JP5425749B2 - Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle - Google Patents

Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle Download PDF

Info

Publication number
JP5425749B2
JP5425749B2 JP2010257011A JP2010257011A JP5425749B2 JP 5425749 B2 JP5425749 B2 JP 5425749B2 JP 2010257011 A JP2010257011 A JP 2010257011A JP 2010257011 A JP2010257011 A JP 2010257011A JP 5425749 B2 JP5425749 B2 JP 5425749B2
Authority
JP
Japan
Prior art keywords
carriage
suspension
bogie
vehicle
floating vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010257011A
Other languages
Japanese (ja)
Other versions
JP2012107987A (en
Inventor
健 渡邉
宏則 星野
江里光 鈴木
武則 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010257011A priority Critical patent/JP5425749B2/en
Publication of JP2012107987A publication Critical patent/JP2012107987A/en
Application granted granted Critical
Publication of JP5425749B2 publication Critical patent/JP5425749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、浮上式鉄道車両の運動再現に係り、特に、浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法に関するものである。   The present invention relates to motion reproduction of a floating railway vehicle, and more particularly to a method of reproducing a cart motion using suspension interaction force in a model experimental apparatus for a floating vehicle.

磁気浮上式鉄道の車両運動特性解明や車体振動抑制手法などの研究開発では、これまでは計算機シミュレーションの次段階として、現車試験を中心に検討を行ってきた。しかし、現車試験では様々な制約条件があるため、各種パラメータを自由に変更しての実験は困難であった。そこで、磁気浮上式鉄道専用の車両模型実験装置を作製し、計算機シミュレーションの精度検証などを行ってきた。   In research and development, such as elucidating vehicle motion characteristics and body vibration suppression techniques for magnetically levitated railways, we have focused on the current vehicle tests as the next stage of computer simulation. However, because there are various constraints in the current vehicle test, it was difficult to experiment with various parameters freely. Therefore, we have produced a vehicle model experiment device dedicated to magnetic levitation railways and verified the accuracy of computer simulations.

現在、模型実験における運動再現方法に関するものとして、以下に示されるようなものがある。   Currently, there are the following methods related to motion reproduction in model experiments.

(1)磁気浮上式鉄道の連接車両の間に配置される台車運動を再現する、非接触の磁気ばねの連成を模擬するパラレルメカニズムによる6自由度閉ループ機構を配置した磁気浮上式鉄道の連接車両用振動模擬装置(下記特許文献1参照)。   (1) Coupling of magnetic levitation railway with a six-degree-of-freedom closed-loop mechanism based on a parallel mechanism that simulates the coupling of non-contact magnetic springs, which reproduces the movement of a cart placed between the maglev railway railways. Vehicle vibration simulator (see Patent Document 1 below).

(2)現車と同様に車体と台車の連成系である模型実験装置であって、2次サスペンションの振動制御を行った場合に、車体の振動振幅が低減するとその反力を受けて台車の振動振幅も変化するという車体−台車間の相互作用である連成震動を再現した浮上式車両模型実験装置による車両運動の基礎特性試験装置。   (2) A model test device that is a coupled system of a vehicle body and a carriage, similar to the current vehicle, and when the vibration control of the secondary suspension is controlled, the carriage receives the reaction force when the vibration amplitude of the vehicle body decreases. A basic characteristic test system for vehicle motion using a levitation vehicle model experimental device that reproduces the coupled vibration, which is the interaction between the vehicle body and the bogie that changes the vibration amplitude of the vehicle.

図3は従来の磁気浮上式車両の車体・台車連成振動再現の仕組みを示す模式図である。   FIG. 3 is a schematic diagram showing a mechanism for reproducing vibrations coupled to a vehicle body and a trolley of a conventional magnetic levitation vehicle.

この図において、101はベース、102は仮想磁気ばね、103は台車(モーションベース)、104は小型ロードセル、105は2次サスぺンション、106は車体である。   In this figure, 101 is a base, 102 is a virtual magnetic spring, 103 is a carriage (motion base), 104 is a small load cell, 105 is a secondary suspension, and 106 is a vehicle body.

