JP5426201B2 - Ammonia decomposition apparatus and ammonia decomposition method using the apparatus - Google Patents

Ammonia decomposition apparatus and ammonia decomposition method using the apparatus Download PDF

Info

Publication number
JP5426201B2
JP5426201B2 JP2009064892A JP2009064892A JP5426201B2 JP 5426201 B2 JP5426201 B2 JP 5426201B2 JP 2009064892 A JP2009064892 A JP 2009064892A JP 2009064892 A JP2009064892 A JP 2009064892A JP 5426201 B2 JP5426201 B2 JP 5426201B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
oxygen
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009064892A
Other languages
Japanese (ja)
Other versions
JP2010215457A (en
Inventor
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Shokubai Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Toyota Motor Corp filed Critical Nippon Shokubai Co Ltd
Priority to JP2009064892A priority Critical patent/JP5426201B2/en
Publication of JP2010215457A publication Critical patent/JP2010215457A/en
Application granted granted Critical
Publication of JP5426201B2 publication Critical patent/JP5426201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニアおよび酸素を含むガス中のアンモニアを分解するためのアンモニア分解装置および当該装置を用いたアンモニア分解方法に関するものである。   The present invention relates to an ammonia decomposing apparatus for decomposing ammonia in a gas containing ammonia and oxygen and an ammonia decomposing method using the apparatus.

近年、地球温暖化防止を目的として二酸化炭素の排出の少ない技術が求められている。水素は燃料として用いられたとき、二酸化炭素の排出はなく、燃料として注目されている。水素を得る手段として化学反応に副生する水素、製鋼時に副生する水素等の手段がある。しかし、これらの技術は副生する水素を利用するものであり安定して水素を得ることは困難である。   In recent years, there has been a demand for technology that emits less carbon dioxide for the purpose of preventing global warming. When hydrogen is used as a fuel, it does not emit carbon dioxide and has attracted attention as a fuel. As means for obtaining hydrogen, there are means such as hydrogen by-produced in a chemical reaction and hydrogen by-produced during steelmaking. However, these techniques use by-produced hydrogen, and it is difficult to stably obtain hydrogen.

水素を得る手段として、アンモニアの分解反応があり、反応としては NH → 0.5N + 1.5Hである。この反応は10.9kcal/molの大きな吸熱反応であり、反応熱の供給が問題となる。この反応熱の供給方法として、アンモニアや分解で生成した水素を一部燃焼しその燃焼熱を用いるオートサーマルリフォーマー(ATR)があり(特許文献1,非特許文献1)、燃焼反応はNH + 0.75O → 0.5N + 1.5HO、H + 0.5O → HO である。ATRに用いる触媒としては、Ruをアルミナに担持した触媒(特許文献1)、Pt、Rhをアルミナに担持した触媒(非特許文献1)がある。 As a means for obtaining hydrogen, there is a decomposition reaction of ammonia, and the reaction is NH 3 → 0.5N 2 + 1.5H 2 . This reaction is a large endothermic reaction of 10.9 kcal / mol, and supply of reaction heat becomes a problem. As a method for supplying the reaction heat, there is an autothermal reformer (ATR) that partially burns ammonia or hydrogen generated by decomposition and uses the heat of combustion (Patent Document 1, Non-Patent Document 1), and the combustion reaction is NH 3 +. 0.75O 2 → 0.5N 2 + 1.5H 2 O, H 2 + 0.5O 2 → H 2 O. As a catalyst used for ATR, there are a catalyst in which Ru is supported on alumina (Patent Document 1) and a catalyst in which Pt and Rh are supported on alumina (Non-Patent Document 1).

しかし、これらの触媒を反応に用いるとき触媒組成によっては制御が難しく定常的に一定の濃度の水素を得ることは容易ではないことがある。また触媒層の温度が変化することでアンモニア改質器に損傷、触媒の劣化を招くことがある。一方、アンモニアの改質が充分でないときは水素を燃料として用いるとき質の良くない燃料を提供することになる。   However, when these catalysts are used in the reaction, it may be difficult to control depending on the catalyst composition, and it may not be easy to obtain a constant concentration of hydrogen. In addition, the temperature of the catalyst layer may change, causing damage to the ammonia reformer and deterioration of the catalyst. On the other hand, when the reforming of ammonia is not sufficient, a poor quality fuel is provided when hydrogen is used as the fuel.

国際公開特許 WO 01/87770 A1International Patent Publication WO 01/87770 A1

室井高城著「工業貴金属触媒」幸書房、2003年5月26日、p297Muroi Takagi, "Industrial Precious Metal Catalysts" Koshobo, May 26, 2003, p297

本発明は、アンモニアのオートサーマルリフォーマー(ATR)装置において、触媒層の温度上昇を制御し、装置の損傷・触媒の劣化を防止する装置および当該装置を用いたアンモニア分解方法を提供する。   The present invention provides an apparatus for controlling temperature rise of a catalyst layer to prevent damage to the apparatus and catalyst deterioration in an ammonia autothermal reformer (ATR) apparatus, and an ammonia decomposition method using the apparatus.

本発明者らは鋭意検討の結果、上記課題を解決する方法として、アンモニアおよび酸素を含むガス中のアンモニアを水素に分解する触媒を充填した改質装置であって、酸素含有ガスを複数の導入口から導入することによって、触媒層の温度の過度な上昇を抑え、改質器の損傷・触媒の劣化を防止することができることを見出し発明の完成に至ったものである。   As a result of intensive studies, the inventors of the present invention have proposed a reformer filled with a catalyst for decomposing ammonia in a gas containing ammonia and oxygen into hydrogen as a method for solving the above-described problem, and introducing a plurality of oxygen-containing gases. It has been found that introduction through the mouth can suppress an excessive increase in the temperature of the catalyst layer and prevent damage to the reformer and deterioration of the catalyst, thus completing the invention.

アンモニア分解活性とアンモニア燃焼活性のバランスがよい触媒の場合は燃焼による発熱と分解反応による吸熱がうまくバランスして、触媒層温度の上昇を抑えることが可能である。しかし、このような触媒はたとえばRh,Ru,Irなどの貴金属系触媒であり、高価でかつ資源量が乏しく、実用的には問題がある。そのため分解触媒としてFe,Co,Niなどの遷移金属系やMo,Coなどの窒化物や炭化物系などの非貴金属系の分解触媒を用いることが考えられるが、アンモニア燃焼活性が低く、低温で着火しにくい場合が多い。また、酸素が存在すると酸化を受けて触媒性能が低下することもある。そのため非貴金属系の分解触媒を用いる場合は、アンモニア燃焼活性の高い触媒と組合せ使用することが考えられるが、アンモニア燃焼触媒層で触媒層温度が上がりすぎる問題がある。この課題を解決するために鋭意検討した結果、供給する酸素含有ガスの導入口を複数設けることによって、触媒層の温度の上昇を抑えられることを見出し、本発明を完成したものである。   In the case of a catalyst having a good balance between the ammonia decomposition activity and the ammonia combustion activity, the heat generated by the combustion and the endotherm by the decomposition reaction are well balanced, and the rise in the catalyst layer temperature can be suppressed. However, such a catalyst is, for example, a noble metal catalyst such as Rh, Ru, or Ir, and is expensive and has a small amount of resources. Therefore, it is conceivable to use non-noble metal-based decomposition catalysts such as transition metals such as Fe, Co and Ni, and nitrides and carbides such as Mo and Co as the decomposition catalyst, but ammonia combustion activity is low and ignition is performed at a low temperature. Often difficult to do. Further, when oxygen is present, the catalyst performance may be deteriorated due to oxidation. Therefore, when using a non-noble metal-based decomposition catalyst, it may be used in combination with a catalyst having high ammonia combustion activity, but there is a problem that the temperature of the catalyst layer is too high in the ammonia combustion catalyst layer. As a result of diligent studies to solve this problem, the present inventors have found that an increase in the temperature of the catalyst layer can be suppressed by providing a plurality of inlets for supplying oxygen-containing gas to be supplied.

本発明により、アンモニアのオートサーマルリフォーマー(ATR)装置において、触媒層の温度上昇を制御し、装置の損傷・触媒の劣化を防止することができる。   According to the present invention, in an ammonia autothermal reformer (ATR) device, the temperature rise of the catalyst layer can be controlled to prevent damage to the device and deterioration of the catalyst.

図1は実施例1における反応器と触媒の充填状態を示した模式図である。FIG. 1 is a schematic diagram showing a state of filling a reactor and a catalyst in Example 1. FIG. 図2は実施例1における改質反応時において、触媒のガス入口側(0mm)から触媒のガス出口側(100mm)での温度変化を示したものである。FIG. 2 shows the temperature change from the gas inlet side (0 mm) of the catalyst to the gas outlet side (100 mm) of the catalyst during the reforming reaction in Example 1. 図3は比較例1における改質反応時において、触媒のガス入口側(0mm)から触媒のガス出口側(100mm)での温度変化を示したものである。FIG. 3 shows the temperature change from the gas inlet side (0 mm) of the catalyst to the gas outlet side (100 mm) of the catalyst during the reforming reaction in Comparative Example 1.

発明者らは、上記課題を解決するために鋭意検討の結果、下記技術を見出し、発明を完成した。以下に本発明を詳細に説明するが、本発明の効果を得られるものであれば下記内容に限定されるものではない。   As a result of intensive studies to solve the above problems, the inventors have found the following technique and completed the invention. The present invention will be described in detail below, but is not limited to the following contents as long as the effects of the present invention can be obtained.

本発明に係る反応は、アンモニアおよび酸素を含むガス中のアンモニアを水素に分解するものである。原料のアンモニアに対する酸素総量の比率(酸素/アンモニア)は、0.05〜0.4(モル比)、好ましくは0.1〜0.2(モル比)である。他に含むことができるものとしては生成物である水素、反応に不活性なガス、例えば窒素である。窒素は空気として酸素に同伴して供給することが多く、特に過剰に加えなくとも良い。加える窒素の量は酸素に対して0〜10(モル比)である。   The reaction according to the present invention is to decompose ammonia in a gas containing ammonia and oxygen into hydrogen. The ratio of the total amount of oxygen to the raw material ammonia (oxygen / ammonia) is 0.05 to 0.4 (molar ratio), preferably 0.1 to 0.2 (molar ratio). Others that can be included are the product hydrogen, a gas inert to the reaction, such as nitrogen. Nitrogen is often supplied along with oxygen as air, and it is not particularly necessary to add it excessively. The amount of nitrogen to be added is 0 to 10 (molar ratio) with respect to oxygen.

また酸素は単独で導入することもできるが、不活性ガスに希釈して供給することもできる。通常空気を供給することがコスト面では好ましい。   Oxygen can be introduced alone, but can also be diluted with an inert gas and supplied. Usually, it is preferable in terms of cost to supply air.

本発明に用いるガスは、アンモニア、酸素を含むガス(以下「反応ガス」とも称する)であれば良く、好ましくはアンモニアの分圧が10〜1000kPa、更に好ましくは20〜500kPaであり、好ましくはアンモニア1に対する各導入口から添加する酸素の総量のモル比が0.05〜0.4、更に好ましくは0.1〜0.2である。当該反応ガスは水素、窒素を含むことができる。酸素を含むガスは複数の導入口から導入するが、導入口が多すぎると装置が複雑になるため、導入口の数は2が好ましい。導入口1(装置入り口)に添加する酸素の量は総添加酸素量の20モル%から80モル%が好ましくさらに好ましくは30モル%から70モル%である。酸素含有ガスは、実用上の観点からは空気が好ましい。   The gas used in the present invention may be any gas containing ammonia and oxygen (hereinafter also referred to as “reaction gas”), preferably the ammonia partial pressure is 10 to 1000 kPa, more preferably 20 to 500 kPa, preferably ammonia. The molar ratio of the total amount of oxygen added from each inlet to 1 is 0.05 to 0.4, more preferably 0.1 to 0.2. The reaction gas can contain hydrogen and nitrogen. A gas containing oxygen is introduced from a plurality of inlets. However, if there are too many inlets, the apparatus becomes complicated, so the number of inlets is preferably two. The amount of oxygen added to the inlet 1 (apparatus inlet) is preferably 20 mol% to 80 mol%, more preferably 30 mol% to 70 mol% of the total amount of oxygen added. The oxygen-containing gas is preferably air from a practical viewpoint.

反応ガスは触媒に対し空間速度で1000〜100000h−1、好ましくは2000〜50000h−1である。 The reaction gas has a space velocity with respect to the catalyst of 1000 to 100,000 h −1 , preferably 2000 to 50,000 h −1 .

次いで、分割供給される酸素の量は、分割投入する回数、触媒活性と量、触媒層の温度により変更使用することができる。また予め使用する触媒の活性を測定し、分割供給する酸素の量、回数を決定することが有効である。   Subsequently, the amount of oxygen supplied in a divided manner can be changed and used depending on the number of times of divided charging, the catalyst activity and amount, and the temperature of the catalyst layer. It is also effective to measure the activity of the catalyst used in advance and determine the amount and frequency of oxygen to be dividedly supplied.

触媒層最高温度は、550〜900℃、好ましくは600〜750℃であり、当該反応温度は触媒層で測定するものであり、触媒が過剰の温度にさらされことを防止することができる。また酸素を導入するときの温度は、0〜400℃、好ましくは100〜300℃である。 The catalyst layer maximum temperature, 550 to 900 ° C., preferably from 600 to 750 ° C., the reaction temperature is designed to measure the catalyst layer, it is possible to prevent the catalyst Ru exposed to excessive temperatures. The temperature at which oxygen is introduced is 0 to 400 ° C, preferably 100 to 300 ° C.

本発明に係る触媒は、2種の作用を有する触媒を用いるものであり、一つはアンモニア燃焼する作用を有するアンモニア燃焼触媒であり、他の一つは、アンモニア分解を分解する作用を有するアンモニア分解触媒である。また双方の作用を有する触媒を用いることもできる。触媒は反応ガスの流れに対して、アンモニア燃焼触媒の後にアンモニア分解触媒を充填し用いるものである。   The catalyst according to the present invention uses a catalyst having two kinds of actions, one is an ammonia combustion catalyst having an action for ammonia combustion, and the other is ammonia having an action for decomposing ammonia decomposition. It is a decomposition catalyst. A catalyst having both functions can also be used. The catalyst is used by filling the reaction gas flow with an ammonia decomposition catalyst after the ammonia combustion catalyst.

触媒の使用量は、アンモニア燃焼触媒に対してアンモニア分解触媒を1〜100容量%、好ましくは2〜50容量%である。   The amount of the catalyst used is 1 to 100% by volume, preferably 2 to 50% by volume, of the ammonia decomposition catalyst with respect to the ammonia combustion catalyst.

(アンモニア燃焼触媒)
本発明に係るアンモニア分解触媒と併用することができるアンモニア燃焼触媒としては、アンモニアを燃焼しNとHOにしうるものであれば何れのものであっても良く、例えば酸化バナジウム、酸化タングステン、酸化モリブデン、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、ペロブスカイト型酸化物、Pd、Ptなどを用いることができる。Pd、Ptなどの貴金属は、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。
(Ammonia combustion catalyst)
The ammonia combustion catalyst that can be used in combination with the ammonia decomposition catalyst according to the present invention may be any catalyst as long as it can burn ammonia to form N 2 and H 2 O. For example, vanadium oxide, tungsten oxide Molybdenum oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, perovskite oxide, Pd, Pt, and the like can be used. Precious metals such as Pd and Pt can be used by being supported on a carrier having a high specific surface area such as alumina, silica, zirconia, and titania.

(アンモニア分解触媒)
アンモニア分解触媒の組成としては、Fe、Co、Ni、Moの遷移金属系、La、Ce、Ndの希土類系を用いることができる。遷移金属系は合金、窒化物、炭化物、酸化物、複合酸化物として用いることができ、希土類系は酸化物として用いることができ、遷移金属系および希土類系とも、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。
(Ammonia decomposition catalyst)
As the composition of the ammonia decomposition catalyst, a transition metal system of Fe, Co, Ni, and Mo and a rare earth system of La, Ce, and Nd can be used. Transition metal systems can be used as alloys, nitrides, carbides, oxides, composite oxides, rare earth systems can be used as oxides, and both transition metal systems and rare earth systems are alumina, silica, zirconia, titania, etc. It can be used by being supported on a carrier having a high specific surface area.

触媒調製例としては、一般的な調製方法を用いることができ、例えば、水溶性の触媒成分前駆体を水に溶解しアンモニア等で水酸化物とし沈殿させた後乾燥・焼成し触媒とする方法(沈殿法)、触媒成分に用いる元素の酸化物を単独または複数種の酸化物を混合して用いる方法(混合法)、触媒成分前駆体を水性液として高比表面積の担体に担持する方法(担持法)を用いることかできる。   As a catalyst preparation example, a general preparation method can be used, for example, a method in which a water-soluble catalyst component precursor is dissolved in water, precipitated as a hydroxide with ammonia or the like, dried and calcined to obtain a catalyst. (Precipitation method), a method of using an oxide of an element used for a catalyst component alone or by mixing a plurality of types of oxides (mixing method), a method of supporting a catalyst component precursor as an aqueous liquid on a high specific surface area carrier ( Can be used.

触媒の形態は粒状のペレットでも良いし、コージライト製やステンレス製のハニカムに担持しても良い。   The catalyst may be in the form of granular pellets or may be supported on a cordierite or stainless steel honeycomb.

以下に、実施例、比較例を用いて本発明を詳細に説明するが本発明の趣旨に反しない限り実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples unless it is contrary to the gist of the present invention.

(実施例1)
アンモニア燃焼触媒としてPtをアルミナに担持した触媒前駆体を水素還元処理し触媒を得た。これを触媒Aとする。アンモニア分解触媒として、Co,Ce、Zrの元素からなる触媒前駆体を水素還元処理し触媒を得た。これを触媒Bとする反応管として直径10mm長さ50mmと直径10mm長さ100mmの石英製反応管を2本用意し、第1の反応管には触媒Aを層長3mm、触媒Bを層長17mm充填した。第2の反応管には触媒Aを層長3mm、触媒Bを層長77mm充填した。第一の反応管と第二の反応管の間に酸素含有ガス導入口を設けて、この2つの反応管を直列に連結した。反応ガスとしてアンモニアを74mol%、酸素を5mol%、窒素を21mol%含むものを、予熱器で200℃に加熱して、反応管1に常圧で916ml/minの流量で導入した。中間の酸素導入口から空気を242ml/minで導入し反応管1出口ガスと混合して反応管2に導入し反応した。反応器は十分に保温し、断熱状態とした。反応器出口ガスは酸素とアンモニアは消費され、水素・窒素・水からなっていた。結果は図2に示す。
Example 1
A catalyst precursor having Pt supported on alumina as an ammonia combustion catalyst was subjected to hydrogen reduction treatment to obtain a catalyst. This is referred to as catalyst A. As an ammonia decomposition catalyst, a catalyst precursor comprising Co, Ce, and Zr elements was subjected to hydrogen reduction treatment to obtain a catalyst. Two reaction tubes made of quartz having a diameter of 10 mm and a length of 50 mm and a diameter of 10 mm and a length of 100 mm are prepared as reaction tubes having this as catalyst B. The first reaction tube has catalyst A with a layer length of 3 mm and catalyst B with a layer length. Filled 17 mm. The second reaction tube was filled with catalyst A with a layer length of 3 mm and catalyst B with a layer length of 77 mm. An oxygen-containing gas inlet was provided between the first reaction tube and the second reaction tube, and the two reaction tubes were connected in series. A reaction gas containing 74 mol% ammonia, 5 mol% oxygen, and 21 mol% nitrogen was heated to 200 ° C. with a preheater and introduced into the reaction tube 1 at a flow rate of 916 ml / min at normal pressure. Air was introduced from the intermediate oxygen inlet at 242 ml / min, mixed with the reaction tube 1 outlet gas, introduced into the reaction tube 2 and reacted. The reactor was kept warm and insulated. The reactor outlet gas consumed oxygen, ammonia, and consisted of hydrogen, nitrogen, and water. The results are shown in FIG.

触媒層の最高温度は約700℃に抑制することができた。   The maximum temperature of the catalyst layer could be suppressed to about 700 ° C.

(比較例1)
アンモニア燃焼触媒・アンモニア分解触媒として実施例1と同じ触媒を用い、反応管として直径10mm長さ150mmの石英製反応管に触媒Aを層長5mm、触媒Bを層長95mm充填した。反応ガスとしてアンモニアを58mol%、酸素を8.7mol%、窒素を33mol%を含むものを、予熱器で200℃に加熱して、常圧で1152ml/minの流量で反応した。反応器は十分に保温し、断熱状態とした。反応器出口ガスは酸素とアンモニアは消費され、水素・窒素・水からなっていた。結果は図3に示す。
(Comparative Example 1)
The same catalyst as in Example 1 was used as an ammonia combustion catalyst / ammonia decomposition catalyst, and a reaction tube made of quartz having a diameter of 10 mm and a length of 150 mm was filled with catalyst A with a layer length of 5 mm and catalyst B with a layer length of 95 mm. A reaction gas containing 58 mol% ammonia, 8.7 mol% oxygen, and 33 mol% nitrogen was heated to 200 ° C. with a preheater and reacted at a normal pressure and a flow rate of 1152 ml / min. The reactor was kept warm and insulated. The reactor outlet gas consumed oxygen, ammonia, and consisted of hydrogen, nitrogen, and water. The results are shown in FIG.

触媒層の最高温度は950℃以上に上昇してしまった。   The maximum temperature of the catalyst layer has risen to 950 ° C. or higher.

本発明は、反応器・触媒の温度上昇を抑えて、長時間触媒を用いることができるものである。アンモニア含有ガスから水素を得ることができる。   The present invention can suppress the temperature rise of the reactor / catalyst and can use the catalyst for a long time. Hydrogen can be obtained from the ammonia-containing gas.

Claims (3)

アンモニア、酸素および水素を含むガス中のアンモニアを水素に分解する触媒を用いて水素を製造する方法であって、反応器に複数の酸素含有ガス導入口を設け、酸素を分割供給すること、ならびに、前記ガス中におけるアンモニアの分圧が10〜1000kPa、アンモニア1に対する各導入口から添加する酸素の総量のモル比が0.05〜0.4、前記反応器の入口に添加する酸素の量が総添加酸素量の20モル%から80モル%であることを特徴とするアンモニア分解方法。   A method for producing hydrogen using a catalyst that decomposes ammonia in a gas containing ammonia, oxygen, and hydrogen into hydrogen, wherein the reactor is provided with a plurality of oxygen-containing gas inlets, and oxygen is dividedly supplied, and The partial pressure of ammonia in the gas is 10 to 1000 kPa, the molar ratio of the total amount of oxygen added from each inlet to ammonia 1 is 0.05 to 0.4, and the amount of oxygen added to the inlet of the reactor is A method for decomposing ammonia, characterized by being 20 to 80 mol% of the total amount of added oxygen. 前記触媒がアンモニア燃焼触媒とアンモニア分解触媒の組合せである請求項1に記載のアンモニア分解方法。   The ammonia decomposition method according to claim 1, wherein the catalyst is a combination of an ammonia combustion catalyst and an ammonia decomposition catalyst. 前記酸素含有ガスが空気である請求項1または2に記載のアンモニア分解方法。   The ammonia decomposition method according to claim 1 or 2, wherein the oxygen-containing gas is air.
JP2009064892A 2009-03-17 2009-03-17 Ammonia decomposition apparatus and ammonia decomposition method using the apparatus Active JP5426201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064892A JP5426201B2 (en) 2009-03-17 2009-03-17 Ammonia decomposition apparatus and ammonia decomposition method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064892A JP5426201B2 (en) 2009-03-17 2009-03-17 Ammonia decomposition apparatus and ammonia decomposition method using the apparatus

Publications (2)

Publication Number Publication Date
JP2010215457A JP2010215457A (en) 2010-09-30
JP5426201B2 true JP5426201B2 (en) 2014-02-26

Family

ID=42974716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064892A Active JP5426201B2 (en) 2009-03-17 2009-03-17 Ammonia decomposition apparatus and ammonia decomposition method using the apparatus

Country Status (1)

Country Link
JP (1) JP5426201B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352323B2 (en) * 2009-04-07 2013-11-27 トヨタ自動車株式会社 Hydrogen generating apparatus and hydrogen generating method
JP4915452B2 (en) * 2010-01-12 2012-04-11 トヨタ自動車株式会社 FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP5800719B2 (en) * 2012-01-19 2015-10-28 株式会社日本触媒 Hydrogen production catalyst and hydrogen production method using the same
JP6769856B2 (en) * 2016-12-13 2020-10-14 三菱パワー株式会社 How to modify hydrogen-containing fuel supply system, thermal power plant, combustion unit and combustion unit
WO2021079689A1 (en) * 2019-10-21 2021-04-29 株式会社豊田自動織機 Reforming device and reforming system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3342920B2 (en) * 1993-06-25 2002-11-11 財団法人電力中央研究所 Gas turbine combustor
JP3532256B2 (en) * 1994-08-25 2004-05-31 日本パイオニクス株式会社 Ammonia decomposition equipment
WO2001087770A1 (en) * 2000-05-12 2001-11-22 Gradient Technology Production of hydrogen by autothermic decomposition of ammonia
JP2003144846A (en) * 2001-11-19 2003-05-20 Central Glass Co Ltd Method for decomposing ammonia
JP2003306311A (en) * 2002-04-09 2003-10-28 Nippon Oil Corp Autothermal reforming device and autothermal reforming method using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11994062B2 (en) 2021-05-14 2024-05-28 AMOGY, Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US12097482B2 (en) 2021-06-11 2024-09-24 AMOGY, Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11975968B2 (en) 2022-10-06 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP2010215457A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5426201B2 (en) Ammonia decomposition apparatus and ammonia decomposition method using the apparatus
JP4953546B2 (en) Methane partial oxidation method using dense oxygen permselective ceramic membrane
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
WO2007029862A1 (en) Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
Liu Controlling lattice oxygen activity of oxygen carrier materials by design: a review and perspective
CN1762790B (en) Hydrogen production process
JP3746401B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
TWI294413B (en) Method for converting co and hydrogen into methane and water
CN107107017A (en) The method that methane is converted into synthesis gas
KR20200097755A (en) Method and system for reforming hydrocarbon gas
JP5624343B2 (en) Hydrogen production method
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
JP2012167070A (en) Method of synthesizing chemical
JP2014208352A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP2012213682A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
JP2001212458A (en) Catalyst for selectively oxidizing carbon monoxide in reforming gas
JP2010214225A (en) Ammonia decomposition catalyst, and method of decomposing ammonia using the same
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
KR20220063632A (en) NH3 decomposition reactor
JP5842540B2 (en) Method and apparatus for producing methane from CO2 and / or CO
JP2014181197A (en) Method for hydrogenation of compounds including double bonds, etc.
JP4083556B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
JP5800719B2 (en) Hydrogen production catalyst and hydrogen production method using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250