JP5426201B2 - Ammonia decomposition apparatus and ammonia decomposition method using the apparatus - Google Patents
Ammonia decomposition apparatus and ammonia decomposition method using the apparatus Download PDFInfo
- Publication number
- JP5426201B2 JP5426201B2 JP2009064892A JP2009064892A JP5426201B2 JP 5426201 B2 JP5426201 B2 JP 5426201B2 JP 2009064892 A JP2009064892 A JP 2009064892A JP 2009064892 A JP2009064892 A JP 2009064892A JP 5426201 B2 JP5426201 B2 JP 5426201B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ammonia
- oxygen
- hydrogen
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims description 120
- 229910021529 ammonia Inorganic materials 0.000 title claims description 60
- 238000000354 decomposition reaction Methods 0.000 title claims description 22
- 238000000034 method Methods 0.000 title claims description 15
- 239000003054 catalyst Substances 0.000 claims description 85
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 33
- 239000001301 oxygen Substances 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- 239000001257 hydrogen Substances 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- POZJWRRDBOEZOO-UHFFFAOYSA-N [Mo]=O.[W]=O Chemical compound [Mo]=O.[W]=O POZJWRRDBOEZOO-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxides Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Description
本発明は、アンモニアおよび酸素を含むガス中のアンモニアを分解するためのアンモニア分解装置および当該装置を用いたアンモニア分解方法に関するものである。 The present invention relates to an ammonia decomposing apparatus for decomposing ammonia in a gas containing ammonia and oxygen and an ammonia decomposing method using the apparatus.
近年、地球温暖化防止を目的として二酸化炭素の排出の少ない技術が求められている。水素は燃料として用いられたとき、二酸化炭素の排出はなく、燃料として注目されている。水素を得る手段として化学反応に副生する水素、製鋼時に副生する水素等の手段がある。しかし、これらの技術は副生する水素を利用するものであり安定して水素を得ることは困難である。 In recent years, there has been a demand for technology that emits less carbon dioxide for the purpose of preventing global warming. When hydrogen is used as a fuel, it does not emit carbon dioxide and has attracted attention as a fuel. As means for obtaining hydrogen, there are means such as hydrogen by-produced in a chemical reaction and hydrogen by-produced during steelmaking. However, these techniques use by-produced hydrogen, and it is difficult to stably obtain hydrogen.
水素を得る手段として、アンモニアの分解反応があり、反応としては NH3 → 0.5N2 + 1.5H2である。この反応は10.9kcal/molの大きな吸熱反応であり、反応熱の供給が問題となる。この反応熱の供給方法として、アンモニアや分解で生成した水素を一部燃焼しその燃焼熱を用いるオートサーマルリフォーマー(ATR)があり(特許文献1,非特許文献1)、燃焼反応はNH3 + 0.75O2 → 0.5N2 + 1.5H2O、H2 + 0.5O2 → H2O である。ATRに用いる触媒としては、Ruをアルミナに担持した触媒(特許文献1)、Pt、Rhをアルミナに担持した触媒(非特許文献1)がある。 As a means for obtaining hydrogen, there is a decomposition reaction of ammonia, and the reaction is NH 3 → 0.5N 2 + 1.5H 2 . This reaction is a large endothermic reaction of 10.9 kcal / mol, and supply of reaction heat becomes a problem. As a method for supplying the reaction heat, there is an autothermal reformer (ATR) that partially burns ammonia or hydrogen generated by decomposition and uses the heat of combustion (Patent Document 1, Non-Patent Document 1), and the combustion reaction is NH 3 +. 0.75O 2 → 0.5N 2 + 1.5H 2 O, H 2 + 0.5O 2 → H 2 O. As a catalyst used for ATR, there are a catalyst in which Ru is supported on alumina (Patent Document 1) and a catalyst in which Pt and Rh are supported on alumina (Non-Patent Document 1).
しかし、これらの触媒を反応に用いるとき触媒組成によっては制御が難しく定常的に一定の濃度の水素を得ることは容易ではないことがある。また触媒層の温度が変化することでアンモニア改質器に損傷、触媒の劣化を招くことがある。一方、アンモニアの改質が充分でないときは水素を燃料として用いるとき質の良くない燃料を提供することになる。 However, when these catalysts are used in the reaction, it may be difficult to control depending on the catalyst composition, and it may not be easy to obtain a constant concentration of hydrogen. In addition, the temperature of the catalyst layer may change, causing damage to the ammonia reformer and deterioration of the catalyst. On the other hand, when the reforming of ammonia is not sufficient, a poor quality fuel is provided when hydrogen is used as the fuel.
本発明は、アンモニアのオートサーマルリフォーマー(ATR)装置において、触媒層の温度上昇を制御し、装置の損傷・触媒の劣化を防止する装置および当該装置を用いたアンモニア分解方法を提供する。 The present invention provides an apparatus for controlling temperature rise of a catalyst layer to prevent damage to the apparatus and catalyst deterioration in an ammonia autothermal reformer (ATR) apparatus, and an ammonia decomposition method using the apparatus.
本発明者らは鋭意検討の結果、上記課題を解決する方法として、アンモニアおよび酸素を含むガス中のアンモニアを水素に分解する触媒を充填した改質装置であって、酸素含有ガスを複数の導入口から導入することによって、触媒層の温度の過度な上昇を抑え、改質器の損傷・触媒の劣化を防止することができることを見出し発明の完成に至ったものである。 As a result of intensive studies, the inventors of the present invention have proposed a reformer filled with a catalyst for decomposing ammonia in a gas containing ammonia and oxygen into hydrogen as a method for solving the above-described problem, and introducing a plurality of oxygen-containing gases. It has been found that introduction through the mouth can suppress an excessive increase in the temperature of the catalyst layer and prevent damage to the reformer and deterioration of the catalyst, thus completing the invention.
アンモニア分解活性とアンモニア燃焼活性のバランスがよい触媒の場合は燃焼による発熱と分解反応による吸熱がうまくバランスして、触媒層温度の上昇を抑えることが可能である。しかし、このような触媒はたとえばRh,Ru,Irなどの貴金属系触媒であり、高価でかつ資源量が乏しく、実用的には問題がある。そのため分解触媒としてFe,Co,Niなどの遷移金属系やMo,Coなどの窒化物や炭化物系などの非貴金属系の分解触媒を用いることが考えられるが、アンモニア燃焼活性が低く、低温で着火しにくい場合が多い。また、酸素が存在すると酸化を受けて触媒性能が低下することもある。そのため非貴金属系の分解触媒を用いる場合は、アンモニア燃焼活性の高い触媒と組合せ使用することが考えられるが、アンモニア燃焼触媒層で触媒層温度が上がりすぎる問題がある。この課題を解決するために鋭意検討した結果、供給する酸素含有ガスの導入口を複数設けることによって、触媒層の温度の上昇を抑えられることを見出し、本発明を完成したものである。 In the case of a catalyst having a good balance between the ammonia decomposition activity and the ammonia combustion activity, the heat generated by the combustion and the endotherm by the decomposition reaction are well balanced, and the rise in the catalyst layer temperature can be suppressed. However, such a catalyst is, for example, a noble metal catalyst such as Rh, Ru, or Ir, and is expensive and has a small amount of resources. Therefore, it is conceivable to use non-noble metal-based decomposition catalysts such as transition metals such as Fe, Co and Ni, and nitrides and carbides such as Mo and Co as the decomposition catalyst, but ammonia combustion activity is low and ignition is performed at a low temperature. Often difficult to do. Further, when oxygen is present, the catalyst performance may be deteriorated due to oxidation. Therefore, when using a non-noble metal-based decomposition catalyst, it may be used in combination with a catalyst having high ammonia combustion activity, but there is a problem that the temperature of the catalyst layer is too high in the ammonia combustion catalyst layer. As a result of diligent studies to solve this problem, the present inventors have found that an increase in the temperature of the catalyst layer can be suppressed by providing a plurality of inlets for supplying oxygen-containing gas to be supplied.
本発明により、アンモニアのオートサーマルリフォーマー(ATR)装置において、触媒層の温度上昇を制御し、装置の損傷・触媒の劣化を防止することができる。 According to the present invention, in an ammonia autothermal reformer (ATR) device, the temperature rise of the catalyst layer can be controlled to prevent damage to the device and deterioration of the catalyst.
発明者らは、上記課題を解決するために鋭意検討の結果、下記技術を見出し、発明を完成した。以下に本発明を詳細に説明するが、本発明の効果を得られるものであれば下記内容に限定されるものではない。 As a result of intensive studies to solve the above problems, the inventors have found the following technique and completed the invention. The present invention will be described in detail below, but is not limited to the following contents as long as the effects of the present invention can be obtained.
本発明に係る反応は、アンモニアおよび酸素を含むガス中のアンモニアを水素に分解するものである。原料のアンモニアに対する酸素総量の比率(酸素/アンモニア)は、0.05〜0.4(モル比)、好ましくは0.1〜0.2(モル比)である。他に含むことができるものとしては生成物である水素、反応に不活性なガス、例えば窒素である。窒素は空気として酸素に同伴して供給することが多く、特に過剰に加えなくとも良い。加える窒素の量は酸素に対して0〜10(モル比)である。 The reaction according to the present invention is to decompose ammonia in a gas containing ammonia and oxygen into hydrogen. The ratio of the total amount of oxygen to the raw material ammonia (oxygen / ammonia) is 0.05 to 0.4 (molar ratio), preferably 0.1 to 0.2 (molar ratio). Others that can be included are the product hydrogen, a gas inert to the reaction, such as nitrogen. Nitrogen is often supplied along with oxygen as air, and it is not particularly necessary to add it excessively. The amount of nitrogen to be added is 0 to 10 (molar ratio) with respect to oxygen.
また酸素は単独で導入することもできるが、不活性ガスに希釈して供給することもできる。通常空気を供給することがコスト面では好ましい。 Oxygen can be introduced alone, but can also be diluted with an inert gas and supplied. Usually, it is preferable in terms of cost to supply air.
本発明に用いるガスは、アンモニア、酸素を含むガス(以下「反応ガス」とも称する)であれば良く、好ましくはアンモニアの分圧が10〜1000kPa、更に好ましくは20〜500kPaであり、好ましくはアンモニア1に対する各導入口から添加する酸素の総量のモル比が0.05〜0.4、更に好ましくは0.1〜0.2である。当該反応ガスは水素、窒素を含むことができる。酸素を含むガスは複数の導入口から導入するが、導入口が多すぎると装置が複雑になるため、導入口の数は2が好ましい。導入口1(装置入り口)に添加する酸素の量は総添加酸素量の20モル%から80モル%が好ましくさらに好ましくは30モル%から70モル%である。酸素含有ガスは、実用上の観点からは空気が好ましい。 The gas used in the present invention may be any gas containing ammonia and oxygen (hereinafter also referred to as “reaction gas”), preferably the ammonia partial pressure is 10 to 1000 kPa, more preferably 20 to 500 kPa, preferably ammonia. The molar ratio of the total amount of oxygen added from each inlet to 1 is 0.05 to 0.4, more preferably 0.1 to 0.2. The reaction gas can contain hydrogen and nitrogen. A gas containing oxygen is introduced from a plurality of inlets. However, if there are too many inlets, the apparatus becomes complicated, so the number of inlets is preferably two. The amount of oxygen added to the inlet 1 (apparatus inlet) is preferably 20 mol% to 80 mol%, more preferably 30 mol% to 70 mol% of the total amount of oxygen added. The oxygen-containing gas is preferably air from a practical viewpoint.
反応ガスは触媒に対し空間速度で1000〜100000h−1、好ましくは2000〜50000h−1である。 The reaction gas has a space velocity with respect to the catalyst of 1000 to 100,000 h −1 , preferably 2000 to 50,000 h −1 .
次いで、分割供給される酸素の量は、分割投入する回数、触媒活性と量、触媒層の温度により変更使用することができる。また予め使用する触媒の活性を測定し、分割供給する酸素の量、回数を決定することが有効である。 Subsequently, the amount of oxygen supplied in a divided manner can be changed and used depending on the number of times of divided charging, the catalyst activity and amount, and the temperature of the catalyst layer. It is also effective to measure the activity of the catalyst used in advance and determine the amount and frequency of oxygen to be dividedly supplied.
触媒層最高温度は、550〜900℃、好ましくは600〜750℃であり、当該反応温度は触媒層で測定するものであり、触媒が過剰の温度にさらされることを防止することができる。また酸素を導入するときの温度は、0〜400℃、好ましくは100〜300℃である。 The catalyst layer maximum temperature, 550 to 900 ° C., preferably from 600 to 750 ° C., the reaction temperature is designed to measure the catalyst layer, it is possible to prevent the catalyst Ru exposed to excessive temperatures. The temperature at which oxygen is introduced is 0 to 400 ° C, preferably 100 to 300 ° C.
本発明に係る触媒は、2種の作用を有する触媒を用いるものであり、一つはアンモニア燃焼する作用を有するアンモニア燃焼触媒であり、他の一つは、アンモニア分解を分解する作用を有するアンモニア分解触媒である。また双方の作用を有する触媒を用いることもできる。触媒は反応ガスの流れに対して、アンモニア燃焼触媒の後にアンモニア分解触媒を充填し用いるものである。 The catalyst according to the present invention uses a catalyst having two kinds of actions, one is an ammonia combustion catalyst having an action for ammonia combustion, and the other is ammonia having an action for decomposing ammonia decomposition. It is a decomposition catalyst. A catalyst having both functions can also be used. The catalyst is used by filling the reaction gas flow with an ammonia decomposition catalyst after the ammonia combustion catalyst.
触媒の使用量は、アンモニア燃焼触媒に対してアンモニア分解触媒を1〜100容量%、好ましくは2〜50容量%である。 The amount of the catalyst used is 1 to 100% by volume, preferably 2 to 50% by volume, of the ammonia decomposition catalyst with respect to the ammonia combustion catalyst.
(アンモニア燃焼触媒)
本発明に係るアンモニア分解触媒と併用することができるアンモニア燃焼触媒としては、アンモニアを燃焼しN2とH2Oにしうるものであれば何れのものであっても良く、例えば酸化バナジウム、酸化タングステン、酸化モリブデン、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、ペロブスカイト型酸化物、Pd、Ptなどを用いることができる。Pd、Ptなどの貴金属は、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。
(Ammonia combustion catalyst)
The ammonia combustion catalyst that can be used in combination with the ammonia decomposition catalyst according to the present invention may be any catalyst as long as it can burn ammonia to form N 2 and H 2 O. For example, vanadium oxide, tungsten oxide Molybdenum oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, perovskite oxide, Pd, Pt, and the like can be used. Precious metals such as Pd and Pt can be used by being supported on a carrier having a high specific surface area such as alumina, silica, zirconia, and titania.
(アンモニア分解触媒)
アンモニア分解触媒の組成としては、Fe、Co、Ni、Moの遷移金属系、La、Ce、Ndの希土類系を用いることができる。遷移金属系は合金、窒化物、炭化物、酸化物、複合酸化物として用いることができ、希土類系は酸化物として用いることができ、遷移金属系および希土類系とも、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。
(Ammonia decomposition catalyst)
As the composition of the ammonia decomposition catalyst, a transition metal system of Fe, Co, Ni, and Mo and a rare earth system of La, Ce, and Nd can be used. Transition metal systems can be used as alloys, nitrides, carbides, oxides, composite oxides, rare earth systems can be used as oxides, and both transition metal systems and rare earth systems are alumina, silica, zirconia, titania, etc. It can be used by being supported on a carrier having a high specific surface area.
触媒調製例としては、一般的な調製方法を用いることができ、例えば、水溶性の触媒成分前駆体を水に溶解しアンモニア等で水酸化物とし沈殿させた後乾燥・焼成し触媒とする方法(沈殿法)、触媒成分に用いる元素の酸化物を単独または複数種の酸化物を混合して用いる方法(混合法)、触媒成分前駆体を水性液として高比表面積の担体に担持する方法(担持法)を用いることかできる。 As a catalyst preparation example, a general preparation method can be used, for example, a method in which a water-soluble catalyst component precursor is dissolved in water, precipitated as a hydroxide with ammonia or the like, dried and calcined to obtain a catalyst. (Precipitation method), a method of using an oxide of an element used for a catalyst component alone or by mixing a plurality of types of oxides (mixing method), a method of supporting a catalyst component precursor as an aqueous liquid on a high specific surface area carrier ( Can be used.
触媒の形態は粒状のペレットでも良いし、コージライト製やステンレス製のハニカムに担持しても良い。 The catalyst may be in the form of granular pellets or may be supported on a cordierite or stainless steel honeycomb.
以下に、実施例、比較例を用いて本発明を詳細に説明するが本発明の趣旨に反しない限り実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples unless it is contrary to the gist of the present invention.
(実施例1)
アンモニア燃焼触媒としてPtをアルミナに担持した触媒前駆体を水素還元処理し触媒を得た。これを触媒Aとする。アンモニア分解触媒として、Co,Ce、Zrの元素からなる触媒前駆体を水素還元処理し触媒を得た。これを触媒Bとする反応管として直径10mm長さ50mmと直径10mm長さ100mmの石英製反応管を2本用意し、第1の反応管には触媒Aを層長3mm、触媒Bを層長17mm充填した。第2の反応管には触媒Aを層長3mm、触媒Bを層長77mm充填した。第一の反応管と第二の反応管の間に酸素含有ガス導入口を設けて、この2つの反応管を直列に連結した。反応ガスとしてアンモニアを74mol%、酸素を5mol%、窒素を21mol%含むものを、予熱器で200℃に加熱して、反応管1に常圧で916ml/minの流量で導入した。中間の酸素導入口から空気を242ml/minで導入し反応管1出口ガスと混合して反応管2に導入し反応した。反応器は十分に保温し、断熱状態とした。反応器出口ガスは酸素とアンモニアは消費され、水素・窒素・水からなっていた。結果は図2に示す。
Example 1
A catalyst precursor having Pt supported on alumina as an ammonia combustion catalyst was subjected to hydrogen reduction treatment to obtain a catalyst. This is referred to as catalyst A. As an ammonia decomposition catalyst, a catalyst precursor comprising Co, Ce, and Zr elements was subjected to hydrogen reduction treatment to obtain a catalyst. Two reaction tubes made of quartz having a diameter of 10 mm and a length of 50 mm and a diameter of 10 mm and a length of 100 mm are prepared as reaction tubes having this as catalyst B. The first reaction tube has catalyst A with a layer length of 3 mm and catalyst B with a layer length. Filled 17 mm. The second reaction tube was filled with catalyst A with a layer length of 3 mm and catalyst B with a layer length of 77 mm. An oxygen-containing gas inlet was provided between the first reaction tube and the second reaction tube, and the two reaction tubes were connected in series. A reaction gas containing 74 mol% ammonia, 5 mol% oxygen, and 21 mol% nitrogen was heated to 200 ° C. with a preheater and introduced into the reaction tube 1 at a flow rate of 916 ml / min at normal pressure. Air was introduced from the intermediate oxygen inlet at 242 ml / min, mixed with the reaction tube 1 outlet gas, introduced into the reaction tube 2 and reacted. The reactor was kept warm and insulated. The reactor outlet gas consumed oxygen, ammonia, and consisted of hydrogen, nitrogen, and water. The results are shown in FIG.
触媒層の最高温度は約700℃に抑制することができた。 The maximum temperature of the catalyst layer could be suppressed to about 700 ° C.
(比較例1)
アンモニア燃焼触媒・アンモニア分解触媒として実施例1と同じ触媒を用い、反応管として直径10mm長さ150mmの石英製反応管に触媒Aを層長5mm、触媒Bを層長95mm充填した。反応ガスとしてアンモニアを58mol%、酸素を8.7mol%、窒素を33mol%を含むものを、予熱器で200℃に加熱して、常圧で1152ml/minの流量で反応した。反応器は十分に保温し、断熱状態とした。反応器出口ガスは酸素とアンモニアは消費され、水素・窒素・水からなっていた。結果は図3に示す。
(Comparative Example 1)
The same catalyst as in Example 1 was used as an ammonia combustion catalyst / ammonia decomposition catalyst, and a reaction tube made of quartz having a diameter of 10 mm and a length of 150 mm was filled with catalyst A with a layer length of 5 mm and catalyst B with a layer length of 95 mm. A reaction gas containing 58 mol% ammonia, 8.7 mol% oxygen, and 33 mol% nitrogen was heated to 200 ° C. with a preheater and reacted at a normal pressure and a flow rate of 1152 ml / min. The reactor was kept warm and insulated. The reactor outlet gas consumed oxygen, ammonia, and consisted of hydrogen, nitrogen, and water. The results are shown in FIG.
触媒層の最高温度は950℃以上に上昇してしまった。 The maximum temperature of the catalyst layer has risen to 950 ° C. or higher.
本発明は、反応器・触媒の温度上昇を抑えて、長時間触媒を用いることができるものである。アンモニア含有ガスから水素を得ることができる。 The present invention can suppress the temperature rise of the reactor / catalyst and can use the catalyst for a long time. Hydrogen can be obtained from the ammonia-containing gas.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009064892A JP5426201B2 (en) | 2009-03-17 | 2009-03-17 | Ammonia decomposition apparatus and ammonia decomposition method using the apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009064892A JP5426201B2 (en) | 2009-03-17 | 2009-03-17 | Ammonia decomposition apparatus and ammonia decomposition method using the apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010215457A JP2010215457A (en) | 2010-09-30 |
JP5426201B2 true JP5426201B2 (en) | 2014-02-26 |
Family
ID=42974716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009064892A Active JP5426201B2 (en) | 2009-03-17 | 2009-03-17 | Ammonia decomposition apparatus and ammonia decomposition method using the apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5426201B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11539063B1 (en) | 2021-08-17 | 2022-12-27 | Amogy Inc. | Systems and methods for processing hydrogen |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5352323B2 (en) * | 2009-04-07 | 2013-11-27 | トヨタ自動車株式会社 | Hydrogen generating apparatus and hydrogen generating method |
JP4915452B2 (en) * | 2010-01-12 | 2012-04-11 | トヨタ自動車株式会社 | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM |
JP5800719B2 (en) * | 2012-01-19 | 2015-10-28 | 株式会社日本触媒 | Hydrogen production catalyst and hydrogen production method using the same |
JP6769856B2 (en) * | 2016-12-13 | 2020-10-14 | 三菱パワー株式会社 | How to modify hydrogen-containing fuel supply system, thermal power plant, combustion unit and combustion unit |
WO2021079689A1 (en) * | 2019-10-21 | 2021-04-29 | 株式会社豊田自動織機 | Reforming device and reforming system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3342920B2 (en) * | 1993-06-25 | 2002-11-11 | 財団法人電力中央研究所 | Gas turbine combustor |
JP3532256B2 (en) * | 1994-08-25 | 2004-05-31 | 日本パイオニクス株式会社 | Ammonia decomposition equipment |
WO2001087770A1 (en) * | 2000-05-12 | 2001-11-22 | Gradient Technology | Production of hydrogen by autothermic decomposition of ammonia |
JP2003144846A (en) * | 2001-11-19 | 2003-05-20 | Central Glass Co Ltd | Method for decomposing ammonia |
JP2003306311A (en) * | 2002-04-09 | 2003-10-28 | Nippon Oil Corp | Autothermal reforming device and autothermal reforming method using the same |
-
2009
- 2009-03-17 JP JP2009064892A patent/JP5426201B2/en active Active