上記(2)に示す模型実験装置では、図3に示されるように、2次サスペンション105〜台車(モーションベース)103間に伸縮両用の小型ロードセル104を挿入して車体106−台車103間の相互作用力を測定し、これを台車制御装置にフィードバックすることで台車運動を再現している。台車制御装置内部では、台車103を上下1自由度にモデル化し、模擬ガイドウェイ高低変位とロードセルからの相互作用力を外乱入力とした運動方程式を実時間で解いて、台車変位を算出するようにしている(下記非特許文献1及び2参照)。   In the model experiment apparatus shown in the above (2), as shown in FIG. 3, a compact load cell 104 for both expansion and contraction is inserted between the secondary suspension 105 and the bogie (motion base) 103 so that the vehicle body 106 and the bogie 103 are connected to each other. The movement of the carriage is reproduced by measuring the applied force and feeding it back to the carriage controller. Inside the cart control device, the cart 103 is modeled with one degree of freedom in the vertical direction, and the displacement of the cart is calculated in real time by solving the equation of motion using the simulated guideway height displacement and the interaction force from the load cell as disturbance inputs. (See Non-Patent Documents 1 and 2 below).

特開2007−256019号公報JP 2007-256019 A

鈴木江里光,渡邉健,星野宏則,「浮上式車両模型実験装置による車両運動の基礎特性試験」,鉄道総研報告 Vol.22,No.11,Nov.2008,pp.5−10Eritsu Suzuki, Ken Watanabe, Hironori Hoshino, “Fundamental characteristics test of vehicle motion by floating vehicle model test device”, Railway Research Institute Vol. 22, no. 11, Nov. 2008, pp. 5-10 Erimitsu Suzuki et.al.,“A study of Maglev Vehicle Dynamics Using a Reduced−Scale Vehicle Model Experiment Apparatus”,Journal of Mechanical Systems for Transportation and Logistics,Vol.3,No.1,2010,pp.196−205Erimitsu Suzuki et. al. , “A study of Maglev Vehicle Dynamics Using a Reduced-Scale Vehicle Model Experiment Apparatus”, Journal of Mechanical Listols system. 3, No. 1, 2010, pp. 196-205

しかしながら、上記した従来例では、模型実験装置が一方向のみに運動を拘束されている場合や模型実験装置が多方向に動いても各方向の動きが独立している場合は、解析解を求めることができるので、ロードセルの出力と解析解により台車の変位量を決定することができるが、模型実験装置が多方向に動き各方向の動きが連成している場合には、台車の変位量を決定することができないといった問題があった。   However, in the above-described conventional example, an analytical solution is obtained when the model experiment apparatus is restricted in movement in only one direction or when the model experiment apparatus moves in multiple directions and the movement in each direction is independent. Therefore, the amount of displacement of the carriage can be determined by the output of the load cell and the analytical solution. However, if the model test device moves in multiple directions and the movement in each direction is coupled, the displacement amount of the carriage There was a problem that could not be determined.

本発明は、上記状況に鑑みて、模型実験装置が多方向に動き各方向の動きが連成している場合でも、台車の変位量を求めて台車運動の再現性を向上させることができる、浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法を提供することを目的とする。   In view of the above situation, the present invention can improve the reproducibility of the bogie movement by obtaining the displacement amount of the bogie even when the model experiment apparatus moves in multiple directions and the movement in each direction is coupled. An object of the present invention is to provide a method for reproducing a cart motion using a suspension interaction force in a model experimental apparatus for a floating vehicle.

本発明は、上記目的を達成するために、
〔1〕浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法において、浮上式車両の模型実験装置の台車としての振動装置の各方向に配置したロードセルにより前記台車に作用するサスペンション作用力を測定し、このサスペンション作用力に基づいた数値解により台車変位量を求め、この台車変位量を前記台車の制御量に反映させ、前記模型実験装置の運動方向が前記台車に対する前後、左右、上下、ロール、ピッチ、ヨーの6方向であり、これらの動きを連成させるとともに、前記サスペンション作用力をf、ばね定数をk、前記台車変位量をx(f,xはベクトル量,kはテンソル量)とし、ばね定数kの逆行列を求めることにより、前記6方向のそれぞれの台車変位量を求めることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a bogie motion reproduction method using suspension interaction force in a floating vehicle model test device, the cart acts on the cart by load cells arranged in each direction of a vibration device as a cart of the floating vehicle model test device. Suspension acting force is measured, and the bogie displacement amount is obtained by a numerical solution based on the suspension acting force, the bogie displacement amount is reflected in the control amount of the bogie, and the movement direction of the model test apparatus is before and after the bogie, Left and right, up and down, roll, pitch, and yaw. These motions are coupled, and the suspension acting force is f, the spring constant is k, and the carriage displacement is x (f and x are vector quantities, k is a tensor quantity), by obtaining the inverse matrix of the spring constant k, and wherein Rukoto seek each carriage displacement amount of the six directions.

〕上記〔〕記載の浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法において、状態に応じたばね定数kを複数個用意しておき、これらの複数個のばね定数kを切り替えて用いることを特徴とする。 [ 2 ] In the method for reproducing bogie motion using suspension interaction force in the model experimental apparatus for a floating vehicle according to [ 1 ] above , a plurality of spring constants k corresponding to the state are prepared, and the plurality of springs are prepared. characterized in that there use to switch the constant k.

本発明によれば、浮上式車両の模型実験装置が多方向に動き各方向の動きが連成している場合でも、台車の変位量を求めることができ、台車及び車両の運動再現性を向上させることができる。   According to the present invention, even when the floating vehicle model test apparatus moves in multiple directions and the movements in each direction are coupled, the displacement amount of the carriage can be obtained, and the motion reproducibility of the carriage and the vehicle is improved. Can be made.

本発明の実施例を示す浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法に係る模型実験装置の要部を示す模式図である。It is a schematic diagram which shows the principal part of the model experiment apparatus which concerns on the bogie movement reproduction method using the suspension interaction force in the model experiment apparatus of the floating type vehicle which shows the Example of this invention. 本発明の実施例を示す浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法のフローチャートである。It is a flowchart of the trolley | bogie movement reproduction method using the suspension interaction force in the model experiment apparatus of the floating type vehicle which shows the Example of this invention. 従来の磁気浮上式車両の車体・台車連成振動再現の仕組みを示す模式図である。It is a schematic diagram which shows the structure of the vehicle body and trolley coupled vibration reproduction of the conventional magnetic levitation type vehicle.

本発明の浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法は、浮上式車両の模型実験装置の台車としての振動装置の各方向に配置したロードセルにより前記台車に作用するサスペンション作用力を測定し、このサスペンション作用力に基づいた数値解により台車変位量を求め、この台車変位量を前記台車の制御量に反映させ、前記模型実験装置の運動方向が前記台車に対する前後、左右、上下、ロール、ピッチ、ヨーの6方向であり、これらの動きを連成させるとともに、前記サスペンション作用力をf、ばね定数をk、前記台車変位量をx(f,xはベクトル量,kはテンソル量)とし、ばね定数kの逆行列を求めることにより、前記6方向のそれぞれの台車変位量を求めることを特徴とする。 The bogie motion reproduction method using the suspension interaction force in the floating vehicle model test apparatus of the present invention acts on the cart by load cells arranged in each direction of the vibration device as the cart of the floating vehicle model test apparatus. Suspension acting force is measured, and the bogie displacement amount is obtained by a numerical solution based on the suspension acting force, the bogie displacement amount is reflected in the control amount of the bogie, and the movement direction of the model test apparatus is before and after the bogie, Left and right, up and down, roll, pitch, and yaw. These motions are coupled, and the suspension acting force is f, the spring constant is k, and the carriage displacement is x (f and x are vector quantities, k is a tensor amount), and the cart displacement amount in each of the six directions is obtained by obtaining an inverse matrix of the spring constant k.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法に係る模型実験装置の要部を示す模式図、図2はそのサスペンション相互作用力を用いた台車運動再現方法のフローチャートである。   FIG. 1 is a schematic diagram showing a main part of a model experimental apparatus according to a cart motion reproduction method using a suspension interaction force in a floating vehicle model experimental apparatus showing an embodiment of the present invention, and FIG. 2 shows the suspension interaction force thereof. It is a flowchart of the cart motion reproduction method using.

図1において、1はベース、2は一次ばね系、3は台車、4は台車3に対する鉛直方向からのサスペンション作用力、5はこの鉛直方向からの作用力4を受ける第1のロードセル、6は台車3に対する左右の水平方向からのサスペンション作用力、7はこの左右の水平方向からの作用力6を受ける第2のロードセル、8は台車3に対する前後の水平方向からのサスペンション作用力、9はこの前後の水平方向からの作用力8を受ける第3のロードセルである。   In FIG. 1, 1 is a base, 2 is a primary spring system, 3 is a carriage, 4 is a suspension acting force from the vertical direction on the carriage 3, 5 is a first load cell that receives the acting force 4 from the vertical direction, and 6 is Suspension acting force from the left and right horizontal directions on the carriage 3, 7 is a second load cell that receives the acting force 6 from the left and right horizontal directions, 8 is a suspension acting force from the front and rear horizontal directions on the carriage 3, and 9 is this It is the 3rd load cell which receives the acting force 8 from the front and back horizontal directions.

本発明では、台車3としての振動装置に、第1〜第3のロードセル5,7,9によりサスペンション作用力4,6,8を測定し、それを台車3の動きに反映させることで車両全体の運動再現性を向上させるものである。   In the present invention, the suspension acting force 4, 6, 8 is measured by the first to third load cells 5, 7, 9 on the vibration device as the carriage 3, and is reflected in the movement of the carriage 3, so that the entire vehicle is This improves the reproducibility of motion.

浮上式車両の場合、図1に示した一次ばね系2は各方向(前後、左右、上下、ロール、ピッチ、ヨーの6方向)が連成しているのが特徴である。そこで本発明では、模型実験装置が多方向に動き各方向の動きが連成している場合の台車3の変位量を求め、台車3の運動を再現する。   In the case of a floating vehicle, the primary spring system 2 shown in FIG. 1 is characterized in that each direction (six directions of front and rear, left and right, up and down, roll, pitch, and yaw) is coupled. Therefore, in the present invention, the amount of displacement of the carriage 3 when the model experiment apparatus moves in multiple directions and the movement in each direction is coupled is obtained, and the movement of the carriage 3 is reproduced.

従来のように、浮上式車両の模型実験装置が一方向のみの動きに拘束されている場合、または模型実験装置が多方向に動き各方向の動きが独立している場合は、解析解により台車3の変位を求めることができるが、各方向(前後、左右、上下、ロール、ピッチ、ヨーの6方向)が連成している場合には、解析解を求めることができないので、数値解を求める必要がある。   If the model experiment device for a floating vehicle is restricted to movement in only one direction as in the past, or if the model experiment device moves in multiple directions and the movement in each direction is independent, 3 displacements, but if each direction (6 directions: front, back, left, right, up, down, roll, pitch, yaw) is coupled, the analytical solution cannot be obtained. Need to ask.

浮上式車両の場合、一次ばね系2で減衰要素がほとんどないという特徴がある。その場合はサスペンション作用力をf、ばね定数をk、台車3の変位をxとすると、f=k・xで表される。なお、サスペンション作用力fと台車3の変位xはベクトル量であり、ばね定数kはテンソル量である。この場合は、x=f/kであり、よって、ばね定数kの逆行列を求めれば各方向の台車3の変位を決めることができる。なお、ばね定数kは状態により変化するので、実装上は状態に応じたばね定数kを複数個用意しておいて切り替えるようにする。 In the case of a levitation vehicle, the primary spring system 2 has a feature that there is almost no damping element. In this case, when the suspension acting force is f, the spring constant is k, and the displacement amount of the carriage 3 is x, f = k · x. The suspension acting force f and the displacement amount x of the carriage 3 are vector amounts, and the spring constant k is a tensor amount. In this case, x = f / k. Therefore, if the inverse matrix of the spring constant k is obtained, the displacement of the carriage 3 in each direction can be determined. Since the spring constant k changes depending on the state, a plurality of spring constants k corresponding to the state are prepared and switched for mounting.

サスペンション相互作用力を用いた台車運動再現方法を、図2を参照しながら説明する。   A cart motion reproduction method using the suspension interaction force will be described with reference to FIG.

(1)まず、各方向のロードセルにより、台車に作用するサスペンション作用力を取得する(ステップS1)。   (1) First, the suspension acting force acting on the carriage is acquired by the load cell in each direction (step S1).

(2)次に、数値解により台車変位量を求める(ステップS2)。   (2) Next, a bogie displacement amount is obtained by numerical solution (step S2).

(3)その台車変位量を台車の制御量に反映させる(ステップS3)。   (3) The displacement amount of the carriage is reflected in the control quantity of the carriage (step S3).

このように、本発明では、浮上式車両の台車の各方向にロードセルを配置して台車に作用するサスペンション作用力を測定し、測定したサスペンション作用力に基づいた数値解により台車の変位量を求め、この台車変位量を台車の制御量に反映させるようにした。   As described above, in the present invention, the suspension acting force acting on the carriage is measured by arranging the load cell in each direction of the carriage of the floating vehicle, and the displacement amount of the carriage is obtained by the numerical solution based on the measured suspension acting force. The amount of bogie displacement is reflected in the bogie control amount.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法は、模型実験装置が多方向に動き各方向の動きが連成している場合でも台車の変位量を求めることにより、台車及び車両の運動再現性を向上させることができる浮上式車両の模型実験方法として利用することができる。 The method of reproducing the bogie motion using the suspension interaction force in the model experimental apparatus for a floating vehicle according to the present invention obtains the displacement amount of the bogie even when the model experimental apparatus moves in multiple directions and the movement in each direction is coupled. Thus, it can be used as a model experiment method for a floating vehicle that can improve the motion reproducibility of the carriage and the vehicle.

1 ベース
2 一次ばね系
3 台車
4 台車に対する鉛直方向からのサスペンション作用力
5 第1のロードセル
6 台車に対する左右の水平方向からのサスペンション作用力
7 第2のロードセル
8 台車に対する前後の水平方向からのサスペンション作用力
9 第3のロードセル
DESCRIPTION OF SYMBOLS 1 Base 2 Primary spring system 3 Bogie 4 Suspension acting force from the vertical direction to the bogie 5 First load cell 6 Suspension acting force from the left and right horizontal direction to the bogie 7 Second load cell 8 Suspension from the horizontal direction before and after the bogie Acting force 9 Third load cell

Claims (2)

(a)浮上式車両の模型実験装置の台車としての振動装置の各方向に配置したロードセルにより前記台車に作用するサスペンション作用力を測定し、
(b)該サスペンション作用力に基づいた数値解により台車変位量を求め、
(c)該台車変位量を前記台車の制御量に反映させ、前記模型実験装置の運動方向が前記台車に対する前後、左右、上下、ロール、ピッチ、ヨーの6方向であり、これらの動きを連成させるとともに、前記サスペンション作用力をf、ばね定数をk、前記台車変位量をx(f,xはベクトル量,kはテンソル量)とし、ばね定数kの逆行列を求めることにより、前記6方向のそれぞれの台車変位量を求めることを特徴とする浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法。
(A) The suspension acting force acting on the cart is measured by the load cell arranged in each direction of the vibration device as the cart of the model test apparatus of the floating vehicle,
(B) Obtain the bogie displacement by a numerical solution based on the suspension acting force,
(C) The amount of displacement of the carriage is reflected in the control amount of the carriage, and the movement direction of the model experimental apparatus is the six directions of front, rear, left, right, up, down, roll, pitch, and yaw with respect to the carriage. The suspension acting force is f, the spring constant is k, the carriage displacement amount is x (f, x is a vector amount, k is a tensor amount), and an inverse matrix of the spring constant k is obtained. carriage movement reproducing method using a suspension interaction force in a model experimental apparatus of a floating vehicle, characterized in Rukoto seek each carriage displacement direction.
請求項記載の浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法において、状態に応じたばね定数kを複数個用意しておき、これらの複数個のばね定数kを切り替えて用いることを特徴とする浮上式車両の模型実験装置におけるサスペンション相互作用力を用いた台車運動再現方法。 2. A method of reproducing bogie motion using suspension interaction force in a model experimental apparatus for a floating vehicle according to claim 1 , wherein a plurality of spring constants k are prepared in accordance with the state, and the plurality of spring constants k are switched. A method for reproducing bogie motion using a suspension interaction force in a model test apparatus for a floating vehicle characterized by being used .
JP2010257011A 2010-11-17 2010-11-17 Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle Expired - Fee Related JP5425749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010257011A JP5425749B2 (en) 2010-11-17 2010-11-17 Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257011A JP5425749B2 (en) 2010-11-17 2010-11-17 Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle

Publications (2)

Publication Number Publication Date
JP2012107987A JP2012107987A (en) 2012-06-07
JP5425749B2 true JP5425749B2 (en) 2014-02-26

Family

ID=46493773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257011A Expired - Fee Related JP5425749B2 (en) 2010-11-17 2010-11-17 Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle

Country Status (1)

Country Link
JP (1) JP5425749B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650050B2 (en) * 2011-05-09 2015-01-07 公益財団法人鉄道総合技術研究所 Vibration simulation test equipment for magnetically levitated railway vehicles using air springs
CN114096454A (en) * 2019-06-28 2022-02-25 日本制铁株式会社 Estimation device, estimation method, and program
KR102252316B1 (en) * 2019-10-10 2021-05-14 한국철도기술연구원 Driving stability experimental apparatus for capsule train
CN111338234B (en) * 2020-03-12 2023-09-22 中车青岛四方机车车辆股份有限公司 Magnetic suspension control algorithm verification system, method and device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64440A (en) * 1987-06-23 1989-01-05 Hitachi Ltd Apparatus for testing linear motor
JP3084904B2 (en) * 1992-04-06 2000-09-04 株式会社日立製作所 Railway vehicle test apparatus and method
JPH09325094A (en) * 1996-06-05 1997-12-16 Hitachi Ltd Simple evaluation mechanism
JP4231235B2 (en) * 2002-03-29 2009-02-25 財団法人鉄道総合技術研究所 Railway vehicle
JP3959361B2 (en) * 2003-03-18 2007-08-15 財団法人鉄道総合技術研究所 Magnetically supported electromagnetic vibration device and vibration method
JP3836441B2 (en) * 2003-03-27 2006-10-25 財団法人鉄道総合技術研究所 Superconducting magnetic levitation railway superconducting magnet vibration test equipment
JP4286166B2 (en) * 2004-03-11 2009-06-24 財団法人鉄道総合技術研究所 Railway vehicle
JP4180000B2 (en) * 2004-03-23 2008-11-12 財団法人鉄道総合技術研究所 Vehicle test equipment
JP4647527B2 (en) * 2006-03-22 2011-03-09 財団法人鉄道総合技術研究所 Vibration model device for articulated vehicle of magnetic levitation railway
JP5061339B2 (en) * 2008-02-12 2012-10-31 公益財団法人鉄道総合技術研究所 Articulated vehicle testing equipment
JP2009250649A (en) * 2008-04-02 2009-10-29 Central Japan Railway Co Model experiment device for railway vehicle

Also Published As

Publication number Publication date
JP2012107987A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5650050B2 (en) Vibration simulation test equipment for magnetically levitated railway vehicles using air springs
Sharma et al. Ride performance of a high speed rail vehicle using controlled semi active suspension system
Zhang et al. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method
Kim et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds
Zhang et al. Study on dynamics of coupled systems in high-speed trains
Zhou et al. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system
Xu et al. Stress and acceleration analysis of coupled vehicle and long-span bridge systems using the mode superposition method
Zhang et al. A train-bridge dynamic interaction analysis method and its experimental validation
Kong et al. Dynamic response and robust control of coupled maglev vehicle and guideway system
Wang et al. Modelling and validation of coupled high-speed maglev train-and-viaduct systems considering support flexibility
JP5425749B2 (en) Reproduction method of bogie motion using suspension interaction force in model test equipment of floating vehicle
Shi et al. Dynamic response analysis of single-span guideway caused by high speed maglev train
JP6249912B2 (en) Analysis device
Ju et al. Safety of maglev trains moving on bridges subject to foundation settlements and earthquakes
JP4647527B2 (en) Vibration model device for articulated vehicle of magnetic levitation railway
Jin et al. Probabilistic evaluation approach for nonlinear vehicle–bridge dynamic performances
Gu Resonance in long-span railway bridges carrying TGV trains
Galluzzi et al. A multi-domain approach to the stabilization of electrodynamic levitation systems
Wang et al. Modelling dynamic interaction of maglev train–controller–rail–bridge system by vector mechanics
JP2014173975A (en) Motion reproduction device of train formation using model experiment device of magnetic levitation railway vehicle, and motion reproduction method for train formation
Guo et al. Off-Line Hybrid Simulation Method on Train–Track–Bridge Coupling Vibration in High-Speed Railway
Ju et al. A finite element method for analysis of vibration induced by maglev trains
Ju A frictional contact finite element for wheel/rail dynamic simulations
Zeng et al. Research on the mechanism and control characteristics of vehicle-track beam coupling vibration for medium-speed maglev vehicle
He et al. Dynamic response analysis of an asymmetric coupled vehicle-track system generated by voided elastic two-block sleeper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees