繊維、合成繊維、炭化珪素繊維、チタン酸カリウム繊維などが挙げられる。機械的強度の改善効果が顕著である点で、ガラス繊維、炭素繊維、玄武岩繊維が好ましく、さらには入手のしやすさなどから、ガラス繊維が最も好ましい。 In the present invention, as the fibrous reinforcing material, one having a flatness ratio in the range of 2.5 to 10 which is a ratio of the major axis of the cross section perpendicular to the longitudinal direction of the fiber and the minor axis perpendicular to the longitudinal axis is used. Such a fibrous reinforcing material has a greater effect of improving the mechanical properties of the resin composition than a general reinforcing material having a circular cross-sectional shape. Examples of the fibrous reinforcing material include glass fiber, carbon fiber, basalt fiber, metal fiber, synthetic fiber, silicon carbide fiber, and potassium titanate fiber. Glass fiber, carbon fiber, and basalt fiber are preferred in that the effect of improving mechanical strength is remarkable, and glass fiber is most preferred from the viewpoint of availability.

繊維状強化材B)の長さ方向に直角な断面の形状は、特開昭62−268612号公報に記載されているように、通常は長方形、長方形に近い長円形、楕円形、長手方向の中央部がくびれた繭型などである。これらのなかでも断面が繭型のものは、中央部のくびれ部分の強度が低くて中央部で割れることがあり、またこのくびれた部分が基体樹脂との密着性が劣る場合もあるので、断面が長方形、長方形に近い長円形、または楕円形のものを使用するのが好ましい。 The shape of the cross section perpendicular to the longitudinal direction of the fibrous reinforcing material B) is usually rectangular, oval close to rectangular, elliptical, longitudinal, as described in JP-A-62-2268612. A saddle type with a narrowed center. Among these, those with a saddle-shaped cross section have a low constriction at the central part and may crack at the central part, and this constricted part may have poor adhesion to the base resin. Is preferably rectangular, oval close to rectangular, or elliptical.

繊維状強化材(B)としては、扁平率が、2.5〜10.0のものを用いる。扁平率が2.5未満の繊維状強化材を用いたのでは、樹脂組成物は所望の強度の大きい成形品を与えない。また扁平率が10.0より大きい繊維状強化材を用いても、樹脂組成物の調製や成形品の製造工程などで繊維状強化材に加わる荷重で破砕され、成形品中での扁平率は小さくなる。また扁平率の大きい繊維状強化材は高価なので、いずれにしても用いる意味がない。繊維状強化材の扁平率は、2.5〜8.0、特に3.0〜6.0であるのが好ましい。 As the fibrous reinforcing material (B), one having an aspect ratio of 2.5 to 10.0 is used. If a fibrous reinforcing material having an aspect ratio of less than 2.5 is used, the resin composition does not give a molded product having a desired high strength. In addition, even if a fibrous reinforcing material with a flatness ratio greater than 10.0 is used, it is crushed by the load applied to the fibrous reinforcing material during the preparation of the resin composition or the manufacturing process of the molded article, and the flatness ratio in the molded article is Get smaller. Moreover, since the fibrous reinforcement with a large flatness is expensive, it is meaningless to use anyway. The flatness of the fibrous reinforcing material is preferably 2.5 to 8.0, particularly 3.0 to 6.0.

繊維状強化材(B)長さ方向に直角な断面の面積は通常は2x10−5〜8x10−3mmの範囲である。断面積がこれよりも小さい繊維状強化材は一般に紡糸が困難で高価であり、逆に断面積がこれよりも大きいものは樹脂との接触面積が小さく、且つ剛性が大きくなって、補強材としての作用を十分に果たさなくなる。繊維状強化材の断面積は8x10−5〜8x10−4mm、特に8x10−5〜5x10−4mmの範囲にあるのが好ましい。 The area of the cross section perpendicular to the longitudinal direction of the fibrous reinforcing material (B) is usually in the range of 2 × 10 −5 to 8 × 10 −3 mm 2 . Fibrous reinforcements with a smaller cross-sectional area are generally difficult to spin and expensive, and conversely, those with a larger cross-sectional area have a smaller contact area with the resin and a higher rigidity, and can be used as a reinforcing material. The function of is not fully fulfilled. Sectional area of the fibrous reinforcing material is preferably in the range of 8x10 -5 ~8x10 -4 mm 2, particularly 8x10 -5 ~5x10 -4 mm 2.

繊維状強化材(B)は長いほど補強効果が大きいが、長い繊維ほど樹脂と溶融・混練して樹脂組成物を調製する際に破砕し易く、また樹脂組成物から成形品を製造する際にも破砕する。溶融・混練に供する繊維状強化材としては、通常は長さが0.5〜20.0mm程度のチョップドストランドを用いるが、溶融混練により破砕され、樹脂組成物中の繊維状強化材の長さは通常は0.3〜1.0mm程度である。 The longer the fibrous reinforcing material (B), the greater the reinforcing effect, but the longer the fiber, the easier it is to crush when preparing a resin composition by melting and kneading with a resin, and when producing a molded product from the resin composition. Also crush. As the fibrous reinforcing material used for melting and kneading, a chopped strand having a length of about 0.5 to 20.0 mm is usually used, but the length of the fibrous reinforcing material in the resin composition is crushed by melt kneading. Is usually about 0.3 to 1.0 mm.

そして成形品中の繊維状強化材の長さはこれよりも若干短く0.2〜0.9mm程度である。本発明に係るウェルド部を有する成形品を製造する際には、繊維状強化材がなるべく折損しないようにして、成形品に含まれる繊維状強化材(B)の平均長さが0.3〜0.9mm、特に0.4〜0.9mmとなるようにするのが好ましい。 The length of the fibrous reinforcing material in the molded product is slightly shorter than this and is about 0.2 to 0.9 mm. When producing a molded article having a weld portion according to the present invention, the average length of the fibrous reinforcing material (B) contained in the molded article is 0.3 to 3 so that the fibrous reinforcing material is not broken as much as possible. The thickness is preferably 0.9 mm, particularly 0.4 to 0.9 mm.