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11994061B2 (en) | 2021-05-14 | 2024-05-28 | Amogy Inc. | Methods for reforming ammonia |
US12000333B2 (en) | 2021-05-14 | 2024-06-04 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11994062B2 (en) | 2021-05-14 | 2024-05-28 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US12097482B2 (en) | 2021-06-11 | 2024-09-24 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11769893B2 (en) | 2021-08-17 | 2023-09-26 | Amogy Inc. | Systems and methods for processing hydrogen |
US11539063B1 (en) | 2021-08-17 | 2022-12-27 | Amogy Inc. | Systems and methods for processing hydrogen |
US11843149B2 (en) | 2021-08-17 | 2023-12-12 | Amogy Inc. | Systems and methods for processing hydrogen |
US11840447B1 (en) | 2022-10-06 | 2023-12-12 | Amogy Inc. | Systems and methods of processing ammonia |
US11975968B2 (en) | 2022-10-06 | 2024-05-07 | AMOGY, Inc. | Systems and methods of processing ammonia |
US11912574B1 (en) | 2022-10-06 | 2024-02-27 | Amogy Inc. | Methods for reforming ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
Also Published As
Publication number | Publication date |
---|---|
JP2010215457A (en) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5426201B2 (en) | Ammonia decomposition apparatus and ammonia decomposition method using the apparatus | |
JP4953546B2 (en) | Methane partial oxidation method using dense oxygen permselective ceramic membrane | |
JP5778309B2 (en) | Hydrogen production catalyst and hydrogen production method using the same | |
WO2007029862A1 (en) | Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas | |
Liu | Controlling lattice oxygen activity of oxygen carrier materials by design: a review and perspective | |
CN1762790B (en) | Hydrogen production process | |
JP3746401B2 (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
TWI294413B (en) | Method for converting co and hydrogen into methane and water | |
CN107107017A (en) | The method that methane is converted into synthesis gas | |
KR20200097755A (en) | Method and system for reforming hydrocarbon gas | |
JP5624343B2 (en) | Hydrogen production method | |
JP5531462B2 (en) | Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas | |
JP6102473B2 (en) | Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas | |
JP2012167070A (en) | Method of synthesizing chemical | |
JP2014208352A (en) | Ammonia decomposition catalyst and ammonia decomposition method using the catalyst | |
JP2012213682A (en) | Ammonia decomposition catalyst and ammonia decomposition method using the catalyst | |
JP5717993B2 (en) | Reforming apparatus and manufacturing method thereof | |
JP2001212458A (en) | Catalyst for selectively oxidizing carbon monoxide in reforming gas | |
JP2010214225A (en) | Ammonia decomposition catalyst, and method of decomposing ammonia using the same | |
JP6089894B2 (en) | Catalyst for producing synthesis gas and method for producing synthesis gas | |
KR20220063632A (en) | NH3 decomposition reactor | |
JP5842540B2 (en) | Method and apparatus for producing methane from CO2 and / or CO | |
JP2014181197A (en) | Method for hydrogenation of compounds including double bonds, etc. | |
JP4083556B2 (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
JP5800719B2 (en) | Hydrogen production catalyst and hydrogen production method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120208 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120224 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20120224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131128 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5426201 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |