JP2022006685A - Air sterilization/purification method and apparatus - Google Patents

Air sterilization/purification method and apparatus Download PDF

Info

Publication number
JP2022006685A
JP2022006685A JP2020109060A JP2020109060A JP2022006685A JP 2022006685 A JP2022006685 A JP 2022006685A JP 2020109060 A JP2020109060 A JP 2020109060A JP 2020109060 A JP2020109060 A JP 2020109060A JP 2022006685 A JP2022006685 A JP 2022006685A
Authority
JP
Japan
Prior art keywords
oxygen
type semiconductor
air
metal oxide
semiconductor metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020109060A
Other languages
Japanese (ja)
Inventor
正 持麾
Tadashi Mochizai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020109060A priority Critical patent/JP2022006685A/en
Publication of JP2022006685A publication Critical patent/JP2022006685A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an air sterilization/purification method and apparatus capable of performing sterilization and purification more easily and at a high level using transition energy when transiting active oxygen species, generated by contacting oxygen in the air with an N-type semiconductor metal oxide placed under ultraviolet irradiation, to ground state oxygen.SOLUTION: An N-type semiconductor metal oxide supported on a material capable of acting as a contact cell is irradiated with near-ultraviolet rays having a wavelength of 180 to 360 nm to surface excite the N-type semiconductor metal oxide, and then an air flow is brought into contact with the surface-excited part of the N-type semiconductor metal oxide to generate singlet oxygen. Subsequently, visible light having a wavelength of 400 to 650 nm is irradiated to transit the singlet oxygen to ground state oxygen by stimulated emission of electromagnetic waves, and sterilization and purification are performed using the transition energy.SELECTED DRAWING: Figure 1

Description

本発明は、環境保全のための空気の浄化や殺菌、また病院内における院内感染の防止、シックビルシンドロームの予防、空調内の殺菌を行うための空気の殺菌・浄化方法及び装置に関する。 The present invention relates to an air sterilization / purification method and device for purifying and sterilizing air for environmental conservation, preventing nosocomial infections in hospitals, preventing sick building syndrome, and sterilizing in air conditioning.

従来の空気の殺菌を行う方法としては、波長185nmの紫外線を照射して発生させたオゾンを空気中に拡散させる方法と、波長254nmの殺菌灯により紫外線を照射して殺菌を行う方法の何れか、或いはこれらを併用した方法が用いられていた。 As a conventional method for sterilizing air, either a method of irradiating ultraviolet rays having a wavelength of 185 nm to diffuse ozone generated into the air or a method of sterilizing by irradiating ultraviolet rays with a germicidal lamp having a wavelength of 254 nm. , Or a method using these in combination has been used.

下記特許文献1では、基底状態酸素雰囲気中にあるN型半導体金属酸化物に波長180~360nmの近紫外線を照射することにより、N型半導体金属酸化物の表面励起により活性酸素種を生成し、光ポンピングにより基底状態酸素を励起させ、一重項酸素の生成を行った後、波長600~650nmの可視光線、および波長1200~1300nmの近赤外線を順次に照射して、活性酸素種である一重項酸素の電磁波の誘導放出による基底状態酸素への遷移エネルギーで殺菌・脱臭・浄化を行う空気の殺菌・脱臭・浄化方法およびその装置が、本発明者により提案されていた。 In Patent Document 1 below, active oxygen species are generated by surface excitation of N-type semiconductor metal oxides by irradiating N-type semiconductor metal oxides in a ground oxygen atmosphere with near-ultraviolet rays having a wavelength of 180 to 360 nm. Stimulated oxygen is excited by optical pumping to generate singlet oxygen, and then visible light with a wavelength of 600 to 650 nm and near infrared rays with a wavelength of 1200 to 1300 nm are sequentially irradiated to generate singlet oxygen, which is an active oxygen species. The present inventor has proposed a method for sterilizing, deodorizing, and purifying air by sterilizing, deodorizing, and purifying with transition energy to basal state oxygen by stimulated emission of oxygen electromagnetic waves, and a device thereof.

特開平8-57032号公報Japanese Unexamined Patent Publication No. 8-57032

しかしながら、従来のオゾンを空気中に拡散させる方法では、オゾンが充分に分解されないうちに残留オゾンとして大気中に放出するのを余儀なくされ、人体に大きな影響を及ぼすばかりでなく、取り扱いも困難な問題点があった。
また殺菌灯により紫外線を照射する方法では、酸素の遷移エネルギーを利用するものではないため、紫外線が照射されない部位は殺菌や浄化ができないという問題点があった。
However, the conventional method of diffusing ozone into the air requires that ozone be released into the atmosphere as residual ozone before it is sufficiently decomposed, which not only has a great impact on the human body but is also difficult to handle. There was a point.
Further, since the method of irradiating ultraviolet rays with a germicidal lamp does not utilize the transition energy of oxygen, there is a problem that the portion not irradiated with ultraviolet rays cannot be sterilized or purified.

一方、特許文献1の殺菌・脱臭・浄化方法及び装置では、オゾンを空気中に拡散させる必要がない上、空気を殺菌・浄化するため殺菌や浄化ができない部位が生じることもなく、環境保全のための空気の浄化や殺菌、或いは病院内における院内感染の防止、シックビルシンドロームの予防、空調内での殺菌を行うなど、各種の目的で好適に使用されているが、殺菌・浄化の能力の増強、構造や処理の簡素化など、更なる改善が望まれていた。 On the other hand, in the sterilization / deodorization / purification method and device of Patent Document 1, it is not necessary to diffuse ozone into the air, and since the air is sterilized / purified, there are no parts that cannot be sterilized or purified, and environmental conservation is achieved. It is suitably used for various purposes such as purifying and sterilizing air for various purposes, preventing nosocomial infections in hospitals, preventing sick building syndrome, and sterilizing in air conditioning, but it enhances the ability of sterilization and purification. Further improvements such as simplification of structure and processing were desired.

本発明は従来の空気の殺菌・浄化をする方法及び装置における問題点を解決せんとするもので、その目的とするところは、空気中の酸素を紫外線照射下にあるN型半導体金属酸化物に接触させ、生成される活性酸素種を基底状態酸素に遷移させて、その遷移エネルギーを用いて殺菌・浄化をより容易に且つ高度に行うことができる空気の殺菌・浄化方法及び装置を提供することにある。 The present invention is intended to solve problems in conventional methods and devices for sterilizing and purifying air, and an object thereof is to convert oxygen in the air into an N-type semiconductor metal oxide under ultraviolet irradiation. To provide an air sterilization / purification method and device capable of sterilizing / purifying more easily and highly by making contact and transitioning the generated active oxygen species to basal state oxygen and using the transition energy. It is in.

本発明に係わる空気の殺菌・浄化方法は前記した目的を達成せんとするもので、接触電池作用が得られる材料に担持されたN型半導体金属酸化物に波長180~360nmの近紫外線を照射して、該N型半導体金属酸化物の表面励起したところ空気流を接触させて一重項の酸素を生成した後、波長400~650nmの可視光線を照射して、一重項酸素を電磁波の誘導放出で基底状態酸素に遷移させ、その遷移エネルギーを利用して殺菌・浄化を行うことを特徴とする。 The method for sterilizing and purifying air according to the present invention aims to achieve the above-mentioned object, and irradiates an N-type semiconductor metal oxide supported on a material having a contact battery action with near-ultraviolet rays having a wavelength of 180 to 360 nm. When the surface of the N-type semiconductor metal oxide is excited, an air flow is brought into contact with it to generate singlet oxygen, and then visible light having a wavelength of 400 to 650 nm is irradiated to release the singlet oxygen by stimulated emission of electromagnetic waves. It is characterized by transitioning to basal oxygen and using the transition energy to sterilize and purify.

本発明では、接触電池作用が得られる前記材料に担持された前記N型半導体金属酸化膜は、酸化亜鉛(ZnO)の粉末を導電性塗料に混入し銅板若しくは銅の鍍金に塗布担持したもので、CuとZnOの電位差による接触電池作用によりZnOの電荷を高めて光触媒効果を促し、電子放出を増加させることを特徴とするのが好適である。 In the present invention, the N-type semiconductor metal oxide film supported on the material capable of obtaining contact battery action is obtained by mixing zinc oxide (ZnO) powder in a conductive paint and applying and supporting it on a copper plate or copper plating. It is preferable that the charge of ZnO is increased by the contact battery action due to the potential difference between Cu and ZnO to promote the photocatalytic effect and increase the electron emission.

また本発明に係わる空気の殺菌・浄化装置は、空気流に接する内面は、接触電池作用が得られる材料に担持されたN型半導体金属酸化物により構成され、前記N型半導体金属酸化物に接触しながら前記空気流を移行せしめ、該空気流の基底状態酸素に波長180~360nmの近紫外線を照射し、該N型半導体金属酸化物の表面励起により生成して順次後方に送られる一重項酸素に波長400~650nmの可視光線を照射することで、一重項酸素を電磁波の誘導放出で基底状態酸素への遷移を行う光線照射手段を具備したことを特徴とする。 Further, in the air sterilization / purification device according to the present invention, the inner surface in contact with the air flow is composed of an N-type semiconductor metal oxide supported on a material capable of obtaining a contact battery action, and is in contact with the N-type semiconductor metal oxide. While shifting the air flow, the base state oxygen of the air flow is irradiated with near-ultraviolet waves having a wavelength of 180 to 360 nm, and singlet oxygen generated by surface excitation of the N-type semiconductor metal oxide and sequentially sent to the rear is generated. It is characterized by being provided with a light beam irradiating means that transfers singlet oxygen to basal oxygen by induced emission of electromagnetic waves by irradiating with visible light having a wavelength of 400 to 650 nm.

本発明の空気の殺菌・浄化方法およびその装置においては、通過する空気流中の酸素は、波長180~360nmの紫外線を照射されると基底状態酸素原子を生成する。
2 +hν(180~200nm)→2O(3p)
hν:紫外線
O(3p):基底状態酸素原子
そして、この基底状態酸素原子に空気中の酸素分子が反応してオゾンを生成する。
O(3p)+O2 →O3
3 :オゾン
In the air sterilization / purification method of the present invention and the apparatus thereof, oxygen in the passing air flow generates ground state oxygen atoms when irradiated with ultraviolet rays having a wavelength of 180 to 360 nm.
O 2 + hν (180-200 nm) → 2O (3p)
hν: Ultraviolet O (3p): Ground state oxygen atom Then, oxygen molecules in the air react with this ground state oxygen atom to generate ozone.
O (3p) + O 2 → O 3
O 3 : Ozone

このO3に波長250~300nmの紫外線を照射すると、O3 は分解して一重項酸素原子と一重項酸素分子とが生成される。
3 +hν(250nm~300nm)→ 1D+1Δg
1D :一重項酸素原子
1Δg:一重項酸素分子
When this O 3 is irradiated with ultraviolet rays having a wavelength of 250 to 300 nm, O 3 is decomposed to generate singlet oxygen atoms and singlet oxygen molecules.
O 3 + hν (250nm-300nm) → 1 D + 1 Δg
1 D: Singlet oxygen atom
1 Δg: Singlet oxygen molecule

一方、N型半導体金属酸化物に波長180~360nmの紫外線を照射すると電子を放出し、その電子は基底状態酸素に電子授与され、酸素は励起されてラジカル化し、活性酸素アニオンを生成する。
hν(180~360nm)+M→e-
M ;N型半導体金属酸化物
e- :電子
2+2e- →O- +O- → O-
O- :活性酸素アニオン
On the other hand, when the N-type semiconductor metal oxide is irradiated with ultraviolet rays having a wavelength of 180 to 360 nm, electrons are emitted, the electrons are donated to the ground state oxygen, and the oxygen is excited and radicalized to generate an active oxygen anion.
hν (180-360nm) + M → e-
M; N-type semiconductor metal oxide e-: Electron O 2 + 2e- → O- + O- → O 2-
O-: Active oxygen anion

励起された一重項酸素原子、分子は、次に波長400~650nmの可視光線が照射されると、適宜活性酸素アニオンなどとともに、基底状態酸素分子に遷移する。
Δg+hν(400~650nm)→2Σg
Σg :基底状態酸素分子
一重項酸素は22.5Kcal/molの高いエネルギーの励起状態にあるので強力な殺菌作用を呈し、通過する空気流に対しての殺菌・浄化が速やかに行われるものである。
When the excited singlet oxygen atom or molecule is next irradiated with visible light having a wavelength of 400 to 650 nm, it transitions to a ground state oxygen molecule together with an active oxygen anion as appropriate.
2 1 Δg + hν (400 to 650 nm) → 2 3 Σg
23 Σg : Ground state oxygen molecule Singlet oxygen is in an excited state with high energy of 22.5 Kcal / mol, so it exhibits a strong bactericidal action, and sterilization and purification of the passing air flow is performed promptly. Is.

従って、本発明の空気の殺菌・浄化方法及び装置によれば、空気中の酸素を紫外線照射下にあるN型半導体金属酸化物に接触させて生成される活性酸素種を、基底状態酸素に遷移させて殺菌・浄化を行う際、遷移エネルギーを用いて殺菌・浄化をより容易に且つ高度に行うことが可能である。 Therefore, according to the air sterilization / purification method and apparatus of the present invention, the active oxygen species generated by contacting oxygen in the air with an N-type semiconductor metal oxide under ultraviolet irradiation is transferred to basal oxygen. When sterilizing and purifying, it is possible to perform sterilization and purification more easily and highly by using transition energy.

本実施形態に係る殺菌・浄化装置の構成を示した断面図である。It is sectional drawing which showed the structure of the sterilization / purification apparatus which concerns on this embodiment. 本実施形態に係る殺菌・浄化装置を設置した生ゴミ集積室を示した平面図である。It is a top view which showed the garbage collection room which installed the sterilization / purification apparatus which concerns on this embodiment.

以下、本発明の空気の殺菌・浄化装置の一例と共に空気の殺菌・浄化方法について図面に基づいて詳細に説明する。
図1は、本実施形態に係る殺菌・浄化装置の構成を示した断面図である。
この実施形態の空気の殺菌・浄化装置は、汚染された空気1aを吸引する空気吸引口2aと、殺菌・浄化処理が施された空気1bを放出する空気放出口2bとがケーシング9に設けられ、空気吸引口2aと空気放出口2bとの間を連続する蛇行ダクト3がケーシング9内部に設けられている。
Hereinafter, the air sterilization / purification method will be described in detail with reference to the drawings together with an example of the air sterilization / purification device of the present invention.
FIG. 1 is a cross-sectional view showing the configuration of the sterilization / purification device according to the present embodiment.
In the air sterilization / purification device of this embodiment, the casing 9 is provided with an air suction port 2a for sucking the contaminated air 1a and an air discharge port 2b for discharging the sterilized / purified air 1b. A meandering duct 3 continuous between the air suction port 2a and the air discharge port 2b is provided inside the casing 9.

モーターによって駆動される軸流ファン7が空気放出口2bに取付けられており、軸流ファン7により空気1aが空気吸引口2aから吸引され、空気流として蛇行ダクト3に沿って流動し、空気1bとして空気放出口2bから放出されるように構成されており、蛇行ダクト3内の空気吸引口2a側となる上流側から空気放出口2b側となる下流側までの間には、蛇行ダクト3の内面と蛇行ダクト3内を流動する空気流とを所定の光で照射するためのランプ4,5,6が配設されている。 An axial flow fan 7 driven by a motor is attached to an air discharge port 2b, and air 1a is sucked from an air suction port 2a by the axial flow fan 7, flows as an air flow along a meandering duct 3, and air 1b. The air is discharged from the air discharge port 2b, and the meandering duct 3 is located between the upstream side of the meandering duct 3 on the air suction port 2a side and the downstream side of the air discharge port 2b. Lamps 4, 5 and 6 for irradiating the inner surface and the air flow flowing in the meandering duct 3 with predetermined light are arranged.

蛇行ダクト3は、複数の上向流路3aと下向流路3bとが垂壁3cを挟んで隣接するとともに上下で折り返して連続しており、空気流が空気吸引口2aから空気放出口2bまで繰り返し上下に蛇行して流れるように設けられている。 In the meandering duct 3, a plurality of upward flow paths 3a and downward flow paths 3b are adjacent to each other with a hanging wall 3c interposed therebetween and are folded up and down continuously, so that an air flow flows from an air suction port 2a to an air discharge port 2b. It is provided to meander up and down repeatedly until it flows.

空気流に接する蛇行ダクト3の内面やケーシング9内面には、光触媒層3dが設けられている。本実施形態では蛇行ダクト3及びケーシング9の全内面が光触媒層3dからなる。
光触媒層3dは、接触電池作用が得られる材料に担持されたN型半導体金属酸化物により構成されている。
A photocatalyst layer 3d is provided on the inner surface of the meandering duct 3 in contact with the air flow and the inner surface of the casing 9. In the present embodiment, the entire inner surface of the meandering duct 3 and the casing 9 is composed of the photocatalyst layer 3d.
The photocatalyst layer 3d is composed of an N-type semiconductor metal oxide supported on a material capable of obtaining a contact battery action.

具体的には、光触媒層3dは、例えば導電性塗料に酸化亜鉛(ZnO)の粉末を混合し、銅板若しくは銅の鍍金に塗布担持させたものなどを用いることができる。担持させる方法としては例としてスパッタリング法を採用することで実現するこができる。
このような光触媒層3dでは、CuとZnOの電位差による接触電池作用が得られ、ZnOの電荷を高めて光触媒効果を促し、電子放出を増加させることが可能である。
Specifically, as the photocatalyst layer 3d, for example, a conductive paint mixed with zinc oxide (ZnO) powder and coated and supported on a copper plate or copper plating can be used. As a method of supporting, it can be realized by adopting a sputtering method as an example.
In such a photocatalytic layer 3d, a contact battery action can be obtained by the potential difference between Cu and ZnO, and it is possible to increase the charge of ZnO to promote the photocatalytic effect and increase electron emission.

蛇行ダクト3の内面を構成する銅板若しくは銅の鍍金は、ケーシング9や蛇行ダクト3自体であってもよく、これらとは別に形成されて内面に配置したものであってもよい。銅板は変形不能な板であっても変形可能な膜や積層物であってもよい。 The copper plate or copper plating constituting the inner surface of the meandering duct 3 may be the casing 9 or the meandering duct 3 itself, or may be formed separately from these and arranged on the inner surface. The copper plate may be a non-deformable plate or a deformable film or laminate.

このような蛇行ダクト3には、空気吸引口2a側となる上流側から空気放出口2b側となる下流側までの間に複数のエリアが設けられ、各エリア毎に所定の波長の光を照射するためのランプ4,5,6が設置されている。
上流側の2つのエリアには、N型半導体金属酸化物に接触しながら移行する空気流の基底状態酸素に、波長180~360nmの近紫外線を照射する紫外線ランプ4,5が配置されている。
本実施形態では、最上流のエリアに波長182nmの紫外線を照射する紫外線ランプ4が垂壁3cの上端に装着されている。また次のエリアには波長254nmの紫外線を照射する紫外線ランプ5が垂壁3cの上端及び量側面に複数装着されている。
In such a meandering duct 3, a plurality of areas are provided between the upstream side on the air suction port 2a side and the downstream side on the air discharge port 2b side, and light of a predetermined wavelength is irradiated to each area. Lamps 4, 5 and 6 are installed for this purpose.
In the two areas on the upstream side, ultraviolet lamps 4 and 5 that irradiate near-ultraviolet rays having a wavelength of 180 to 360 nm to the ground state oxygen of the air flow that migrates while in contact with the N-type semiconductor metal oxide are arranged.
In the present embodiment, an ultraviolet lamp 4 that irradiates the most upstream area with ultraviolet rays having a wavelength of 182 nm is attached to the upper end of the hanging wall 3c. Further, in the next area, a plurality of ultraviolet lamps 5 for irradiating ultraviolet rays having a wavelength of 254 nm are mounted on the upper end and the side surface of the hanging wall 3c.

さらに下流側のエリアには、N型半導体金属酸化物の表面励起により生成して順次後方に送られる活性酸素種に波長400~650nmの可視光線を照射するハロゲンランプ6が配置されている。
本実施形態では、最も下流のエリアに波長400~650nmの可視光線を照射するハロゲンランプ6が、流路の中央に突出して装着されている。蛇行ダクト3の最も下流のエリアでは、流路の断面積が他のエリアよりも大きく設けられている。そのため内部を流れる空気流の流速を低下させ、ハロゲンランプ6からの可視光が十分に照射することが可能となっている。
Further, in the area on the downstream side, a halogen lamp 6 that irradiates visible light having a wavelength of 400 to 650 nm to active oxygen species generated by surface excitation of an N-type semiconductor metal oxide and sequentially sent to the rear is arranged.
In the present embodiment, a halogen lamp 6 that irradiates visible light having a wavelength of 400 to 650 nm in the most downstream area is mounted so as to project from the center of the flow path. In the most downstream area of the meandering duct 3, the cross-sectional area of the flow path is provided to be larger than the other areas. Therefore, the flow velocity of the air flow flowing inside is reduced, and the visible light from the halogen lamp 6 can be sufficiently irradiated.

本実施形態の殺菌・浄化装置では、ケーシング9の蛇行ダクト3の下部に、これらの各ランプ4,5,6を点灯させるための安定器10と、グロープラグ11と、配線集結用の端子ボックス12と、が設置されている。 In the sterilization / purification device of the present embodiment, a ballast 10 for lighting each of these lamps 4, 5 and 6, a glow plug 11 and a terminal box for wiring collection are provided at the lower part of the meandering duct 3 of the casing 9. 12 and are installed.

このような殺菌・浄化装置を用いた空気の殺菌・浄化方法では、まず軸流ファン7を回転させると、細菌、真菌等の菌やウイルス、有害物質等により汚染された空気1aが、空気吸引口2aより蛇行ダクト3に連続して吸引される。
蛇行ダクト3内では、酸化亜鉛が混合された導電性塗料が銅板上に塗布された光触媒板3dに接触しながら空気流が下流側に順次流れる。
In the air sterilization / purification method using such a sterilization / purification device, when the axial fan 7 is first rotated, the air 1a contaminated with bacteria such as bacteria and fungi, viruses, harmful substances, etc. is sucked into the air. It is continuously sucked into the meandering duct 3 from the mouth 2a.
In the meandering duct 3, the air flow sequentially flows to the downstream side while the conductive paint mixed with zinc oxide is in contact with the photocatalyst plate 3d coated on the copper plate.

吸入された空気流は、最初に最上流側で紫外線ランプ4により波長182nmの紫外線の照射を受ける。これにより通過する空気流中の酸素は、基底状態酸素原子を生成する。
この基底状態酸素原子に空気中の酸素分子が反応してオゾンが生成される。
The sucked air flow is first irradiated with ultraviolet rays having a wavelength of 182 nm by the ultraviolet lamp 4 on the most upstream side. Oxygen in the air flow passing by this produces ground state oxygen atoms.
Ozone is generated by the reaction of oxygen molecules in the air with this ground state oxygen atom.

次に、この空気流及び蛇行ダクト9の内面が紫外線ランプ5により波長254nmの紫外線の照射を受ける。これにより酸化亜鉛塗布した光触媒層3dから電子が放出され、放出された電子がオゾンを分解し、一重項酸素原子と一重項酸素分子とに遷移し、酸素アニオンとなる。
またN型半導体金属酸化物に波長254nmの紫外線を照射して放出された電子が、空気流中の基底状態酸素に電子授与され、酸素が励起されてラジカル化し、活性酸素アニオンを生成する。
Next, the air flow and the inner surface of the meandering duct 9 are irradiated with ultraviolet rays having a wavelength of 254 nm by the ultraviolet lamp 5. As a result, electrons are emitted from the photocatalyst layer 3d coated with zinc oxide, and the emitted electrons decompose ozone and transition to singlet oxygen atoms and singlet oxygen molecules to become oxygen anions.
Further, the electrons emitted by irradiating the N-type semiconductor metal oxide with ultraviolet rays having a wavelength of 254 nm are donated to the ground state oxygen in the air flow, and the oxygen is excited and radicalized to generate an active oxygen anion.

次に、励起された一重項酸素原子、分子がハロゲンランプ6により波長400~650nmの可視光線の照射を受ける。これにより一重項酸素原子、分子が基底状態酸素へと移行する。この一重項酸素が22.5Kcal/molの高いエネルギーの励起状態にあるので、移行の際、周囲の空気流に対して強力な殺菌・浄化作用を呈することができる。
例えば、空気流に存在する細菌や真菌等を殺菌することができ、また電子が欠乏して不安定状態の有害物質等は酸素を授与することで安定物質にして無害化できる。さらにウイルス等は、タンパク質が炭素、水素、酸素、窒素からなるため、この酸素が紫外線を受けて内部に活性酸素種を生成することで不活化できる。
Next, the excited singlet oxygen atom and molecule are irradiated with visible light having a wavelength of 400 to 650 nm by the halogen lamp 6. As a result, singlet oxygen atoms and molecules shift to ground state oxygen. Since this singlet oxygen is in an excited state with a high energy of 22.5 Kcal / mol, it can exhibit a strong sterilizing / purifying action against the surrounding air flow at the time of migration.
For example, bacteria and fungi existing in the air stream can be sterilized, and harmful substances in an unstable state due to electron deficiency can be made stable substances and detoxified by giving oxygen. Furthermore, since the protein of a virus or the like is composed of carbon, hydrogen, oxygen, and nitrogen, this oxygen can be inactivated by receiving ultraviolet rays to generate active oxygen species inside.

このとき本実施形態では、光触媒層3dが接触電池作用を得られる材料にN型半導体金属酸化物を担持させたものであり、特に酸化亜鉛(ZnO)の粉末を導電性塗料に混入して銅板若しくは銅の鍍金に塗布担持させたものであるので、Cu-ZnOの電位差を利用して接触電池作用によりZnOの電位を高めることができる。
そのため近赤外線のような波長の大きい光を照射することなく一重項酸素を基底状態酸素に移行させることが可能で、照射する光を少なくして殺菌・浄化装置や方法を簡素化したり強力に殺菌・浄化したりすることができる。
そして、このようにして蘇生され、殺菌・浄化処理された空気1bを、軸流ファン7より放出して殺菌及び浄化処理を継続する。
At this time, in the present embodiment, the photocatalyst layer 3d is a material in which an N-type semiconductor metal oxide is supported on a material capable of obtaining a contact battery action, and in particular, zinc oxide (ZnO) powder is mixed with a conductive paint to form a copper plate. Alternatively, since it is coated and supported on a copper plating, the potential difference of Cu—ZnO can be utilized to increase the potential of ZnO by the action of a contact battery.
Therefore, it is possible to transfer singlet oxygen to basal state oxygen without irradiating light with a large wavelength such as near infrared rays, and it is possible to reduce the amount of light to irradiate, simplifying sterilization / purification equipment and methods, and powerfully sterilizing.・ It can be purified.
Then, the air 1b revived in this way and sterilized / purified is discharged from the axial fan 7 to continue the sterilization / purification treatment.

以上のような本実施形態の殺菌・浄化装置を用いた空気の殺菌及び浄化方法によれば、蛇行ダクト3内やケーシング9内に流入して流動する空気流は、これらの内面のN型半導体金属酸化物に接触しながら流動する。
その際、接触電池作用が得られる材料にN型半導体金属酸化物が担持されているので、表面励起によって生じる活性酸素種と光触媒作用の光ポンピングにより、基底状態酸素の励起による一重項酸素の生成が相乗的に高めることができる。
According to the air sterilization and purification method using the sterilization / purification device of the present embodiment as described above, the air flow flowing into and flowing into the meandering duct 3 and the casing 9 is the N-type semiconductor on the inner surface thereof. It flows while in contact with the metal oxide.
At that time, since the N-type semiconductor metal oxide is supported on the material that can obtain the contact battery action, the generation of singlet oxygen by the excitation of the ground state oxygen by the optical pumping of the active oxygen species generated by the surface excitation and the photocatalytic action. Can be increased synergistically.

そして、この一重項酸素に対して可視光線の照射によって電磁波の誘導放出をせしめることで、基底状態酸素への遷移の際の強力なエネルギーによって瞬発的な殺菌・浄化を実現できる。
しかも空気流中の残留オゾンが放出されることがないので、人体への影響を与えるようなこともない。
Then, by causing the stimulated emission of electromagnetic waves by irradiating this singlet oxygen with visible light, it is possible to realize instantaneous sterilization and purification by the powerful energy at the time of transition to the ground state oxygen.
Moreover, since residual ozone in the air flow is not released, it does not affect the human body.

そのため院内感染などの予防や、ビル内、交通機関、居住空間の無菌化を達成することができる。さらには厨房や食品工場等の食品加工場所や医療機関などの無菌空間が要求される場所への空気供給装置や方法として有効に活用することができる。 Therefore, it is possible to prevent nosocomial infections and to sterilize the inside of buildings, transportation facilities, and living spaces. Furthermore, it can be effectively used as an air supply device or method for food processing places such as kitchens and food factories and places where aseptic spaces are required such as medical institutions.

次に、図1のような実施形態の殺菌・浄化装置を、図2に示すような閉空間からなる試験場所に設置し、殺菌・浄化装置20の作動前後の空中浮遊菌数及び落下菌数を測定した。
測定場所は、横浜金沢ハイテクセンタービル地階生ゴミ集積室(神奈川県横浜市金沢区福浦1-1-1)で、大きさは3.90m×2.07m×2.05m、容積約16mであった。生ゴミ集積室の平面図を図2に示す。
Next, the sterilization / purification device of the embodiment as shown in FIG. 1 is installed in a test place consisting of a closed space as shown in FIG. 2, and the number of airborne bacteria and the number of fallen bacteria before and after the operation of the sterilization / purification device 20 are performed. Was measured.
The measurement location is the Yokohama Kanazawa High-Tech Center Building Basement Garbage Collection Room (1-1-1, Fukuura, Kanazawa-ku, Yokohama City, Kanagawa Prefecture), and the size is 3.90m x 2.07m x 2.05m, and the volume is about 16m 3 . rice field. A plan view of the swill collection chamber is shown in FIG.

測定では、図2に示すように出入口21側の床に殺菌・浄化装置20を設置し、棚22,23の入口側の測定箇所Aと奥側の測定箇所Bにおいて、殺菌・浄化装置20の作動前の状態と、30分間作動させた後の状態とで、細菌と真菌とについて空中浮遊菌数及び落下菌数を測定した。 In the measurement, as shown in FIG. 2, the sterilization / purification device 20 is installed on the floor on the entrance / exit 21 side, and the sterilization / purification device 20 is installed at the measurement points A on the entrance side and the measurement point B on the back side of the shelves 22 and 23. The number of airborne bacteria and the number of fallen bacteria were measured for bacteria and fungi in the state before the operation and the state after the operation for 30 minutes.

空中浮遊菌数は、エアーサンプラーとしてAir Sampler BSC(Biotest社製)を用い、空気吸引量を160Lとして、エアーサンプラー法により測定した。
培養は、細菌用培地としてAgar Strips TC(Biotest社製)を用い、真菌用培地としてAgar Strips YM(Biotest社製)を用いた。細菌の培養条件を30℃で3日間とし、真菌の培養条件を25℃で7日間とした。
The number of airborne bacteria was measured by the air sampler method using Air Sampler BSC (manufactured by Biotest) as an air sampler and an air suction amount of 160 L.
For the culture, Agar Strips TC (manufactured by Biotest) was used as a medium for bacteria, and Agar Strips YM (manufactured by Biotest) was used as a medium for fungi. Bacterial culture conditions were 30 ° C. for 3 days, and fungal culture conditions were 25 ° C. for 7 days.

一方、細菌及び真菌の落下菌数は、測定箇所A、Bにそれぞれ測定用培地を2枚づつ蓋を解放して、30分間載置し、その後蓋を閉じて培養した。
培養は、細菌用培地として、標準寒天培地(栄研化学株式会社製)を用いた。真菌用培地としては、ポテトデキストロース寒天培地(栄研化学株式会社製)にクロラムフェニコールを100ppm添加したものを用いた。細菌の培養条件を30℃で3日間とし、真菌の培養条件を25℃で7日間とした。
On the other hand, for the number of fallen bacteria and fungi, two measuring media were placed at each of the measurement points A and B with the lid open for 30 minutes, and then the lid was closed for culturing.
For the culture, a standard agar medium (manufactured by Eiken Chemical Co., Ltd.) was used as a medium for bacteria. As the fungal medium, a potato dextrose agar medium (manufactured by Eiken Chemical Co., Ltd.) supplemented with 100 ppm of chloramphenicol was used. Bacterial culture conditions were 30 ° C. for 3 days, and fungal culture conditions were 25 ° C. for 7 days.

空中浮遊菌数及び落下菌数の測定結果を表1に示す。なお落下菌数は2枚の培地の平均値とした。 Table 1 shows the measurement results of the number of airborne bacteria and the number of fallen bacteria. The number of fallen bacteria was taken as the average value of the two media.

Figure 2022006685000002
Figure 2022006685000002

表1の結果から明らかなように、細菌の空中浮遊菌数及び落下菌数の何れについても、測定箇所A、Bのそれぞれで、殺菌・浄化装置20の作動前に対して30分作動後に、大幅に減少しており、十分な殺菌効果を確認できた。 As is clear from the results in Table 1, both the number of airborne bacteria and the number of fallen bacteria were measured at measurement points A and B after 30 minutes of operation compared to before operation of the sterilization / purification device 20. It decreased significantly, and a sufficient bactericidal effect could be confirmed.

1a 汚染された空気
1b 殺菌・浄化処理が施された空気
2a 空気吸引口
2b 空気放出口
3 蛇行ダクト
3a 上向流路
3b 下向流路
3c 垂壁
3d 光触媒層
4 波長182nmの紫外線ランプ
5 波長254nmの紫外線ランプ
6 波長400~650nmの可視光線ハロゲンランプ
7 軸流ファン
9 ケーシング
10 安定器
11 グロープラグ
12 端子ボックス
20 殺菌・浄化装置
21 出入口
22,23 棚

1a Contaminated air 1b Air that has been sterilized and purified 2a Air suction port 2b Air discharge port 3 Serpentine duct 3a Upward flow path 3b Downward flow path 3c Hanging wall 3d Photocatalyst layer 4 UV lamp with wavelength 182 nm 5 Wavelength 254nm UV lamp 6 Visible light halogen lamp with wavelength 400-650nm 7 Axial flow fan 9 Casing 10 Stabilizer 11 Glow plug 12 Terminal box 20 Sterilization / purification device 21 Doorway 22, 23 Shelf

Claims (3)

接触電池作用が得られる材料に担持されたN型半導体金属酸化物に波長180~360nmの近紫外線を照射して、該N型半導体金属酸化物の表面励起したところ空気流を接触させて一重項の酸素を生成した後、
波長400~650nmの可視光線を照射して、一重項酸素を電磁波の誘導放出で基底状態酸素に遷移させ、その遷移エネルギーを利用して殺菌・浄化を行うことを特徴とする空気の殺菌・浄化方法。
The N-type semiconductor metal oxide supported on the material having a contact battery action is irradiated with near-ultraviolet rays having a wavelength of 180 to 360 nm, and when the surface of the N-type semiconductor metal oxide is excited, the air flow is brought into contact with the single term. After producing oxygen
Air sterilization / purification characterized by irradiating visible light with a wavelength of 400 to 650 nm to transition singlet oxygen to ground state oxygen by stimulated emission of electromagnetic waves and sterilizing / purifying using the transition energy. Method.
接触電池作用が得られる前記材料に担持された前記N型半導体金属酸化膜は、酸化亜鉛(ZnO)の粉末を導電性塗料に混入し銅板若しくは銅の鍍金に塗布担持したもので、CuとZnOの電位差による接触電池作用によりZnOの電荷を高めて光触媒効果を促し、電子放出を増加させることを特徴とする請求項1に記載の空気の殺菌・浄化方法。 The N-type semiconductor metal oxide film supported on the material having a contact battery action is obtained by mixing zinc oxide (ZnO) powder into a conductive paint and applying and supporting it on a copper plate or copper plating. Cu and ZnO The method for sterilizing and purifying air according to claim 1, wherein the charge of ZnO is increased by the action of a contact battery due to the potential difference of the above, the photocatalytic effect is promoted, and the electron emission is increased. 空気流に接する内面は、接触電池作用が得られる材料に担持されたN型半導体金属酸化物により構成され、
前記N型半導体金属酸化物に接触しながら前記空気流を移行せしめ、該空気流の基底状態酸素に波長180~360nmの近紫外線を照射し、該N型半導体金属酸化物の表面励起により生成して順次後方に送られる一重項酸素に波長400~650nmの可視光線を照射することで、一重項酸素を電磁波の誘導放出で基底状態酸素への遷移を行う光線照射手段を具備したことを特徴とする空気の殺菌・浄化装置。
The inner surface in contact with the air flow is composed of an N-type semiconductor metal oxide supported on a material that has a contact battery function.
The air flow is transferred while in contact with the N-type semiconductor metal oxide, the ground state oxygen of the air flow is irradiated with near-ultraviolet waves having a wavelength of 180 to 360 nm, and the N-type semiconductor metal oxide is generated by surface excitation. It is characterized by being equipped with a light irradiation means that transitions the singlet oxygen to the ground state oxygen by stimulated emission of electromagnetic waves by irradiating the singlet oxygen sent backward in sequence with visible light having a wavelength of 400 to 650 nm. Air sterilization / purification device.
JP2020109060A 2020-06-24 2020-06-24 Air sterilization/purification method and apparatus Pending JP2022006685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109060A JP2022006685A (en) 2020-06-24 2020-06-24 Air sterilization/purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109060A JP2022006685A (en) 2020-06-24 2020-06-24 Air sterilization/purification method and apparatus

Publications (1)

Publication Number Publication Date
JP2022006685A true JP2022006685A (en) 2022-01-13

Family

ID=80110773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109060A Pending JP2022006685A (en) 2020-06-24 2020-06-24 Air sterilization/purification method and apparatus

Country Status (1)

Country Link
JP (1) JP2022006685A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124238A (en) * 1993-05-10 1995-05-16 Tadashi Mochizai Method for sterilizing, deodorizing and purifying air and device therefor
JP3493062B2 (en) * 1994-08-25 2004-02-03 正 持麾 Air sterilization / deodorization / purification method and device
JP2010057908A (en) * 2008-08-08 2010-03-18 Hiroshima Univ Air purifier, air purifying method, and inactivation method and deodorizing method for viruses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124238A (en) * 1993-05-10 1995-05-16 Tadashi Mochizai Method for sterilizing, deodorizing and purifying air and device therefor
JP3493062B2 (en) * 1994-08-25 2004-02-03 正 持麾 Air sterilization / deodorization / purification method and device
JP2010057908A (en) * 2008-08-08 2010-03-18 Hiroshima Univ Air purifier, air purifying method, and inactivation method and deodorizing method for viruses

Similar Documents

Publication Publication Date Title
JP2008516652A (en) Method and apparatus for sterilizing ambient air
US20080093210A1 (en) Consumer virus eradicator
JP2018102976A (en) Room and area disinfection utilizing pulsed light with modulated power flux and light system with visible light compensation between pulses
WO2007035907A2 (en) Germicidal lamp
KR101676817B1 (en) Radiation type space sterilizer
US20070212273A1 (en) Biotower eradicator
JP2021501303A (en) Air treatment system and how to use the air treatment system
CN103344008A (en) Indoor air sterile washing technology and equipment
KR102003536B1 (en) Space sterilizer
Guivan et al. Comparative inactivation of Bacillus subtilis spores using a DBD-driven xenon iodide excilamp and a conventional mercury lamp
WO2007057520A1 (en) Method and apparatus for sterilizing gas, by measuring and controlling active oxygen content and uv-intensity
WO2021166830A1 (en) Bacteriostatic method
JP2011045810A (en) Sterilization and deodorizing system by ultraviolet light source and ultraviolet active photocatalyst
JP2022006685A (en) Air sterilization/purification method and apparatus
WO2022032167A9 (en) Systems and methods for air treatment using uv irradiation
JP2018143636A (en) Reaction tube and air purification device
GB2498541A (en) Apparatus and method for all-around dry disinfection
JP3235419U (en) Blower with sterilization function
JP3112295U (en) Bipolar ion-enhanced photocatalytic air purifier
JP2021504076A (en) Air treatment system and how to use the air treatment system
JP2017136191A (en) Ozone gas sterilizer
ES2864155B2 (en) debugging equipment
JP2017169878A (en) Method for decomposing organic matter and apparatus for decomposing organic matter
JP3493062B2 (en) Air sterilization / deodorization / purification method and device
RU124567U1 (en) FOOD PROCESSING DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222