繊維状強化材(B)は、例えば、特公平3−59019号公報、特公平4−13300号公報、特公平4−32775号公報などに記載の方法によって製造することができる。例えば、底面に多数のオリフィスを有するオリフィスプレートにおいて、複数のオリフィス出口を囲み、このオリフィスプレート底面より下方に延びる凸状縁を設けたオリフィスプレート、または、単数または複数のオリフィス孔を有するノズルチップの外周部先端から、下方に延びる複数の凸状縁を設けた異形断面ガラス繊維紡糸用ノズルチップを用いて製造することができる。 The fibrous reinforcing material (B) can be produced, for example, by the method described in Japanese Patent Publication No. 3-59019, Japanese Patent Publication No. 4-13300, Japanese Patent Publication No. 4-32775, and the like. For example, in an orifice plate having a plurality of orifices on the bottom surface, an orifice plate that surrounds a plurality of orifice outlets and has a convex edge extending downward from the bottom surface of the orifice plate, or a nozzle tip having one or more orifice holes It can be manufactured using a modified cross-section glass fiber spinning nozzle tip provided with a plurality of convex edges extending downward from the front end of the outer peripheral portion.

繊維状強化材(B)は、シランカップリング剤、潤滑剤、帯電防止剤、被膜形成能を有する樹脂などで表面処理したものであってもよい。シランカップリング剤としては、例えば、γーメタクリルオキシプロピルトリメトキシシラン、γーグリシドキシプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシランなどが挙げられる。 The fibrous reinforcing material (B) may be surface-treated with a silane coupling agent, a lubricant, an antistatic agent, a resin having a film forming ability, or the like. Examples of the silane coupling agent include γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and the like.

このシランカップリング剤の付着量は、繊維状強化材の0.01重量%以上であるのが好ましい。潤滑剤としては、脂肪酸アミド化合物、シリコーンオイルなどが挙げられ、帯電防止剤としては、第4級アンモニウンム塩などが挙げられ、被膜形成能を有する樹脂としては、エポキシ樹脂、ウレタン樹脂などが挙げられる。被膜形成能を有する樹脂には、あらかじめ熱安定剤、難燃剤などを配合しておくこともできる。 The adhesion amount of the silane coupling agent is preferably 0.01% by weight or more of the fibrous reinforcing material. Examples of the lubricant include fatty acid amide compounds and silicone oils. Examples of the antistatic agent include quaternary ammonium salts. Examples of the resin having a film forming ability include epoxy resins and urethane resins. . A heat stabilizer, a flame retardant, etc. can also be mix | blended with resin which has a film formation ability previously.

樹脂組成物中の繊維状強化材(B)の含有量は、ポリブチレンテレフタレート樹脂(A)100重量部に対し、65〜150重量部、好ましくは80〜150重量部である。含有量が65重量部未満では、成形品の強度やウェルド強度が十分ではなく、且つ常用の円形断面の繊維強化材を使用した場合と有意差が認められない。逆に含有量が150重量部を超えると、樹脂と溶融・混練して樹脂組成物を調製する際に破砕し易く、且つペレット化が困難である。また樹脂組成物から成形品を製造する際にも繊維状強化材の破砕が起こり易い。PBT樹脂100重量部に対する繊維状強化材(B)の含有量は90〜150重量部、特に90〜125重量部であるのが最も好ましい。 Content of the fibrous reinforcement (B) in a resin composition is 65-150 weight part with respect to 100 weight part of polybutylene terephthalate resin (A), Preferably it is 80-150 weight part. If the content is less than 65 parts by weight, the strength and weld strength of the molded product are not sufficient, and no significant difference is observed from the case where a conventional fiber reinforcing material having a circular cross section is used. On the other hand, if the content exceeds 150 parts by weight, the resin composition is easily crushed and difficult to be pelletized when melted and kneaded with the resin to prepare the resin composition. Moreover, when manufacturing a molded article from a resin composition, a fibrous reinforcement is crushed easily. The content of the fibrous reinforcing material (B) with respect to 100 parts by weight of the PBT resin is most preferably 90 to 150 parts by weight, particularly 90 to 125 parts by weight.

エポキシ化合物(C)は、樹脂組成物の耐湿熱特性を向上させ、また成形品の、ウェルド部の強度、耐久性をより向上させるように機能する。従って本発明に係る成形品のうちでも、エポキシ化合物を含有する樹脂組成物から成る成形品は、自動車の部品など使用時に湿熱状態に曝される箇所に用いるのに好適である。 The epoxy compound (C) functions to improve the moisture and heat resistance characteristics of the resin composition, and to further improve the strength and durability of the weld part of the molded product. Therefore, among the molded products according to the present invention, molded products made of a resin composition containing an epoxy compound are suitable for use in places exposed to wet heat conditions during use, such as automobile parts.

エポキシ化合物(C)としては、一分子中に一個以上のエポキシ基を有するものであればよく、通常はアルコール、フェノール類又はカルボン酸などとエピクロロヒドリンとの反応物であるグリシジル化合物や、オレフイン性二重結合をエポキシ化した化合物を用いればよい。 As an epoxy compound (C), what is necessary is just to have one or more epoxy groups in one molecule, and usually a glycidyl compound which is a reaction product of alcohol, phenols or carboxylic acid and epichlorohydrin, A compound obtained by epoxidizing an olefinic double bond may be used.

例えば次のようなエポキシ化合物を用いることができる。ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、レゾルシン型エポキシ化合物、ノボラック型エポキシ化合物、脂環化合物型ジエポキシ化合物、グリシジルエーテル類、グリシジルエステル類、エポキシ化ポリブタジエン。脂環化合物型エポキシ化合物としては、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシドなどが挙げられる。 For example, the following epoxy compounds can be used. Bisphenol A type epoxy compound, bisphenol F type epoxy compound, resorcinol type epoxy compound, novolac type epoxy compound, alicyclic compound type diepoxy compound, glycidyl ethers, glycidyl esters, epoxidized polybutadiene. Examples of the alicyclic compound type epoxy compound include vinylcyclohexene dioxide and dicyclopentadiene oxide.

グリシジルエーテル類の具体例としては、メチルグリシジルエーテル、ブチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、アリルグリシジルエーテル等のモノグリシジルエーテル;ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどのジグリシジルエーテル類が挙げられる。 Specific examples of glycidyl ethers include monoglycidyl ethers such as methyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, stearyl glycidyl ether, phenyl glycidyl ether, butylphenyl glycidyl ether, and allyl glycidyl ether; Examples include diglycidyl ethers such as pentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, propylene glycol diglycidyl ether, and bisphenol A diglycidyl ether.

またグリシジルエステル類としては、安息香酸グリシジルエステル、ソルビン酸グリシジルエステルなどのモノグリシジルエステル類;アジピン酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、オルトフタル酸ジグリシジルエステルなどのジグリシジルエステル類などが挙げられる。 Examples of the glycidyl esters include monoglycidyl esters such as glycidyl benzoate and glycidyl sorbate; diglycidyl esters such as adipic acid diglycidyl ester, terephthalic acid diglycidyl ester, and orthophthalic acid diglycidyl ester. .

またエポキシ化合物(C)は、グリシジル基含有化合物を一方の成分とする共重合体であってもよい。例えばα,β−不飽和酸のグリシジルエステルと、α−オレフィン、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルからなる群より選ばれる一種または二種以上のモノマーとの共重合体が挙げられる。 The epoxy compound (C) may be a copolymer having a glycidyl group-containing compound as one component. For example, a copolymer of glycidyl ester of α, β-unsaturated acid and one or two or more monomers selected from the group consisting of α-olefin, acrylic acid, acrylic ester, methacrylic acid, methacrylic ester It is done.

エポキシ化合物(C)としては、エポキシ当量100〜500g/eq、重量平均分子量2000以下のエポキシ化合物が好ましい。エポキシ当量が100g/eq未満のものは、エポキシ基の量が多すぎるため樹脂組成物の粘度が高くなり、ウェルド部の密着性を低下させる原因となる。逆にエポキシ等量が500g/eqを超えるものは、エポキシ基の量が少なくなるため、樹脂組成物の耐湿熱特性を向上させる効果が十分に発現しない。 The epoxy compound (C) is preferably an epoxy compound having an epoxy equivalent of 100 to 500 g / eq and a weight average molecular weight of 2000 or less. When the epoxy equivalent is less than 100 g / eq, since the amount of the epoxy group is too large, the viscosity of the resin composition becomes high, which causes a decrease in the weld adhesion. On the other hand, when the epoxy equivalent exceeds 500 g / eq, the amount of epoxy groups decreases, so that the effect of improving the heat-and-moisture resistance characteristics of the resin composition is not sufficiently exhibited.

また重量平均分子量が2000を超えるものは、ポリブチレンテレフタレート樹脂との相溶性が低下し、成形品の機械的強度が低下する傾向にある。エポキシ化合物としては、ビスフェノールAやノボラックとエピクロロヒドリンとの反応から得られる、ビスフェノールA型エポキシ化合物やノボラック型エポキシ化合物が好ましい。 When the weight average molecular weight exceeds 2000, the compatibility with the polybutylene terephthalate resin is lowered, and the mechanical strength of the molded product tends to be lowered. The epoxy compound is preferably a bisphenol A type epoxy compound or a novolac type epoxy compound obtained from a reaction of bisphenol A or novolak with epichlorohydrin.

エポキシ化合物(C)の含有量は、ポリブチレンテレフタレート樹脂(A)100重量部に対し0〜3重量部であるが、含有効果を発現させるには0.1重量部以上含有させるのが好ましい。含有量が3重量部より多いと架橋化が進行し成形時の流動性が悪くなる。エポキシ化合物(C)は、PBT樹脂100重量部に対し0.2〜2重量部含有させるのが最も好ましい。 Although content of an epoxy compound (C) is 0-3 weight part with respect to 100 weight part of polybutylene terephthalate resin (A), in order to express a containing effect, it is preferable to contain 0.1 weight part or more. When the content is more than 3 parts by weight, the crosslinking proceeds and the fluidity at the time of molding deteriorates. The epoxy compound (C) is most preferably contained in an amount of 0.2 to 2 parts by weight with respect to 100 parts by weight of the PBT resin.

本発明に係る成形品を製造するための樹脂組成物には、上記(A)〜(C)の各成分に加えて、必要応じて樹脂組成物の特性を阻害しない範囲で、他の熱可塑性樹脂や常用の樹脂添加剤などを含有させても良い。 In addition to the components (A) to (C), the resin composition for producing the molded article according to the present invention may have other thermoplastic properties as long as the properties of the resin composition are not impaired. Resins and conventional resin additives may be included.

他の熱可塑性樹脂の例としては、ポリエチレンテレフタレート樹脂(PET樹脂)、ポリエチレンナフタレート樹脂(PEN樹脂)などのポリエステル樹脂、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂、ポリアミド類、ポリスチレン、アクリロニトリル−スチレン共重合体樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体樹脂(ABS樹脂)などのスチレン系樹脂、ポリ塩化ビニル、ポリ酢酸ビニル、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、液晶ポリマーなどが挙げられる。これらの熱可塑性樹脂は、ポリブチレンテレフタレート樹脂(A)100重量部に対して、最大でも50重量部までとすべきであり、通常は40重量部、なかでも30重量部以下とするのが好ましい。 Examples of other thermoplastic resins include polyester resins such as polyethylene terephthalate resin (PET resin) and polyethylene naphthalate resin (PEN resin), olefin resins such as polyethylene and polypropylene, polyamides, polystyrene, acrylonitrile-styrene copolymer Styrenic resins such as coalescence resin (AS resin), acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polyvinyl chloride, polyvinyl acetate, polycarbonate, polyacetal, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, etc. It is done. These thermoplastic resins should be up to 50 parts by weight at the most with respect to 100 parts by weight of the polybutylene terephthalate resin (A), and are usually 40 parts by weight, preferably 30 parts by weight or less. .

含有させる樹脂添加剤の例としては、脂肪酸エステル系、パラフィン系、ポリオレフィン系、ビスアミド系、シリコーン系などの離型剤、ヒンダードフェノール系、亜燐酸エステル系、硫黄含有エステル化合物系などの熱安定剤、マイカ、タルクなどの無機充填材、耐衝撃改良剤、難燃剤、難燃助剤、紫外線吸収剤、耐候性付与剤、摺動性付与剤、染料・顔料などの着色剤、発泡剤などがある。 Examples of resin additives to be included include heat release agents such as fatty acid ester-based, paraffin-based, polyolefin-based, bisamide-based, silicone-based release agents, hindered phenol-based, phosphite-based, sulfur-containing ester compound-based Agents, inorganic fillers such as mica and talc, impact modifiers, flame retardants, flame retardant aids, ultraviolet absorbers, weather resistance imparting agents, slidability imparting agents, colorants such as dyes and pigments, foaming agents, etc. There is.

本発明に係る成形品を製造するための樹脂組成物を調製するには、樹脂組成物調製の常法によればよい。好ましくは押出混練機などを使用して溶融・混練する方法を用いる。具体的には、PBT樹脂(A)、繊維状強化材(B)及びエポキシ化合物(C)、並びに所望により用いられる添加成分を所定量配合し、リボンブレンダー、V型ブレンダー、ヘンセルミキサー、ドラムブレンダーなどの混合機によって混合し、溶融・混練機によって溶融・混練する方法が挙げられる。 In order to prepare a resin composition for producing a molded article according to the present invention, a conventional method for preparing a resin composition may be used. Preferably, a method of melting and kneading using an extrusion kneader or the like is used. Specifically, PBT resin (A), fibrous reinforcing material (B), epoxy compound (C), and additive components used as required are blended in predetermined amounts, and ribbon blender, V-type blender, Hensel mixer, drum A method of mixing with a blender such as a blender and melting and kneading with a melting and kneading machine can be mentioned.

溶融・混練する際には、溶融・混練機に各成分を一括フィードする方法でもよいし、逐次フィードする方法でもよい。溶融・混練機としては、各種押出機、ブラベンダープラストグラフ、ラボプラストミル、ニーダー、バンバリーミキサーなどが挙げられる。溶融・混練する際に、熱分解し易いもの、破損し易いものは途中フィードするのが好ましい。各種添加成分は、PBT樹脂や他の添加成分とあらかじめ混合しておくこともできる。繊維状強化材は、混練時に破砕し易いので、途中フィードするのが好ましい。溶融・混練する際の加熱温度は、配合する成分の種類や割合などにより決定されるが、230〜290℃の範囲とするのが好ましい。 When melting and kneading, a method of feeding each component to the melting and kneading machine at once or a method of feeding sequentially may be used. Examples of the melting / kneading machine include various extruders, Brabender plastographs, lab plast mills, kneaders, and Banbury mixers. When melting and kneading, it is preferable to feed those which are easily decomposed or easily broken. Various additive components can also be mixed in advance with PBT resin and other additive components. Since the fibrous reinforcing material is easily crushed during kneading, it is preferably fed halfway. The heating temperature at the time of melting and kneading is determined depending on the type and ratio of the components to be blended, but is preferably in the range of 230 to 290 ° C.

樹脂組成物からの成形品の製造は、常用の射出成形法によることができる。射出成形に際しては、樹脂組成物の温度を240〜280℃とし、金型温度を60〜120℃、特に80〜120℃に調節するのが好ましい。一般に流動性の確保および結晶化度の観点から、金型温度は高い方が好ましい。金型への樹脂組成物の注入方法は、成形品にウエルド部が形成される態様であればよく、注入口は単数でも複数でもよい。 Manufacture of the molded article from a resin composition can be performed by a conventional injection molding method. In the injection molding, it is preferable to adjust the temperature of the resin composition to 240 to 280 ° C and the mold temperature to 60 to 120 ° C, particularly 80 to 120 ° C. In general, from the viewpoint of securing fluidity and crystallinity, a higher mold temperature is preferable. The method of injecting the resin composition into the mold is not particularly limited as long as the weld part is formed in the molded product, and the number of injection ports may be one or more.

本発明に係る成形品の肉厚は任意であるが、肉厚が薄い部分を有する成形品、特にウエルド部の肉厚が薄い成形品において、強度向上の効果はより顕著である。従って肉厚が1.5mm以下、特に1mm以下である部分を有する成形品、なかでもウエルド部の肉厚が1.5mm以下、特に1mm以下である部分を有する成形品において効果が顕著である。 The thickness of the molded article according to the present invention is arbitrary, but the effect of improving the strength is more remarkable in a molded article having a thin part, particularly a molded article having a thin weld part. Therefore, the effect is remarkable in a molded product having a thickness of 1.5 mm or less, particularly 1 mm or less, and particularly in a molded product having a weld portion having a thickness of 1.5 mm or less, particularly 1 mm or less.

本発明に係る成形品が適した用途は、ウェルド部を有し、高い機械的強度と湿熱環境下での耐久性が必要とされる部品である。具体的には、自動車用の内外装部品や機構部品であり、例えばワイパー、ドア、ミラー、ルーフレール、ウィンドウ、シート、ランプ系、操舵系、駆動系などに使用される機構・構造部品や、フェンダー、ドア、トランク、バックドアなどの外板部品、オーディオ、モニター、カメラなどの電装部品などである。 The use suitable for the molded article according to the present invention is a part having a weld part and requiring high mechanical strength and durability in a moist heat environment. Specifically, it is interior / exterior parts and mechanism parts for automobiles, for example, mechanism / structure parts used for wipers, doors, mirrors, roof rails, windows, seats, lamp systems, steering systems, drive systems, and fenders. , Exterior parts such as doors, trunks, and back doors, and electrical parts such as audio, monitors, and cameras.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明は以下に記載した例に限定されるものではない。なお、以下に記載の例で使用した各成分は次のとおりである。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to the example described below. In addition, each component used in the example described below is as follows.

ポリブチレンテレフタレート樹脂(A):
(A−1)PBT樹脂#1:固有粘度が0.70dL/gのポリブチレンテレフタレート(三菱エンジニアリングプラスチックス社製、商品名:ノバデュラン5007)。
Polybutylene terephthalate resin (A):
(A-1) PBT resin # 1: Polybutylene terephthalate having an intrinsic viscosity of 0.70 dL / g (manufactured by Mitsubishi Engineering Plastics Co., Ltd., trade name: NOVADURAN 5007).

(A−2)PBT樹脂#2:固有粘度が0.60dL/gのポリブチレンテレフタレートであり、以下の方法にて作製した。 (A-2) PBT resin # 2: Polybutylene terephthalate having an intrinsic viscosity of 0.60 dL / g, and was prepared by the following method.

テレフタル酸ジメチル1.0モルに対して、1,4−ブタンジオール1.8モルの割合で、合計3,229重量部をエステル交換反応槽に供給し、テトラブチルチタネート3.14重量部を添加し、温度210℃、圧力101kPaで、3時間エステル交換反応させて、オリゴマーを得た。引き続いて、このオリゴマーを、重縮合反応槽に移送し、攪拌下に、温度250℃、圧力133Paで、2時間重縮合反応を行わせてポリマーを得た。このポリマーを重縮合反応槽から窒素圧によりストランド状に押し出し、ペレタイザーで切断することにより、ペレット状のPBT樹脂#2を得た。 A total of 3,229 parts by weight is supplied to the transesterification reactor at a ratio of 1.8 moles of 1,4-butanediol to 1.0 mole of dimethyl terephthalate, and 3.14 parts by weight of tetrabutyl titanate is added. Then, an ester exchange reaction was performed at a temperature of 210 ° C. and a pressure of 101 kPa for 3 hours to obtain an oligomer. Subsequently, this oligomer was transferred to a polycondensation reaction tank, and a polymer was obtained by performing a polycondensation reaction at 250 ° C. under a pressure of 133 Pa for 2 hours under stirring. The polymer was extruded from the polycondensation reaction tank into a strand shape by nitrogen pressure and cut with a pelletizer to obtain pellet-shaped PBT resin # 2.

(A−3)PBT樹脂#3:固有粘度が0.85dL/gのポリブチレンテレフタレート(三菱エンジニアリングプラスチックス社製、商品名:ノバデュラン5008)。 (A-3) PBT resin # 3: polybutylene terephthalate having an intrinsic viscosity of 0.85 dL / g (manufactured by Mitsubishi Engineering Plastics, trade name: NOVADURAN 5008).

繊維状強化材(B):
(B−1)長円形断面ガラス繊維:扁平率4、{(長径+短径)/2}=17.5μm、繊維長L=3mmの長円形断面のガラス繊維(日東紡社製、銘柄名:CSG3PA830)。
Fibrous reinforcement (B):
(B-1) Oval-shaped cross-section glass fiber: Flatness ratio 4, {(major axis + minor axis) / 2} = 17.5 μm, fiber length L = 3 mm oval cross-section glass fiber (manufactured by Nittobo Co., Ltd., brand name) : CSG3PA830).

(B−2)円形断面ガラス繊維:(日本電気硝子社製、銘柄名:ECT03T187)。 (B-2) Circular cross-section glass fiber: (Nippon Electric Glass Co., Ltd., brand name: ECT03T187).

エポキシ化合物(C):
(C−1)N型エポキシ:ノボラック型エポキシ化合物(東都化成社製、商品名:エポトートYDCN704)。
Epoxy compound (C):
(C-1) N type epoxy: novolak type epoxy compound (manufactured by Toto Kasei Co., Ltd., trade name: Epototo YDCN704).

(C−2)BA型エポキシ:ビスフェノールA型エポキシ化合物(旭電化社製、商品名:アデカサイザーEP17)。 (C-2) BA type epoxy: bisphenol A type epoxy compound (Asahi Denka Co., Ltd., trade name: Adeka Sizer EP17).

樹脂組成物の調製:
上記のPBT樹脂(A)、繊維状補強材(B)、及びエポキシ化合物(C)を、表−1〜表−2に記載した割合(重量部)で配合し、ヘンシェルミキサーで10分間混合した。得られた混合物を、バレル(シリンダー)温度を260℃の温度に設定した二軸押出機(日本製鋼所社製、型式:TEX−30C、バレルは9ブロックで構成されている)によって、溶融・混練してペレット化した。溶融・混練に際して、繊維状強化材は、押出機ホッパー側から5番目のブロックからサイドフィード方式で供給した。
Preparation of resin composition:
Said PBT resin (A), fibrous reinforcement (B), and epoxy compound (C) were mix | blended in the ratio (weight part) described in Table-1-Table-2, and were mixed for 10 minutes with the Henschel mixer. . The obtained mixture was melted and melted by a twin-screw extruder (manufactured by Nippon Steel Works, model: TEX-30C, the barrel is composed of 9 blocks) whose barrel (cylinder) temperature was set to 260 ° C. It knead | mixed and pelletized. At the time of melting and kneading, the fibrous reinforcing material was supplied by a side feed system from the fifth block from the extruder hopper side.

試験片の作製
得られたペレットを原料として、射出成形機(住友重機械社製、型式:SG−75SYCAP−MIII)を使用し、シリンダー温度を250℃、金型温度を80℃に設定して、基準引っ張り強度試験用及び中央にウエルドを有する引っ張り試験用の試験片(厚さ1mmのものと4mmのもの、図1参照)、並びにノッチ付きシャルピー衝撃強度試験用の試験片をISOに準拠して成形した。
Preparation of test piece Using the obtained pellet as a raw material, using an injection molding machine (manufactured by Sumitomo Heavy Industries, model: SG-75SYCAP-MIII), setting the cylinder temperature to 250 ° C and the mold temperature to 80 ° C. Test specimens for standard tensile strength tests and tensile tests with welds in the center (thickness of 1 mm and 4 mm, see Fig. 1), and notched Charpy impact strength test specimens conform to ISO And molded.

試験片の評価方法
(a)基準引っ張り強度(MPa):ISO527に準拠して、厚さ1mmと4mmの試験片について測定した。
Test piece evaluation method (a) Standard tensile strength (MPa): Measured on test pieces having a thickness of 1 mm and 4 mm in accordance with ISO527.

(b)ウェルド強度比(%):中央にウェルドを有する引っ張り試験片(厚さ4mm)について、INSTRON社製万能試験機5569にて引っ張り試験を行い、求めた破壊強度を基準引っ張り強度との比で表した。 (B) Weld strength ratio (%): A tensile test piece (thickness 4 mm) having a weld in the center is subjected to a tensile test using an INSTRON universal testing machine 5569, and the obtained fracture strength is compared with the reference tensile strength. Expressed in

(c)薄肉ウェルド強度比(%):中央にウェルドを有する厚さ1mmの引っ張り試験片について、INSTRON社製万能試験機5544にて引っ張り試験を行い、求めた破壊強度を基準引っ張り強度との比で表した。 (C) Thin weld strength ratio (%): A tensile test piece with a thickness of 1 mm having a weld in the center is subjected to a tensile test using a universal testing machine 5544 manufactured by INSTRON Co., Ltd., and the obtained breaking strength is compared with the reference tensile strength. Expressed in

(e)ノッチ付きシャルピー衝撃強度(KJ/m):ISO179−1179−2に準拠して測定した。 (E) Notched Charpy impact strength (KJ / m 2 ): Measured according to ISO 179-1179-2.

(d)湿熱処理後の薄肉ウェルド強度比(%):上記の中央にウェルドを有する厚さ1mmの試験片について、平山製作所製プレッシャークッカー試験機PC−422R5Eを用いて、85℃、95%RH条件にて2000時間処理を行った後、INSTRON社製万能試験機5544にて引っ張り試験を行い、求めた破壊強度を基準引っ張り強度との比で表した。 (D) Thin-walled weld strength ratio after wet heat treatment (%): Using a pressure cooker tester PC-422R5E manufactured by Hirayama Seisakusho, 85 ° C, 95% RH After carrying out the treatment for 2000 hours under the conditions, a tensile test was conducted with a universal testing machine 5544 manufactured by INSTRON Co., Ltd., and the obtained breaking strength was expressed as a ratio to the reference tensile strength.

(f)ウェルド部を有する成形品の破壊荷重(kN):以下の方法により試験片を作成し、評価した。 (F) Fracture load (kN) of molded product having a weld part: A test piece was prepared and evaluated by the following method.

試験片の作製:
射出成形機(住友重機械社製、型式:SG−75SYCAP−MIII)を使用し、シリンダー温度を250℃、金型温度を80℃に設定して、ウェルド部を有するモデル成形品(図2参照)を成形した。モデル成形品は、直径が40mm、高さが20mm、厚みが1mmの円筒状をなし、上部に幅3mmの十字型の支柱があり、その十字型支柱の中央部に直径1mmのゲートを有する。成形時にゲートから注入された溶融樹脂は、十字型の支柱を通って円筒部に流れ込むため、流路の違いから円筒部にウェルドを生じる。
Preparation of test piece:
Using an injection molding machine (manufactured by Sumitomo Heavy Industries, model: SG-75SYCAP-MIII), setting the cylinder temperature to 250 ° C. and the mold temperature to 80 ° C., a model molded product having a weld part (see FIG. 2) ). The model molded article has a cylindrical shape with a diameter of 40 mm, a height of 20 mm, and a thickness of 1 mm, and has a cross-shaped column having a width of 3 mm at the top, and a gate having a diameter of 1 mm at the center of the cross-shaped column. Since the molten resin injected from the gate at the time of molding flows into the cylindrical portion through the cross-shaped column, a weld is generated in the cylindrical portion due to the difference in the flow path.

評価試験
この円筒状成形品に対して、エー・アンド・ディ社製万能試験機RTC−1310Aを用いて、5°のテーパーの付いた鋼(S45C)製治具を挿入した際の破壊荷重(KN)を測定した。
Evaluation test Breaking load when a steel (S45C) jig with a taper of 5 ° is inserted into this cylindrical molded product using an A & D universal testing machine RTC-1310A ( KN) was measured.

(g)成形品中の重量平均繊維長(mm):
上記の円筒状モデル成形品から約5gのサンプルを切り出し、温度600℃の電気炉中に2時間置いて灰化させた。残った繊維状強化材を折損しないように注意して表面活性剤水溶液(中性)中に分散させ、その分散水溶液をピペットによってスライドグラス上に移し、顕微鏡で写真撮影を行った。この写真画像について、画像解析ソフトによって、1000〜2000本の強化繊維について測定を行い、重量平均繊維長を算出した。
(G) Weight average fiber length (mm) in the molded product:
About 5 g of a sample was cut out from the above cylindrical model molded article and placed in an electric furnace at a temperature of 600 ° C. for 2 hours to be ashed. The remaining fibrous reinforcing material was dispersed in an aqueous surfactant solution (neutral) with care not to break it, and the dispersed aqueous solution was transferred onto a slide glass with a pipette and photographed with a microscope. With respect to this photographic image, 1000 to 2000 reinforcing fibers were measured by image analysis software, and the weight average fiber length was calculated.

実施例1〜7及び比較例1〜8
表1、および2に記載の配合比率の樹脂組成物につき、上述した各評価を行った。結果を表1、2に示す。但し、実施例5は参考例である。
Examples 1-7 and Comparative Examples 1-8
Each evaluation mentioned above was performed about the resin composition of the mixture ratio of Table 1 and 2. The results are shown in Tables 1 and 2. However, Example 5 is a reference example.

Figure 0005426867
Figure 0005426867

Figure 0005426867
Figure 0005426867

表1および表2より、次のことがわかる。 Table 1 and Table 2 show the following.

(1)PBT樹脂に本発明で規定する扁平率のガラス繊維を含有させたものについて;
PBT樹脂の固有粘度が0.70dL/gの場合(実施例1〜実施例5)は、固有粘度が0.85dL/gの場合(比較例1〜比較例5)に比べて、基準となる引っ張り強度が向上することに加え、ウェルド強度比の向上効果が大きく、特に薄肉の場合のウェルド強度比向上効果が顕著であることがわかる。
(1) About what made PBT resin contain the glass fiber of the flat rate prescribed | regulated by this invention;
When the intrinsic viscosity of the PBT resin is 0.70 dL / g (Example 1 to Example 5), it becomes a reference as compared with the case where the intrinsic viscosity is 0.85 dL / g (Comparative Example 1 to Comparative Example 5). It can be seen that, in addition to the improvement in tensile strength, the effect of improving the weld strength ratio is large, and the effect of improving the weld strength ratio is particularly remarkable in the case of a thin wall.

(2)PBT樹脂の固有粘度について;
、固有粘度が0.70dL/gの場合(実施例1)は、固有粘度が0.60dL/gの場合(実施例6)および固有粘度が0.775の場合(実施例7)に比べて、基準となる引っ張り強度や、薄肉ウェルド強度比、湿熱処理後のウェルド強度比などがやや高く、より好ましいことがわかる。
(2) About intrinsic viscosity of PBT resin;
When the intrinsic viscosity is 0.70 dL / g (Example 1), compared with the case where the intrinsic viscosity is 0.60 dL / g (Example 6) and the case where the intrinsic viscosity is 0.775 (Example 7). It can be seen that the standard tensile strength, thin-walled weld strength ratio, weld strength ratio after wet heat treatment, etc. are slightly higher and more preferable.

(3)ガラス繊維の形状について;
PBT樹脂に本発明で規定する扁平率のガラス繊維を含有させた場合(実施例1)は、円形断面のガラス繊維を含有させた場合(比較例6)に比べて、基準となる引っ張り強度の向上が顕著に見られ、ウェルド強度比の向上と併せて、ウェルド強度の絶対値が高くなることがわかる。
(3) Glass fiber shape;
When the glass fiber having the flatness specified in the present invention is contained in the PBT resin (Example 1), the tensile strength serving as a reference is higher than that when the glass fiber having a circular cross section is contained (Comparative Example 6). It can be seen that the improvement is noticeable, and that the absolute value of the weld strength increases with the improvement of the weld strength ratio.

(4)PBT樹脂に本発明で規定する扁平率のガラス繊維を含有させたものであっても、含有量が50重量部と少ない場合は、PBT樹脂の固有粘度が0.70dL/gの場合(比較例7)と0.85dL/gの場合(比較例8)を比較しても、ウェルド強度比などにあまり差はなく、効果が見られないことがわかる。 (4) Even when the glass fiber having the flatness specified in the present invention is contained in the PBT resin, when the content is as small as 50 parts by weight, the intrinsic viscosity of the PBT resin is 0.70 dL / g Even when (Comparative Example 7) is compared with the case of 0.85 dL / g (Comparative Example 8), it is understood that there is not much difference in the weld strength ratio and the effect is not seen.

(5)繊維の配合量について;
、配合量が67重量部の場合(実施例3)よりも、配合量が82重量部(実施例2)の方が基準引っ張り強度が高くなり、さらに配合量が100重量部の場合(実施例1)は、基準引っ張り強度がより高くなり、ウェルド強度比に大きな差はなくても、ウェルド強度の絶対値は高くなるため、好ましいことがわかる。
(5) About the amount of fiber blended;
The standard tensile strength is higher when the blending amount is 82 parts by weight (Example 2) than when the blending amount is 67 parts by weight (Example 3), and when the blending amount is 100 parts by weight (Example). It can be seen that 1) is preferable because the reference tensile strength is higher and the absolute value of the weld strength is higher even if the weld strength ratio is not significantly different.

(6)エポキシ化合物の効果について;
PBT樹脂に本発明で規定する扁平率のガラス繊維を含有させ、さらにエポキシ化合物を含有させた場合(実施例1および実施例4)は、エポキシ化合物を含まない場合(実施例5)に比べて、湿熱処理後のウェルド強度比が高く、ウェルド強度の耐久性に優れ、好ましいことがわかる。
(6) Effect of epoxy compound;
When the flat fiber glass fiber specified in the present invention is contained in the PBT resin and the epoxy compound is further contained (Example 1 and Example 4), compared to the case where the epoxy compound is not contained (Example 5). It can be seen that the weld strength ratio after the wet heat treatment is high, and the durability of the weld strength is excellent and preferable.

ウェルド強度測定用試験片の説明図である。It is explanatory drawing of the test piece for weld strength measurement. ウェルド部を有する成形品とその破壊試験方法を説明する斜視図である。It is a perspective view explaining the molded article which has a weld part, and its destructive test method.

Claims (8)

フェノールと1,1,2,2−テトラクロロエタンとの等重量混合溶媒中、30℃で測定した固有粘度が0.60〜0.78dL/gのポリブチレンテレフタレート樹脂(A)100重量部に対し、繊維長さ方向に直角な断面の長径と短径との比である扁平率が2.5〜10の繊維状強化材(B)65〜150重量部、及びエポキシ化合物(C)0.2〜2重量部を含有させたことを特徴とする樹脂組成物からなる厚さ1.5mm以下のウエルド部を有する射出成形品。 100 parts by weight of polybutylene terephthalate resin (A) having an intrinsic viscosity of 0.60 to 0.78 dL / g measured at 30 ° C. in an equal weight mixed solvent of phenol and 1,1,2,2-tetrachloroethane Further, 65 to 150 parts by weight of a fibrous reinforcing material (B) having a flatness ratio of 2.5 to 10 which is a ratio of a major axis and a minor axis of a cross section perpendicular to the fiber length direction, and an epoxy compound (C) 0.2 An injection-molded article having a weld part having a thickness of 1.5 mm or less, comprising a resin composition characterized by containing ˜2 parts by weight. ポリブチレンテレフタレート樹脂(A)が、テレフタル酸成分又は1,4−ブタンジオール成分から算出されるブチレンテレフタレート構造単位(―OOC−C64−COO―C48−)の含有量がいずれも95重量%以上のものであることを特徴とする請求項に記載の射出成形品。 The content of the butylene terephthalate structural unit (—OOC—C 6 H 4 —COO—C 4 H 8 —) calculated from the terephthalic acid component or the 1,4-butanediol component in the polybutylene terephthalate resin (A) The injection-molded product according to claim 1 , which is 95% by weight or more. 繊維状強化材の含有量が90〜125重量部であることを特徴とする請求項1又は2に記載の射出成形品。 The injection molded product according to claim 1 or 2 , wherein the content of the fibrous reinforcing material is 90 to 125 parts by weight. 繊維状強化材の扁平率が3.0〜6.0であることを特徴とする請求項1ないしのいずれかに記載の射出成形品。 The injection molded product according to any one of claims 1 to 3 , wherein the flatness of the fibrous reinforcing material is 3.0 to 6.0. 繊維状強化材がガラス繊維であることを特徴とする請求項1ないしのいずれかに記載の射出成形品。 The injection-molded article according to any one of claims 1 to 4 , wherein the fibrous reinforcing material is glass fiber. エポキシ化合物がエポキシ当量が100〜500g/eq、重量平均分子量が2000以下のものであることを特徴とする請求項1ないしのいずれかに記載の射出成形品。 The injection-molded article according to any one of claims 1 to 5 , wherein the epoxy compound has an epoxy equivalent of 100 to 500 g / eq and a weight average molecular weight of 2000 or less. 自動車用の内外装部品または機構部品に使用されるものであることを特徴とする請求項1ないしのいずれかに記載の射出成型品。 The injection-molded product according to any one of claims 1 to 6 , wherein the injection-molded product is used for an interior / exterior part or a mechanism part for automobiles. フェノールと1,1,2,2−テトラクロロエタンとの等重量混合溶媒中、30℃で測定した固有粘度が0.6〜0.78dL/gであり、且つテレフタル酸成分又は1,4−ブタンジオール成分から算出されるブチレンテレフタレート構造単位(−OOC−C64−COO―C48−)の含有量がいずれも95重量%以上であるポリブチレンテレフタレート樹脂(A)100重量部に対し、繊維長さ方向に直角な断面の長径と短径との比である扁平率が3.0〜6.0のガラス繊維(B)90〜125重量部、及びエポキシ当量が100〜500g/eq、重量平均分子量が2000以下のエポキシ化合物(C)0.2〜2重量部を含有させたことを特徴とする樹脂組成物を、成形品に厚さ1.5mm以下のウエルド部が形成されるように金型内に射出することを特徴とするウエルド部を有する射出成形品の製造方法。 Intrinsic viscosity measured at 30 ° C. in an equal weight mixed solvent of phenol and 1,1,2,2-tetrachloroethane is 0.6 to 0.78 dL / g, and a terephthalic acid component or 1,4-butane In 100 parts by weight of the polybutylene terephthalate resin (A) in which the content of the butylene terephthalate structural unit (—OOC—C 6 H 4 —COO—C 4 H 8 —) calculated from the diol component is 95% by weight or more. On the other hand, 90 to 125 parts by weight of glass fiber (B) having a flatness ratio of 3.0 to 6.0, which is a ratio of a major axis to a minor axis of a cross section perpendicular to the fiber length direction, and an epoxy equivalent of 100 to 500 g / eq, a resin composition characterized by containing 0.2 to 2 parts by weight of an epoxy compound (C) having a weight average molecular weight of 2000 or less, a weld part having a thickness of 1.5 mm or less is formed on a molded product. Ruyo Method for manufacturing an injection-molded article having a weld portion, wherein the injection into the mold.
JP2008286995A 2008-11-07 2008-11-07 Polybutylene terephthalate resin molded product with weld Active JP5426867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286995A JP5426867B2 (en) 2008-11-07 2008-11-07 Polybutylene terephthalate resin molded product with weld

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286995A JP5426867B2 (en) 2008-11-07 2008-11-07 Polybutylene terephthalate resin molded product with weld

Publications (2)

Publication Number Publication Date
JP2010111816A JP2010111816A (en) 2010-05-20
JP5426867B2 true JP5426867B2 (en) 2014-02-26

Family

ID=42300621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286995A Active JP5426867B2 (en) 2008-11-07 2008-11-07 Polybutylene terephthalate resin molded product with weld

Country Status (1)

Country Link
JP (1) JP5426867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052323A (en) 2018-12-27 2019-04-04 日東紡績株式会社 Glass fiber-reinforced resin molding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483051A (en) * 1977-12-15 1979-07-02 Teijin Ltd Polyester resin composition
JP3349793B2 (en) * 1993-11-08 2002-11-25 三菱化学株式会社 Polyester resin composition
JP2005325215A (en) * 2004-05-13 2005-11-24 Toray Ind Inc Molded article having welded region
JP5058565B2 (en) * 2006-11-13 2012-10-24 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition and molded article
JP5280696B2 (en) * 2007-02-06 2013-09-04 三菱エンジニアリングプラスチックス株式会社 Reinforced thermoplastic polyester resin composition and insert molded product
JP2008214526A (en) * 2007-03-06 2008-09-18 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for manufacturing sliding parts, and housing having sliding part
JP2009155367A (en) * 2007-12-25 2009-07-16 Wintech Polymer Ltd Polybutylene terephthalate resin composition and thin molded article
JP5329804B2 (en) * 2007-12-26 2013-10-30 ウィンテックポリマー株式会社 Mobile terminal parts

Also Published As

Publication number Publication date
JP2010111816A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5199056B2 (en) Thermoplastic polyester resin composition and molded article for vehicle
JP5329804B2 (en) Mobile terminal parts
JP2009161748A (en) Fiber-reinforced flame-retardant thermoplastic resin composition, molded article and method for producing fiber-reinforced flame-retardant thermoplastic resin composition
JP2009019134A (en) Polyester resin composition for laser welding and molded product using the same
JP2008280409A (en) Resin composition for manufacturing vehicle external component and vehicle exterior component
JP2009040808A (en) Thermoplastic resin composition for laser welding, molded article and method for producing molded article
JP2013053316A (en) Thermoplastic resin composition for laser welding, molding, method of manufacturing molding
JP5280696B2 (en) Reinforced thermoplastic polyester resin composition and insert molded product
EP3317319B1 (en) Transesterification of polyesters
JP2008214526A (en) Thermoplastic resin composition for manufacturing sliding parts, and housing having sliding part
JP6668768B2 (en) Polybutylene terephthalate resin composition and molded article comprising the same
JP2011052172A (en) Polyester resin composition and resin molding
JP5426867B2 (en) Polybutylene terephthalate resin molded product with weld
JPH0749468B2 (en) Method for producing improved polyester resin
JPH0625288B2 (en) Method for manufacturing composite molded article
JP2006206921A (en) Automobile part comprising polyester resin composition
JP2006016559A (en) Glass fiber reinforced polyester resin composition and molding
JP2009019135A (en) Polyester resin composition for laser welding and molded product using the same
JP2007119609A (en) Polyalkylene carbonate resin composition and molded form thereof
JP5616536B2 (en) Wind direction control plate and method of manufacturing wind direction control plate
JP6911382B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
JP4785398B2 (en) Injection compression molding method
JP2010126646A (en) Thermoplastic resin composition for laser welding and composite molding product thereof
JP2006249348A (en) Thermoplastic resin composition
JP2006016557A (en) Glass fiber reinforced polyester resin composition and molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350