JP5424251B2 - Thin wafer processing method - Google Patents

Thin wafer processing method Download PDF

Info

Publication number
JP5424251B2
JP5424251B2 JP2009264538A JP2009264538A JP5424251B2 JP 5424251 B2 JP5424251 B2 JP 5424251B2 JP 2009264538 A JP2009264538 A JP 2009264538A JP 2009264538 A JP2009264538 A JP 2009264538A JP 5424251 B2 JP5424251 B2 JP 5424251B2
Authority
JP
Japan
Prior art keywords
wire
workpiece
cutting
guide member
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009264538A
Other languages
Japanese (ja)
Other versions
JP2011104746A (en
Inventor
史朗 村井
啓 谷崎
知之 河津
浩平 棚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu NTC Ltd
Original Assignee
Komatsu NTC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu NTC Ltd filed Critical Komatsu NTC Ltd
Priority to JP2009264538A priority Critical patent/JP5424251B2/en
Publication of JP2011104746A publication Critical patent/JP2011104746A/en
Application granted granted Critical
Publication of JP5424251B2 publication Critical patent/JP5424251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、マルチワイヤソーにおいて、ワークを多数の薄いウェーハとして切断加工する方法に関する。 The present invention relates to a method of cutting a workpiece as a large number of thin wafers in a multi-wire saw.

マルチワイヤソーは、シリコンインゴットやシリコンブロックなどのワークを走行状態の平行な多数のワイヤに接触させ、ワークを多数の薄いウェーハとして切断するときに用いられる。切断の工程において、多数のワイヤに冷却液(クーラント)またはスラリなどの加工液が供給される。 The multi-wire saw is used when a workpiece such as a silicon ingot or a silicon block is brought into contact with a large number of parallel wires in a running state, and the workpiece is cut into a large number of thin wafers. In the cutting process, a machining fluid such as a coolant or a slurry is supplied to a large number of wires.

ワイヤは、複数のメインローラ間に多重に巻き掛けられ、ワークに向き合う切断域で平行となっている。切断域でのワイヤの間隔は、多溝付きのメインローラの溝ピッチによって規制されているため、切断後のウェーハの厚さは、メインローラの溝ピッチとワイヤ径とによって決定される。 The wire is wound in multiple between a plurality of main rollers, and is parallel in a cutting area facing the workpiece. Since the wire interval in the cutting area is regulated by the groove pitch of the main roller with multiple grooves, the thickness of the wafer after cutting is determined by the groove pitch of the main roller and the wire diameter.

太陽電池などのウェーハ切断工程では、薄厚化が進んでおり、薄厚化が進むにつれて、ワイヤどうしの間隔が狭くなっている。切断加工の際に、冷却液や加工液が切断域のワイヤに部分的に付着すると、ワイヤは、冷却液や加工液の表面張力によって部分的に寄り合うため、その寄り合う部分のワイヤの間隔は、規定の間隔よりも部分的に狭まったり、拡がったりする。このようなワイヤ寄りの現象は、ワイヤの切断域、特に、メインローラ間の中間位置で現れやすい。 In wafer cutting processes such as solar cells, thinning is progressing, and as the thinning progresses, the distance between wires is narrowed. During cutting, if the coolant or machining fluid partially adheres to the wire in the cutting area, the wire partially approaches due to the surface tension of the coolant or processing fluid. Is partially narrower or wider than the specified interval. Such a phenomenon close to the wire tends to appear in the wire cutting area, particularly in an intermediate position between the main rollers.

上記のワイヤ寄りは、冷却液などの加工液の粘性にもよるが、一般にワイヤピッチ0.5mm以下で現れはじめ、特に0.3mm以下で起きやすい。このようなワイヤ寄りが起きたままワークに切り込みが開始されると、切断初期に、ワークに不揃いの切り込み溝が形成され、ワイヤは、不揃いの切り込み溝に倣って、切断を続行することになる。したがって、ウェーハの厚みにばらつきが発生し、切断加工後の製品に不揃いが起きる。 The above-mentioned wire deviation generally depends on the viscosity of the machining liquid such as a cooling liquid, but generally starts to appear at a wire pitch of 0.5 mm or less, and particularly easily occurs at 0.3 mm or less. When cutting is started in the workpiece while such a wire shift occurs, irregular cut grooves are formed in the workpiece in the initial stage of cutting, and the wire continues cutting following the irregular cut grooves. . Therefore, the thickness of the wafer varies, and the products after the cutting process become uneven.

一方、特許文献1は、ワイヤソーにおいて、走行状態の多数のワイヤに被削材(ワーク)を接触させて、ワークを多数の薄いウェーハとして切断する過程で、切り始めにワイヤの横振れを防止するために、被削材(ワーク)にガイド板を仮固定しておき、切り始めにガイド板を切り込んで多数のワイヤのピッチを安定させ、安定後に被削材(ワーク)を切り込んで行く、ことを開示している。その技術は、冷却液などの加工液と直接関係ないため加工液の表面張力に起因するワイヤ寄りの解決手段となり得ない。 On the other hand, in Patent Document 1, in a wire saw, a work material (workpiece) is brought into contact with a large number of wires in a running state, and the workpiece is cut into a large number of thin wafers to prevent the wires from shaking at the beginning of cutting. Therefore, temporarily fix the guide plate to the work material (work), cut the guide plate at the beginning of cutting to stabilize the pitch of many wires, and cut the work material (work) after stabilization. Is disclosed. Since this technique is not directly related to a machining liquid such as a cooling liquid, it cannot be a means for solving the problem due to the surface tension of the machining liquid.

特開2007−301688公報JP 2007-301688 A

したがって、本発明の課題は、マルチワイヤソー、特に、固定砥粒付きのワイヤを用いたマルチワイヤソーにおいて、多数のワイヤに部分的に付着した冷却液の表面張力に起因するワイヤ寄りを未然に防止することである。 Accordingly, an object of the present invention is to prevent a wire shift caused by the surface tension of a coolant partially attached to a large number of wires in a multi-wire saw, particularly a multi-wire saw using a wire with fixed abrasive grains. That is.

上記の課題の下に、本発明の薄ウェーハ加工方法は、所定のピッチで平行な多数の固定砥粒付きのワイヤに冷却液を供給しながら、走行する多数のワイヤにワークを接触させ、ワークを多数の薄いウェーハとして切断するマルチワイヤソーにおいて、切断の開始時に、冷却液を供給しないまま、ワイヤを低速度で走行させて、ワイヤをワークに食い込ませ、ワークの切断開始位置に切り込みを形成した後に、冷却液の供給を開始すると共にワイヤ速度を上昇させ、定常時の速度としてワークの切断を継続している(請求項1)。 Under the above-described problems, the thin wafer processing method of the present invention is configured to bring a workpiece into contact with a number of traveling wires while supplying a coolant to a number of wires with fixed abrasive grains parallel at a predetermined pitch. In a multi-wire saw that cuts a large number of thin wafers, at the start of cutting, the wire was driven at a low speed without supplying the coolant, and the wire was bitten into the workpiece, and a cut was formed at the workpiece cutting start position. Later, the supply of the cooling liquid is started and the wire speed is increased, and the workpiece is continuously cut at a steady speed (Claim 1).

また、本発明の薄ウェーハ加工方法は、角状のワークを切断域のワイヤに対して1〜3度傾けた状態で、ワークの切断開始位置にワイヤを点接触させている(請求項2)。 Further, in the thin wafer processing method of the present invention, the wire is point-contacted to the cutting start position of the workpiece in a state where the square workpiece is inclined by 1 to 3 degrees with respect to the wire in the cutting area. .

本発明の薄ウェーハ加工方法は、ワークの切り込み開始端に案内部材をワークの一部として一体的に固着しておき、切断の開始時に、ワイヤと案内部材とを点接触させ、冷却液を供給しないまま、ワイヤを低速度で走行させて、ワイヤを案内部材に食い込ませ、案内部材の切断開始位置に切り込みを形成した後に、冷却液を供給を開始すると共にワイヤ速度を上昇させ、定常時の速度として案内部材に続いてワークの切断を継続している(請求項3)。 In the thin wafer processing method of the present invention, a guide member is integrally fixed as a part of the workpiece to the cutting start end of the workpiece, the wire and the guide member are brought into point contact at the start of cutting, and a cooling liquid is supplied. Without running, run the wire at a low speed, bite the wire into the guide member, and after forming a cut at the cutting start position of the guide member, start supplying the coolant and increase the wire speed. The workpiece is continuously cut as the speed following the guide member (claim 3).

さらに、本発明の薄ウェーハ加工方法において、案内部材の硬度は、ワークの硬度と等しくてもよいが、好ましくはワークの硬度よりも小さい材質とする(請求項4)。 Furthermore, in the thin wafer processing method of the present invention, the hardness of the guide member may be equal to the hardness of the workpiece, but is preferably made of a material smaller than the hardness of the workpiece.

また、本発明の薄ウェーハ加工方法は、多数のワイヤの切断作用域をミストで満たした加工室内に置き、少なくとも切断の開始時に、加工室内のミストによってワイヤの冷却や潤滑を行っている(請求項5)。 In the thin wafer processing method of the present invention, the cutting action area of a large number of wires is placed in a processing chamber filled with mist, and at least at the start of cutting, the wire is cooled or lubricated by the mist in the processing chamber. Item 5).

本発明の薄ウェーハ加工方法によると、切断の開始時に、冷却液が供給されないから、ワイヤ寄りの現象が起きず、また初期にワイヤが低速度で走行するから、ワークやワイヤへの発熱の影響を小さくできるとともに、ワイヤがワークに振れ方向の力を受けないため、ワークは互いに規定のピッチのままワークに食い込み、安定した等ピッチの切り込みを形成する。よって、加工初期にワイヤピッチにずれが発生せず、薄ウェーハの厚みの加工精度が向上する(請求項1)。 According to the thin wafer processing method of the present invention, the cooling liquid is not supplied at the start of cutting, so that the phenomenon near the wire does not occur, and the wire travels at a low speed in the initial stage. In addition, since the wire does not receive a force in the deflection direction on the workpiece, the workpieces bite into the workpiece while maintaining a predetermined pitch, thereby forming a stable equal pitch cut. Therefore, the wire pitch does not shift at the beginning of processing, and the processing accuracy of the thickness of the thin wafer is improved.

角状のワークが1〜3度傾けた状態で、ワイヤがワークの切断開始位置に点接触していると、切断の開始時に、ワイヤがワークに対して速やかに食い込み、切断の開始時に、冷却液が供給されないことによるワークやワイヤへの発熱の影響をより小さくできる(請求項2)。 If the wire is in point contact with the cutting start position of the workpiece while the square workpiece is tilted by 1 to 3 degrees, the wire quickly bites into the workpiece at the start of cutting, and cools at the start of cutting. The influence of heat generation on the workpiece and the wire due to the absence of the liquid supply can be further reduced.

ワークの切り込み端に案内部材がワークの一部として一体的に固着されており、ワイヤが案内部材に対して点接触していると、切断の開始時に、ワイヤが案内部材に対して速やかに食い込み、切断の開始時に、冷却液が供給されないことによるワークやワイヤへの発熱の影響をほぼ無くすることができる(請求項3)。 If the guide member is integrally fixed to the cut end of the workpiece as a part of the workpiece, and the wire is in point contact with the guide member, the wire quickly bites into the guide member at the start of cutting. The influence of heat generation on the workpiece and the wire due to the fact that the coolant is not supplied at the start of cutting can be almost eliminated (claim 3).

案内部材の硬度がワークの硬度よりも小さい材質であれば、より一層ワイヤが案内部材に対して速やかに食い込み、切断能率がよくなり、ワイヤの磨耗も少なくできる(請求項4)。 If the material of the guide member is smaller than the hardness of the workpiece, the wire bites into the guide member more quickly, the cutting efficiency is improved, and the wear of the wire can be reduced.

多数のワイヤの切断作用域がミストで満たした加工室内に置かれておれば、少なくとも切断の開始時に、ワイヤが加工室内のミストに触れて冷却され、また切断面もミストによって潤滑されるため、滑らかな切削性が確保できる(請求項5)。 If the cutting action area of many wires is placed in a processing chamber filled with mist, the wire touches the mist in the processing chamber and cools at least at the start of cutting, and the cutting surface is also lubricated by the mist. Smooth machinability can be ensured (Claim 5).

本発明の薄ウェーハ加工方法の第1の実施形態において、ワークの加工時のマルチワイヤソーの要部の側面図である。In 1st Embodiment of the thin wafer processing method of this invention, it is a side view of the principal part of the multi-wire saw at the time of the process of a workpiece | work. 本発明の薄ウェーハ加工方法の第2の実施形態において、ワークの加工時のマルチワイヤソーの要部の側面図である。In 2nd Embodiment of the thin wafer processing method of this invention, it is a side view of the principal part of the multi-wire saw at the time of the process of a workpiece | work. 本発明の薄ウェーハ加工方法の第3の実施形態において、ワークの切り込み開始前のマルチワイヤソーの要部の側面図である。In the 3rd Embodiment of the thin wafer processing method of this invention, it is a side view of the principal part of the multi-wire saw before the start of the cutting of a workpiece | work. 本発明の薄ウェーハ加工方法の第3の実施形態において、ワークの切り込み続行時のマルチワイヤソーの要部の側面図である。In the 3rd Embodiment of the thin wafer processing method of this invention, it is a side view of the principal part of the multi-wire saw at the time of continuing cutting of a workpiece | work. 本発明の薄ウェーハ加工方法の第4の実施形態において、ワークの切り込み開始時のマルチワイヤソーの要部の側面図である。In 4th Embodiment of the thin wafer processing method of this invention, it is a side view of the principal part of the multi-wire saw at the time of the cutting start of a workpiece | work. メインローラの溝とワイヤとの関係の一部の断面図である。FIG. 5 is a partial cross-sectional view of the relationship between the main roller groove and the wire. ワークの加工軌跡の正面図であり、Aは本発明による加工軌跡、Bは従来の技術による加工軌跡である。It is a front view of a processing locus of a work, A is a processing locus by the present invention, and B is a processing locus by a conventional technique. ワークの一部として用いられる案内部材の側面図である。It is a side view of the guide member used as a part of workpiece | work.

図1は、本発明の薄ウェーハ加工方法の第1の実施形態を示している。図1において、マルチワイヤソー1は、一例として3本の平行な溝付きのメインローラ2の外周に、多重に巻き掛けられた固定砥粒付きのワイヤ3を走行させ、ワイヤ3の切断域に円柱、角柱またはその他の形状のシリコンインゴットやシリコンブロックなどのワーク4を押し当てることによって、各ワイヤ3の位置でワーク4を切り込んで行く。なお、ワーク4は、ベースプレート6に保持され、加工時に加工送り方向に移動する。 FIG. 1 shows a first embodiment of the thin wafer processing method of the present invention. In FIG. 1, a multi-wire saw 1, for example, travels a wire 3 with multiple fixed abrasive grains wound around the outer periphery of three parallel grooved main rollers 2, and a cylinder in a cutting area of the wire 3. Then, the workpiece 4 is cut at the position of each wire 3 by pressing the workpiece 4 such as a silicon prism or other shape silicon ingot or silicon block. The workpiece 4 is held by the base plate 6 and moves in the machining feed direction during machining.

図6に示すように、メインローラ2は、外周面にV字形で環状の多数の溝2aを形成しており、多数の溝2aのピッチPは、ワイヤ3の所定の間隔、すなわちワーク4の切断加工後のウェーハ5の厚みtに対応するように設定される。 As shown in FIG. 6, the main roller 2 has a large number of V-shaped annular grooves 2 a on the outer peripheral surface, and the pitch P of the numerous grooves 2 a is a predetermined interval between the wires 3, that is, the workpiece 4. It is set so as to correspond to the thickness t of the wafer 5 after the cutting process.

ワイヤ3は、ワーク4に向き合う切断域、すなわち上側域で2本のメインローラ2の対応する溝2aに納まって平行な状態となって、メインローラ2の軸の中心線に対して直交しているが、ワーク4に向き合わない非切断域、すなわち左下側域または右下側域で一方のメインローラ2の溝2aから他方のメインローラ2の溝2aへと1ピッチ分だけ変位した状態として巻き掛けられている。 The wire 3 is placed in parallel in the corresponding groove 2a of the two main rollers 2 in the cutting area facing the workpiece 4, that is, the upper area, and is orthogonal to the center line of the axis of the main roller 2. In a non-cutting region that does not face the workpiece 4, that is, in a lower left region or a lower right region, the winding is performed in a state of being displaced by one pitch from the groove 2a of one main roller 2 to the groove 2a of the other main roller 2. It is hung.

第1の実施形態の薄ウェーハ加工方法は、切断の開始時に、ワイヤ3に対してワーク4の切断開始位置の面を線接触させ、ノズル8から冷却液7を供給しないまま、ワイヤ3を低速度で走行させ、ワイヤ3をワーク4に食い込ませて、ワーク4の切断開始位置に切り込みを形成した後に、定常加工に移行し、ワイヤ3の上方に設けられている1または2以上のノズル8からクーラントなどの冷却液7の供給を開始すると共に、ワイヤ速度を上昇させ、定常時の速度としてワーク4の切断を継続する。定常加工時に、マルチワイヤソー1は、冷却液7を供給しながら、ワイヤ3の切断域にワーク4を接触させることによって、ワーク4を薄く一定の厚みtで切断し、図7のAのように、多数の薄いウェーハ5として加工する。 In the thin wafer processing method of the first embodiment, at the start of cutting, the surface of the cutting start position of the workpiece 4 is brought into line contact with the wire 3 and the wire 3 is lowered without supplying the coolant 7 from the nozzle 8. After traveling at a speed and causing the wire 3 to bite into the workpiece 4 and forming a cut at the cutting start position of the workpiece 4, the process shifts to steady machining, and one or more nozzles 8 provided above the wire 3. Then, the supply of the coolant 7 such as the coolant is started, the wire speed is increased, and the cutting of the workpiece 4 is continued at a steady speed. At the time of steady processing, the multi-wire saw 1 cuts the workpiece 4 thinly at a constant thickness t by bringing the workpiece 4 into contact with the cutting area of the wire 3 while supplying the coolant 7, as shown in FIG. Then, it is processed as a large number of thin wafers 5.

切断の開始時に、冷却液7が供給されていないため、ワイヤ3の間で冷却液7の表面張力によるワイヤ寄りの現象は起きず、各ワイヤ3は、ワーク4に等間隔のもとに食い込み、安定な加工軌跡を形成する。このため、切断後のウェーハ5の厚みtは、図7のAのように、ワーク4の切断開始時点から、所定の寸法となる。このようにして、各ウェーハ5の厚みtの加工精度が向上する。これによって、一層薄い加工が可能となる。 Since the cooling liquid 7 is not supplied at the start of cutting, there is no phenomenon near the wires due to the surface tension of the cooling liquid 7 between the wires 3, and each wire 3 bites into the work 4 at equal intervals. , To form a stable machining trajectory. For this reason, the thickness t of the wafer 5 after cutting becomes a predetermined dimension from the start of cutting of the workpiece 4 as shown in FIG. In this way, the processing accuracy of the thickness t of each wafer 5 is improved. This enables thinner processing.

これに対して、切断の開始時に、冷却液7が供給され、隣り合うワイヤ3間でその表面張力によって部分的にワイヤ寄りが起きると、多数のワイヤ3は、ワイヤ寄りを起こしたままワーク4の切断を開始し、その後もワイヤ寄り状態のワイヤ間隔を維持する傾向にあるため、切断後のウェーハ5の厚みtは、図7のBのように、一定の寸法とならなず、不揃いとなる。 On the other hand, when the coolant 7 is supplied at the start of cutting and the adjacent wires 3 are partially displaced by the surface tension between the adjacent wires 3, a large number of the wires 3 are caused to move toward the workpiece 4 while being displaced. In this case, the thickness t of the wafer 5 after cutting does not have a constant dimension as shown in FIG. Become.

上記のように、切断の開始時に、冷却液7が供給されないから、ワイヤ寄りの現象は起きず、また初期にワイヤ3が低速度で走行するから、ワイヤ3やワーク4への発熱は小さく抑えられる。ワイヤ3は、振れ方向の力を受けないまま互いに規定のピッチPを維持しながらワーク4に食い込み、安定した等ピッチPの切り込みを形成する。よって、加工初期にワイヤ3のピッチPにずれが発生せず、ウェーハ5の厚みtの加工精度が向上する。 As described above, since the cooling liquid 7 is not supplied at the start of cutting, the phenomenon near the wire does not occur, and since the wire 3 travels at a low speed in the initial stage, the heat generation to the wire 3 and the workpiece 4 is kept small. It is done. The wire 3 bites into the workpiece 4 while maintaining a predetermined pitch P without receiving a force in the deflection direction, and forms a stable notch with a constant pitch P. Therefore, there is no deviation in the pitch P of the wire 3 in the initial stage of processing, and the processing accuracy of the thickness t of the wafer 5 is improved.

図2は、本発明の薄ウェーハ加工方法の第2の実施形態を示している。図2において、角状のワーク4は、角状例えば四角柱であり、ワイヤ3の切断域に対して1〜3度傾けた状態で、ベースプレート6に保持されている。このため、ワイヤ3にもっとも近いワーク4の位置(図2の右下角部)が切断開始位置となる。 FIG. 2 shows a second embodiment of the thin wafer processing method of the present invention. In FIG. 2, the rectangular workpiece 4 is a rectangular column, for example, a quadrangular prism, and is held by the base plate 6 in a state where the rectangular workpiece 4 is inclined by 1 to 3 degrees with respect to the cutting region of the wire 3. For this reason, the position of the workpiece 4 closest to the wire 3 (lower right corner in FIG. 2) is the cutting start position.

この第2の実施形態でも、本発明の薄ウェーハ加工方法は、切断の開始時に、ワイヤ3に対してワーク4の切断開始位置(図2の右下角部)を点接触させ、第1の実施形態と同様に、ノズル8から冷却液7を供給しないまま、ワイヤ3を低速度で走行させ、ワイヤ3をワーク4に食い込ませ、ワーク4の切断開始位置に切り込みを形成した後に、定常加工に移行し、ワイヤ3の上方に設けられている1または2以上のノズル8からクーラントなどの冷却液7の供給を開始すると共に、ワイヤ速度を上昇させ、定常時の速度として、ワーク4の切断を継続する。 Also in the second embodiment, the thin wafer processing method of the present invention makes the point of contact of the cutting start position of the workpiece 4 (the lower right corner in FIG. 2) with the wire 3 at the start of cutting. As in the embodiment, the wire 3 is run at a low speed without supplying the coolant 7 from the nozzle 8, the wire 3 is bitten into the workpiece 4, and a cut is formed at the cutting start position of the workpiece 4. The supply of coolant 7 such as coolant is started from one or two or more nozzles 8 provided above the wire 3 and the wire speed is increased to cut the workpiece 4 as a steady speed. continue.

第2の実施形態でも、第1の実施形態と同様の作用効果が得られるが、特に、角状のワークが1〜3度傾けた状態に設定され、ワイヤ3がワーク4の切断開始位置に点接触するため、切断の開始時に、ワイヤ3がワーク4の切断開始位置に対して速やかに食い込み、切断の開始時に、冷却液7が供給されないことによるワーク4やワイヤ3への発熱の影響をより小さくできる。 Even in the second embodiment, the same effects as those of the first embodiment can be obtained. In particular, the square workpiece is set to be inclined by 1 to 3 degrees, and the wire 3 is set at the cutting start position of the workpiece 4. Because of the point contact, the wire 3 quickly bites into the cutting start position of the workpiece 4 at the start of cutting, and the influence of heat generation on the workpiece 4 and the wire 3 due to the cooling liquid 7 not being supplied at the start of cutting. Can be smaller.

次に、図3および図4は、本発明の薄ウェーハ加工方法の第3の実施形態を示している。この第3の実施形態において、ワーク4は、ワイヤ3と向き合う切り込み開始端、すなわちワーク4の下側でワイヤ3に直交する方向に長い案内部材4aをワーク4の一部として有している。案内部材4aは、切断の開始時に、ワーク4に代わってワイヤ3に最初に当接する部分であり、ワーク4の硬度と等しい同質のシリコンでもよいが、好ましくはワーク4の硬度よりも小さい硬度の材質、例えば樹脂、カーボン、接着剤により構成されている。 Next, FIGS. 3 and 4 show a third embodiment of the thin wafer processing method of the present invention. In the third embodiment, the workpiece 4 has a cutting start end facing the wire 3, that is, a guide member 4 a long in the direction perpendicular to the wire 3 below the workpiece 4 as a part of the workpiece 4. The guide member 4a is a portion that first comes into contact with the wire 3 in place of the workpiece 4 at the start of cutting, and may be the same quality silicon as the hardness of the workpiece 4, but preferably has a hardness smaller than the hardness of the workpiece 4. It is made of a material such as resin, carbon, and adhesive.

例えばシリコンまたは樹脂などの材料製の案内部材4aは、適当な接着剤によりワーク4に予め固着され、切断の終了後に分離処理により各ウェーハ5から取り外される。また、案内部材4aとしての接着剤は、ワーク4に所定の厚みの塗膜により形成され、切断の終了後に分離処理により各ウェーハ5から引き剥がされる。 For example, the guide member 4a made of a material such as silicon or resin is fixed to the work 4 in advance with an appropriate adhesive, and is removed from each wafer 5 by separation processing after the end of cutting. The adhesive as the guide member 4a is formed on the workpiece 4 with a coating film having a predetermined thickness, and is peeled off from each wafer 5 by a separation process after the end of cutting.

案内部材4aの断面形状、すなわちメインローラ2の軸に直交する面での断面形状は、図3および図4に示すように、台形とするか、または図8に例示するように、切り込み易さや放熱効率の観点から、直角三角形、正三角形、凹または凸形状、長方形の2部材、かまぼこ形状もしくは2山形状、あるいはこれらの形状の組み合わせとするが、多数のワイヤ3に対して下端で面接触する形状でもよいが、案内部材4aに対する多数のワイヤ3の食い込み具合を考慮するならば、好ましくは下端で多数のワイヤ3に点接触する形状、三角形、2山形状、あるいは図3および図4のように、下端に鋭角を有する断面形状とする。なお、接着剤の塗膜は、通常、塗布によって平坦な膜となるが、塗膜を中高に盛り上げることによって半円柱形状あるいは点接触する三角形に近い形状とすることもできる。 The cross-sectional shape of the guide member 4a, that is, the cross-sectional shape in a plane orthogonal to the axis of the main roller 2, is trapezoidal as shown in FIGS. 3 and 4, or is easy to cut as illustrated in FIG. From the viewpoint of heat dissipation efficiency, a right triangle, a regular triangle, a concave or convex shape, two rectangular members, a kamaboko shape or a two-crest shape, or a combination of these shapes. However, if the biting state of the large number of wires 3 with respect to the guide member 4a is taken into consideration, it is preferable that the lower end has a shape that makes point contact with the large number of wires 3, a triangular shape, a double mountain shape, or the shape shown in FIGS. Thus, it is set as the cross-sectional shape which has an acute angle at a lower end. In addition, although the coating film of an adhesive agent becomes a flat film | membrane normally by application | coating, it can also be made into the shape close | similar to the semi-cylindrical shape or the triangle which makes a point contact by raising a coating film to medium height.

図3のように、本発明の薄ウェーハ加工方法は、切断の開始時に、ワイヤ3に対して案内部材4aの鋭角部分を軽く点接触させ、ノズル8から冷却液7を供給しないまま、ワイヤ3を低速度で走行させて、ワイヤ3を案内部材4aの鋭角部分に食い込ませ、その後に、図4のように、定常加工に移行し、ワイヤ3の上方に設けられている1または2以上のノズル8からクーラントなどの冷却液7の供給を開始すると共に、ワイヤ速度を上昇させ、定常時の速度として、案内部材4aに続いてワーク4の切断を継続する。この定常加工時に、マルチワイヤソー1は、冷却液7を供給しながら、ワイヤ3の切断域にワーク4を接触させることによって、ワーク4を薄く一定の厚みtで切断し、多数の薄いウェーハ5として加工する。 As shown in FIG. 3, in the thin wafer processing method of the present invention, at the start of cutting, the acute angle portion of the guide member 4 a is lightly brought into point contact with the wire 3, and the coolant 7 is not supplied from the nozzle 8. Is moved at a low speed to cause the wire 3 to bite into the acute angle portion of the guide member 4a, and thereafter, as shown in FIG. While supplying the coolant 7 such as coolant from the nozzle 8 is started, the wire speed is increased, and the cutting of the workpiece 4 is continued following the guide member 4a as the steady speed. At the time of this steady processing, the multi-wire saw 1 makes the work 4 thinly cut at a constant thickness t by bringing the work 4 into contact with the cutting region of the wire 3 while supplying the cooling liquid 7, thereby forming a large number of thin wafers 5. Process.

切断の開始時に、冷却液7が供給されていないため、ワイヤ3の間で表面張力によるワイヤ寄りの現象は起きず、各ワイヤ3は、案内部材4aに等間隔のもとに食い込み、安定な加工軌跡を形成する。このため、切断後のウェーハ5の厚みtは、図7のAのように、ワーク4の切断開始時点から、所定の寸法となる。このようにして、各ウェーハ5の厚みtの加工精度が向上する。これによって、一層薄い加工が可能となる。 Since the cooling liquid 7 is not supplied at the start of cutting, the phenomenon of near the wire due to surface tension does not occur between the wires 3, and each wire 3 bites into the guide member 4a at equal intervals and is stable. Form a machining trajectory. For this reason, the thickness t of the wafer 5 after cutting becomes a predetermined dimension from the start of cutting of the workpiece 4 as shown in FIG. In this way, the processing accuracy of the thickness t of each wafer 5 is improved. This enables thinner processing.

これに対して、切断の開始時に、冷却液7が供給され、隣り合うワイヤ3間でその表面張力によって部分的にワイヤ寄りが起きると、多数のワイヤ3は、ワイヤ寄りを起こしたまま案内部材4aの切断を開始し、その後も、ワイヤ寄り状態のワイヤ間隔を維持して、ワーク4の切断を継続するため、切断後のウェーハ5の厚みtは、図7のBのように、一定の寸法とならなくなる。 On the other hand, when the coolant 7 is supplied at the start of cutting and the adjacent wires 3 are partially offset by the surface tension, the many wires 3 are guided while the wires are shifted. In order to continue cutting of the workpiece 4 while maintaining the wire spacing in the state near the wire after that, the thickness t of the wafer 5 after the cutting is constant as shown in FIG. It will not be a dimension.

上記のように、本発明では、切断の開始時に、冷却液7が供給されないから、ワイヤ寄りの現象が起きず、また初期にワイヤ3が低速度で走行するから、ワイヤ3やワーク4への発熱は小さく抑えられる。また各ワイヤ3は、振れ方向の力を受けないまま案内部材4aに食い込み、互いに規定のピッチPを維持しながらワーク4を切り込み、安定した等ピッチPの切り込みを形成する。よって、加工初期にワイヤ3のピッチPにずれが発生せず、ウェーハ5の厚みtの加工精度が向上する。 As described above, in the present invention, since the coolant 7 is not supplied at the start of cutting, the phenomenon near the wire does not occur, and the wire 3 travels at a low speed in the initial stage. Fever is kept small. Further, each wire 3 bites into the guide member 4a without receiving a force in the swing direction, and cuts the workpiece 4 while maintaining a predetermined pitch P, thereby forming a stable equal pitch P cut. Therefore, there is no deviation in the pitch P of the wire 3 in the initial stage of processing, and the processing accuracy of the thickness t of the wafer 5 is improved.

特に、案内部材4aがワイヤ3に対して点接触していると、切断の開始時に、ワイヤ3が案内部材4aに対して速やかに食い込み、切断の開始時に、冷却液7が供給されないことによるワーク4やワイヤ3への発熱の影響をほぼ無くすることができる。 In particular, when the guide member 4a is in point contact with the wire 3, the wire 3 quickly bites into the guide member 4a at the start of cutting, and the workpiece is not supplied with the coolant 7 at the start of cutting. The influence of heat generation on the wire 4 and the wire 3 can be almost eliminated.

案内部材4aの硬度は、前記のように、ワーク4の硬度と等しくてもよいが、好ましくはワーク4の硬度よりも小さい材質とする。案内部材4aの硬度がワーク4の硬度よりも小さい材質であれば、より一層ワイヤ3が案内部材4aに対して速やかに食い込み、切断能率がよくなり、ワイヤ3の磨耗も少なくできる。 As described above, the hardness of the guide member 4a may be equal to the hardness of the workpiece 4, but is preferably made of a material smaller than the hardness of the workpiece 4. If the material of the guide member 4a is smaller than the hardness of the workpiece 4, the wire 3 can further bite into the guide member 4a more quickly, the cutting efficiency can be improved, and the wear of the wire 3 can be reduced.

さらに、図5は、本発明の薄ウェーハ加工方法の第4の実施形態を示している。この第4の実施形態において、本発明の薄ウェーハ加工方法は、多数のワイヤ3の切断作用域を水蒸気その他の溶液のミスト10で満たした加工室9内に置かれ、少なくとも切断の開始時に、加工室9のミスト10によってワイヤ3の冷却や潤滑を行う。 Further, FIG. 5 shows a fourth embodiment of the thin wafer processing method of the present invention. In this fourth embodiment, the thin wafer processing method of the present invention is placed in a processing chamber 9 in which the cutting action areas of a large number of wires 3 are filled with a mist 10 of water vapor or other solution, and at least at the start of cutting, The wire 3 is cooled and lubricated by the mist 10 in the processing chamber 9.

多数のワイヤ3の切断作用域がミスト10で満たした加工室9に置かれておれば、少なくとも切断の開始時に、ミスト10によってワイヤ3が冷却され、また切断面もミスト10によって潤滑されるため、滑らかな切削性が確保でき、有利となる。ミスト10で満たした加工室9は、透明な板によって透視できるように構成され、必要に応じて、ワーク4の定常加工の過程でも継続して利用することもできる。 If the cutting action areas of many wires 3 are placed in the processing chamber 9 filled with the mist 10, the wire 3 is cooled by the mist 10 at least at the start of cutting, and the cut surface is also lubricated by the mist 10. Smooth cutting performance can be secured, which is advantageous. The processing chamber 9 filled with the mist 10 is configured so as to be seen through by a transparent plate, and can be used continuously in the process of steady processing of the workpiece 4 as necessary.

この第4の実施形態は、前記の第2の実施形態および第3の実施形態においても適用できる。なお、冷却液7やミスト10には、必要に応じて、潤滑液や切削剤、その他の特殊な機能液を混合することもできる。 This fourth embodiment can also be applied to the second and third embodiments. Note that a lubricating liquid, a cutting agent, and other special functional liquids can be mixed in the cooling liquid 7 and the mist 10 as necessary.

本発明のマルチワイヤソーのワイヤ寄り防止方法は、シリコンインゴットやシリコンブロックに限らず、その他のワーク4を薄く切断するときにも利用できる。 The multi-wire saw wire misalignment prevention method of the present invention is not limited to a silicon ingot or silicon block, but can be used when thinly cutting other workpieces 4.

1 マルチワイヤソー
2 メインローラ
2a 溝
3 ワイヤ
4 ワーク
4a 案内部材
5 ウェーハ
6 ベースプレート
7 冷却液
8 ノズル
9 加工室
10 ミスト
t 厚み
P ピッチ
1 Multi-wire saw 2 Main roller 2a Groove 3 Wire 4 Work 4a Guide member 5 Wafer 6 Base plate 7 Coolant 8 Nozzle 9 Processing chamber 10 Mist t Thickness P Pitch

Claims (5)

所定のピッチで平行な多数の固定砥粒付きのワイヤに冷却液を供給しながら、走行する多数のワイヤにワークを接触させ、ワークを多数の薄いウェーハとして切断するマルチワイヤソーにおいて、切断の開始時に、冷却液を供給しないまま、ワイヤを低速度で走行させて、ワイヤをワークの切断開始位置に食い込ませ、ワークの切断開始位置に切り込みを形成した後に、冷却液の供給を開始すると共にワイヤ速度を上昇させ、定常時の速度としてワークの切断を継続する、ことを特徴とする薄ウェーハ加工方法。 At the start of cutting in a multi-wire saw that cuts a workpiece into a number of thin wafers by contacting the workpiece with a number of wires traveling while supplying a coolant to a number of wires with fixed abrasive grains parallel at a predetermined pitch , Run the wire at a low speed without supplying the cooling liquid, bite the wire to the cutting start position of the workpiece, form the cut at the cutting start position of the workpiece, start supplying the cooling liquid and wire speed The thin wafer processing method is characterized in that the workpiece is continuously cut at a steady speed. 角状のワークを切断域のワイヤに対して1〜3度傾けた状態で、ワークの切断開始位置にワイヤを点接触させる、ことを特徴とする請求項1記載の薄ウェーハ加工方法。 2. The thin wafer processing method according to claim 1, wherein the wire is brought into point contact with the cutting start position of the workpiece in a state where the rectangular workpiece is tilted by 1 to 3 degrees with respect to the wire in the cutting area. ワークの切り込み開始端に案内部材をワークの一部として一体的に固着しておき、切断の開始時に、ワイヤと案内部材とを点接触させ、冷却液を供給しないまま、ワイヤを低速度で走行させて、ワイヤを案内部材に食い込ませ、案内部材の切断開始位置に切り込みを形成した後に、冷却液を供給を開始すると共にワイヤ速度を上昇させ、定常時の速度として案内部材に続いてワークの切断を継続する、ことを特徴とする請求項1記載の薄ウェーハ加工方法。 A guide member is fixed to the workpiece cutting start end as a part of the workpiece, and at the start of cutting, the wire and the guide member are brought into point contact, and the wire runs at a low speed without supplying coolant. Then, after the wire is bitten into the guide member and the cut is formed at the cutting start position of the guide member, the supply of the coolant is started and the wire speed is increased. The thin wafer processing method according to claim 1, wherein cutting is continued. 案内部材の硬度をワークの硬度よりも小さい材質とする、ことを特徴とする請求項3記載の薄ウェーハ加工方法。 4. The thin wafer processing method according to claim 3, wherein the hardness of the guide member is made of a material smaller than the hardness of the workpiece. 多数のワイヤの切断作用域をミストで満たした加工室内に置き、少なくとも切断の開始時に、加工室内のミストによってワイヤの冷却や潤滑を行う、ことを特徴とする請求項1ないし請求項4のいずれかに記載の薄ウェーハ加工方法。 The cutting action area of a large number of wires is placed in a processing chamber filled with mist, and at least at the start of cutting, the wire is cooled or lubricated by the mist in the processing chamber. The thin wafer processing method of crab.
JP2009264538A 2009-11-20 2009-11-20 Thin wafer processing method Expired - Fee Related JP5424251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264538A JP5424251B2 (en) 2009-11-20 2009-11-20 Thin wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264538A JP5424251B2 (en) 2009-11-20 2009-11-20 Thin wafer processing method

Publications (2)

Publication Number Publication Date
JP2011104746A JP2011104746A (en) 2011-06-02
JP5424251B2 true JP5424251B2 (en) 2014-02-26

Family

ID=44228837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264538A Expired - Fee Related JP5424251B2 (en) 2009-11-20 2009-11-20 Thin wafer processing method

Country Status (1)

Country Link
JP (1) JP5424251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962904A (en) * 2012-11-28 2013-03-13 天津市环欧半导体材料技术有限公司 Three-position multi-line cutting table

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922610B (en) * 2011-08-10 2016-01-27 浙江昱辉阳光能源有限公司 A kind of diamond wire multi-line cutting method, equipment and system
CN112917720A (en) * 2021-01-28 2021-06-08 西安奕斯伟硅片技术有限公司 Wire cutting device and wire cutting method
JP2023095080A (en) 2021-12-24 2023-07-06 株式会社Sumco Method for slicing silicon ingot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158318A (en) * 1998-11-27 2000-06-13 Fujikoshi Mach Corp Diamond wire saw
JP2004082282A (en) * 2002-08-27 2004-03-18 Kyocera Corp Method for slicing semiconductor block
CH696431A5 (en) * 2003-04-01 2007-06-15 Hct Shaping Systems Sa Process and wire sawing device.
JP2006001034A (en) * 2004-06-15 2006-01-05 Sumitomo Electric Ind Ltd Single crystal ingot cutting method
JP2007173721A (en) * 2005-12-26 2007-07-05 Sharp Corp Slicing method for silicon ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962904A (en) * 2012-11-28 2013-03-13 天津市环欧半导体材料技术有限公司 Three-position multi-line cutting table

Also Published As

Publication number Publication date
JP2011104746A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP4525353B2 (en) Method for manufacturing group III nitride substrate
JP5605946B2 (en) Wire saw apparatus and wafer manufacturing method using the same
JP5424251B2 (en) Thin wafer processing method
US8146581B2 (en) Method for slicing workpiece
JP2870452B2 (en) Wire saw
US20140318522A1 (en) Method for slicing workpiece
WO2019220820A1 (en) Ingot cutting method and wire saw
JP6304118B2 (en) Wire saw equipment
KR20160048787A (en) Ingot cutting method and wire saw
JP2010074056A (en) Semiconductor wafer and method of manufacturing same
JP2016143683A (en) Wire-saw and wire groove skip preventing operation method
JP2007173721A (en) Slicing method for silicon ingot
JP5003696B2 (en) Group III nitride substrate and manufacturing method thereof
JP2013094872A (en) Method of cutting workpiece
US11584037B2 (en) Wire saw apparatus and method for manufacturing wafer
JP2014161924A (en) Wire saw
JP2006001034A (en) Single crystal ingot cutting method
JP2009023066A (en) Saw wire and cutting method by wire saw using saw wire
JP2008188721A (en) Substrate manufacturing method and wire saw device
JP6455294B2 (en) Wire saw equipment
JP5355249B2 (en) Wire saw equipment
JP2005014157A (en) Multi-wire saw
JP5455576B2 (en) Multi-wire saw prevention method
JP2020097106A (en) Groove machining device using wire saw and method using the same
Suzuki et al. Study on precision slicing process of single-crystal silicon by using dicing wire saw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees