JP5424167B2 - Air purification device - Google Patents

Air purification device Download PDF

Info

Publication number
JP5424167B2
JP5424167B2 JP2009184893A JP2009184893A JP5424167B2 JP 5424167 B2 JP5424167 B2 JP 5424167B2 JP 2009184893 A JP2009184893 A JP 2009184893A JP 2009184893 A JP2009184893 A JP 2009184893A JP 5424167 B2 JP5424167 B2 JP 5424167B2
Authority
JP
Japan
Prior art keywords
air
photosensitizing dye
virus
liquid
photosensitizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009184893A
Other languages
Japanese (ja)
Other versions
JP2010057908A (en
Inventor
淑邦 正岡
雅威 田河
信一 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOTA TRADING CO., LTD.
Hiroshima Prefecture
Hiroshima University NUC
Original Assignee
YOKOTA TRADING CO., LTD.
Hiroshima Prefecture
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOTA TRADING CO., LTD., Hiroshima Prefecture, Hiroshima University NUC filed Critical YOKOTA TRADING CO., LTD.
Priority to JP2009184893A priority Critical patent/JP5424167B2/en
Publication of JP2010057908A publication Critical patent/JP2010057908A/en
Application granted granted Critical
Publication of JP5424167B2 publication Critical patent/JP5424167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • A61L9/145Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes air-liquid contact processes, e.g. scrubbing

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、空気中のウイルス、バクテリアあるいは臭気物質などを一重項酸素で無害化し空気を浄化する空気浄化装置、空気浄化方法、ウイルスの不活化方法及び脱臭方法に関する。本発明で密閉空間とは、病院内の空間、電車内の空間など外気の出入が制限された空間を言う。   The present invention relates to an air purification device, an air purification method, a virus inactivation method, and a deodorization method that purify air by detoxifying viruses, bacteria, or odorous substances in the air with singlet oxygen. In the present invention, the sealed space refers to a space where access to outside air is restricted, such as a space in a hospital or a space in a train.

近年、病院内での院内感染、鳥インフルエンザウイルスによる家きんの集団感染が多く発生し、さらに現在では、豚由来の新型インフルエンザが流行するなど、呼吸器感染症を引き起こすウイルスの対策が求められている。また胃腸炎を引き起こすノロウイルスに対する対策も求められているが、ノロウイスルは、広く一般的に用いられているアルコール系消毒薬では死滅させることが容易ではない。また悪臭による被害も多く、空気中の悪臭物質の除去対策も求められている。   Recently, nosocomial infections in hospitals and outbreaks of poultry due to avian influenza viruses have occurred, and nowadays, there is a need for countermeasures against viruses that cause respiratory infections, such as new influenza from swine. Yes. In addition, measures against norovirus causing gastroenteritis are also demanded. However, it is not easy to kill nouroisul with a widely used alcohol-based disinfectant. In addition, there are many damages caused by bad odors, and measures to remove bad odor substances in the air are also required.

従来、空気中のウイルス、悪臭成分を除去する技術として、オゾンを使用する方法が用いられていたけれども、人体への悪影響、取り扱いの困難性が指摘されていた。近年、これに代わる技術として、一重項酸素を用いてウイルスを殺菌、悪臭成分を酸化分解する技術が多く提案されている。例えば、基底状態酸素雰囲気中のN型半導体金属酸化物に近紫外線を照射し、一重項酸素を生成させた後、可視光、近赤外線、近赤外線レーザを照射し、一重項酸素を電磁波の誘導放出で基底状態酸素に遷移させ、その遷移エネルギーを利用して、殺菌・脱臭・浄化を行なう技術が提案されている(例えば特許文献1参照)。また、ファンで室内の空気を吸引し、集塵電極フィルターに塵埃を電気集塵し、塵埃に付着したウイルス、細菌を一重項酸素とコロナ放電現象で放出される電子を照射し、スーパーオキサイドに反応変化させ不活化し、さらに吹き出し側から浄化され吹き出される空気に一重項酸素と空気マイナスイオンを乗せて室内に還流せしめ、搬送過程で一重項酸素に空気マイナスイオンから電子を付与することで、スーパーオキサイドに反応変化させ、浮遊菌、付着菌を不活化させる技術が開示されている(例えば特許文献2参照)。ここでは、プラズマ現象を発生させ一重項酸素を発生させている。   Conventionally, ozone has been used as a technique for removing viruses and malodorous components in the air, but it has been pointed out that it has adverse effects on the human body and is difficult to handle. In recent years, as an alternative technique, many techniques have been proposed in which viruses are sterilized and malodorous components are oxidatively decomposed using singlet oxygen. For example, N-type semiconductor metal oxide in a ground state oxygen atmosphere is irradiated with near ultraviolet light to generate singlet oxygen, and then irradiated with visible light, near infrared light, and near infrared laser to induce singlet oxygen to induce electromagnetic waves. There has been proposed a technique for transitioning to ground state oxygen by release and performing sterilization, deodorization, and purification using the transition energy (see, for example, Patent Document 1). In addition, air is sucked into the room with a fan, dust is collected on the dust collecting electrode filter, and viruses and bacteria adhering to the dust are irradiated with singlet oxygen and electrons released by the corona discharge phenomenon to superoxide. By changing the reaction to inactivate the air, purify the blown air from the blowout side, place singlet oxygen and air negative ions back into the room, and add electrons from the air negative ions to the singlet oxygen during the transport process. In addition, a technique for reacting with superoxide to inactivate airborne bacteria and adherent bacteria has been disclosed (see, for example, Patent Document 2). Here, a plasma phenomenon is generated to generate singlet oxygen.

さらに、光増感色素を利用して一重項酸素を発生させ、これを利用し空気中の汚染物質を分解する技術も提案されている(例えば特許文献3参照)。この技術は、通気性を有する部材の表面に、可視光を吸収して三重項励起状態となりうる色素を担持し、この通気性部材に可視光を照射し、ここを通過する空気中の酸素を一重項酸素とし、これにより空気中の汚染分子を分解するものであり、車内の空気浄化への適用が予定されている。   Furthermore, a technique for generating singlet oxygen using a photosensitizing dye and decomposing pollutants in the air using this has been proposed (for example, see Patent Document 3). In this technology, a dye that can absorb visible light and be in a triplet excited state is supported on the surface of the air-permeable member. The air-permeable member is irradiated with visible light, and oxygen in the air passing therethrough is absorbed. It is singlet oxygen, which decomposes pollutants in the air, and is expected to be applied to the purification of air in cars.

特許第3493062号公報Japanese Patent No. 3493602 特開2003−210564号公報JP 2003-210564 A 特開2006−81618号公報JP 2006-81618 A

特許文献1及び特許文献2に記載の技術は、一重項酸素を利用してウイルス等を不活化させるに際し、多くの部材、装置を必要とし殺菌装置として構成が複雑である。また製造コストも安価とは言い難い。一方、特許文献3に記載の技術は、一重項酸素の発生に光増感色素を利用するものであり、装置構成は比較的単純である。空気中のウイルスの不活化、汚染物質の分解をより迅速に、より効率的に行なうには、ウイルス又は汚染物質と一重項酸素との接触機会を増やし、接触時間を長くする必要がある。特許文献3に記載の技術では、通気性部材の表面に光増感色素を担持させているので、通気性部材料の表面積等から光増感色素の担持量を十分に大きくすることは容易ではない。また通気性部材と空気とを接触させる必要があることから、通気性部材料の表面積を大きくすると通気性部材を通過させる際の空気の圧力損失も大きくなる。このように一重項酸素を利用してウイルス等を不活化させる技術に関しては、装置の構造又は構成、不活化速度等も含め、改善すべき余地は多い。   The techniques described in Patent Document 1 and Patent Document 2 require a large number of members and devices when using a singlet oxygen to inactivate viruses and the like, and have a complicated configuration as a sterilizer. Also, it is difficult to say that the manufacturing cost is low. On the other hand, the technique described in Patent Document 3 uses a photosensitizing dye for generation of singlet oxygen, and the apparatus configuration is relatively simple. In order to inactivate viruses in the air and decompose pollutants more quickly and more efficiently, it is necessary to increase the contact opportunities between the virus or pollutants and singlet oxygen and to increase the contact time. In the technique described in Patent Document 3, since the photosensitizing dye is supported on the surface of the breathable member, it is not easy to sufficiently increase the amount of the photosensitizing dye supported from the surface area of the breathable part material. Absent. Further, since it is necessary to bring the air-permeable member into contact with air, if the surface area of the air-permeable member is increased, the pressure loss of air when passing through the air-permeable member also increases. As described above, with respect to the technology for inactivating viruses and the like using singlet oxygen, there is much room for improvement including the structure or configuration of the apparatus, the inactivation rate, and the like.

本発明の目的は、簡単な装置構成で、空気中の被処理物を迅速に無害化し空気を浄化する空気浄化装置及び空気浄化方法を提供することである。さらに本発明は、簡単な操作でウイルスを不活化させる方法、臭気物質を脱臭させる方法を提供する。   An object of the present invention is to provide an air purifying apparatus and an air purifying method that quickly detoxify an object to be processed in the air and purify the air with a simple apparatus configuration. Furthermore, the present invention provides a method for inactivating viruses by a simple operation and a method for deodorizing odorous substances.

本発明は、光増感色素を含有する液体を保有し、送気されるウイルスを含む空気と前記液体とを気液接触させるスプレー塔方式の光増感反応装置と、前記光増感反応装置内の前記液体に光増感色素を励起させる光を照射する照射手段とを含み、前記空気中のウイルスを前記液体に取込むと共に、光増感反応により一重項酸素を発生させ前記ウイルスを無害化し空気を浄化することを特徴とする空気浄化装置である。 The present invention possess a liquid containing an optical sensitizing dye photosensitizer reactor spray tower method in which gas-liquid contact with said air liquid containing the virus to be air, the photosensitizer reactor Irradiating means for irradiating the liquid with light that excites the photosensitizing dye, and taking in the virus in the air and generating singlet oxygen by a photosensitizing reaction to harm the virus . It is an air purification device characterized by purifying air.

本発明は、前記空気浄化装置において、前記光増感色素がローズベンガルであることを特徴とする。 The present invention is characterized in that, in the air purification device, the photosensitizing dye is rose bengal .

本発明は、前記空気浄化装置において、前記ウイルスが、エンベロープを有するウイルスであることを特徴とする。 In the air purification device according to the present invention, the virus is an enveloped virus .

本発明は、前記空気浄化装置において、前記ウイルスが、エンベロープを有さないウイルスであることを特徴とする。 The present invention is characterized in that, in the air purification device, the virus is a virus having no envelope .

本発明は、前記空気浄化装置において、前記ウイルスを含む空気は、バス、電車、飛行機、船を含む公共交通機関の交通具内の空気、又は病院、デパート、畜舎を含む建物内の空気であることを特徴とする。 The present invention, in the air purifier, air containing the virus, bus, train, airplane, is the air in a building, including air in the transport device for public transport, or hospital, department store, a barn comprising the ship It is characterized by that.

本発明は、前記空気浄化装置において、前記交通具又建物は、交通具内又建物内の空気を循環させながら空気調和を行なう空気調和システムを有し、前記空気浄化装置は、前記空気調和システムの循環空気の戻りラインに組込まれ、戻り循環空気中のウイルスを無害化し前記交通具又は建物内の空気を浄化することを特徴とする。 The present invention, in the air purifier, the traffic device or buildings, in or transport device has an air conditioning system for an air conditioner while circulating air in the building, the air purifier, the air It is incorporated in the return line of the circulating air of the harmony system and is characterized by detoxifying the virus in the return circulating air and purifying the traffic or the air in the building .

本発明によれば、本発明に係る空気浄化装置は、光増感色素を含有する液体とウイルスを含む空気とをスプレー塔方式の光増感反応装置を用いて気液接触させ、空気中のウイルスを液体に取込むと共に、光増感反応により一重項酸素を発生させウイルスを無害化し空気を浄化するので、装置構成が簡単で空気中のウイルスを迅速に無害化することができる。光増感色素を含有する液体とウイルスを含む空気とを接触させることで、ウイルスを液体中に取込むことができる。これによりウイルスは、空気中のほか、液体中でも一重項酸素と接触するので、ウイルスを迅速に無害化することができる。またウイルスは直ちに液体中で無害化されなくても、ウイルスが液体に捕集などにより取込まれれば空気は浄化されるので、無害化されにくいウイルスを含む空気であっても、迅速に空気を浄化することができる。 According to the present invention, an air purification apparatus according to the present invention makes a liquid containing a photosensitizing dye and a virus- containing air gas-liquid contact using a spray tower type photosensitization reaction apparatus , Since the virus is taken into the liquid and singlet oxygen is generated by the photosensitizing reaction to make the virus harmless and purify the air, the apparatus configuration is simple and the virus in the air can be quickly harmless. By contacting the air containing liquid and virus containing photosensitizing dye can be incorporated virus in a liquid. As a result, the virus comes into contact with singlet oxygen in the air as well as in the air, so that the virus can be rendered harmless quickly. Also even viruses are not immediately rendered harmless in a liquid, because the virus if taken due collector capturing the liquid air is purified, be air containing difficult to harmless virus, quickly air Can be purified.

また液体中に光増感色素を溶解、又は分散させることで、従来の固体表面に光増感色素を担持させる方法に比較して光増感色素の濃度を高めることが容易であり、かつウイルスと光増感色素との接触機会、接触時間も高めることが可能であり、ウイルスを迅速に無害化することができる。さらに固体表面に光増感色素を担持させる方法では、固体表面上の光増感色素が剥離したような場合には、光増感色素を補給することは容易ではなく、ウイルスの無害化速度が低下するけれども、本願発明にあっては、液体中に光増感色素を供給することは簡単であり、ウイルスの無害化速度を維持することができる。 Further, by dissolving or dispersing the photosensitizing dye in the liquid, it is easy to increase the concentration of the photosensitizing dye as compared with the conventional method of supporting the photosensitizing dye on the solid surface, and the virus. It is possible to increase the chance of contact with the photosensitizing dye and the contact time, and the virus can be rendered harmless quickly. Furthermore, in the method of supporting the photosensitizing dye on the solid surface, when the photosensitizing dye on the solid surface is peeled off, it is not easy to replenish the photosensitizing dye and the detoxification rate of the virus is increased. However, in the present invention, it is easy to supply the photosensitizing dye into the liquid, and the virus detoxification rate can be maintained.

本発明によれば、空気中に含まれる被処理物は、少なくともウイルス、バクテリア、臭気物質のいずれか一種以上であるので、本発明に係る空気浄化装置を用いて、高病原性鳥インフルエンザ、豚由来新型インフルエンザやSARS(Severe Acute Respiratory Syndrome)等の新興ウイルスや空気を介して感染が拡大するウイルスやバクテリア、又は糞便臭気成分等を無害化することができる。   According to the present invention, the object to be treated contained in the air is at least one of viruses, bacteria, and odorous substances. Therefore, using the air purification apparatus according to the present invention, highly pathogenic avian influenza, swine Viruses, bacteria, or fecal odor components, etc. that spread through an emerging virus such as a new influenza derived from the virus, SARS (Severe Acquire Respiratory Syndrome), or air can be rendered harmless.

本発明によれば、前記光増感色素は、ローズベンガルであるので安全に空気を浄化することができる。   According to the present invention, since the photosensitizing dye is rose bengal, air can be purified safely.

本発明によれば、前記被処理物を含む空気は、密閉空間内の空気であるので、建物内の空気等を浄化することができる。   According to the present invention, since the air containing the object to be processed is air in a sealed space, the air in the building can be purified.

本発明によれば、ウイルスを含む空気がバス、電車、飛行機、船を含む公共交通機関の交通具内の空、又は病院、デパート、畜舎を含む建物内の空であるので、本発明に係る空気浄化装置を使用することでインフルエンザの集団感染、院内感染等を防止することができる。 According to the present invention, the air bus that contains the virus, train, airplane, air in the traffic tool of public transportation, including a ship, or a hospital, department store, since it is air in the building, including the barn, the present invention Influenza collective infection, nosocomial infection, and the like can be prevented by using the air purification apparatus according to the above.

本発明によれば、前記交通具又建物は、空気調和システムを有し、前記空気浄化装置は、前記空気調和システムの循環空気の戻りラインに組込まれているので、交通具内又建物内の空気を効率的に浄化することができる。空気浄化装置を空気調和システムの循環空気の戻りラインに組込むことで、空気浄化装置から排出される浄化空気の湿度が高くても、空気調和システムにより湿度調整が行なわれるため、湿度調整を行なうための装置を別途用意する必要がなく装置コストを抑制することができる。 According to the present invention, the traffic device or buildings has an air conditioning system, the air purification device, since the incorporated return line of the circulating air of the air conditioning system, transportation equipment inside or building The inside air can be purified efficiently. By incorporating the air purification device into the return line of the circulating air of the air conditioning system, the humidity is adjusted by the air conditioning system even when the humidity of the purified air discharged from the air purification device is high. It is not necessary to prepare a separate device, and the device cost can be reduced.

本発明によれば、前記空気調和システムは、循環空気が流通する空気ダクトを有し、前記光増感反応装置は、光増感色素を含有する液体を保有する多数の布からなる気液接触部と、前記布に光増感色素を含有する液体を補給する液体補給手段とを有し、前記布が循環空気の戻りラインの空気ダクト内に循環空気の流れ方向と平行に取付けられているので、簡単な装置構成で空気を浄化することができる。例えば、布の一端を光増感色素を含有する液体に浸せば、毛管作用で簡単に布全体を塗らすことが可能であり、布に含まれる液体が蒸発しても、自然に液体が補給されるので、特別の装置を必要としない。また、多数の布が空気ダクト内に設置されているので、気液接触面積が広く、迅速に空気中の被処理物を無害化することができる。さらに多数の布が空気ダクト内に循環空気の流れ方向と平行に設けられているので、圧力損失も小さく、循環空気を循環させるための特別なファンを必要としない。   According to the present invention, the air conditioning system has an air duct through which circulating air circulates, and the photosensitizing reaction device is a gas-liquid contact comprising a number of cloths containing a liquid containing a photosensitizing dye. And a liquid replenishing means for replenishing the cloth with a liquid containing a photosensitizing dye, and the cloth is mounted in the air duct of the return line of the circulating air in parallel with the flow direction of the circulating air. Therefore, air can be purified with a simple device configuration. For example, if one end of the cloth is immersed in a liquid containing a photosensitizing dye, the entire cloth can be easily applied by capillary action, and even if the liquid contained in the cloth evaporates, the liquid is replenished naturally. Because no special equipment is required. Further, since a large number of cloths are installed in the air duct, the gas-liquid contact area is wide, and the object to be processed in the air can be made harmless quickly. Further, since a large number of cloths are provided in the air duct in parallel with the direction of the circulating air, the pressure loss is small and no special fan for circulating the circulating air is required.

本発明によれば、前記空気調和システムは、循環空気が流通する空気ダクトを有し、前記光増感反応装置は、多数の光ファイバと、前記光ファイバの側壁面に沿って光増感色素を含有する液体を流下させる液体供給手段と、光ファイバに沿って流下した光増感色素を含有する液体を回収する液体回収手段とを有し、前記光ファイバは、先端部が循環空気の戻りラインの空気ダクト内の中間部に位置するように前記空気ダクト内に取付けられ、前記照射手段は、前記光ファイバに光を供給する光源を備えるので、迅速に空気中の被処理物を無害化することができる。光ファイバの側壁面を流下する光増感色素を含有する液体は、流下する過程で空気と接触し、被処理物を取込み、取込まれた被処理物は、光ファイバの先端で一重項酸素と接触し無害化されるので、効率的かつ迅速に空気中の被処理物を無害化することができる。さらに液体回収手段に光を照射することで、ここでも液体に取込まれた被処理物を無害化させることが可能となり、より迅速に被処理物を無害化させることができる。   According to the present invention, the air conditioning system includes an air duct through which circulating air circulates, and the photosensitizing reaction device includes a number of optical fibers and a photosensitizing dye along a side wall surface of the optical fibers. A liquid supply means for causing the liquid containing the liquid to flow down, and a liquid recovery means for recovering the liquid containing the photosensitizing dye that has flowed down along the optical fiber. Mounted in the air duct so as to be located in the middle of the air duct of the line, and the irradiation means includes a light source for supplying light to the optical fiber, so that the object in the air can be quickly detoxified. can do. The liquid containing the photosensitizing dye that flows down the side wall surface of the optical fiber comes into contact with air in the process of flowing down, takes in the object to be processed, and the object to be processed enters the singlet oxygen at the tip of the optical fiber. Since it is made harmless by contact with the substrate, the object to be treated in the air can be made harmless efficiently and quickly. Further, by irradiating the liquid recovery means with light, the object to be processed taken into the liquid can be rendered harmless here, and the object to be processed can be rendered harmless more quickly.

本発明によれば、前記空気調和システムは、循環空気が流通する空気ダクトを有し、前記光増感反応装置は、光ファイバを内部に有し光ファイバを覆うように設けられた多数の棒状発光体と、前記棒状発光体の側壁面に沿って光増感色素を含有する液体を流下させる液体供給手段と、前記棒状発光体に沿って流下した光増感色素を含有する液体を回収する液体回収手段とを有し、前記棒状発光体は、循環空気の戻りラインの空気ダクト内に位置するように取付けられ、前記照射手段は、前記光ファイバに光を供給する光源を備えるので、迅速に空気中の被処理物を無害化することができる。棒状発光体の側壁面を流下する光増感色素を含有する液体は、流下する過程で空気と接触し、被処理物を取込み、取込まれた被処理物は、流下途中で一重項酸素と接触し無害化されるので、効率的かつ迅速に空気中の被処理物を無害化することができる。さらに液体回収手段に光を照射することで、ここでも液体に取込まれた被処理物を無害化させることが可能となり、より迅速に被処理物を無害化させることができる。   According to the present invention, the air conditioning system has an air duct through which circulating air circulates, and the photosensitizing reaction device has a number of rods provided inside to cover the optical fiber. A light-emitting body, a liquid supply means for flowing a liquid containing a photosensitizing dye along the side wall surface of the rod-shaped light emitter, and a liquid containing a photosensitizing dye that has flowed down along the rod-shaped light emitter are collected. The rod-like light emitter is mounted so as to be positioned in the air duct of the return line of the circulating air, and the irradiating means includes a light source for supplying light to the optical fiber. In addition, the object to be treated in the air can be rendered harmless. The liquid containing the photosensitizing dye that flows down the side wall surface of the rod-shaped illuminant comes into contact with air in the process of flowing down and takes in the object to be processed. Since it is brought into contact and detoxified, the object to be treated in the air can be detoxified efficiently and quickly. Further, by irradiating the liquid recovery means with light, the object to be processed taken into the liquid can be rendered harmless here, and the object to be processed can be rendered harmless more quickly.

本発明によれば、前記循環空気の戻りラインの空気ダクト内の側壁面に光を反射する反射板を備えるので、光エネルギーをより効率的に光増感色素に照射することが可能であり、効率的かつ迅速に空気中の被処理物を無害化することができる。   According to the present invention, it is possible to irradiate the photosensitizing dye with light energy more efficiently because it includes a reflecting plate that reflects light on the side wall surface in the air duct of the return line of the circulating air. The to-be-processed object in air can be detoxified efficiently and quickly.

本発明によれば、空気中の被処理物を洗浄液に取込み、その後洗浄液に取込まれた被処理物を一重項酸素により無害化することもできるので、被処理物の種類に応じて無害化に適した使用装置、方法を選択することもできる。   According to the present invention, the object to be processed in the air can be taken into the cleaning liquid, and then the object to be processed taken into the cleaning liquid can be made harmless by the singlet oxygen. It is also possible to select a use apparatus and method suitable for the above.

本発明によれば、被処理物を含む空気と光増感色素を含有する液体とを気液接触させ、前記被処理物を前記液体に取込むと共に、前記液体に光増感色素を励起させる光を照射し一重項酸素を発生させ、該一重項酸素により被処理物を無害化し空気を浄化するので、請求項1と同様の作用効果を奏する。   According to the present invention, the air containing the object to be processed and the liquid containing the photosensitizing dye are brought into gas-liquid contact, the object to be processed is taken into the liquid, and the photosensitizing dye is excited in the liquid. By irradiating light, singlet oxygen is generated, and the object to be processed is harmed by the singlet oxygen and air is purified.

本発明によれば、光増感色素に光を照射し一重項酸素を発生させ、該一重項酸素によりウイルスを不活化させるので、簡単な操作でウイルスを不活化させることができる。   According to the present invention, the photosensitizing dye is irradiated with light to generate singlet oxygen, and the virus is inactivated by the singlet oxygen. Therefore, the virus can be inactivated by a simple operation.

本発明によれば、光増感色素に光を照射し一重項酸素を発生させ、該一重項酸素によりエンベロープを有するウイルスを不活化させることができるので、多くのウイルスに適用することができる。   According to the present invention, light can be applied to a photosensitizing dye to generate singlet oxygen, and the virus having an envelope can be inactivated by the singlet oxygen, and thus can be applied to many viruses.

本発明によれば、アルコール系消毒薬では死滅させにくいノロウイルス等のエンベロープを有さないウイルスを、光増感色素に光を照射し発生させた一重項酸素により不活化させることができるので、本発明をノロウイルス系ウイルスの不活化に好適に使用することができる。   According to the present invention, it is possible to inactivate viruses having no envelope, such as norovirus, which are difficult to kill with alcohol-based disinfectants, by singlet oxygen generated by irradiating the photosensitizing dye with light. The invention can be suitably used for inactivating norovirus viruses.

本発明によれば、光増感色素に光を照射し一重項酸素を発生させ、該一重項酸素により臭気物質を脱臭させるので、本発明を臭気物質の脱臭に好適に使用することができる。   According to the present invention, the photosensitizing dye is irradiated with light to generate singlet oxygen, and the odorous substance is deodorized by the singlet oxygen. Therefore, the present invention can be suitably used for deodorizing the odorous substance.

本発明の第1実施形態である空気浄化装置1の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of air purification device 1 which is a 1st embodiment of the present invention. 本発明の第2実施形態である空気浄化装置35の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of air purification device 35 which is a 2nd embodiment of the present invention. 本発明の第3実施形態である空気浄化装置70を空調システム40に組み込んだ系統図である。FIG. 6 is a system diagram in which an air purification device 70 according to a third embodiment of the present invention is incorporated in an air conditioning system 40. 図3中の空気浄化装置70の構成を示す断面図である。It is sectional drawing which shows the structure of the air purification apparatus 70 in FIG. 本発明の第4実施形態である空気浄化装置95の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the air purification apparatus 95 which is 4th Embodiment of this invention. 本発明の第5実施形態である空気浄化装置100の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the air purification apparatus 100 which is 5th Embodiment of this invention. 本発明の第6実施形態である空気浄化装置120の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of air purification device 120 which is a 6th embodiment of the present invention. 本発明の実施例1の実験結果を示す図である。It is a figure which shows the experimental result of Example 1 of this invention. 本発明の実施例2の実験結果を示す図である。It is a figure which shows the experimental result of Example 2 of this invention. 本発明の実施例3の実験結果を示す図である。It is a figure which shows the experimental result of Example 3 of this invention. 本発明の実施例4の実験結果を示す図である。It is a figure which shows the experimental result of Example 4 of this invention. 本発明の実施例5の実験結果を示す図である。It is a figure which shows the experimental result of Example 5 of this invention. 本発明の実施例6の実験結果を示す図である。It is a figure which shows the experimental result of Example 6 of this invention. 本発明の実施例7の実験結果を示す図である。It is a figure which shows the experimental result of Example 7 of this invention. 本発明の実施例8で使用した実験装置の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of an experimental device used in Example 8 of the present invention. 本発明の実施例10で使用した実験装置の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of an experimental device used in Example 10 of the present invention. 本発明の実施例11で使用した実験装置の概略的構成を示すプロセスフロー図である。It is a process flow figure showing a schematic structure of an experimental device used in Example 11 of the present invention.

図1は、本発明の第1実施形態である空気浄化装置1の概略的構成を示すプロセスフロー図である。空気浄化装置1は、光エネルギーを吸収して励起し一重項酸素を発生させる光増感反応を利用して、空気中に含まれるウイルス等の被処理物を無害化させることで空気を浄化する装置であり、直列に配置された2塔の光増感反応塔3、5、各光増感反応塔3、5塔の内部に光を照射する照明装置7、9、光増感反応塔3に被処理物を含む空気を送込むファン10及び後段の光増感反応塔5の空気出口部に設けられた冷却器11を有する。   FIG. 1 is a process flow diagram showing a schematic configuration of an air purification device 1 according to a first embodiment of the present invention. The air purifying apparatus 1 purifies air by detoxifying an object to be processed such as a virus contained in air using a photosensitizing reaction that absorbs light energy and excites it to generate singlet oxygen. The two photosensitizing reaction towers 3 and 5 arranged in series, the lighting apparatuses 7 and 9 for irradiating light inside the photosensitizing reaction towers 3 and 5, and the photosensitizing reaction tower 3 And a cooler 11 provided at the air outlet of the photosensitization reaction tower 5 at the subsequent stage.

光増感反応塔3は、気泡塔タイプの反応装置であり、円筒状の塔本体15を有する。塔本体15内に、水に光増感色素を溶解させた光増感色素溶液13を保有し、塔本体15の下部にはファン10を介して送込まれるウイルスなどの被処理物を含む空気を吹込む空気吹込ノズル17を有する。空気吹込ノズル17は、多孔質材料からなり、光増感色素溶液13中に吹込まれた被処理物を含む空気は、微細な気泡となり、光増感色素溶液13と気液接触する。光増感反応塔3では、光増感色素溶液13全体が吹込まれた空気と接触するため、塔本体15の底部から光増感色素溶液13の液位までが気液接触部19となる。塔本体15の気液接触部19に該当する部分は、外部の照明装置7から照射される光を取り込むため透明な材料で形成されている。もちろん塔本体15全体をガラスなど透明な材料で形成してもよい。また、塔本体15の上部には、吹込まれた空気を後段の光増感反応塔5に送る送気管21が接続する。   The photosensitized reaction tower 3 is a bubble tower type reaction apparatus, and has a cylindrical tower body 15. The tower main body 15 has a photosensitizing dye solution 13 in which a photosensitizing dye is dissolved in water, and the lower part of the tower main body 15 includes an object to be processed such as a virus sent through the fan 10. Has an air blowing nozzle 17. The air blowing nozzle 17 is made of a porous material, and the air containing the object to be processed blown into the photosensitizing dye solution 13 becomes fine bubbles and comes into gas-liquid contact with the photosensitizing dye solution 13. In the photosensitizing reaction tower 3, since the entire photosensitizing dye solution 13 comes into contact with the blown air, the gas-liquid contact part 19 extends from the bottom of the tower body 15 to the liquid level of the photosensitizing dye solution 13. A portion corresponding to the gas-liquid contact portion 19 of the tower body 15 is formed of a transparent material for taking in light irradiated from the external illumination device 7. Of course, the entire tower body 15 may be formed of a transparent material such as glass. Further, an air pipe 21 for sending the blown air to the subsequent photosensitization reaction tower 5 is connected to the upper part of the tower body 15.

光増感反応塔5は、光増感反応塔3の後段に位置するスプレー塔タイプの反応装置であり、円筒状の塔本体23を有する。塔本体23の下部には、水に光増感色素を溶解させた光増感色素溶液13を貯留する液貯留部25を有し、塔本体23の上部近傍には光増感色素溶液13を噴霧するためのスプレーノズル26が取付けられている。液貯留部25とスプレーノズル26とは循環ライン27で接続され、循環ライン27に介装された循環ポンプ29を介してスプレーノズル26から光増感色素溶液13が噴霧される。前段の光増感反応塔3で処理された空気は、送気管21を通じて塔本体25の下部に送気され、送り込まれた空気は、塔本体23を上昇し、スプレーノズル26から噴霧される光増感色素溶液13と向流接触する。光増感反応塔5では、スプレーノズル26から液貯留部25の液位の範囲24が基本的な気液接触部となる。但し、液貯留部25に貯留する光増感色素溶液13も落下する液滴が衝突する際に空気を巻込むため、気液接触部として機能する。スプレーノズル26から塔本体底部までは、外部の照明装置7から照射される光を取り込むため透明な材料で形成されている。また塔本体23上部には、デミスタ30が装着され、ミストを除去する。光増感反応塔5に送り込まれ浄化された空気は、塔本体23の上部の排気管31を介して冷却器11に送られる。   The photosensitization reaction tower 5 is a spray tower type reaction apparatus located at the rear stage of the photosensitization reaction tower 3 and has a cylindrical tower body 23. A lower part of the tower body 23 has a liquid storage part 25 for storing a photosensitizing dye solution 13 in which a photosensitizing dye is dissolved in water, and the photosensitizing dye solution 13 is placed near the upper part of the tower body 23. A spray nozzle 26 for spraying is attached. The liquid reservoir 25 and the spray nozzle 26 are connected by a circulation line 27, and the photosensitizing dye solution 13 is sprayed from the spray nozzle 26 via a circulation pump 29 interposed in the circulation line 27. The air treated in the preceding photosensitization reaction tower 3 is sent to the lower part of the tower body 25 through the air feed pipe 21, and the sent air rises up the tower body 23 and is sprayed from the spray nozzle 26. It is in countercurrent contact with the sensitizing dye solution 13. In the photosensitization reaction tower 5, the liquid level range 24 from the spray nozzle 26 to the liquid storage part 25 is a basic gas-liquid contact part. However, the photosensitizing dye solution 13 stored in the liquid storage unit 25 also functions as a gas-liquid contact unit because it entrains air when the falling droplet collides. From the spray nozzle 26 to the bottom of the tower body is formed of a transparent material for taking in light irradiated from the external illumination device 7. A demister 30 is mounted on the top of the tower body 23 to remove mist. The purified air sent to the photosensitizing reaction tower 5 is sent to the cooler 11 through the exhaust pipe 31 at the upper part of the tower main body 23.

冷却器11は、隔壁式の冷却器であり、冷却管内を冷却水が流れ、冷却管外を排気管31から送られる空気が流通する。冷却器11は、排気管31から送られる空気が冷却され、空気中の水蒸気が凝縮した凝縮水を光増感反応塔3に送る凝縮水送水管33を備える。   The cooler 11 is a partition-type cooler, in which cooling water flows inside the cooling pipe and air sent from the exhaust pipe 31 flows outside the cooling pipe. The cooler 11 includes a condensed water feed pipe 33 that cools air sent from the exhaust pipe 31 and sends condensed water in which water vapor in the air is condensed to the photosensitized reaction tower 3.

照明装置7、9は、光増感色素溶液13に可視光を照射し、光増感色素を励起させるための装置であり、白色灯からなる。照明装置7、9は、光増感反応塔3、5内の光増感色素溶液13全体に可視光を照射できるように配置されている。光増感色素溶液13に可視光を照射すると、光増感色素が励起状態となり、励起状態の光増感色素が空気(酸素)が接触することで空気中の酸素が励起され、一重項酸素となる。この一重項酸素は、空気に同伴する被処理物を酸化し無害化する。   The illuminating devices 7 and 9 are devices for irradiating the photosensitizing dye solution 13 with visible light and exciting the photosensitizing dye, and are composed of a white light. The illumination devices 7 and 9 are arranged so that visible light can be irradiated to the entire photosensitizing dye solution 13 in the photosensitizing reaction towers 3 and 5. When the photosensitizing dye solution 13 is irradiated with visible light, the photosensitizing dye is in an excited state. When the excited photosensitizing dye comes into contact with air (oxygen), oxygen in the air is excited, and singlet oxygen is excited. It becomes. This singlet oxygen oxidizes and detoxifies the object to be treated accompanying the air.

上記構成からなる空気浄化装置1において、ウイルス等の被処理物を含む空気を前段の光増感反応塔3の空気吹込ノズル17を介して光増感色素溶液13に送り込むと、被処理物を含む空気は光増感色素溶液13中で微細な気泡となる。吹込まれた空気中の被処理物の一部は、光増感色素溶液13に取込まれる。光増感色素溶液13に取込まれた被処理物は、光増感色素溶液13中の溶存酸素、又は光増感色素溶液13中に分散する気泡中の酸素が励起され発生する一重項酸素で酸化される。一方、光増感色素溶液13に取込まれなかった被処理物は気泡中に存在し、気泡中の被処理物は、気泡中の酸素が光増感色素と接触し発生する一重項酸素で酸化される。   In the air purification apparatus 1 having the above-described configuration, when air containing an object to be processed such as a virus is sent to the photosensitizing dye solution 13 through the air blowing nozzle 17 of the preceding photosensitizing reaction tower 3, the object to be processed is supplied. The contained air becomes fine bubbles in the photosensitizing dye solution 13. A part of the processing object in the blown air is taken into the photosensitizing dye solution 13. The object to be processed taken into the photosensitizing dye solution 13 is singlet oxygen generated by excitation of dissolved oxygen in the photosensitizing dye solution 13 or oxygen in bubbles dispersed in the photosensitizing dye solution 13. Oxidized with. On the other hand, the object to be processed that has not been taken into the photosensitizing dye solution 13 exists in the bubbles, and the object to be processed in the bubbles is singlet oxygen generated by the oxygen in the bubbles coming into contact with the photosensitizing dye. Oxidized.

光増感反応塔3で無害化されなかった被処理物は、送込まれた空気と一緒に後段の光増感反応塔5に送られ、前段の光増感反応塔3と同様、光増感反応で発生する一重項酸素で酸化、無害化される。浄化された空気は、光増感反応塔5の上部に設けられたデミスタ30でミストが除去された後、冷却器11を経由して系外に排出される。冷却器11に送られる浄化された空気は、光増感反応塔5で気液接触をしていることから飽和水蒸気又は飽和水蒸気に近い水蒸気を含む。この水蒸気を含む空気は冷却器11で冷却され、水蒸気の一部は凝縮水として回収され、この凝縮水は、光増感反応塔3に送られる。光増感反応塔3の光増感色素溶液13の一部は、水蒸気となって空気と一緒に光増感反応塔5に送られるため、水分補給を行なわないと光増感色素溶液13の量が減少する。一方、光増感反応塔5には、水蒸気を多く含む空気が送り込まれるため、光増感反応塔5の光増感色素溶液13の量はほぼ一定である。このため冷却器11で回収する凝縮水を光増感反応塔3に返送することで、液量をほぼ一定に保持することができる。   The object to be treated that has not been rendered harmless in the photosensitization reaction tower 3 is sent to the subsequent photosensitization reaction tower 5 together with the air that has been sent in. Oxidized and detoxified by singlet oxygen generated by sensitive reaction. The purified air is discharged from the system via the cooler 11 after the mist is removed by the demister 30 provided at the upper part of the photosensitizing reaction tower 5. The purified air sent to the cooler 11 contains saturated water vapor or water vapor close to saturated water vapor because it is in gas-liquid contact in the photosensitized reaction tower 5. The air containing the water vapor is cooled by the cooler 11, a part of the water vapor is recovered as condensed water, and this condensed water is sent to the photosensitized reaction tower 3. A part of the photosensitizing dye solution 13 in the photosensitizing reaction tower 3 is converted into water vapor and sent to the photosensitizing reaction tower 5 together with air. The amount decreases. On the other hand, since air containing a large amount of water vapor is fed into the photosensitizing reaction tower 5, the amount of the photosensitizing dye solution 13 in the photosensitizing reaction tower 5 is substantially constant. For this reason, by returning the condensed water recovered by the cooler 11 to the photosensitized reaction tower 3, the amount of liquid can be kept substantially constant.

上記の通り空気浄化装置1は、水を分散媒として使用する湿式方式の光増感反応を用いた空気浄化装置である。湿式方式の光増感反応を用いた空気浄化装置は、水を使用しない固体表面に光増感色素を担持した乾式方式の光増感反応を用いた空気浄化装置に比較し、空気浄化速度を高めることができる。光増感色素を含有する液体と被処理物を含む空気とを接触させることで、被処理物を液体中に取込むことができる。この場合、被処理物を液体中に直接取込むことができることはもちろん、空気中の埃などに付着したウイルスなどの被処理物を、埃といっしょに液体中に取込むことができる。こられにより被処理物は、空気中のほか、液体中でも一重項酸素と接触するので、被処理物を迅速に無害化することができる。また被処理物は直ちに液体中で無害化されなくても、被処理物が液体に取込まれれば空気は浄化されるので、無害化されにくい被処理物を含む空気であっても、迅速に空気を浄化することができる。   As described above, the air purification device 1 is an air purification device using a wet-type photosensitization reaction using water as a dispersion medium. The air purification device using a wet-type photosensitization reaction has a higher air purification speed than an air purification device using a dry-type photosensitization reaction in which a photosensitizing dye is supported on a solid surface that does not use water. Can be increased. By bringing the liquid containing the photosensitizing dye into contact with the air containing the object to be processed, the object to be processed can be taken into the liquid. In this case, not only the object to be treated can be taken directly into the liquid, but also the object to be treated such as a virus adhering to dust in the air can be taken into the liquid together with the dust. As a result, the object to be treated comes into contact with singlet oxygen in the air as well as in the air, so that the object to be treated can be rendered harmless quickly. Even if the object to be processed is not immediately detoxified in the liquid, the air is purified if the object to be processed is taken into the liquid. The air can be purified.

乾式法では、固体表面に担持した光増感色素は酸素と接触し有効に機能するものの、内部の光増感色素は、表層の光増感色素がじゃまとなり酸素と接触することができないため、必ずしも有効に機能しない。これに対して湿式法では、水に光増感色素を溶解、分散、懸濁又は乳化させた光増感色素溶液と空気とを気液接触させるので、全ての光増感色素を有効に利用することができる。また容易に気液接触を大きくすることが可能であり、乾式法に比較して光増感色素と酸素、発生する一重項酸素と被処理物の接触機会を大幅に増加させることができる。さらに光増感色素の濃度を高めることも容易であり、光増感色素の補充も簡単に行なうことができる。   In the dry method, the photosensitizing dye supported on the solid surface functions effectively by contacting oxygen, but the internal photosensitizing dye is obstructed by the surface photosensitizing dye and cannot contact oxygen. Does not necessarily work effectively. In contrast, in the wet method, the photosensitizing dye solution in which the photosensitizing dye is dissolved, dispersed, suspended or emulsified in water is brought into gas-liquid contact, so that all the photosensitizing dyes are effectively used. can do. Further, the gas-liquid contact can be easily increased, and the contact opportunity between the photosensitizing dye and oxygen, the generated singlet oxygen and the object to be processed can be greatly increased as compared with the dry method. Furthermore, it is easy to increase the concentration of the photosensitizing dye, and replenishment of the photosensitizing dye can be easily performed.

第1実施形態での、光増感色素としては、ローズベンガルが挙げられるがこれに限定されるものではない。光増感色素としては、ローズベンガルのほか、フラーレン、メチレンブルーなど公知の光増感色素を使用することが可能であり、一種類の光増感色素を単独で使用可能なことはもちろんのこと、2種類以上の光増感色素を同時に使用してもよい。ローズベンガルは、食紅に使用されることから分かるように安全性が高い物質ゆえ、好適に使用することができる。   The photosensitizing dye in the first embodiment includes, but is not limited to, rose bengal. As the photosensitizing dye, in addition to rose bengal, it is possible to use known photosensitizing dyes such as fullerene and methylene blue. Of course, one kind of photosensitizing dye can be used alone, Two or more photosensitizing dyes may be used simultaneously. Rose Bengal can be suitably used because it is a highly safe substance as can be seen from its use in food red.

光増感色素を分散させる液体は水に限定されるもではなく、他の液体又は2種類以上の液体を混合した液体であってもよい。また光増感色素は必ずしも液体に溶解した状態で使用する必要はなく、分散、懸濁、乳化した状態であってもよい。さらに光増感色素を分散させる液体に、光増感反応の性能を低下させない範囲において、薬剤を添加してもよい。例えば、液体中に空気との界面張力を低下させる界面活性剤を添加することで、液体中に空気を吹き込んだ際、気泡が非常に小さくなり気液接触面積が増大する。さらに、被処理物の液体への吸収、捕集を高める薬剤を添加してもよい。例えば、被処理物の液体への吸収速度がpHに依存する場合には、pHを調整するための薬剤を添加してもよい。これらにより被処理物を迅速に無害化させることができる。光増感色素の濃度は、高い方が好ましいが、実用的な範囲を示せば1〜100μM程度である。   The liquid in which the photosensitizing dye is dispersed is not limited to water, but may be another liquid or a liquid in which two or more kinds of liquids are mixed. The photosensitizing dye is not necessarily used in a state dissolved in a liquid, and may be in a dispersed, suspended, or emulsified state. Furthermore, a chemical agent may be added to the liquid in which the photosensitizing dye is dispersed in such a range that the performance of the photosensitizing reaction is not deteriorated. For example, by adding a surfactant that lowers the interfacial tension with air into the liquid, when air is blown into the liquid, the bubbles become very small and the gas-liquid contact area increases. Furthermore, you may add the chemical | medical agent which improves the absorption to the liquid of a to-be-processed object, and collection. For example, when the absorption rate of the object to be treated in the liquid depends on the pH, an agent for adjusting the pH may be added. As a result, the object to be processed can be rendered harmless quickly. The concentration of the photosensitizing dye is preferably higher, but is about 1 to 100 μM if a practical range is shown.

光増感色素を励起させ一重項酸素を発生させるために照射する光は、光増感色素の最大吸収波長の光又はこれを中心した一定範囲の波長を有する光が好ましく、さらに光増感色素をできるだけ劣化させない光であることが好ましい。例えば、ローズベンガルの最大吸収波長は580nm、メチレンブルーは665nmであるから、これらに適した光は、波長が550〜700nmの光が好ましく、紫外線波長領域の光を含まないことが好ましい。照明手段は、蛍光灯、太陽光を使用することができるが、紫外線の発生量が比較的少ないLEDが好ましい。   The light irradiated to excite the photosensitizing dye and generate singlet oxygen is preferably light having the maximum absorption wavelength of the photosensitizing dye or light having a certain range of wavelengths centered on the light. Further, the photosensitizing dye It is preferable that the light be as low as possible. For example, since the maximum absorption wavelength of rose bengal is 580 nm and methylene blue is 665 nm, light suitable for these is preferably light having a wavelength of 550 to 700 nm, and preferably does not include light in the ultraviolet wavelength region. The illuminating means can use a fluorescent lamp or sunlight, but an LED that generates a relatively small amount of ultraviolet rays is preferable.

光増感色素を励起させ一重項酸素を発生させるために照射する光の照度は、高い方が好ましいが、実用的な範囲を示せば3500〜10万ルクス程度である。   The illuminance of the light irradiated to excite the photosensitizing dye and generate singlet oxygen is preferably high, but is about 3500 to 100,000 lux if a practical range is shown.

また上記実施形態では、型式の異なる光増感反応塔を2段直列に設ける例を示したけれども、光増感反応塔は1塔又は3塔以上であってもよく、同じ型式の光増感反応塔を使用してもよい。   In the above embodiment, an example in which two types of photosensitizing reaction towers of different types are provided in series has been shown. However, the number of photosensitizing reaction towers may be one or three or more. A reaction tower may be used.

図2は、本発明の第2実施形態である空気浄化装置35の概略的構成を示すプロセスフロー図である。本実施形態に示す空気浄化装置35も第1実施形態に示す空気浄化装置1と同様、水に溶解させた光増感色素と被処理物を含む空気とを気液接触させ、かつ気液接触部に光増感色素を励起させる光を照射し、光増感反応を利用して一重項酸素を発生させ、空気中の被処理物を無害化させる装置である。図1に示す空気浄化装置1と同一の構成には、同一の符号を付して詳細な説明は省略する。図2に示す空気浄化装置35は、一塔式の空気浄化装置であり、光増感反応塔36は、塔本体37の下部が気泡塔形式の気液接触部、塔本体37の中央から上部にかけてスプレー塔形式の気液接触部を有し、図1に示す空気浄化装置1の光増感反応塔3の上部に光増感反応塔5を結合したような型式の光増感反応塔36である。照明装置38を光増感反応塔36の気液接触部全体に可視光が照射されるように配置する点も図1に示す空気浄化装置1と同一である。なお、液貯留部25に直接、被処理物を含む空気を吹込むため、光増感色素溶液13中に含まれる気泡により循環ポンプ29がキャビテーションを起こさないように、液貯留部25の一部に気液分離部39が設けられている。   FIG. 2 is a process flow diagram showing a schematic configuration of an air purification device 35 according to the second embodiment of the present invention. Similarly to the air purification device 1 according to the first embodiment, the air purification device 35 according to the present embodiment makes the gas-liquid contact between the photosensitizing dye dissolved in water and the air containing the object to be processed, and the gas-liquid contact. It is an apparatus that irradiates light to excite a photosensitizing dye and generates singlet oxygen using a photosensitizing reaction, thereby detoxifying an object to be processed in the air. The same components as those of the air purification device 1 shown in FIG. The air purification device 35 shown in FIG. 2 is a single tower type air purification device. In the photosensitized reaction tower 36, the lower part of the tower main body 37 is a bubble column type gas-liquid contact part, and the upper part from the center of the tower main body 37. The type of photosensitizing reaction tower 36 having a spray tower type gas-liquid contact portion and having the photosensitizing reaction tower 5 coupled to the upper part of the photosensitizing reaction tower 3 of the air purification apparatus 1 shown in FIG. It is. The illumination device 38 is the same as the air purification device 1 shown in FIG. 1 in that the entire surface of the gas-liquid contact portion of the photosensitizing reaction tower 36 is irradiated with visible light. In addition, since the air containing a to-be-processed object is directly blown into the liquid storage part 25, a part of the liquid storage part 25 is prevented so that the circulation pump 29 does not cause cavitation due to bubbles contained in the photosensitizing dye solution 13. A gas-liquid separation unit 39 is provided in the first.

光増感反応塔は、図1及び図2に示す光増感反応塔3、5、36に限定されるものではなく、気液接触性能に優れる装置であれば、特定の反応塔、反応装置に限定されるものではない。気泡塔、スプレー塔以外に、公知の濡れ壁塔、充填塔、スクラバー、回転噴霧塔、液柱塔、ベンチュリー装置、ポンプの吸引側で液体と同時に空気を吸引し、機械的にせん断力を加え微細な気泡を発生させるマイクロバブル発生装置を使用することができる。但し、気液接触部又は気液共存部に光増感色素を励起させるための光を照射させる必要があることから、気液接触部又は気液共存部に容易に光を照射可能な型式の反応塔、反応装置が好ましい。   The photosensitization reaction tower is not limited to the photosensitization reaction towers 3, 5, and 36 shown in FIGS. 1 and 2, and any specific reaction tower or reaction apparatus may be used as long as it is an apparatus excellent in gas-liquid contact performance. It is not limited to. In addition to bubble towers and spray towers, well-known wet wall towers, packed towers, scrubbers, rotary spray towers, liquid column towers, venturi devices, pumps, suction air at the same time as the liquid and mechanically apply shearing force. A microbubble generator that generates fine bubbles can be used. However, since it is necessary to irradiate the gas-liquid contact part or the gas-liquid coexisting part with light for exciting the photosensitizing dye, it is possible to easily irradiate the gas-liquid contact part or the gas-liquid coexisting part with light. A reaction tower and a reaction apparatus are preferred.

また上記実施形態では、光増感色素を励起させる光を塔の外部から照射する例を示したけれども、塔の内部に光源を設置してもよく、また光ファイバを利用して光を照射してもよい。また空気浄化装置1、35において、必要に応じて空気及び/又は光増感色素溶液の温度を調整可能な温度調節装置を設けてもよい。   In the above embodiment, an example in which the light for exciting the photosensitizing dye is irradiated from the outside of the tower is shown. However, a light source may be installed inside the tower, and light is irradiated using an optical fiber. May be. Moreover, in the air purification apparatuses 1 and 35, you may provide the temperature control apparatus which can adjust the temperature of air and / or a photosensitizing dye solution as needed.

図3は本発明の第3実施形態である空気浄化装置70を空調システム40に組み込んだ系統図である。図4は図3中の空気浄化装置70の構成を示す断面図である。本実施形態に示す空気浄化装置70も第1及び第2実施形態に示す空気浄化装置1、35と同様、水に溶解させた光増感色素と被処理物を含む空気とを気液接触させ、かつ気液接触部に光増感色素を励起させる光を照射し、光増感反応を利用して一重項酸素を発生させ、空気中の被処理物を無害化させる装置である。図1及び図2に示す空気浄化装置1、35と同一の構成には、同一の符号を付して詳細な説明は省略する。   FIG. 3 is a system diagram in which an air purification device 70 according to a third embodiment of the present invention is incorporated in an air conditioning system 40. FIG. 4 is a cross-sectional view showing the configuration of the air purification device 70 in FIG. Similarly to the air purification apparatuses 1 and 35 shown in the first and second embodiments, the air purification apparatus 70 shown in the present embodiment brings the photosensitizing dye dissolved in water and the air containing the object to be in gas-liquid contact. In addition, the gas-liquid contact portion is irradiated with light that excites a photosensitizing dye, and singlet oxygen is generated using a photosensitizing reaction, thereby detoxifying an object to be processed in the air. The same components as those of the air purification apparatuses 1 and 35 shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

空調システム40は、建屋42内の空気の温度、湿度、清浄度を適正に維持するシステムであって、空気調和機44、空気調和機44に接続し、建屋42内の各部屋46(46a、46b、46c)に調和空気を送る給気ライン48、建屋42内の各部屋46の空気を空気調和機44に導く還気ライン50、外気を取込む外気ダクト52を有する。空気調和機44は、外気ダクト52に近い方から順番にエアフィルタ54、冷却器56、加熱器58、加湿器60及び送風機62を備え、還気ライン50を介して戻る建屋42内の各部屋46の空気に一部外気を混合し、清浄、温度調節、湿度調節した空気を、給気ライン48を介して建屋42内の各部屋46に送る。さらに還気ライン50の途中であって、空気調和機44に近接する位置に空気浄化装置70が組み込まれている。空気浄化装置70を除く空調システム40は、従来から病院等の空調に使用されている空調システムと同じであり、基本的に建屋42内の空気を循環使用する。   The air conditioning system 40 is a system that appropriately maintains the temperature, humidity, and cleanliness of the air in the building 42, and is connected to the air conditioner 44 and the air conditioner 44, and each room 46 (46a, 46a, 46) in the building 42 is connected. 46b, 46c), an air supply line 48 for sending conditioned air, a return air line 50 for guiding the air in each room 46 in the building 42 to the air conditioner 44, and an outside air duct 52 for taking in outside air. The air conditioner 44 includes an air filter 54, a cooler 56, a heater 58, a humidifier 60, and a blower 62 in order from the side closer to the outside air duct 52, and each room in the building 42 that returns via the return air line 50. A part of the outside air is mixed with the air 46, and the air that has been purified, temperature-controlled, and humidity-controlled is sent to each room 46 in the building 42 via the air supply line 48. Further, an air purifying device 70 is incorporated in the middle of the return air line 50 at a position close to the air conditioner 44. The air conditioning system 40 excluding the air purification device 70 is the same as the air conditioning system conventionally used for air conditioning in hospitals and the like, and basically circulates and uses the air in the building 42.

空気浄化装置70は、還気ライン50を構成する還気ダクト72内に設置された複数の光ファイバ74、光ファイバ74に光増感色素溶液13を供給する光増感色素溶液供給タンク76、光ファイバ74に沿って流下する光増感色素溶液13を回収する光増感色素溶液回収タンク78のほか、回収した光増感色素溶液13を光増感色素溶液供給タンク76に返送する液返送ライン80、光ファイバ74に光を供給する光源82、還気ダクト72内の両側壁に設置された光を反射する反射板84を有する。   The air purifier 70 includes a plurality of optical fibers 74 installed in a return air duct 72 constituting the return air line 50, a photosensitizing dye solution supply tank 76 that supplies the photosensitizing dye solution 13 to the optical fibers 74, In addition to the photosensitizing dye solution recovery tank 78 that recovers the photosensitizing dye solution 13 that flows down along the optical fiber 74, the liquid return that returns the recovered photosensitizing dye solution 13 to the photosensitizing dye solution supply tank 76. A line 80, a light source 82 that supplies light to the optical fiber 74, and a reflector 84 that reflects light installed on both side walls in the return air duct 72.

光ファイバ74は、複数の光ファイバからなり、光ファイバ74の先端部85は還気ダクト72内に位置する。他端部86は、複数の光ファイバ74が集合した状態で還気ダクト72の天井を貫通した状態で、還気ダクト72の外に位置する。光ファイバ74の先端部85は、還気ダクト72の中央から上部に先端位置が異なるようにランダムに取付けられている。還気ダクト72の長手方向(空気流れ方向)についても同じである。ここで使用する光ファイバ74は、従来から光の伝送に使用されている一般的な光ファイバである。   The optical fiber 74 is composed of a plurality of optical fibers, and the distal end portion 85 of the optical fiber 74 is located in the return air duct 72. The other end 86 is located outside the return air duct 72 in a state where the plurality of optical fibers 74 are gathered and penetrates the ceiling of the return air duct 72. The distal end portion 85 of the optical fiber 74 is randomly attached so that the distal end position is different from the center to the upper portion of the return air duct 72. The same applies to the longitudinal direction (air flow direction) of the return air duct 72. The optical fiber 74 used here is a general optical fiber conventionally used for light transmission.

光増感色素溶液供給タンク76は還気ダクト72内の天井部に設けられ、光増感色素溶液供給タンク76の底部には光ファイバ74が貫通する多数の貫通孔88が設けられている。この貫通孔88とここを挿通する光ファイバ74との間にはわずかな隙間が設けられている。一の貫通孔88を貫通する光フィアバ74は、一本であっても複数本が束なった状態であってもよい。   The photosensitizing dye solution supply tank 76 is provided at the ceiling in the return air duct 72, and a plurality of through holes 88 through which the optical fiber 74 passes are provided at the bottom of the photosensitizing dye solution supply tank 76. A slight gap is provided between the through hole 88 and the optical fiber 74 inserted therethrough. The optical fiber 74 penetrating through one through hole 88 may be one or a plurality of optical fibers may be bundled.

光増感色素溶液回収タンク78は、還気ダクト72内の底部に設けられ、光ファイバ74に沿って流下する光増感色素溶液13を回収する。液返送ライン80の途中には、液返送ポンプ90が介装され、回収された光増感色素溶液13は、光増感色素溶液回収タンク78と光増感色素溶液供給タンク76とを結ぶ液返送ライン80を介して、光増感色素溶液供給タンク76に返送される。   The photosensitizing dye solution recovery tank 78 is provided at the bottom of the return air duct 72 and recovers the photosensitizing dye solution 13 flowing down along the optical fiber 74. In the middle of the liquid return line 80, a liquid return pump 90 is interposed, and the recovered photosensitizing dye solution 13 is a liquid that connects the photosensitizing dye solution recovery tank 78 and the photosensitizing dye solution supply tank 76. It is returned to the photosensitizing dye solution supply tank 76 via the return line 80.

上記構成からなる空気浄化装置70において、光増感色素溶液13は、光増感色素溶液供給タンク76に底部に設けられた貫通孔88から還気ダクト72に向けて流下する。このとき貫通孔88内をわずかな隙間を有した状態で光ファイバ74が挿通するので、貫通孔88から流下する光増感色素溶液13は、光ファイバ74の外壁に沿って流下する。光ファイバ74に沿って流下する光増感色素溶液13は、還気ダクト72を通過する被処理物を含む空気と接触し、空気中の被処理物の一部を取込む。これら被処理物を含む光増感色素溶液13は、光ファイバ74の先端部85で発光する光を吸収し光増感色素溶液13中の酸素、還気ダクト72を通過する酸素を励起させ一重項酸素を発生させ、光増感色素13溶液に取込まれた被処理物、空気中の被処理物を無害化する。光ファイバ74から離れた光増感色素溶液13は、落下途中で光ファイバ74の先端部85から照射される光、反射板84で反射した光を吸収し、上記同様、被処理物を無害化する。また、光ファイバ74は、先端部85の高さが異なるように取付けられているので、光ファイバ74に沿って流下中の光増感色素溶液13は、他の光フィイバ74から照射される光を吸収して上記同様、被処理物を無害化する。また光増感色素溶液回収タンク78内の光増感色素溶液13にも上部から光ファイバ74からの光が照射されるので、この部分においても被処理物を無害化させることができる。必要に応じて、光増感色素溶液回収タンク78内に別途、照明装置を設置してもよい。   In the air purification apparatus 70 having the above-described configuration, the photosensitizing dye solution 13 flows down from the through hole 88 provided in the bottom of the photosensitizing dye solution supply tank 76 toward the return air duct 72. At this time, since the optical fiber 74 is inserted in the through hole 88 with a slight gap, the photosensitizing dye solution 13 flowing down from the through hole 88 flows down along the outer wall of the optical fiber 74. The photosensitizing dye solution 13 flowing down along the optical fiber 74 comes into contact with the air containing the object to be processed that passes through the return air duct 72 and takes in a part of the object to be processed in the air. The photosensitizing dye solution 13 containing these objects to be processed absorbs light emitted from the tip portion 85 of the optical fiber 74 and excites oxygen in the photosensitizing dye solution 13 and oxygen passing through the return air duct 72. Oxygen is generated, and the object to be processed taken into the photosensitizing dye 13 solution and the object to be processed in the air are rendered harmless. The photosensitizing dye solution 13 away from the optical fiber 74 absorbs the light irradiated from the tip end portion 85 of the optical fiber 74 and the light reflected by the reflecting plate 84 in the middle of dropping, and renders the object to be harmed as described above. To do. Moreover, since the optical fiber 74 is attached so that the height of the tip end portion 85 is different, the photosensitizing dye solution 13 flowing down along the optical fiber 74 is light irradiated from the other optical fiber 74. As in the case described above, the object to be treated is rendered harmless. Further, since the light from the optical fiber 74 is also irradiated from above on the photosensitizing dye solution 13 in the photosensitizing dye solution recovery tank 78, the object to be processed can be made harmless also in this part. If necessary, a lighting device may be separately installed in the photosensitizing dye solution recovery tank 78.

光ファイバ74の直径は、非常に細いため、光ファイバ74を流下する光増感色素溶液13の気液接触面積は非常に大きく、迅速に被処理物を無害化することができる。さらに光ファイバ74の先端部85で、光増感色素、酸素、被処理物及び光を確実に接触させることが可能であり、効率的に空気中の被処理物を無害化させることができる。   Since the diameter of the optical fiber 74 is very thin, the gas-liquid contact area of the photosensitizing dye solution 13 flowing down the optical fiber 74 is very large, and the object to be processed can be rendered harmless quickly. Furthermore, the photosensitizing dye, oxygen, the object to be processed, and light can be reliably brought into contact with each other at the distal end portion 85 of the optical fiber 74, and the object to be processed in the air can be made harmless efficiently.

また本実施形態に示す空気浄化装置70は、還気ダクト72内に気液接触部が位置し、かつ気液接触方法が単純であり、気液接触に伴う圧力損失は非常に小さく、被処理物を含む空気を搬送する装置、例えばファンを別途用意する必要がなく効率的である。   Moreover, the air purification apparatus 70 shown in this embodiment has a gas-liquid contact portion located in the return air duct 72 and a simple gas-liquid contact method, and the pressure loss associated with the gas-liquid contact is very small, and the object to be processed It is efficient because there is no need to separately prepare a device for conveying air containing objects, such as a fan.

また空気浄化装置70を還気ライン50に取付けることで、浄化後の空気中の湿度が増加してもこの空気は空気調和機44に送られ、ここで温度、湿度等が調節されるため建屋42内に送られる空気の湿度が極端に上昇することはない。これからも分かるように空気浄化装置70を空調システム40に組込む場合は、空気浄化装置70を還気ライン50に組み込むことが好ましい。さらに空気浄化装置70は還気ライン50の途中であって、空気調和機44に近接する位置に組込むことがより好ましい。空気浄化装置70から排出される浄化後の空気中の湿度が高く、空気調和機44までの距離が長い場合、還気ライン50内でドレンが発生する恐れがあるけれども、空気調和機44までの距離を短くすることでドレン発生を抑制することができる。   Further, by attaching the air purification device 70 to the return air line 50, even if the humidity in the air after purification increases, this air is sent to the air conditioner 44, where the temperature, humidity, etc. are adjusted, so that the building The humidity of the air sent into 42 does not increase extremely. As can be seen from this, when the air purification device 70 is incorporated into the air conditioning system 40, it is preferable to incorporate the air purification device 70 into the return air line 50. Further, it is more preferable that the air purifying device 70 is incorporated in a position in the middle of the return air line 50 and close to the air conditioner 44. If the humidity in the air after purification discharged from the air purification device 70 is high and the distance to the air conditioner 44 is long, there is a risk that drainage may occur in the return air line 50. The generation of drain can be suppressed by shortening the distance.

また本実施形態では、空気調和機44にエアフィルタ54、冷却器56、加熱器58、加湿器60を備える例を示したけれども、空気調和装置は温度調節が可能な温度調節装置のみであってもよいことはもちろんである。   In the present embodiment, the air conditioner 44 is provided with the air filter 54, the cooler 56, the heater 58, and the humidifier 60. However, the air conditioner is only a temperature adjusting device capable of adjusting the temperature. Of course it is good.

図5は本発明の第4実施形態である空気浄化装置95の構成を示す断面図である。図5に示す空気浄化装置95も図4に示す空気浄化装置70と同様、空調システム40に組み込み使用する例である。空調システム40の構成、空気浄化装置95の空調システム40への組込み要領は、第3実施形態に示す空気浄化装置70と同一であるので、この部分の説明は省略する。また図1から図4に示す空気浄化装置1、35、70と同一の構成には同一の符号を付して詳細な説明は省略する。図5に示す空気浄化装置95は図4に示す空気浄化装置70と類似の構成からなるので、相違点を中心に説明する。   FIG. 5 is a cross-sectional view showing a configuration of an air purification device 95 according to the fourth embodiment of the present invention. The air purifying device 95 shown in FIG. 5 is an example of being incorporated in the air conditioning system 40, similarly to the air purifying device 70 shown in FIG. Since the configuration of the air conditioning system 40 and the manner in which the air purification device 95 is incorporated into the air conditioning system 40 are the same as those of the air purification device 70 shown in the third embodiment, description of this part is omitted. The same components as those of the air purification apparatuses 1, 35, and 70 shown in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted. Since the air purification device 95 shown in FIG. 5 has a configuration similar to that of the air purification device 70 shown in FIG. 4, differences will be mainly described.

空気浄化装置95は、図4に示す空気浄化装置70と同様、還気ライン50の途中であって、空気調和機44に近接する位置に組み込まれている。図4に示す空気浄化装置70では、光ファイバ74の先端部85が還気ダクト内72に位置するように設置され、光ファイバ74の先端部85のみが発光するけれども、空気浄化装置95では、各光ファイバ74を覆うように光を透過可能な棒状発光体96が多数取付けられている。   Similar to the air purification device 70 shown in FIG. 4, the air purification device 95 is incorporated in the middle of the return air line 50 and in the vicinity of the air conditioner 44. In the air purification device 70 shown in FIG. 4, the tip 85 of the optical fiber 74 is installed so as to be located in the return air duct 72 and only the tip 85 of the optical fiber 74 emits light. A large number of rod-like light emitters 96 capable of transmitting light are attached so as to cover each optical fiber 74.

一の棒状発光体96の内部には、複数本の光ファイバ74が先端位置を異ならせた状態で位置し、棒状発光体96は、光ファイバ74から照射される光により自身全体を発光させる。棒状発光体96の一端97は、光増感色素溶液供給タンク76に設けられた貫通孔88とわずかな隙間を有した状態で、光増感色素溶液供給タンク76側にわずかに貫通し、棒状発光体96の他端98は、光増感色素溶液回収タンク78に貯留された光増感色素溶液13に接する。   A plurality of optical fibers 74 are positioned in a single rod-shaped light emitter 96 with their tip positions different from each other, and the rod-shaped light emitter 96 emits light entirely by light emitted from the optical fiber 74. One end 97 of the rod-shaped light emitter 96 penetrates slightly to the photosensitizing dye solution supply tank 76 side in a state having a slight gap with a through hole 88 provided in the photosensitizing dye solution supply tank 76, and forms a rod shape. The other end 98 of the light emitter 96 is in contact with the photosensitizing dye solution 13 stored in the photosensitizing dye solution recovery tank 78.

上記構成からなる空気浄化装置95において、光増感色素溶液13は、光増感色素溶液供給タンク76に底部に設けられた貫通孔88から還気ダクト72に向けて流下する。このとき貫通孔88内をわずかな隙間を有した状態で棒状発光体96が挿通するので、貫通孔88から流下する光増感色素溶液13は、棒状発光体96の外壁に沿って流下する。棒状発光体96に沿って流下する光増感色素溶液13は、還気ダクト72を通過する被処理物を含む空気と接触し、空気中の被処理物の一部を取込む。これら被処理物を含む光増感色素溶液13は、棒状発光体96から光を吸収し光増感色素溶液13中の酸素、還気ダクト72を通過する酸素を励起させ一重項酸素を発生させ、光増感色素溶液13に取込まれた被処理物、空気中の被処理物を無害化する。なお、棒状発光体96の長さをランダムとし、図4に示す空気浄化装置70の光ファイバ74と同様に、還気ダクト72の中央から上部にかけて棒状発光体96の先端位置が異なるように取付けてもよい。   In the air purification device 95 having the above-described configuration, the photosensitizing dye solution 13 flows down from the through hole 88 provided in the bottom of the photosensitizing dye solution supply tank 76 toward the return air duct 72. At this time, since the rod-shaped light emitter 96 is inserted through the through-hole 88 with a slight gap, the photosensitizing dye solution 13 flowing down from the through-hole 88 flows down along the outer wall of the rod-shaped light emitter 96. The photosensitizing dye solution 13 flowing down along the rod-shaped light emitter 96 comes into contact with the air containing the object to be processed passing through the return air duct 72 and takes in a part of the object to be processed in the air. The photosensitizing dye solution 13 containing these objects to be processed absorbs light from the rod-shaped light emitter 96 and excites oxygen in the photosensitizing dye solution 13 and oxygen passing through the return air duct 72 to generate singlet oxygen. The to-be-processed object taken into the photosensitizing dye solution 13 and the to-be-processed object in the air are rendered harmless. Note that the length of the rod-shaped light emitter 96 is random and is attached so that the tip position of the rod-shaped light emitter 96 is different from the center to the top of the return air duct 72 as in the optical fiber 74 of the air purifier 70 shown in FIG. May be.

図6は、本発明の第5実施形態である空気浄化装置100の概略的構成を示す断面図である。本実施形態に示す空気浄化装置100も第1から第4実施形態に示す空気浄化装置1、35、70、95と同様、水に溶解させた光増感色素と被処理物を含む空気とを接触させ、かつ気液接触部に光増感色素を励起させる光を照射し、光増感反応を利用いて一重項酸素を発生させ、空気中の被処理物を無害化させる装置である。以下、空気浄化装置100を第3、第4実施形態に示す空気浄化装置70、95と同様に空調システム40に組込み使用する場合を例に採り説明する。空調システム40の構成、空気浄化装置100の空調システム40への組込み要領は、第3、第4実施形態に示す空気浄化装置70、95と同一であるので、この部分の説明は省略する。   FIG. 6 is a cross-sectional view showing a schematic configuration of an air purification device 100 according to the fifth embodiment of the present invention. Similarly to the air purification apparatuses 1, 35, 70, and 95 shown in the first to fourth embodiments, the air purification apparatus 100 shown in the present embodiment also contains a photosensitizing dye dissolved in water and air containing an object to be processed. It is an apparatus that makes a gas-liquid contact portion irradiate light that excites a photosensitizing dye, generates singlet oxygen using a photosensitizing reaction, and detoxifies an object to be processed in the air. Hereinafter, the case where the air purification apparatus 100 is incorporated and used in the air conditioning system 40 similarly to the air purification apparatuses 70 and 95 shown in the third and fourth embodiments will be described as an example. Since the configuration of the air conditioning system 40 and the manner in which the air purification device 100 is incorporated into the air conditioning system 40 are the same as those of the air purification devices 70 and 95 shown in the third and fourth embodiments, the description of this part is omitted.

空気浄化装置100は、第3実施形態に示す空気浄化装置70と同様、還気ライン50を構成する還気ダクト72内に設置された複数の布102、布102の下端103と接続し、布102に光増感色素溶液13を補給する光増感色素溶液補給体104、還気ダクト72の天井部に取付けられ、布102に光を照射する照明装置106を備える。   The air purification apparatus 100 is connected to a plurality of cloths 102 installed in the return air duct 72 constituting the return air line 50 and the lower ends 103 of the cloths 102, similarly to the air purification apparatus 70 shown in the third embodiment. 102 is provided with a photosensitizing dye solution replenisher 104 for supplying the photosensitizing dye solution 13 to the ceiling 102 of the return air duct 72 and illuminating the cloth 102 with light.

布102は、還気ダクト72の長手方向に所定の長さを有し、下端103を光増感色素溶液補給体104と接触するように還気ダクト72内に吊り下げられている。布102は、光増感色素溶液補給体104と下端103を接続させることで、光増感色素溶液補給体104が保有する光増感色素溶液13を毛管作用により吸引、保有し、保有する光増感色素溶液13と還気ダクト72内を流通する被処理物を含む空気とを接触させる。このように布102は吸水性、毛管作用を示す部材であれば特定の布に限定されるのではなく、不織布であってもよい。布102は、光増感色素溶液103を始め、光増感色素溶液と接触するので、これら溶液に耐性を示すものでなければならないことは言うまでもない。布102は、複数の布102が還気ダクト72内の空気の流れに平行に取付けられている。これにより還気ダンク72内を流通する空気の抵抗が少なく、被処理物を含む空気を搬送する装置を別途用意する必要がない。   The cloth 102 has a predetermined length in the longitudinal direction of the return air duct 72 and is suspended in the return air duct 72 so that the lower end 103 is in contact with the photosensitizing dye solution supply body 104. The cloth 102 connects the photosensitizing dye solution supply body 104 and the lower end 103 to suck and hold the photosensitizing dye solution 13 held by the photosensitizing dye solution supply body 104 by capillary action. The sensitizing dye solution 13 is brought into contact with air containing an object to be processed that circulates in the return air duct 72. As described above, the cloth 102 is not limited to a specific cloth as long as it is a member exhibiting water absorption and capillary action, and may be a non-woven cloth. Since the cloth 102 comes into contact with the photosensitizing dye solution including the photosensitizing dye solution 103, it goes without saying that the cloth 102 must be resistant to these solutions. A plurality of cloths 102 are attached in parallel to the air flow in the return air duct 72. Thereby, there is little resistance of the air which distribute | circulates the inside of the return air dunk 72, and it is not necessary to prepare the apparatus which conveys the air containing a to-be-processed object separately.

光増感色素溶液補給体104は、布102に光増感色素溶液13を補給する部材であって、保水性を有する固体材料からなる。光増感色素溶液補給体104は、内部に光増感色素溶液13を保有することが可能であり、保有する光増感色素溶液13を容易に排出でき固体材料であればよく、例えばスポンジ、布などを使用することができる。内部により多くの光増感色素溶液13を保有できることが好ましい。   The photosensitizing dye solution supply body 104 is a member that supplies the cloth 102 with the photosensitizing dye solution 13 and is made of a solid material having water retention. The photosensitizing dye solution replenisher 104 can hold the photosensitizing dye solution 13 therein, and may be any solid material that can easily discharge the photosensitizing dye solution 13, such as a sponge, Cloth etc. can be used. It is preferable that more photosensitizing dye solution 13 can be retained inside.

第5実施形態に示す空気浄化装置100において、布102が保持する光増感色素溶液13は、還気ダクト72を通過する被処理物を含む空気と接触し、空気中の被処理物の一部を取込む。これら被処理物を含む光増感色素溶液13は、照明装置106が照射する光を吸収し光増感色素溶液13中の酸素、還気ダクト72を通過する酸素を励起させ一重項酸素を発生させ、光増感色素溶液13に取込まれた被処理物、空気中の被処理物を無害化する。布102は還気ダクト72内を流通する循環空気と接触することで、水が蒸発するけれども、接触する光増感色素溶液補給体104から、光増感色素溶液13を吸引するので、布102は常時光増感色素溶液13を保持することができる。なお、必要に応じて光ファイバ、LED等を併用して照度をアップさせてもよいことは言うまでもない。   In the air purification apparatus 100 shown in the fifth embodiment, the photosensitizing dye solution 13 held by the cloth 102 is in contact with the air containing the object to be processed that passes through the return air duct 72, and is one of the objects to be processed in the air. Incorporate the department. The photosensitizing dye solution 13 containing these objects to be processed absorbs light emitted from the illumination device 106 and excites oxygen in the photosensitizing dye solution 13 and oxygen passing through the return air duct 72 to generate singlet oxygen. The processing object taken into the photosensitizing dye solution 13 and the processing object in the air are rendered harmless. Although the cloth 102 comes into contact with the circulating air flowing through the return air duct 72, water evaporates, but the photosensitizing dye solution 13 is sucked from the photosensitizing dye solution supply body 104 in contact therewith. Can always hold the photosensitizing dye solution 13. Needless to say, the illuminance may be increased by using an optical fiber, LED, or the like as necessary.

第5実施形態に示す空気浄化装置100の基本的構成、浄化メカニズムは、上記の通り第1から第4実施形態に示す空気浄化装置1、35、70、95と同じである。しかしながら、第5実施形態に示す空気浄化装置100においては、光増感色素溶液13が布102、光増感色素溶液補給体104により保持された状態となっている。このため外部から振動、衝撃を受けても、光増感色素溶液13が還気ダクト72内にこぼれたり、外部に漏洩する危険性が少ない。このため振動を受ける新幹線等の電車、飛行機、船舶など交通具の空調システムに好適に組み込む、空気浄化を行なうことができる。   The basic configuration and purification mechanism of the air purification device 100 shown in the fifth embodiment are the same as those of the air purification devices 1, 35, 70, and 95 shown in the first to fourth embodiments as described above. However, in the air purification apparatus 100 shown in the fifth embodiment, the photosensitizing dye solution 13 is held by the cloth 102 and the photosensitizing dye solution supply body 104. For this reason, there is little risk that the photosensitizing dye solution 13 spills into the return air duct 72 or leaks to the outside even when subjected to vibration or impact from the outside. For this reason, it is possible to perform air purification that is suitably incorporated into an air conditioning system for a transportation device such as a train such as a bullet train that receives vibration, an airplane, or a ship.

図7は本発明の第6実施形態である空気浄化装置120の概略的構成を示すプロセスフロー図である。第1から第5実施形態に示す空気浄化装置1、35、70、95、100と同一の部材には同一の符号を付して詳細な説明は省略する。第1から第5実施形態に示す空気浄化装置1、35、70、95、100では、一つの装置、例えば光増感反応塔を用いて、空気中の被処理物の一部を光増感色素溶液13で取込む共に、捕集した被処理物、空気中の被処理物を光増感反応を利用して無害化するが、空気浄化装置120は、空気中の被処理物を洗浄液を用いて取込む装置と、取込んだ洗浄液中の被処理物を光増感反応を使用して無害化する装置が完全に分離している点が異なる。   FIG. 7 is a process flow diagram showing a schematic configuration of an air purification device 120 according to the sixth embodiment of the present invention. The same members as those of the air purification apparatuses 1, 35, 70, 95, and 100 shown in the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. In the air purification apparatuses 1, 35, 70, 95, and 100 shown in the first to fifth embodiments, a part of an object to be processed in the air is photosensitized using one apparatus, for example, a photosensitizing reaction tower. While being taken in by the dye solution 13, the collected object to be processed and the object to be processed in the air are detoxified using a photosensitization reaction. The air purification device 120 removes the object to be processed in the air with a cleaning liquid. The difference is that the apparatus for taking in and the apparatus for detoxifying the object to be processed in the taken-in cleaning liquid using a photosensitizing reaction are completely separated.

空気浄化装置120は、被処理物を含む空気と洗浄液とを接触させ、洗浄液中に被処理物を取込み空気を洗浄する空気洗浄装置122、空気洗浄装置122が取込んだ被処理物を含む洗浄液を受入れ、光増感反応により一重項酸素を発生させ被処理物を無害化する光増感反応塔124、光増感反応塔124内に所定の波長の光を照射する照射装置126、光増感反応塔124に被処理物を含まない空気を供給する空気供給装置(図示省略)を有する。   The air purifying device 120 brings the air containing the object to be processed into contact with the cleaning liquid, takes the object to be processed into the cleaning liquid and cleans the air, and the cleaning liquid containing the object to be processed taken in by the air cleaning device 122. A photosensitizing reaction column 124 that generates singlet oxygen by photosensitizing reaction and renders the object to be harmless, an irradiation device 126 that irradiates light of a predetermined wavelength into the photosensitizing reaction column 124, photosensitizing An air supply device (not shown) for supplying air that does not include an object to be processed is provided to the sensitive reaction tower 124.

空気洗浄装置122は、充填塔タイプの反応装置であり、円筒状の塔本体130を有する。塔本体130内には気液接触効率を高める充填材132が充填され、充填材132の上部には洗浄液をスプレーするスプレーノズル134が取付けられている。スプレーノズル134は、塔本体130の下部と循環ライン136を介して接続し、循環ライン136に介装された循環ポンプ138がスプレーノズル134に洗浄液140を送液する。洗浄液140は、塔本体130内を落下する間に、塔本体130下部から送込まれ塔本体130内を上昇する被処理物を含む空気と気液接触する。これにより空気中の被処理物は洗浄液140に吸収又は捕集される。浄化された空気は、塔本体130の上部に設けられたデミスタ142でミストが捕集された後、排気ライン143を介して系外に放出される。なお排気ライン143に循環ライン144を設け、空気を循環させてもよい。   The air cleaning device 122 is a packed tower type reaction device, and has a cylindrical tower body 130. The tower main body 130 is filled with a filler 132 for improving the gas-liquid contact efficiency, and a spray nozzle 134 for spraying a cleaning liquid is attached to the upper part of the filler 132. The spray nozzle 134 is connected to the lower portion of the tower main body 130 via a circulation line 136, and a circulation pump 138 interposed in the circulation line 136 sends the cleaning liquid 140 to the spray nozzle 134. While the cleaning liquid 140 falls in the tower main body 130, the cleaning liquid 140 comes into gas-liquid contact with air containing an object to be processed that is sent from the bottom of the tower main body 130 and rises in the tower main body 130. As a result, the object to be processed in the air is absorbed or collected by the cleaning liquid 140. The purified air is discharged out of the system via the exhaust line 143 after the mist is collected by the demister 142 provided at the upper part of the tower main body 130. The exhaust line 143 may be provided with a circulation line 144 to circulate air.

ここで使用する洗浄液は、空気中の被処理物を吸収又は捕集又は他の方法で取込むことが可能であり、光増感色素に悪影響を与えないものであれば、特に種類は問われない。例えば、水、有機溶剤と水との混合溶液などを使用することが可能であり、被処理物をより迅速に取込めればより好ましい。必要に応じて洗浄液に、被処理物の吸収、捕集を促進する薬剤を添加してもよい。   The cleaning liquid used here is not particularly limited as long as it can absorb or collect the object to be treated in the air or take in by other methods and does not adversely affect the photosensitizing dye. Absent. For example, it is possible to use water, a mixed solution of an organic solvent and water, or the like, and it is more preferable if the object to be processed can be taken in more quickly. You may add the chemical | medical agent which promotes absorption and collection of a to-be-processed object to a washing | cleaning liquid as needed.

光増感反応塔124は、気泡塔タイプの反応装置であり、基本的構成は第1実施形態に示す光増感反応塔5と同じである。塔本体146内に、水に光増感色素を溶解させた光増感色素溶液13を保有し、空気洗浄装置122から被処理物を含む洗浄液が、供給管148を通じて送られる。また光増感反応塔124内には、図示を省略した空気供給装置から供給される被処理物を含まない空気が、空気吹込ノズル150を介して供給され、光増感反応塔124内では被処理物を含まない空気、照射装置126から照射される光により光増感反応が起こり、洗浄液中の被処理物は無害化される。空気洗浄装置122から送り込まれた洗浄水は、ここで無害化されオーバーフロー管152から排出される。   The photosensitized reaction column 124 is a bubble column type reaction apparatus, and the basic configuration is the same as that of the photosensitized reaction column 5 shown in the first embodiment. In the tower main body 146, a photosensitizing dye solution 13 in which a photosensitizing dye is dissolved in water is held, and a cleaning liquid containing an object to be processed is sent from the air cleaning device 122 through a supply pipe 148. In the photosensitization reaction column 124, air that does not include an object to be processed and is supplied from an air supply device (not shown) is supplied via the air blowing nozzle 150. A photosensitization reaction occurs due to air that does not contain the processed material and light irradiated from the irradiation device 126, and the processed material in the cleaning liquid is rendered harmless. The cleaning water sent from the air cleaning device 122 is rendered harmless here and discharged from the overflow pipe 152.

第6実施形態に示す空気浄化装置120において、光増感反応塔124では被処理物は液中に存在するため、光増感反応塔124内での被処理物の平均滞留時間が長く確実に被処理物を無害化することができる。さらに空気浄化装置120は、空気中の被処理物を除去する空気洗浄装置122と被処理物を一重項酸素により無害化する装置が完全に分離されているので、空気中の被処理物を除去する工程と被処理物を一重項酸素により無害化する工程とを分離することが可能である。これにより一重項酸素による酸化速度の遅い被処理物であっても、光増感反応塔124において、被処理物を時間をかけて無害化することができる。さらに、光増感反応塔124をコンパクト化することが可能であり、装置コストを抑えることができる。   In the air purification apparatus 120 shown in the sixth embodiment, since the object to be processed is present in the liquid in the photosensitization reaction column 124, the average residence time of the object to be processed in the photosensitization reaction tower 124 is ensured to be long. The object to be processed can be rendered harmless. Further, the air purifying device 120 is completely separated from the air cleaning device 122 for removing the object to be treated in the air and the device for detoxifying the object to be treated with singlet oxygen, so that the object to be treated in the air is removed. And the step of detoxifying the object to be processed with singlet oxygen can be separated. As a result, even if the object to be processed has a slow oxidation rate due to singlet oxygen, the object to be processed can be rendered harmless in the photosensitizing reaction column 124 over time. Furthermore, the photosensitizing reaction column 124 can be made compact, and the apparatus cost can be suppressed.

第2から第6実施形態に示す空気浄化装置35、70、95、100、120において、光増感色素がローズベンガルに限定されないこと、光増感色素を分散させる液体は水に限定されないこと、光の照射装置の設置要領等を変更可能なことは、第1実施形態に示す空気浄化装置1と同じである。   In the air purification devices 35, 70, 95, 100, and 120 shown in the second to sixth embodiments, the photosensitizing dye is not limited to rose bengal, and the liquid in which the photosensitizing dye is dispersed is not limited to water. It is the same as the air purification apparatus 1 shown in the first embodiment that the installation procedure of the light irradiation apparatus can be changed.

本発明に係る空気浄化装置は、一重項酸素を利用して空気中の被処理物を無害化するため、一重項酸素で無害化可能であれば被処理物は特に限定されない。被処理物としては、高病原性鳥インフルエンザやSARS、豚由来新型インフルエンザウイルス等の新興ウイルス、空気を介して感染が拡大するウイルスやバクテリア、メチルメルカプタンなどの臭気物質が例示される。後述の実験に使用したポリオウイルスは、ピコルナウイルス科に属するエンベロープを持たない一本鎖RNAウイルスであり、各種の消毒液に対して比較的強いウイルスである。この実験において、光増感反応を用いてポリオウイルスを不活化させることが可能なことが確認できた。さらにインフルエンザウイルス等のエンベロープを有するウイルスに対しても、高い不活化効果を確認した。この結果から本発明を空気浄化装置、空気浄化方法、ウイルスの不活化方法、臭気物質の脱臭方法として好適に使用することができる。   Since the air purification apparatus according to the present invention detoxifies the object to be treated in the air using singlet oxygen, the object to be treated is not particularly limited as long as it can be detoxified with singlet oxygen. Examples of the object to be treated include emerging viruses such as highly pathogenic avian influenza and SARS and a new swine-derived influenza virus, viruses that spread through air, bacteria, and odor substances such as methyl mercaptan. The poliovirus used in the experiments described below is a single-stranded RNA virus that does not have an envelope belonging to the Picornaviridae family and is relatively strong against various disinfectants. In this experiment, it was confirmed that poliovirus can be inactivated using a photosensitization reaction. Furthermore, a high inactivation effect was confirmed against viruses having an envelope such as influenza virus. From this result, the present invention can be suitably used as an air purification device, an air purification method, a virus inactivation method, and an odor substance deodorization method.

実施例1
超純水にローズベンガルを溶解させた10μM濃度のローズベンガル水溶液25mlを、円筒状のガラス製容器に充填した。ガラス製容器の上部からガラス細管からなる空気供給管を液中に挿入し、さらにガラス製容器の外壁から約5cm離れた場所に光源を設置した。ローズベンガル水溶液にポリオウイルス1型(Sabinl型ワクチン株)を約5×10PFU/mlの濃度になるように添加すると同時に、空気供給管から100ml/minの空気を供給し、さらにローズベンガル水溶液に光を照射させた。この時を0分として、以降、空気の供給及び光の照射を継続し、この間、ローズベンガル水溶液の一部を採取しウイルスの感染価をVero細胞を用いたPlaque法で測定した。比較例1として遮光をした実験を行なった。他の条件は実施例1と同じである。また比較例2として、ローズベンガルを添加せず、水を用いた場合での実験を行なった。他の条件は実施例1と同じである。
Example 1
A cylindrical glass container was filled with 25 ml of a 10 μM Rose Bengal aqueous solution in which Rose Bengal was dissolved in ultrapure water. An air supply pipe made of a glass thin tube was inserted into the liquid from the top of the glass container, and a light source was installed at a location about 5 cm away from the outer wall of the glass container. Poliovirus type 1 (Sabinl type vaccine strain) was added to the rose bengal aqueous solution to a concentration of about 5 × 10 6 PFU / ml, and at the same time, 100 ml / min of air was supplied from the air supply pipe. Was irradiated with light. After this time was set to 0 minutes, air supply and light irradiation were continued. During this time, a portion of the rose bengal aqueous solution was collected, and the infectivity of the virus was measured by the Plaque method using Vero cells. As Comparative Example 1, an experiment with light shielding was performed. Other conditions are the same as those in Example 1. Further, as Comparative Example 2, an experiment was conducted in the case of using water without adding rose bengal. Other conditions are the same as those in Example 1.

実験の結果を図8に示した。実施例1では、時間経過と共にウイルス感染価は徐々に低低下し、添加直後(0分)には1.0×10PFU/0.2mlであったものが、実験終了の180分には7.0×10PFU/0.2mlであった。比較例1では、実験終了の180分のウイルス感染価は3.5×10PFU/0.2mlであった。比較例2では、ウイルス感染価の低下は認められなかった。 The result of the experiment is shown in FIG. In Example 1, the virus infectivity titer gradually decreased with time, and was 1.0 × 10 6 PFU / 0.2 ml immediately after the addition (0 minutes), but at 180 minutes after the end of the experiment. It was 7.0 × 10 3 PFU / 0.2 ml. In Comparative Example 1, the virus infectivity value for 180 minutes at the end of the experiment was 3.5 × 10 5 PFU / 0.2 ml. In Comparative Example 2, no reduction in virus infectivity was observed.

実施例2
ローズベンガルの濃度を実施例1の濃度の10倍である100μM濃度として実験を行なった。他の条件は実施例1と同一である。比較例3として遮光をした実験を行なった。他の条件は実施例2と同じである。
Example 2
The experiment was conducted by setting the concentration of rose bengal to 100 μM, which is 10 times the concentration of Example 1. Other conditions are the same as those in the first embodiment. As Comparative Example 3, an experiment with light shielding was performed. Other conditions are the same as those in Example 2.

実験の結果を図9に示した。実施例2では、時間経過と共にウイルス感染価は低下し、実験終了の180分後には検出限界未満(<1.0PFU/0.2ml)であった。比較例3では、ウイルス感染価の低下は認められなかった。   The result of the experiment is shown in FIG. In Example 2, the virus infectivity titer decreased with time, and was below the detection limit (<1.0 PFU / 0.2 ml) 180 minutes after the end of the experiment. In Comparative Example 3, no reduction in virus infectivity was observed.

実施例3
ウイルスにAソ連型インフルエンザウイルスを使用し、初期濃度6.0×10PFU/0.2mlとした以外、他の条件は実施例1と同じである。比較例4は、比較例2に対応する。
Example 3
The other conditions were the same as in Example 1 except that A virus was used as the virus and the initial concentration was 6.0 × 10 3 PFU / 0.2 ml. Comparative Example 4 corresponds to Comparative Example 2.

実験の結果を図10に示した。実施例3では、実験開始後5分で検出限界未満(<5.0PFU/0.2ml)となった。   The result of the experiment is shown in FIG. In Example 3, it was less than the detection limit (<5.0 PFU / 0.2 ml) in 5 minutes after the start of the experiment.

実施例4
ウイルスにB型インフルエンザウイルスを使用し、初期濃度1.5×10PFU/0.2mlとした以外、他の条件は実施例1と同じである。比較例5は、比較例2に対応する。
Example 4
Other conditions were the same as in Example 1 except that influenza B virus was used as the virus and the initial concentration was 1.5 × 10 5 PFU / 0.2 ml. Comparative Example 5 corresponds to Comparative Example 2.

実験の結果を図11に示した。実施例4では、実験開始後5分で1.0×10PFU/0.2ml、実験開始後10分で検出限界未満(<5.0PFU/0.2ml)となった。   The result of the experiment is shown in FIG. In Example 4, it was 1.0 × 10 PFU / 0.2 ml 5 minutes after the start of the experiment, and was less than the detection limit (<5.0 PFU / 0.2 ml) 10 minutes after the start of the experiment.

実施例5
ウイルスに単純ヘルペスウイルスを使用し、初期濃度1.0×10TClD50/0.2mlとした以外、他の条件は実施例1と同じである。比較例6は、比較例2に対応する。
Example 5
The other conditions were the same as in Example 1, except that herpes simplex virus was used as the virus and the initial concentration was 1.0 × 10 5 TCLD 50 /0.2 ml. Comparative Example 6 corresponds to Comparative Example 2.

実験の結果を図12に示した。実施例5では、実験開始後5分で検出限界未満(<5.0PFU/0.2ml)となった。   The result of the experiment is shown in FIG. In Example 5, it was less than the detection limit (<5.0 PFU / 0.2 ml) in 5 minutes after the start of the experiment.

実施例6
ウイルスにカリシウイルスを使用し、初期濃度1.2×10PFU/0.2mlとした以外、他の条件は実施例1と同じである。比較例7、比較例8は、比較例1、比較例2に対応する。
Example 6
Other conditions were the same as in Example 1 except that calicivirus was used as the virus and the initial concentration was 1.2 × 10 5 PFU / 0.2 ml. Comparative Example 7 and Comparative Example 8 correspond to Comparative Example 1 and Comparative Example 2.

実験の結果を図13に示した。実施例6では、実験開始後5分で3.0×10PFU/0.2ml、実験開始後15分で検出限界未満(<5.0PFU/0.2ml)となった。 The result of the experiment is shown in FIG. In Example 6, it was 3.0 × 10 3 PFU / 0.2 ml 5 minutes after the start of the experiment, and was less than the detection limit (<5.0 PFU / 0.2 ml) 15 minutes after the start of the experiment.

実施例7
ウイルスに豚由来新型インフルエンザウイルス(H1pdm)を使用し、初期濃度2.0×10PFU/0.2mlとした以外、他の条件は実施例1と同じである。比較例9は、比較例2に対応する。
Example 7
Other conditions are the same as in Example 1, except that swine-derived new influenza virus (H1pdm) was used as the virus and the initial concentration was 2.0 × 10 4 PFU / 0.2 ml. Comparative Example 9 corresponds to Comparative Example 2.

実験の結果を図14に示した。実施例7では、実験開始後5分で3.0×10PFU/0.2mlに、15分後には検出限界未満(<5.0PFU/0.2ml)となった。   The result of the experiment is shown in FIG. In Example 7, it became 3.0 × 10 PFU / 0.2 ml 5 minutes after the start of the experiment, and was less than the detection limit (<5.0 PFU / 0.2 ml) after 15 minutes.

実施例8
実験装置の概略的構成を図15に示した。光増感反応塔は、スプレー塔タイプの光増感反応塔160と気泡塔タイプの光増感反応塔162からなり、各々外部に照明装置164、166を有する。光増感反応塔160、162の塔本体は、無色透明アクリル樹脂製で内径200mm、高さ1400mmの円筒容器である。照明装置164、166には、それぞれ可視光源として長さ1200mm、32Wの白色蛍光灯4本を使用し、光増感反応塔160、162の周囲に均等に配置した。白色蛍光灯と光増感反応塔160、162の塔本体との距離は約100mmとした。また、2塔の光増感反応塔160、162は、液循環ライン168、液循環ポンプ170を介して接続し、2塔の光増感反応塔160、162の間で光増感色素溶液を循環させた。被処理物を含む空気は、内容積約40Lのタンク172に充填し、被処理物を含む空気をブロワー174で光増感反応塔160に送り、光増感反応塔160から排出される空気は、ガス循環ライン176を介してガスタンク172に戻した。光増感反応塔162には、ガラス細管178を用いて被処理物を含まない空気を吹込んだ。
Example 8
A schematic configuration of the experimental apparatus is shown in FIG. The photosensitization reaction tower is composed of a spray tower type photosensitization reaction tower 160 and a bubble tower type photosensitization reaction tower 162, and has illumination devices 164 and 166, respectively. The tower bodies of the photosensitized reaction towers 160 and 162 are cylindrical containers made of a colorless transparent acrylic resin and having an inner diameter of 200 mm and a height of 1400 mm. The illumination devices 164 and 166 used four white fluorescent lamps of 1200 mm and 32 W in length as visible light sources, respectively, and were evenly arranged around the photosensitized reaction towers 160 and 162. The distance between the white fluorescent lamp and the tower bodies of the photosensitized reaction towers 160 and 162 was about 100 mm. The two photosensitizing reaction towers 160 and 162 are connected via a liquid circulation line 168 and a liquid circulation pump 170, and a photosensitizing dye solution is placed between the two photosensitizing reaction towers 160 and 162. It was circulated. The air containing the object to be processed is filled in a tank 172 having an internal volume of about 40 L, the air containing the object to be processed is sent to the photosensitizing reaction tower 160 by the blower 174, and the air discharged from the photosensitizing reaction tower 160 is The gas was returned to the gas tank 172 via the gas circulation line 176. The photosensitized reaction tower 162 was blown with air containing no object to be processed using a glass thin tube 178.

光増感色素溶液には、10μM濃度のローズベンガル水溶液を使用し、ローズベンガル水溶液の全液量は50L、液循環ポンプ170の吐出量は12L/minとした。被処理物はメチルメルカプタン、濃度は40ppmとし、メチルメルカプタンの濃度は、ポケッタブルマルチガスモニターGX−2001(理研計器製社製)で計測した。光増感反応塔162に吹込む空気量は0.5L/minとした。ブロワー174の送風量は3m/minである。 As the photosensitizing dye solution, a Rose Bengal aqueous solution having a concentration of 10 μM was used. The total amount of the Rose Bengal aqueous solution was 50 L, and the discharge amount of the liquid circulation pump 170 was 12 L / min. The object to be treated was methyl mercaptan, the concentration was 40 ppm, and the concentration of methyl mercaptan was measured with a pocketable multigas monitor GX-2001 (manufactured by Riken Keiki Co., Ltd.). The amount of air blown into the photosensitized reaction tower 162 was 0.5 L / min. The blower 174 has an air flow rate of 3 m 3 / min.

ブロワー174、液循環ポンプ170及び照明装置164、166を起動させ、メチルメルカプタンをローズベンガル水溶液に吸収させつつ、一重項酸素を発生させメチルメルカプタンを分解させた。実験開始から5分以内にタンク172内のメチルメルカプタン濃度は7.5ppmに減少した。ローズベンガル水溶液中のメチルメルカプタンの濃度は1.5時間で1/3に低下した。   The blower 174, the liquid circulation pump 170, and the lighting devices 164 and 166 were activated, and while the methyl mercaptan was absorbed into the rose bengal aqueous solution, singlet oxygen was generated to decompose the methyl mercaptan. Within 5 minutes from the start of the experiment, the methyl mercaptan concentration in the tank 172 decreased to 7.5 ppm. The concentration of methyl mercaptan in the Rose Bengal aqueous solution decreased to 1/3 in 1.5 hours.

実施例9
光増感反応塔162に吹込む空気量を8L/minとした。他の条件は、実施例8と同一である。実験の結果、ローズベンガル水溶液中のメチルメルカプタンの濃度は1分間で完全に分解された。
Example 9
The amount of air blown into the photosensitized reaction tower 162 was 8 L / min. Other conditions are the same as in Example 8. As a result of the experiment, the concentration of methyl mercaptan in the Rose Bengal aqueous solution was completely decomposed in 1 minute.

実施例10
実験装置の概略的構成を図16に示した。光増感反応塔は、スプレー塔タイプの光増感反応塔180と気泡塔タイプの光増感反応塔182からなり、各々外部に照明装置184、186を有する。光増感反応塔180、182の塔本体は、無色透明アクリル樹脂製で光増感反応塔180は、内径80mm、高さ210mmの円筒容器、光増感反応塔182は、内径80mm、高さ260mmの円筒容器である。照明装置184、186には、それぞれ可視光源として白色蛍光灯を使用し、光増感反応塔180、182の周囲に均等に配置した。また、2塔の光増感反応塔180、182は、液循環ライン188、液循環ポンプ190を介して接続し、2塔の光増感反応塔180、182の間で光増感色素溶液を循環させた。光増感反応塔内の空気は、光増感反応塔180の外部に設置したブロワー192で、光増感反応塔180内を空気が上昇流となるように光増感反応塔180内で循環させた。光増感反応塔182には、ガラス細管198を用いて被処理物を含まない空気を吹込み、頂部に設けたサンプル採取口196から外部に排出した。
Example 10
A schematic configuration of the experimental apparatus is shown in FIG. The photosensitization reaction tower is composed of a spray tower type photosensitization reaction tower 180 and a bubble tower type photosensitization reaction tower 182, and has illumination devices 184 and 186, respectively. The photosensitizing reaction towers 180 and 182 are made of a colorless and transparent acrylic resin. The photosensitizing reaction tower 180 has an inner diameter of 80 mm and a height of 210 mm. The photosensitizing reaction tower 182 has an inner diameter of 80 mm and a height. It is a 260 mm cylindrical container. For the lighting devices 184 and 186, white fluorescent lamps were used as visible light sources, respectively, and they were equally arranged around the photosensitized reaction towers 180 and 182. The two photosensitizing reaction towers 180 and 182 are connected via a liquid circulation line 188 and a liquid circulation pump 190, and a photosensitizing dye solution is placed between the two photosensitizing reaction towers 180 and 182. It was circulated. The air in the photosensitization reaction tower is circulated in the photosensitization reaction tower 180 by the blower 192 installed outside the photosensitization reaction tower 180 so that the air flows upward in the photosensitization reaction tower 180. I let you. The photosensitized reaction tower 182 was blown with air containing no object to be processed using a glass thin tube 198 and discharged to the outside from a sample collection port 196 provided at the top.

光増感色素溶液には、10μM濃度のローズベンガル水溶液を使用し、ローズベンガル水溶液の全液量は2.4Lとした。照度は、光増感反応塔180で3500ルクス、光増感反応塔182で6000ルクスである。   A 10 μM Rose Bengal aqueous solution was used as the photosensitizing dye solution, and the total amount of the Rose Bengal aqueous solution was 2.4 L. The illuminance is 3500 lux for the photosensitized reaction tower 180 and 6000 lux for the photosensitized reaction tower 182.

装置を作動させながら、サンプル採取口からAソ連型インフルエンザウイルスを、水溶液中の最終濃度が2.5×10PFU/0.2mlになるように添加した。添加5分、15分、30分後に水溶液1mlを採取し、それらにおけるウイルスの感染価を測定した。比較例10では、ローズベンガル水溶液の代わりに純水を使用した。 While operating the apparatus, A Soviet influenza virus was added from the sample collection port so that the final concentration in the aqueous solution was 2.5 × 10 2 PFU / 0.2 ml. Five minutes, 15 minutes and 30 minutes after addition, 1 ml of an aqueous solution was collected, and the virus infectivity was measured. In Comparative Example 10, pure water was used instead of the Rose Bengal aqueous solution.

結果を表1に示した。ローズベンガル水溶液中では、ウイルス添加5分後でも感染性ウイルスは検出されなかった。一方、比較例10では、ウイルス添加30分後においても、感染価の低下はわずかであった。   The results are shown in Table 1. In the Rose Bengal aqueous solution, no infectious virus was detected even 5 minutes after virus addition. On the other hand, in Comparative Example 10, the decrease in infectivity was slight even 30 minutes after the addition of virus.

Figure 0005424167
Figure 0005424167

実施例11
実験装置の概略的構成を図17に示した。図17に示す実験装置は、図16の実験装置が閉鎖系であるのに対して開放系である。図16と同一の部材には同一の符号を付して、説明を省略する。Aソ連型インフルエンザウイルスは、光増感反応塔180の気相部に、霧化器200を用いてAソ連型インフルエンザウイルスを含む空気を流入することで行い、また光増感反応塔180の頂部から流出した空気を、ウイルス維持培地40mlを充填したイーピンジャー202を通過させ、そこに流出した空気中のウイルスを捕捉、回収した。
Example 11
A schematic configuration of the experimental apparatus is shown in FIG. The experimental apparatus shown in FIG. 17 is an open system, whereas the experimental apparatus of FIG. 16 is a closed system. The same members as those in FIG. 16 are denoted by the same reference numerals, and description thereof is omitted. The A-Soviet influenza virus is performed by flowing air containing the A-Soviet influenza virus into the gas phase portion of the photosensitizing reaction tower 180 using the atomizer 200, and the top of the photosensitizing reaction tower 180. The air flowing out from the air was passed through an epin jar 202 filled with 40 ml of virus maintenance medium, and the virus in the air flowing out was captured and collected.

装置を作動させながら、3.0×10PFU/0.2ml濃度のAソ連型インフルエンザウイルスを、霧化器を用いて120分間、合計40mlのウイルス液を連続的に噴霧した。噴霧15分、30分、45分、60分、75分、90分、105分及び120分後に、循環しているローズベンガル水溶液1mlをサンプル採取口196から採取すると共に、イーピンジャー202内の維持培地も一部採取し、それらのウイルス感染価を測定した。 While operating the apparatus, a total of 40 ml of virus solution was continuously sprayed using a nebulizer for 120 minutes using a soviet influenza virus having a concentration of 3.0 × 10 2 PFU / 0.2 ml. After 15 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, 90 minutes, 105 minutes and 120 minutes of spraying, 1 ml of circulating rose bengal aqueous solution is collected from the sample collection port 196 and maintained in the epin jar 202 A part of the medium was also collected and the virus infectivity was measured.

結果を表2に示した。霧化状態で添加したウイルスは、その大部分が光増感反応塔180内でシャワー状に噴霧したローズベンカル水溶液に捕捉されることで、装置内を循環している水溶液に分散したと考えられた。一方、光増感反応塔180内でローズベンガル水溶液と接触しなかった空気中のウイルスは、最終的にイーピンジャー200内にトラップされるが、その量は極めて少量で、噴霧開始後120分後のイーピンジャー内維持培地内12ml中に、感染性ウイルスは2個(2.0PFU)しか確認されず、本実験では、光増感反応塔180に導入された空気中のウイルスのほとんどが装置内で捕捉され、水溶液中で不活化されたと考えられた。   The results are shown in Table 2. It was thought that most of the virus added in the atomized state was dispersed in the aqueous solution circulating in the apparatus by being trapped in the Rose Bencal aqueous solution sprayed in the form of a shower in the photosensitizing reaction tower 180. . On the other hand, the virus in the air that did not come into contact with the rose bengal aqueous solution in the photosensitizing reaction tower 180 is finally trapped in the epin jar 200, but the amount is extremely small, 120 minutes after the start of spraying. Only 2 infectious viruses (2.0 PFU) were confirmed in 12 ml of the maintenance medium in Epinger, and in this experiment, most of the viruses in the air introduced into the photosensitization reaction tower 180 were in the apparatus. And was inactivated in an aqueous solution.

Figure 0005424167
Figure 0005424167

可視光条件下で、10μM濃度のローズベンガル水溶液300mlを用いて、空気の通気量を50mL/minとし、当該水溶液中の臭気化合物の分解速度を測定した。測定結果を表3に示した。メチルメルカプタンは、10分以内に、スカトールは60分以内に完全に分解し、硫化メチルは60分以内に分解率96%となった。   Under visible light conditions, 300 ml of a 10 μM concentration rose bengal aqueous solution was used, the air flow rate was 50 mL / min, and the decomposition rate of odorous compounds in the aqueous solution was measured. The measurement results are shown in Table 3. Methyl mercaptan was completely decomposed within 10 minutes, skatole was completely decomposed within 60 minutes, and methyl sulfide was decomposed to 96% within 60 minutes.

Figure 0005424167
Figure 0005424167

1 空気浄化装置
3、5 光増感反応塔
7、9 光増感反応塔
13 光増感色素溶液
19 気液接触部
35 空気浄化装置
36 光増感反応塔
38 照明装置
40 空調システム
42 建屋
46 部屋
48 給気ライン
50 還気ライン
70 空気浄化装置
72 還気ダクト
74 光ファイバ
76 光増感色素溶液供給タンク
78 光増感色素溶液回収タンク
82 光源
84 反射板
85 光ファイバ先端部
95 空気浄化装置
96 棒状発光体
100 空気浄化装置
102 布
104 光増感色素溶液補給体
106 照明装置
120 空気浄化装置
122 空気洗浄装置
124 光増感反応塔
126 照射装置
140 洗浄液
160 光増感反応塔
162 光増感反応塔
164 照明装置
166 照明装置
180 光増感反応塔
182 光増感反応塔
184 照明装置
186 照明装置
DESCRIPTION OF SYMBOLS 1 Air purification apparatus 3, 5 Photosensitization reaction tower 7, 9 Photosensitization reaction tower 13 Photosensitizing dye solution 19 Gas-liquid contact part 35 Air purification apparatus 36 Photosensitization reaction tower 38 Illumination apparatus 40 Air conditioning system 42 Building 46 Room 48 Air supply line 50 Return air line 70 Air purifier 72 Return air duct 74 Optical fiber 76 Photosensitizing dye solution supply tank 78 Photosensitizing dye solution recovery tank 82 Light source 84 Reflector plate 85 Optical fiber tip 95 Air purifier 96 Bar-shaped luminous body 100 Air purification device 102 Cloth 104 Photosensitizing dye solution replenisher 106 Illumination device 120 Air purification device 122 Air cleaning device 124 Photosensitization reaction tower 126 Irradiation device 140 Cleaning fluid 160 Photosensitization reaction tower 162 Photosensitization Reaction tower 164 Lighting device 166 Lighting device 180 Photosensitized reaction tower 182 Photosensitized reaction tower 184 Lighting device 86 lighting device

Claims (6)

光増感色素を含有する液体を保有し、送気されるウイルスを含む空気と前記液体とを気液接触させるスプレー塔方式の光増感反応装置と、
前記光増感反応装置内の前記液体に光増感色素を励起させる光を照射する照射手段とを含み、
前記空気中のウイルスを前記液体に取込むと共に、光増感反応により一重項酸素を発生させ前記ウイルスを無害化し空気を浄化することを特徴とする空気浄化装置。
A spray tower type photosensitizing reaction apparatus that holds a liquid containing a photosensitizing dye and makes the liquid containing the virus- containing air and the liquid come into gas-liquid contact;
Irradiation means for irradiating the liquid in the photosensitizing reaction device with light for exciting a photosensitizing dye,
Wherein with the virus in the air taking in the liquid to generate singlet oxygen by photosensitization reaction detoxify the virus air purifier apparatus characterized by purifying the air.
前記光増感色素ローズベンガルであることを特徴とする請求項1に記載の空気浄化装置。 Serial mounting of the air purifier to claim 1, wherein the photosensitizing dye is rose bengal. 前記ウイルスが、エンベロープを有するウイルスであることを特徴とする請求項1又は請求項2に記載の空気浄化装置。 The air purifier according to claim 1 or 2, wherein the virus is a virus having an envelope . 前記ウイルスが、エンベロープを有さないウイルスであることを特徴とする請求項1又は請求項2に記載の空気浄化装置。 The air purifier according to claim 1 or 2, wherein the virus is a virus having no envelope . 前記ウイルスを含む空気は、バス、電車、飛行機、船を含む公共交通機関の交通具内の空気、又は病院、デパート、畜舎を含む建物内の空気であることを特徴とする請求項1から請求項4のいずれか1項に記載の空気浄化装置。 Air containing the virus, wherein the bus, train, airplane, air in the transport device of the public transport, including boat, or hospitals, department stores, claim 1, characterized in that the air in a building comprising a barn Item 5. The air purification device according to any one of items 4 to 4. 前記交通具又建物は、交通具内又建物内の空気を循環させながら空気調和を行なう空気調和システムを有し、
前記空気浄化装置は、前記空気調和システムの循環空気の戻りラインに組込まれ、戻り循環空気中のウイルスを無害化し前記交通具又は建物内の空気を浄化することを特徴とする請求項5に記載の空気浄化装置。
The traffic device or buildings, transportation equipment inside or an air conditioning system for an air conditioner while circulating air in the building,
The said air purification apparatus is integrated in the return line of the circulating air of the said air conditioning system, detoxifies the virus in the return circulating air, and purifies the air in the said transportation equipment or a building . Air purification equipment.
JP2009184893A 2008-08-08 2009-08-07 Air purification device Active JP5424167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184893A JP5424167B2 (en) 2008-08-08 2009-08-07 Air purification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008206065 2008-08-08
JP2008206065 2008-08-08
JP2009184893A JP5424167B2 (en) 2008-08-08 2009-08-07 Air purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013002356A Division JP5700859B2 (en) 2008-08-08 2013-01-10 Virus inactivation apparatus and virus inactivation method

Publications (2)

Publication Number Publication Date
JP2010057908A JP2010057908A (en) 2010-03-18
JP5424167B2 true JP5424167B2 (en) 2014-02-26

Family

ID=42185364

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009184893A Active JP5424167B2 (en) 2008-08-08 2009-08-07 Air purification device
JP2013002356A Active JP5700859B2 (en) 2008-08-08 2013-01-10 Virus inactivation apparatus and virus inactivation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013002356A Active JP5700859B2 (en) 2008-08-08 2013-01-10 Virus inactivation apparatus and virus inactivation method

Country Status (1)

Country Link
JP (2) JP5424167B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201326696A (en) * 2011-12-30 2013-07-01 Epoch Energy Technology Corp Compound air purification system
JP6040623B2 (en) * 2012-08-10 2016-12-07 国立大学法人広島大学 Manufacturing method of deodorizing material
JP2022006685A (en) * 2020-06-24 2022-01-13 正 持麾 Air sterilization/purification method and apparatus
WO2022024589A1 (en) 2020-07-27 2022-02-03 国立研究開発法人理化学研究所 Infection prevention device and infection prevention method
KR102390628B1 (en) * 2020-08-06 2022-04-26 이장문 quarantine device to prevent droplet infection
DE102020126375A1 (en) * 2020-10-08 2022-04-14 Iris Barnstedt Device and method for cleaning air contaminated with virions
US20220211894A1 (en) * 2020-11-12 2022-07-07 California Institute Of Technology Photocatalytic generation of singlet oxygen for air purification
CN115682270A (en) * 2022-10-27 2023-02-03 珠海格力电器股份有限公司 Method and device for controlling ozone concentration and air purifier
KR20240083073A (en) 2022-11-29 2024-06-11 요코타 트레이딩 컴퍼니 리미티드 New coronavirus inactivation method and new coronavirus inactivation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140160A (en) * 1989-10-26 1991-06-14 Japan Hai Chem Kk Deodorizing method by stimulation with visible ray
JPH10506391A (en) * 1994-09-22 1998-06-23 バクスター インターナショナル, インコーポレイテッド Photodynamic inactivation of viral and bacterial blood contaminants using halogenated coumarins and furocoumarin sensitizers
JPH10249364A (en) * 1997-01-13 1998-09-22 Akiya Ozawa Method for removing microorganisms by using activated oxygen
JP2006212383A (en) * 2005-02-06 2006-08-17 Mase Shunzo Deodorization method
JP2006223970A (en) * 2005-02-16 2006-08-31 Hiroshima Univ Method for removing microcystis or red tide by using active oxygen
EP2004197A4 (en) * 2006-03-31 2009-08-19 Univ North Carolina State Light activated antiviral materials and devices and methods for decontaminating virus infected environments

Also Published As

Publication number Publication date
JP5700859B2 (en) 2015-04-15
JP2010057908A (en) 2010-03-18
JP2013078650A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5700859B2 (en) Virus inactivation apparatus and virus inactivation method
JP5614559B2 (en) Methods and devices for disinfecting and deodorizing toilets
KR101515786B1 (en) Photocatalyst sterilization module for air cleaner with function for concentrating and diffusing of uv rays
KR101708799B1 (en) Sterilization and purifying apparatus using hydroxyl radical
JP2012517862A (en) Ultraviolet light air treatment method and ultraviolet light air treatment apparatus
JP2011031227A (en) Air cleaning system
JP5015651B2 (en) Drug container and gas supply device
US20230355823A1 (en) Device for generating hydroxyl radicals
KR101793497B1 (en) Odor removal of organic waste unit
JP2006198142A (en) Deodorization device
JP5808030B1 (en) Air purifier
JPH11276563A (en) Air cleaner
KR20110004617A (en) Apparatus and method of high efficiency deodorization and air sterilization using advanced oxidation process
CN209451632U (en) A kind of pig house environmental protection grade deodorizing process system
JP2004036912A (en) Air purification system
KR20150014821A (en) Apparatus for purifying air using ultraviolet rays
KR101537029B1 (en) Chlorine dioxide processing structure, chlorine dioxide processing apparatus, sterilization apparatus and environment purification apparatus
JP3936876B2 (en) Sterilization / deodorization equipment
JP2004166742A (en) Ozone fumigation apparatus
JP2022117667A (en) Air purifier
JP2011177691A (en) Air cleaner
JP2021023708A (en) Gas treatment device, system and method
JPH04166207A (en) Air cleaner
JPH0649577U (en) Deodorizing sterilizer for toilet
WO1994024043A1 (en) Method and apparatus for ozone decomposition by stimulated emission of electromagnetic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250