JP5419763B2 - Heating container and method of use thereof, and heating jig and method of use thereof - Google Patents
Heating container and method of use thereof, and heating jig and method of use thereof Download PDFInfo
- Publication number
- JP5419763B2 JP5419763B2 JP2010063412A JP2010063412A JP5419763B2 JP 5419763 B2 JP5419763 B2 JP 5419763B2 JP 2010063412 A JP2010063412 A JP 2010063412A JP 2010063412 A JP2010063412 A JP 2010063412A JP 5419763 B2 JP5419763 B2 JP 5419763B2
- Authority
- JP
- Japan
- Prior art keywords
- heating
- placement
- mounting
- heated
- shelf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Furnace Charging Or Discharging (AREA)
Description
本発明は、被加熱体を収納して加熱するための加熱用収納体およびその使用方法、ならびに加熱用治具およびその使用方法に関する。 The present invention relates to a heating storage body for storing and heating an object to be heated and a method for using the same, and a heating jig and a method for using the same.
加熱工程は、様々な製品の製造工程に用いられている。例えば、炉を用いた加熱工程では、板や、複数の被加熱体を載置した棚組などを炉に収容して加熱することにより、複数の被加熱体を同時に加熱することが行われている(例えば、特許文献1)。 The heating process is used in various product manufacturing processes. For example, in a heating process using a furnace, a plurality of objects to be heated are simultaneously heated by housing and heating a plate or a shelf set on which the objects to be heated are placed in the furnace. (For example, Patent Document 1).
しかしながら、複数の被加熱体を、板や棚組に載置して同時に加熱する場合、被加熱体を収納する棚組自体が熱を吸収するために、各被加熱体の周囲の雰囲気温度が異なっていき、各被加熱体の受ける熱量にバラツキが生じていく。 However, when a plurality of objects to be heated are placed on a plate or a shelf set and heated simultaneously, the shelf assembly itself that stores the objects to be heated absorbs heat, so the ambient temperature around each object to be heated is The amount of heat received by each object to be heated varies.
上記の問題に鑑みて、本発明の課題は、複数の被加熱体を収納または載置してこれらを同時に加熱することを可能にし、加熱時において収納または載置された複数の被加熱体が受ける熱量の差を少なくする加熱用収納体およびその使用方法、ならびに加熱用治具およびその使用方法を提供することにある。 In view of the above problems, an object of the present invention is to store or place a plurality of objects to be heated and to heat them simultaneously, and the objects to be heated or stored at the time of heating An object of the present invention is to provide a heating storage body and a method for using the same, and a heating jig and a method for using the same.
上記課題を解決するために完成した、本発明は、以下に示す、加熱用収納体および加熱用収納体の使用方法、ならびに加熱用治具および加熱用治具の使用方法である。 The present invention completed in order to solve the above-mentioned problems is a heating container, a method for using the heating container, a heating jig, and a heating jig.
[1] 被加熱体を載置する載置面が表面の一部に設けられた複数の載置部と、1の前記載置部に設けられた前記載置面と前記1の載置部の隣に配置された前記載置部との間に空間を有して前記複数の載置部が積み重なるように前記複数の載置部を着脱可能に固定する固定部とを有し、前記複数の載置部は、他の前記載置部に設けられた前記載置面の熱放射率とは異なる熱放射率を有する前記載置面が設けられた前記載置部を含んでいる加熱用収納体。 [1] A plurality of placement units in which a placement surface on which the object to be heated is placed is provided on a part of the surface, the previous placement surface provided in one previous placement unit, and the first placement unit. A plurality of mounting portions that are detachably fixed so that the plurality of mounting portions are stacked so that the plurality of mounting portions are stacked. The mounting unit includes a mounting unit provided with the mounting surface having a thermal emissivity different from that of the mounting surface provided in the other mounting unit. Storage body.
[2] 前記載置部が、板形状を有して前記板形状の表裏2面のうちの1の面に前記載置面が設けられており、1の前記載置部に設けられた前記載置面と前記1の載置部の上隣に配置された前記載置部の前記載置面に対して反対側の表面との間に空間を有して前記複数の載置部が積み重なる前記[1]に記載の加熱用収納体。 [2] Before the placement portion has a plate shape, the placement surface is provided on one of the two front and back surfaces of the plate shape, and the placement portion is provided on the one placement portion. The plurality of placement units are stacked with a space between the placement surface and the surface opposite to the previous placement surface of the previous placement unit disposed adjacent to the first placement unit. The heating container according to the above [1].
[3] 前記板形状の前記載置部において、前記載置面と前記載置面に対して反対側の表面との間で熱放射率が等しい前記[2]に記載の加熱用収納体。 [3] The heating container according to [2], wherein the plate-shaped mounting portion has the same thermal emissivity between the mounting surface and a surface opposite to the mounting surface.
[4] 前記載置部と、前記載置部に結合した前記固定部とが設けられた複数の単体を備え、1の前記単体に設けられた前記載置面と前記1の単体の隣に配置された前記単体との間に空間を有して前記複数の単体が積み重なるように、1の前記単体に設けられた前記固定部が他の前記単体に着脱可能に接続されている前記[1]〜[3]のいずれかに記載の加熱用収納体。 [4] A plurality of single units provided with the mounting unit described above and the fixing unit coupled to the mounting unit are provided, and the mounting surface provided on the single unit and adjacent to the single unit. [1] The fixing portion provided on one of the single units is detachably connected to the other single unit so that the plurality of single units are stacked with a space between the arranged single units. ] The heating container according to any one of [3] to [3].
[5] 前記[1]〜[4]のいずれかに記載の加熱用収納体を用い、前記載置面に前記被加熱体を載置することにより前記被加熱体を前記加熱用収納体に収納して、加熱手段によって前記被加熱体を前記加熱用収納体とともに加熱する場合に、それぞれの前記載置部に設けられた前記載置面の熱放射率の大小の昇順が各前記載置面の面した空間の雰囲気温度の高低の降順と対応するように、前記複数の載置部を積み重ねて使用する加熱用収納体の使用方法。 [5] Using the heating container according to any one of [1] to [4], the heated object is placed on the heating container by placing the heated object on the placement surface. In the case where the object to be heated is heated together with the heating container by the heating means, the ascending order of the thermal emissivity of the mounting surface provided in each of the mounting units described above is set in each of the above-described mounting units. A method of using the heating container, wherein the plurality of mounting portions are stacked and used so as to correspond to descending order of the atmospheric temperature of the space facing the surface.
[6] 前記[1]〜[4]のいずれかに記載の加熱用収納体を用い、それぞれの前記載置部に設けられた前記載置面の前記熱放射率がより上方に配置された前記載置部に設けられた前記載置面の前記熱放射率以上となるように、前記複数の載置部を積み重ねつつ前記載置面に前記被加熱体を載置して前記被加熱体を前記加熱用収納体に収納し、前記加熱用収納体を壁部に囲まれた収容室内に収容して、前記収容室内の雰囲気温度を上昇させることにより前記被加熱体を前記加熱用収納体とともに加熱する加熱用収納体の使用方法。 [6] Using the heating container according to any one of [1] to [4], the thermal emissivity of the placement surface provided in each of the placement portions is disposed higher. The object to be heated is placed on the placement surface while stacking the plurality of placement parts so that the thermal emissivity of the placement surface provided in the placement part is equal to or higher than the thermal emissivity. Are stored in the heating storage body, the heating storage body is stored in a storage chamber surrounded by a wall, and the temperature of the atmosphere in the storage chamber is increased, whereby the object to be heated is heated. How to use the heating container that heats together.
[7] 板形状を有して表裏2つの表面のうちの1の表面が被加熱体を載置するための載置面とされ、前記載置面の縁側部分の熱放射率よりも前記載置面の中心側部分の熱放射率が大きい加熱用治具。 [7] One of the two front and back surfaces having a plate shape is a mounting surface on which the object to be heated is mounted, and is described above than the thermal emissivity of the edge side portion of the mounting surface. A heating jig with a large thermal emissivity at the center of the mounting surface.
[8] 前記載置面は、複数の板形状の部材の表裏2つの表面のうちの1の表面が略同一平面上に並べられて合わされることにより形成されている前記[7]に記載の加熱用治具。 [8] The mounting surface according to [7], wherein the placement surface is formed by aligning and aligning one surface of two front and back surfaces of a plurality of plate-shaped members on substantially the same plane. Heating jig.
[9] 前記[7]または[8]に記載の加熱用治具を用い、前記載置面に前記被加熱体を載置した前記加熱用治具を壁部に囲まれた収容室内に収容し、前記壁部からの放射伝熱によって、前記被加熱体とともに前記加熱用治具を加熱する加熱用治具の使用方法。 [9] Using the heating jig according to [7] or [8], the heating jig in which the object to be heated is placed on the placement surface is housed in a housing chamber surrounded by a wall. And the usage method of the heating jig | tool which heats the said heating jig | tool with the said to-be-heated body by the radiant heat transfer from the said wall part.
本発明の加熱用収納体は、複数の被加熱体を収納してこれらを同時に加熱することを可能にし、加熱時において、収納された複数の被加熱体が受ける熱量の差を少なくできる。本発明の加熱用収納体の使用方法は、複数の被加熱体を同時に加熱しかつ加熱時に被加熱体の受ける熱量の差を少なくできる。 The heating storage body of the present invention can store a plurality of objects to be heated and simultaneously heat them, and can reduce the difference in the amount of heat received by the plurality of stored objects to be heated. The method of using the heating storage body of the present invention can simultaneously heat a plurality of objects to be heated and reduce the difference in the amount of heat received by the objects to be heated during heating.
本発明の加熱用治具は、複数の被加熱体を載置してこれらを同時に加熱することを可能にし、加熱時において、載置された複数の被加熱体が受ける熱量の差を少なくできる。本発明の加熱用治具の使用方法は、複数の被加熱体を同時に加熱しかつ加熱時に被加熱体の受ける熱量の差を少なくできる。 The heating jig of the present invention makes it possible to place a plurality of objects to be heated and simultaneously heat them, and to reduce the difference in the amount of heat received by the plurality of objects to be heated during heating. . The method for using the heating jig of the present invention can simultaneously heat a plurality of objects to be heated and reduce the difference in the amount of heat received by the objects to be heated during heating.
以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.
1.加熱用収納体:
本発明の加熱用収納体は、被加熱体を載置する載置面を表面の一部に設けられた複数の載置部と、1の載置部に設けられた載置面と前記1の載置部の隣に配置された載置部との間に空間を有して複数の載置部が積み重なるように、複数の載置部を着脱可能に固定する固定部とを有し、複数の載置部には、他の載置部に設けられた載置面の熱放射率とは異なる熱放射率を有する載置面を設けられた載置部が含まれていることを特徴とする。
1. Heating container:
The heating storage body according to the present invention includes a plurality of placement portions provided on a part of a surface of a placement surface on which a heated object is placed, a placement surface provided on one placement portion, and the 1 A fixing portion that detachably fixes the plurality of placement portions so that the plurality of placement portions are stacked with a space between the placement portion and the placement portion disposed next to the placement portion, The plurality of placement units include a placement unit provided with a placement surface having a thermal emissivity different from the thermal emissivity of a placement surface provided in another placement unit. And
本発明の加熱用収納体は、複数の載置部が積み重なっており、各載置部の載置面に被加熱体を載置することによって、複数の被加熱体を収納することができる。本発明の加熱用収納体は、複数の被加熱体を収納して同時に加熱できるため、生産性を高めることができる。 In the heating storage body of the present invention, a plurality of mounting portions are stacked, and a plurality of heating target bodies can be stored by mounting the heating target bodies on the mounting surface of each mounting portion. Since the heating storage body of the present invention can store and heat a plurality of objects to be heated, productivity can be improved.
本発明の加熱用収納体では、複数の空間が、隣接する載置部の間に挟まれて積み重なっており、これら複数の空間内にそれぞれ被加熱体を収納して同時に加熱する。本発明の加熱用収納体を加熱する際には、被加熱体を収納する複数の空間の雰囲気温度にバラツキが生じる場合がある。このような場合、高い雰囲気温度の空間に収納された被加熱体は、雰囲気ガスから受ける熱量が大きく、低い雰囲気温度の空間に収納された被加熱体は、雰囲気ガスから受ける熱量が小さくなる。 In the heating storage body of the present invention, a plurality of spaces are sandwiched and stacked between adjacent placement portions, and the objects to be heated are respectively stored in the plurality of spaces and heated simultaneously. When heating the heating storage body of the present invention, there may be variations in the ambient temperature of the plurality of spaces in which the object to be heated is stored. In such a case, the object to be heated housed in the high ambient temperature space receives a large amount of heat from the atmosphere gas, and the object to be heated housed in the low atmosphere temperature space receives a small amount of heat from the atmosphere gas.
本発明の加熱用収納体は、複数の載置部に、他の載置部に設けられた載置面の熱放射率とは異なる熱放射率を有する載置面を設けられた載置部が含まれており、かつ、これら複数の載置部が積み重なる順番を入れ替えるまたは特定の載置部を別の載置部に取りかえることができる。そのため、本発明の加熱用収納体は、被加熱体を収納して加熱する際に、雰囲気温度が低くなる空間に面した載置面の熱放射率を大きく、雰囲気温度が高くなる空間に面した載置面の熱放射率を小さくするように、複数の載置部の順番を定めて積み重ねて使用する方法を適用できる(詳しくは後述)。この使用方法では、被加熱体は、雰囲気ガスから受ける熱量の少ない場合には、載置面からの放射伝熱によって多くの熱を受け、雰囲気ガスから受ける熱量が多い場合には、載置面からの放射伝熱によって少ない熱を受ける。したがって、本発明の加熱用収納体では、複数の被加熱体を収納して加熱した場合に、各被加熱体の受ける熱量の差を小さくできる。 The heating storage body of the present invention is a mounting unit in which a plurality of mounting units are provided with a mounting surface having a thermal emissivity different from the thermal emissivity of a mounting surface provided in another mounting unit. And the order in which the plurality of placement units are stacked can be changed, or a specific placement unit can be replaced with another placement unit. For this reason, the storage body for heating according to the present invention has a large heat emissivity of the mounting surface facing the space where the ambient temperature becomes low when the object to be heated is stored and heated, and faces the space where the ambient temperature becomes high. In order to reduce the thermal emissivity of the mounting surface, it is possible to apply a method in which the order of the plurality of mounting parts is determined and stacked (details will be described later). In this method of use, when the amount of heat received from the atmosphere gas is small, the object to be heated receives a lot of heat due to radiant heat transfer from the mounting surface, and when the amount of heat received from the atmosphere gas is large, the mounting surface Receives less heat due to radiant heat transfer from. Therefore, in the heating storage body of the present invention, when a plurality of heated bodies are stored and heated, the difference in the amount of heat received by each heated body can be reduced.
本発明の加熱用収納体は、載置部が板形状を有して板形状の表裏2面のうちの1の面に載置面が設けられ、1の載置部に設けられた載置面と前記1の載置部の上隣に配置された載置部の載置面に対して反対側の表面との間に空間を有して複数の載置部が積み重なることが好ましい。 In the heating storage body of the present invention, the mounting portion has a plate shape, the mounting surface is provided on one of the two front and back surfaces of the plate shape, and the mounting portion is provided on one mounting portion. It is preferable that a plurality of mounting portions are stacked with a space between the surface and a surface opposite to the mounting surface of the mounting portion disposed on the first mounting portion.
この実施形態では、板形状の載置部の表裏2つの面が被加熱体を収納する空間に面しており、載置部は、被加熱体を収納する空間の雰囲気ガスから熱を受けやすい。したがって、この形態では、載置部は、雰囲気ガスから熱を吸収し、この熱を載置面からの放射伝熱によって効率的に被加熱体に伝えることができる。また、板形状の載置部の厚さを薄くした実施形態は、載置部の熱容量が低くなるため、載置部の温度が速やかに高まって載置面から被加熱体への放射伝熱が効率的に行われる。 In this embodiment, the two front and back surfaces of the plate-shaped mounting portion face the space for storing the heated object, and the mounting portion is likely to receive heat from the atmospheric gas in the space for storing the heated object. . Therefore, in this embodiment, the placement unit can absorb heat from the atmospheric gas and efficiently transmit this heat to the object to be heated by radiation heat transfer from the placement surface. Further, in the embodiment in which the thickness of the plate-shaped mounting portion is reduced, the heat capacity of the mounting portion is reduced, so that the temperature of the mounting portion is rapidly increased and the radiant heat transfer from the mounting surface to the object to be heated is performed. Is done efficiently.
上記の板形状の載置部を有する形態では、載置部において、載置面と載置面に対して反対側の表面との間で熱放射率が等しいことがより好ましい。 In the embodiment having the plate-shaped mounting portion, it is more preferable that the mounting portion has the same thermal emissivity between the mounting surface and the surface opposite to the mounting surface.
この実施形態では、載置部は、高い熱放射率の載置面が設けられた場合、その反対側の表面の熱放射率も高くなっている。熱放射率が高いことは熱吸収率が高いことを意味するため、この実施形態においては、高い熱放射率を有する載置面を設けられた板形状の載置部は、載置面とその反対側の表面からより多くの熱を吸収することができる。これにより、各載置部の間では、載置面の熱放射率の大小に応じ、載置部の吸収する熱量の大小の差が明確に生じる。したがって、この実施形態では、各載置部は、載置面の熱放射率の大小の差による作用を一層明確に反映させるかたちで、それぞれの載置面に載置された被加熱体に対し、異なる量の熱を放射伝熱によって与えることができる。 In this embodiment, when the mounting surface is provided with a mounting surface having a high thermal emissivity, the thermal emissivity of the surface on the opposite side is also high. Since a high thermal emissivity means a high heat absorption rate, in this embodiment, the plate-shaped mounting portion provided with the mounting surface having a high thermal emissivity is the mounting surface and its mounting surface. More heat can be absorbed from the opposite surface. As a result, a difference in the amount of heat absorbed by the mounting portion is clearly generated between the mounting portions in accordance with the thermal emissivity of the mounting surface. Therefore, in this embodiment, each mounting portion reflects the action due to the difference in thermal emissivity of the mounting surface more clearly, with respect to the heated object mounted on each mounting surface. Different amounts of heat can be provided by radiant heat transfer.
本発明の加熱用収納体は、載置部と、載置部に結合した固定部とが設けられた複数の単体を備え、1の単体に設けられた載置面と前記1の単体の隣に配置された単体との間に空間を挟ませて複数の単体が積み重なるように、1の単体に設けられた固定部が他の単体に着脱可能に接続されていることが好ましい。 The heating storage body of the present invention includes a plurality of single units provided with a mounting unit and a fixing unit coupled to the mounting unit, and a mounting surface provided in one single unit and the one single unit next to each other. It is preferable that a fixing portion provided in one single unit is detachably connected to another single unit so that a plurality of single units are stacked with a space between the single unit and the other unit.
この実施形態では、加熱用収納体を構成する単体の着脱、単体の配置の入れ替えが容易となり、また、載置部を積み重ねた状態でそのまま加熱用収納体を移動することもできる。したがって、加熱用収容体を電気炉内に収容して加熱する場合には、炉外で予め被加熱体を載置面に載置し、被加熱体を収納した状態の加熱用収納体をそのまま電気炉内に移動させて手早く加熱することができる。また、この実施形態では、単体の積み重ねが容易であるため、電気炉における加熱条件の変化に対して、単体の配置を入れ替えるなどにより容易に対処できる。 In this embodiment, it becomes easy to attach and detach a single unit constituting the heating storage unit and to change the arrangement of the single unit, and it is also possible to move the heating storage unit as it is in a state where the mounting portions are stacked. Therefore, when the heating container is accommodated in the electric furnace and heated, the heated object is placed on the mounting surface in advance outside the furnace, and the heated container in the state in which the heated object is accommodated is left as it is. It can be quickly heated by moving into an electric furnace. Moreover, in this embodiment, since the stacking of the single unit is easy, it is possible to easily cope with the change of the heating condition in the electric furnace by changing the arrangement of the single unit.
以下、本発明の加熱用収納体の実施形態の具体例を示すことにより、本発明の加熱用収納体の内容をより詳しく説明する。 Hereinafter, the content of the heating container of the present invention will be described in more detail by showing a specific example of the embodiment of the heating container of the present invention.
図1は、本発明の加熱用収納体の一実施形態である棚組21の斜視図である。図2は、図1に示す棚組21を構成する1つの棚23a,23bの斜視図である。 FIG. 1 is a perspective view of a shelf assembly 21 which is an embodiment of the heating storage body of the present invention. FIG. 2 is a perspective view of one shelf 23a, 23b constituting the shelf assembly 21 shown in FIG.
図2を参照し述べると、棚23a,23bは、棚板25a,25bと支持部29とを有する。支持部29は、棚板25a,25bの表裏2つの面のうちの一方の側の面に接続されている。なお、棚板25aと棚板25bとは、表面の熱放射率が異なっている。棚25aの表面の熱放射率εaは、棚板25bの熱放射率εbよりも小さい。被加熱体31は、棚23a,23bの棚板25a,25bの上方の表面に載置することができる。 Referring to FIG. 2, the shelves 23 a and 23 b include shelf plates 25 a and 25 b and a support portion 29. The support portion 29 is connected to one of the two front and back surfaces of the shelf boards 25a and 25b. The shelf board 25a and the shelf board 25b have different surface heat emissivities. Thermal emissivity epsilon a surface of the shelf 25a is smaller than the thermal emissivity epsilon b shelf 25b. The to-be-heated body 31 can be mounted on the surface above the shelf plates 25a and 25b of the shelves 23a and 23b.
1つの棚23bを床41に支持部29を付けて置き、この棚23bの棚板25bに上に別の棚23bを置き、さらに上方の棚23bの棚板25bの上に棚23aを置けば、図1に示す棚組21となる。図1の棚組21のうち上2つの棚23a,23bを参照し述べると、棚23aは、下方の棚23bの棚板25b上に支持部29を載せると、棚23aの棚板25aと棚23bの棚板25bとの間に空間Sがつくられる。 If one shelf 23b is placed on the floor 41 with the support 29, another shelf 23b is placed on the shelf 25b of the shelf 23b, and the shelf 23a is placed on the shelf 25b of the upper shelf 23b. The shelf assembly 21 shown in FIG. Referring to the upper two shelves 23a and 23b in the shelf assembly 21 of FIG. 1, when the support portion 29 is placed on the shelf 25b of the lower shelf 23b, the shelf 23a and the shelf 25a of the shelf 23a A space S is created between the shelf plate 25b of 23b.
図1,2に示す実施形態とは異なり、各棚23a,23bは、支持部29が上方、棚板25a,25bが下方となる体勢で積み重ねてもよい(図示せず)。すなわち、棚23aの支持部29の上に、別の棚23bの棚板25bを載せて積み上げる。この際、棚板25bの支持部29が接続されていない面を、下方の棚23aの支持部につけて積み上げれば、ちょうど図1に示す棚組21の上下が反転した形態にて棚組21を組むことができる。図1に示す棚組21を上下反転させた形態の場合、最下段の棚23aの棚板25aの下側の表面(支持部29に接続してない側の表面)が、全面にわたり床41に接触する(図示せず)。そのため、最下段の棚板25aのみが、床41との接触によって床41から熱を受けてしまうことになる。棚組21の各棚板25a,25bの熱を受ける様式が同じになるようにでき、各棚板25a,25b間の温度差を小さくする観点からは、図1,2のように、最下段の棚23a,23bは、棚板25a,25bが床41に直接接触しないように、支持部29を床41につけて設置することが好ましい。 Unlike the embodiment shown in FIGS. 1 and 2, the shelves 23 a and 23 b may be stacked in such a posture that the support portion 29 is upward and the shelf plates 25 a and 25 b are downward (not shown). That is, on the support part 29 of the shelf 23a, the shelf board 25b of another shelf 23b is placed and stacked. At this time, if the surface to which the support portion 29 of the shelf plate 25b is not connected is attached to the support portion of the lower shelf 23a and stacked, the shelf assembly 21 is just inverted in the form of the shelf assembly 21 shown in FIG. Can be assembled. In the case where the shelf assembly 21 shown in FIG. 1 is turned upside down, the lower surface of the shelf 25a of the lowermost shelf 23a (the surface not connected to the support portion 29) is entirely on the floor 41. Contact (not shown). For this reason, only the bottom shelf 25 a receives heat from the floor 41 due to contact with the floor 41. From the standpoint of reducing the temperature difference between the shelf plates 25a and 25b, the lowest level as shown in FIGS. The shelves 23 a and 23 b are preferably installed with the support 29 attached to the floor 41 so that the shelf boards 25 a and 25 b do not directly contact the floor 41.
図4は、本発明の加熱用収納体の一実施形態である他の棚組21の模式図である。この図に示す棚組21では、棚板25a,25bがこれに接続する支持部29によって床41から離れた位置に固定され、各棚23a,23b同士を比較すると支持部29の長さが異なっている。そのため、短い支持部29を有する棚23の棚板25の上に、これより長い支持部29を有する棚23の棚板25が配置されるように、複数の棚板25a,25bを積み重ねていくことができる。図4に示す棚組21では、各棚23a,23bは、他の棚23a,23bに接触することなく、自身の支持部29が床41に接触して支えられることにより、各自の棚板25a,25bの床41からの高さが定められている。 FIG. 4 is a schematic view of another shelf assembly 21 which is an embodiment of the heating storage body of the present invention. In the shelf assembly 21 shown in this figure, the shelf plates 25a and 25b are fixed at a position away from the floor 41 by the support portion 29 connected thereto, and the length of the support portion 29 is different when the shelves 23a and 23b are compared with each other. ing. Therefore, the plurality of shelf boards 25a and 25b are stacked so that the shelf board 25 of the shelf 23 having the longer support section 29 is arranged on the shelf board 25 of the shelf 23 having the shorter support section 29. be able to. In the shelf assembly 21 shown in FIG. 4, each shelf 23a, 23b is supported by its own support portion 29 contacting and supporting the floor 41 without contacting the other shelves 23a, 23b. , 25b from the floor 41 is defined.
図5は、本発明の加熱用収納体の一実施形態である棚組21が設けられている炉11の模式図である。炉壁14から炉内12に向けて突き出すように複数の受け部27を設け、さらに、これら複数の受け部27が上下方向に沿って並べて設置されている。各受け部27に、棚板25a,25bを持たせることで、複数の棚板25a,25bが上下方向に空間を挟んで積み重なる棚組21がつくられる。図5に示す棚組21は、棚板25a,25bと、炉壁14に対して実質的に一体となっている受け部27とによって構成されている。 FIG. 5 is a schematic diagram of the furnace 11 provided with the shelf assembly 21 which is an embodiment of the heating storage body of the present invention. A plurality of receiving portions 27 are provided so as to protrude from the furnace wall 14 toward the furnace interior 12, and the plurality of receiving portions 27 are arranged side by side in the vertical direction. By providing each receiving portion 27 with shelf plates 25a and 25b, a shelf assembly 21 is formed in which a plurality of shelf plates 25a and 25b are stacked with a space in the vertical direction. The shelf assembly 21 shown in FIG. 5 includes shelf plates 25 a and 25 b and a receiving portion 27 that is substantially integrated with the furnace wall 14.
図6は、本発明者等が測定した各種材料についての波長1.6〜3.6μmでの熱放射率を表す。炭化珪素とSiO2(炭化珪素表面に酸化皮膜として存在)(SiC=98質量%、SiO2=2質量%、気孔率17%)の熱放射率を、常温(25℃)の場合が「黒塗り三角」、1000℃が「黒塗り丸」で示す。酸化チタンとSiO2の混合物(TiO=50質量%、SiO2=50質量%、気孔率20%)の常温(25℃)での放射率を「黒塗り四角」で示す。コージェライト(2MgO・2Al2O3・5SiO2=100質量%、気孔率20%)の常温(25℃)での熱放射率を「白抜き丸」で示す。アルミナ質材料(Al203=92質量%、SiO2=8質量%、気孔率15%)の熱放射率を常温(25℃)の場合が「白抜き四角」、1000℃の場合が「白抜き菱形」で示す。アルミナ質材料(Al2O3=99質量%、SiO2=1質量%、気孔率1%)の常温(25℃)での熱放射率を「白抜き三角」で示す。炭化珪素とSiO2、および酸化チタンとSiO2の波長1.6〜2.6μmでの放射率は、常温(25℃)および高温(1000℃)ともに約0.8から約0.9である。対して、コージェライト、および、アルミナとSiO2からなるアルミナ質材料の波長1.6〜2.6μmでの放射率は、常温(25℃)および高温(1000℃)ともに約0.1から約0.25である。 FIG. 6 represents thermal emissivity at wavelengths of 1.6 to 3.6 μm for various materials measured by the present inventors. The thermal emissivity of silicon carbide and SiO 2 (existing as an oxide film on the silicon carbide surface) (SiC = 98 mass%, SiO 2 = 2 mass%, porosity 17%) is “black” at room temperature (25 ° C.). “Triangle”, 1000 ° C. is indicated by “black circle”. The emissivity at normal temperature (25 ° C.) of a mixture of titanium oxide and SiO 2 (TiO = 50 mass%, SiO 2 = 50 mass%, porosity 20%) is indicated by “black square”. The thermal emissivity of cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 = 100 mass%, porosity 20%) at room temperature (25 ° C.) is indicated by “open circle”. When the thermal emissivity of the alumina material (Al 2 O 3 = 92 mass%, SiO 2 = 8 mass%, porosity 15%) is normal temperature (25 ° C.), “white square”, and 1000 ° C. This is indicated by “Open diamond”. The thermal emissivity of an alumina material (Al 2 O 3 = 99 mass%, SiO 2 = 1 mass%, porosity 1%) at room temperature (25 ° C.) is indicated by “open triangle”. The emissivity of silicon carbide and SiO 2 and titanium oxide and SiO 2 at wavelengths of 1.6 to 2.6 μm is about 0.8 to about 0.9 at both normal temperature (25 ° C.) and high temperature (1000 ° C.). . On the other hand, the emissivity of cordierite and an alumina material composed of alumina and SiO 2 at a wavelength of 1.6 to 2.6 μm is about 0.1 to about 0.1 at both normal temperature (25 ° C.) and high temperature (1000 ° C.). 0.25.
放射伝熱は、高温の物体から低温の物体へと放射と吸収によって熱が伝わる現象である。熱放射率は、物質の種類、物質の温度、波長に依存して異なる。そのため、放射伝熱によって伝わる熱量、いわゆる放射伝熱量は複数の要因が絡んだ複雑な現象によって定まる。 Radiant heat transfer is a phenomenon in which heat is transferred from a hot object to a cold object by radiation and absorption. The thermal emissivity varies depending on the type of substance, the temperature of the substance, and the wavelength. Therefore, the amount of heat transferred by radiant heat transfer, the so-called radiant heat transfer amount, is determined by a complicated phenomenon involving a plurality of factors.
熱放射率が1である黒体からの放射熱量と波長ピークの関係からは、例えば1000℃での放射熱量がピークとなるのは波長2.3μmであり、同様に、1250℃では1.9μm、1500℃では1.6μmに放射熱量のピークが現れる(図示せず)。このことから、黒体においては1000℃を越えるような温度域においては、波長2.3μm以下での熱放射率が放射伝熱に与える影響が大きいことはプランクの式を解析することから理解できるが、黒体はアイデアルなものであることは周知である。 From the relationship between the amount of radiant heat from a black body having a thermal emissivity of 1 and the wavelength peak, for example, the radiant heat amount at 1000 ° C. has a peak at a wavelength of 2.3 μm, and similarly at 1.9 μm at 1250 ° C. At 1500 ° C., a peak of radiant heat appears at 1.6 μm (not shown). From this, it can be understood from the analysis of Planck's equation that the thermal emissivity at a wavelength of 2.3 μm or less has a large effect on radiant heat transfer in a temperature range exceeding 1000 ° C. in a black body. However, it is well known that black bodies are ideal.
アルミナ質耐火物は、焼成炉の構造材(炉壁などに用いる耐火物)や被加熱体を収納する棚組の基体に用いられている。アルミナ質耐火物の熱放射率は、0.65として知られていた(例えば「化学工学便覧」(丸善発行)を参照)。従来、アルミナ質耐火物からなる焼成炉の構造材や棚組を用いて被加熱体の加熱を実施した場合、アルミナ質耐火物の熱放射率が0.65であるため、アルミナ質耐火物以外の材質を用いて熱放射率の制御する必要はなく、棚組内などに発生した温度分布は不可避的なものと考えられていた。 Alumina refractories are used for a base material of a shelf assembly for storing a structural material of a firing furnace (a refractory material used for a furnace wall or the like) and an object to be heated. The thermal emissivity of alumina refractories was known as 0.65 (see, for example, “Chemical Engineering Handbook” (published by Maruzen)). Conventionally, when a heated object is heated using a structural material or a shelf set of a firing furnace made of an alumina refractory, since the thermal emissivity of the alumina refractory is 0.65, other than the alumina refractory Therefore, it was not necessary to control the thermal emissivity using the above materials, and the temperature distribution generated in the shelves was considered inevitable.
しかしながら、本発明者等らは、図6に示すようなアルミナ質耐火物、SiO2を含むSiC、およびSiO2を含む酸化チタンの波長2μm前後域での放射率の測定結果から、この波長領域での熱放射率が上記文献等に記載された値と異なることを確認している(熱放射率の具体的な数値ついては先述)。 However, the present inventors have found that alumina refractories such as shown in FIG. 6, SiC containing SiO 2, and the measurement results of the radiation at a wavelength of 2μm longitudinal band of titanium oxide containing SiO 2, this wavelength region It has been confirmed that the thermal emissivity of the material is different from the values described in the above-mentioned documents and the like (specific numerical values of the thermal emissivity are described above).
そこで、本発明者等は、被加熱体を加熱時する際に、被加熱体を収納する加熱用収納体(例えば、加熱用の棚組)の熱放射率を調整することに着目し、棚組内などに発生する温度分布の幅をより少なくすることを意図している。 Therefore, the present inventors pay attention to adjusting the thermal emissivity of a heating storage body (for example, a heating shelf assembly) that stores the heated body when the heated body is heated. It is intended to reduce the width of the temperature distribution generated in the group.
上記図1,4,5に示す棚組21は、アルミナ質材料を材質とする棚板25aを有する棚23aと、酸化チタンとSiO2との混合物を材質とする棚板25bを有する棚23bとによって構成されていれば、被加熱体31を載せる面の熱放射率が異なる棚板25a,25bを組んだ棚組21になる。 The shelf assembly 21 shown in FIGS. 1, 4 and 5 includes a shelf 23a having a shelf 25a made of an alumina material and a shelf 23b having a shelf 25b made of a mixture of titanium oxide and SiO 2. If it is comprised by this, it will become the shelf assembly 21 which assembled the shelf boards 25a and 25b from which the thermal emissivity of the surface which mounts the to-be-heated body 31 differs.
あるいは、アルミナ質材料を材質とする棚板25aを有する棚23aを2組の棚組21をつくれるだけ作製し、そのうちの1組の棚組21を構成する分の棚23aの棚板25aの表面を、酸化チタンとSiO2の混合物から形成される被覆層でコートすることにより、被加熱物31を載せる面の熱放射率が異なる棚板25a,25bから構成される棚組21を組むことができる。 Or the shelf 23a which has the shelf board 25a made from an alumina material is produced so that two sets of the shelf sets 21 can be made, and the surface of the shelf board 25a of the shelf 23a corresponding to one set of the shelf sets 21 is produced. Is coated with a coating layer formed of a mixture of titanium oxide and SiO 2 , thereby forming a shelf group 21 composed of shelf plates 25a and 25b having different heat emissivities on the surface on which the object to be heated 31 is placed. it can.
上記のように、本発明の加熱用収納体は、第1の材質からなる載置面を有する第1の載置部と、第1の載置部の載置面を第1の材質より大きい熱放射率を有する第2の材質によって被覆した載置面が設けられた第2の載置部とを含んでいる実施形態とすることもできる。第2の載置部の載置面には、第2の材質からなる皮膜によって第1の載置部の載置面を被覆した実施形態を挙げることができる(後述の実施例を参照)。第2の材質からなる皮膜により被覆する実施形態の場合には、スプレー等により皮膜を形成できるため、容易な工程によって第1の載置部と同じ形状の第2の載置部を得ることがきる点、皮膜分のわずか重量増加や熱容量の増加に抑えられる点、を長所となる特徴として挙げることができる。例えば、第1の材質としてアルミナ質からなる第1の載置部の載置面を、第2の材質として酸化チタンとSiO2の混合物からなる皮膜で被覆する実施形態の場合には、酸化チタンとSiO2の混合物がアルミナ質の素材に吸着しやすい。また、この実施形態は、炉内で適用された場合、最初の熱履歴を受けたときに、吸着した混合物自身と、吸着した混合物とアルミナ質の素材間で、混合物自身や、アルミナ質材に含まれる、微量な不可避不純物の影響により、ガラス質の材料の生成による固着や焼結を起すことから、吸着した混合物とアルミナ質の素材間での剥離が生じにくいという点においても優れている。 As described above, the heating storage body of the present invention has a first placement portion having a placement surface made of the first material, and a placement surface of the first placement portion larger than the first material. It can also be set as the embodiment containing the 2nd mounting part provided with the mounting surface covered with the 2nd material which has thermal emissivity. An embodiment in which the placement surface of the first placement portion is covered with a film made of the second material can be cited as an example of the placement surface of the second placement portion (see examples described later). In the case of an embodiment in which a coating made of the second material is used, since the coating can be formed by spraying or the like, a second mounting portion having the same shape as the first mounting portion can be obtained by an easy process. It can be mentioned as an advantage that it can be suppressed to a slight increase in weight of the film and an increase in heat capacity. For example, in the case of an embodiment in which the mounting surface of the first mounting portion made of alumina as the first material is coated with a film made of a mixture of titanium oxide and SiO 2 as the second material, titanium oxide And SiO 2 mixture are easily adsorbed on the alumina material. In addition, when this embodiment is applied in a furnace, when the first thermal history is received, the adsorbed mixture itself, and between the adsorbed mixture and the alumina material, the mixture itself or the alumina material is used. It is also excellent in that separation between the adsorbed mixture and the alumina material hardly occurs because fixation and sintering due to the generation of the vitreous material are caused by the influence of a small amount of inevitable impurities contained.
以上の加熱用収納体は、次に述べる使用方法(以下、「本発明の加熱用収納体の使用方法」)を適用することができる。 The following usage method (hereinafter referred to as “method of using the heating storage body of the present invention”) can be applied to the above heating storage body.
2.加熱用収納体の使用方法:
本発明の加熱用収納体の使用方法の第1の実施形態は、上述の加熱用収納体を用い、載置面に被加熱体を載置することにより被加熱体を加熱用収納体に収納して、加熱手段によって被加熱体を加熱用収納体とともに加熱する場合に、それぞれの載置部に設けられた載置面の熱放射率の大小の昇順が各載置面の面した空間の雰囲気温度の高低の降順と対応するように、複数の載置部を積み重ねて使用することを特徴とする。
2. How to use the heating container:
1st Embodiment of the usage method of the heating storage body of this invention uses the above-mentioned heating storage body, and stores a to-be-heated body in a heating storage body by mounting a to-be-heated body in a mounting surface. Then, when the object to be heated is heated together with the heating container by the heating means, the increasing order of the thermal emissivity of the mounting surfaces provided in the respective mounting portions is in the space facing each mounting surface. A plurality of mounting portions are used in a stacked manner so as to correspond to descending order of the atmospheric temperature.
この第1の実施形態では、加熱用収納体に収納された被加熱体は、これを収納する載置部面が面した空間の雰囲気ガスから受ける熱量が少ない場合には、載置面からの放射伝熱によって受ける熱量が多く、前記空間の雰囲気ガスから受ける熱量が多い場合には、これを載置する載置面からの放射伝熱によって受ける熱量が少ない。したがって、本発明の加熱用収納体の使用方法の第1の実施形態では、収納された被加熱体の受ける合計の熱量の差が小さくなるため、ムラなく所定の範囲内の加熱度合いに収まるように、複数の被加熱体を同時に加熱することができる。 In the first embodiment, when the object to be heated stored in the heating storage body receives a small amount of heat from the atmosphere gas in the space facing the mounting unit surface storing the heating target body, When the amount of heat received by the radiant heat transfer is large and the amount of heat received from the atmospheric gas in the space is large, the amount of heat received by the radiant heat transfer from the mounting surface on which this is placed is small. Therefore, in the first embodiment of the method for using the heating storage body of the present invention, the difference in the total amount of heat received by the stored body to be heated is small, so that the heating degree is within a predetermined range without unevenness. In addition, a plurality of objects to be heated can be heated simultaneously.
この第1の実施形態では、上記のように被加熱体の受ける合計の熱量の差が小さくなるため、被加熱体内に温度分布を生じさせないように加熱する速度を低下させる必要性が少なくなり(例えば炉を用いた加熱の場合には炉内雰囲気温度の昇温速度を低くする必要がなくなり)、生産性が向上し、加熱する際の温度プロファイルの自由度が広がる(例えば炉を用いた加熱の場合には炉内雰囲気温度の昇温速度の高低の設定範囲が広がる)。 In the first embodiment, since the difference in the total amount of heat received by the heated body is reduced as described above, it is less necessary to reduce the heating rate so as not to generate a temperature distribution in the heated body ( For example, in the case of heating using a furnace, it is no longer necessary to lower the temperature increase rate of the furnace atmosphere temperature, the productivity is improved, and the degree of freedom in temperature profile during heating is increased (for example, heating using a furnace). In this case, the setting range of the temperature rise rate of the furnace atmosphere temperature is widened).
本発明の加熱用収納体の使用方法の第2の実施形態は、上記の加熱用収納体を用い、それぞれの前記載置部に設けられた載置面の熱放射率がより上方に配置された載置部に設けられた載置面の熱放射率以上となるように、複数の載置部を積み重ねつつ載置面に被加熱体を載置して被加熱体を加熱用収納体に収納し、加熱用収納体を壁部に囲まれた収容室内に収容して、収容室内の雰囲気温度を上昇させることにより被加熱体を加熱用収納体とともに加熱することを特徴とする。 The second embodiment of the method for using the heating storage body of the present invention uses the heating storage body described above, and the thermal emissivity of the mounting surface provided in each of the above-described mounting portions is arranged higher. The object to be heated is placed on the placement surface while stacking a plurality of placement parts so that the heat emissivity of the placement surface provided in the placement part is equal to or higher. And storing the heating storage body in a storage chamber surrounded by a wall, and heating the heated body together with the heating storage body by raising the ambient temperature in the storage chamber.
収納室内の雰囲気ガスは温度が高くなると上昇するため、より上方に配置された載置部の載置面が面した空間ほど、その空間の雰囲気温度が高くなる傾向がある。そのため、被加熱体は、より上方に配置された載置部の載置面に載置されているものほど、雰囲気ガスから受ける熱量が多くなる。上記第2の実施形態では、前記の雰囲気ガスから受ける熱量のバラツキを補正できるように、それぞれの載置部に設けられた載置面の熱放射率がより上方に配置された載置部に設けられた載置面の熱放射率以上となっている。すなわち、加熱用収納体に収納された被加熱体は、これを収納する空間の雰囲気ガスから受ける熱量が少ない場合には、これを載置する載置面からの放射伝熱によって受ける熱が多く、前記空間の雰囲気ガスから受ける熱の量が多い場合には、これを載置する載置面からの放射伝熱によって受ける熱量が少なくなっている。 Since the atmosphere gas in the storage chamber rises as the temperature rises, the atmosphere temperature of the space tends to increase as the space facing the placement surface of the placement portion disposed further upward. Therefore, the amount of heat received from the atmospheric gas increases as the object to be heated is placed on the placement surface of the placement unit disposed above. In the second embodiment, the mounting section provided with the mounting surface provided with the thermal emissivity of each mounting section is arranged so that the variation in the amount of heat received from the atmospheric gas can be corrected. It becomes more than the thermal emissivity of the provided mounting surface. That is, when the amount of heat received from the atmospheric gas in the space in which the object to be heated stored in the heating storage body is small, much heat is received by the radiant heat transfer from the mounting surface on which the object is mounted. When the amount of heat received from the atmospheric gas in the space is large, the amount of heat received by radiant heat transfer from the mounting surface on which the space is placed is small.
したがって、本発明の加熱用収納体の使用方法の第2の実施形態では、収納された被加熱体の受ける合計の熱量の差が小さくなるため、ムラなく所定の範囲内の加熱の度合いに収まるように、複数の被加熱体を同時に加熱することができる。 Therefore, in the second embodiment of the method for using the heating storage body of the present invention, the difference in the total amount of heat received by the stored body to be heated is small, so that the degree of heating is within a predetermined range without unevenness. As described above, a plurality of objects to be heated can be heated simultaneously.
この第2の実施形態においても、上記のように被加熱体の受ける合計の熱量の差が小さくなるため、被加熱体内に温度分布を生じさせないように加熱する速度(例えば収容室内の雰囲気温度の昇温速度)を低下させる必要性が少なくなり、生産性が向上し、加熱する際の温度プロファイル(例えば収容室内の雰囲気温度のヒートカーブ)の自由度が広がる。 Also in the second embodiment, since the difference in the total amount of heat received by the heated object is reduced as described above, the heating speed (for example, the atmospheric temperature in the accommodation chamber is set so as not to generate a temperature distribution in the heated object). The necessity for lowering the (temperature increase rate) is reduced, the productivity is improved, and the degree of freedom of the temperature profile (for example, the heat curve of the ambient temperature in the accommodation chamber) during heating is increased.
以下、本発明の加熱用収納体の使用方法の実施形態の具体例を示すことにより、本発明の加熱用収納体の使用方法の内容をより詳しく説明にする。 Hereinafter, the content of the method of using the heating container of the present invention will be described in more detail by showing a specific example of the embodiment of the method of using the heating container of the present invention.
図3は、図2に示す棚23aを3個,棚23bを2つ、合計5段積み重ねた棚組21の断面図である。5段に積み重なっている各棚板25a,25bの上方にある空間を下から上に向かって空間S1〜S5と称するとき、棚組21を加熱炉内に収容して加熱炉内の雰囲気温度を上昇させた場合には、加熱炉内の雰囲気ガスが高温のものほど上昇していくため、空間S1〜S5に存在する雰囲気ガスの温度T1〜T5は、T5>T4>T3>T2>T1、という関係になる。ここで、棚板25aの表面の熱放射率εaが棚板25bの表面の熱放射率εbよりも小さい場合(εa<εb)には、図3に示すように上側3つを棚板25a、下側2つを棚板25bを配置するように棚23a,23bを積み重ねると、棚板25a,25bの熱放射率の大小の昇順(棚組の上側の段から、εa=εa=εa<εb=εb)が、各棚板25a,25bにおける被加熱体31の載せられた表面の面した空間S1〜S5の雰囲気温度T1〜T5の高低の降順(棚組の上側の段から、T5>T4>T3>T2>T1)と対応する。 FIG. 3 is a cross-sectional view of the shelf assembly 21 in which three shelves 23a and two shelves 23b shown in FIG. The shelf plates 25a are stacked in five stages, when referred to as the space S 1 to S 5 upwardly the space above the 25b from below, the atmosphere in the heating furnace houses a rack set 21 into a heating furnace when increasing the temperature, since the atmospheric gas in the furnace rises as those of the high temperature, the temperature T 1 through T 5 of the atmospheric gas present in the space S 1 to S 5 are T 5> T 4 > T 3 > T 2 > T 1 . Here, when the thermal emissivity ε a of the surface of the shelf 25a is smaller than the thermal emissivity ε b of the surface of the shelf 25b (ε a <ε b ), as shown in FIG. When the shelves 23a and 23b are stacked such that the shelf plate 25b and the shelf plate 25b are arranged on the lower side, the ascending order of the thermal emissivity of the shelf plates 25a and 25b (from the upper level of the shelf set, ε a = ε a = ε a <εb = εb) is, the shelf plates 25a, descending level of the ambient temperature T 1 through T 5 of the space S 1 to S 5 facing the loaded was surface of the object to be heated 31 in 25b ( From the upper level of the shelf set, T 5 > T 4 > T 3 > T 2 > T 1 ).
図3に示す棚組21では、下から1,2段目の棚板25b上の空間S1,S2の雰囲気温度T1,T2は空間S3〜S5の雰囲気温度T3〜T5に比べて低いため、棚板25bに載っている被加熱体31は、空間S1,S2内の雰囲気ガスからうける熱量は少ない。しかし、棚板25bの熱放射率εbが、棚板25aの熱放射率εaよりも大きいため、棚板25bに載っている被加熱体31は、棚板25aに載っている被加熱体31と比べて、自身が載っている棚板25bからの放射伝熱によってより多くの熱量を受ける。したがって、各棚板25a,25bに載っている被加熱体31を比較すると、雰囲気ガスから受ける熱量と自身が載っている棚板からの放射伝熱によって受ける熱量の合計では差が少ない。 In the shelf assembly 21 shown in FIG. 3, the ambient temperatures T 1 and T 2 of the spaces S 1 and S 2 on the first and second shelf boards 25b from the bottom are the ambient temperatures T 3 to T of the spaces S 3 to S 5. since lower than 5, the heated body 31 resting on the shelf plate 25b is heat receiving the atmospheric gas in the space S 1, S 2 is small. However, thermal emissivity epsilon b shelf 25b is larger than the thermal emissivity of the shelves 25a epsilon a, heated object 31 resting on the shelf plate 25b is heated body resting on shelves 25a Compared with 31, it receives a larger amount of heat by radiant heat transfer from the shelf 25b on which it is placed. Therefore, when the heated bodies 31 mounted on the respective shelf plates 25a and 25b are compared, there is little difference in the total amount of heat received from the atmospheric gas and the amount of heat received by the radiant heat transfer from the shelf plate on which the heated body 31 is mounted.
3.加熱用治具および加熱用治具の使用方法:
本発明の加熱用治具は、板形状を有して表裏2つの表面のうちの1の表面が被加熱体を載置するための載置面とされる載置部を備え、載置面の中心部分の熱放射率が載置面の縁側部分の熱放射率より大きいことを特徴する。
3. How to use the heating jig and the heating jig:
The heating jig of the present invention includes a mounting portion having a plate shape, and one of the two front and back surfaces serving as a mounting surface for mounting the object to be heated. The thermal emissivity of the central part of the substrate is larger than the thermal emissivity of the edge part of the mounting surface.
本発明の加熱用治具は、熱源によって載置部が縁側部分から中心部分に向かって温度を上昇させていくような加熱方法で載置面に載置された被加熱体を加熱する場合に好適である(詳しくは後述)。本発明の加熱用治具では、載置面の中心側部分の熱放射率が載置面の縁側部分の熱放射率より大きいため、載置面の中心部分は、載置面の縁側部分よりも多くの熱を吸収する。そして、載置面の中心部分では、載置面の縁側部分よりも多くの熱を放射伝熱によって被加熱体に伝える。熱源によって載置部が縁側部分から中心部分に向かって温度を上昇させていくような加熱方法を適用した場合、被加熱体は、載置面の縁側部分に載置されたときには、熱源から受ける熱量が多くかつ載置面からの放射伝熱によって受ける熱量が少なくなり、載置面の中心部分に載置されたときには、熱源から受ける熱量が少なくかつ載置面からの放射伝熱によって受ける熱量が多くなる。したがって、載置部が縁側部分から中心部分に向かって温度を上昇させていくような加熱方法を適用した場合には、被加熱体の受ける合計の熱量は、載置面の中心部分に載置されたものと、載置面の縁側部分に載置されたものとの間で差が小さくなる。 The heating jig of the present invention is used when the object to be heated placed on the placement surface is heated by a heating method in which the placement portion raises the temperature from the edge side portion toward the center portion by the heat source. It is preferable (details will be described later). In the heating jig of the present invention, since the thermal emissivity of the center side portion of the mounting surface is larger than the thermal emissivity of the edge side portion of the mounting surface, the central portion of the mounting surface is more than the edge side portion of the mounting surface. Even absorbs a lot of heat. And in the center part of a mounting surface, more heat is transmitted to a to-be-heated body by radiant heat transfer than the edge side part of a mounting surface. When a heating method is applied in which the temperature of the placement part is increased from the edge part toward the center part by the heat source, the heated object is received from the heat source when placed on the edge part of the placement surface. The amount of heat received by the radiant heat from the mounting surface is small and the amount of heat received by the radiant heat from the mounting surface is small, and when it is placed at the center of the mounting surface, the amount of heat received from the heat source is small Will increase. Therefore, when a heating method is employed in which the placement portion raises the temperature from the edge portion toward the central portion, the total amount of heat received by the heated object is placed on the central portion of the placement surface. The difference is small between what is done and what is placed on the edge side portion of the placement surface.
本発明の加熱用治具は、載置部が複数の板形状の部材からなり、載置面が前記複数の板形状の部材の表裏2つの表面のうちの1の表面を略同一平面上に並べて合わせることにより形成されていることが好ましい。この実施形態では、載置面の面積を拡げることが可能になり、より多くの被加熱体を同時に加熱することができる。また、個々の板形状の部材における載置面の一部を構成する表面に被加熱体を予め載置し、これらを炉内に移動させた後、炉内において、これら複数の板形状の部材から1つの加熱用治具を組み合わせることもできる。そのため、この実施形態は、作業スペースの有無などの作業環境に違いに自在に対応できる。 In the heating jig according to the present invention, the mounting portion is made of a plurality of plate-shaped members, and the mounting surface has one of the two front and back surfaces of the plurality of plate-shaped members on substantially the same plane. It is preferably formed by aligning them side by side. In this embodiment, the area of the mounting surface can be increased, and more objects to be heated can be heated at the same time. In addition, after placing the object to be heated on the surface constituting a part of the mounting surface of each plate-shaped member and moving them into the furnace, the plurality of plate-shaped members in the furnace A single heating jig can be combined. Therefore, this embodiment can be freely adapted to different work environments such as the presence or absence of a work space.
本発明の加熱用治具は、第1の材質からなる板形状の部材の表裏2つの面のうちの1の表面の中心部分に、第1の材質より熱放射率の大きい第2の材質からなる部材を被覆することによって、載置面の中心部分の熱放射率を載置面の縁側部分の熱放射率より大きくした実施形態も適用できる。このような載置面には、第2の材質からなる皮膜によって第1の材質からなる板状部材の1の表面を被覆した実施形態を挙げることができる。第2の材質からなる皮膜により被覆する実施形態の場合には、スプレー等により皮膜を形成できるため、第2の材質からなる部分の輪郭が複雑な形状の場合にも容易に適用できる点、皮膜分のわずか重量増加や熱容量の増加に抑えられる点、を長所となりうる特徴として挙げることができる。例えば、第1の材質としてアルミナ質からなる第1の載置部の載置面を、第2の材質として酸化チタンとSiO2の混合物からなる皮膜で被覆する実施形態の場合には、酸化チタンとSiO2の混合物がアルミナ質の素材に吸着しやすい。また、この実施形態は、炉内で適用された場合、最初の熱履歴を受けたときに、吸着した混合物自身と、吸着した混合物とアルミナ質の素材間で、混合物自身や、アルミナ質材に含まれる、微量な不可避不純物の影響により、ガラス質の材料の生成による固着や焼結を起すことから、吸着した混合物とアルミナ質の素材間での剥離が生じにくいという点においても優れている。 The heating jig of the present invention is formed from a second material having a thermal emissivity higher than that of the first material at the center portion of one of the two front and back surfaces of the plate-shaped member made of the first material. An embodiment in which the thermal emissivity of the central portion of the mounting surface is made larger than the thermal emissivity of the edge side portion of the mounting surface by covering the member is also applicable. Examples of such a mounting surface include an embodiment in which the surface of one of the plate-like members made of the first material is covered with a film made of the second material. In the case of the embodiment in which the film made of the second material is coated, the film can be formed by spraying or the like. Therefore, the film can be easily applied even when the contour of the portion made of the second material has a complicated shape. It can be mentioned as a feature that can be an advantage that it can be suppressed to a slight increase in weight and heat capacity. For example, in the case of an embodiment in which the mounting surface of the first mounting portion made of alumina as the first material is coated with a film made of a mixture of titanium oxide and SiO 2 as the second material, titanium oxide And SiO 2 mixture are easily adsorbed on the alumina material. In addition, when this embodiment is applied in a furnace, when the first thermal history is received, the adsorbed mixture itself, and between the adsorbed mixture and the alumina material, the mixture itself or the alumina material is used. It is also excellent in that separation between the adsorbed mixture and the alumina material hardly occurs because fixation and sintering due to the generation of the vitreous material are caused by the influence of a small amount of inevitable impurities contained.
本発明の加熱用治具の使用方法は、上記の加熱用治具を用い、載置面に被加熱体を載置した加熱用治具を壁部に囲まれた収容室内に収容し、壁部からの放射伝熱によって被加熱体とともに加熱用治具を加熱することを特徴とする。壁部に囲まれた収容室内に加熱用治具を収容して壁部からの放射伝熱によって被加熱体とともに加熱用治具を加熱した場合には、載置部が縁側部分から中心部分に向かって温度を上昇させていく。したがって、上述の載置面の熱放射率の違い起因した作用によって、壁部からの放射伝熱と載置面からの放射伝熱によって被加熱体の受ける合計の熱量は、載置面の中心部分に載置されたものと、載置面の縁側部分に載置されたものとの間で差が小さくなる。 The method of using the heating jig of the present invention uses the above-mentioned heating jig, accommodates the heating jig in which the object to be heated is placed on the placement surface, in the accommodation chamber surrounded by the wall, The heating jig is heated together with the object to be heated by radiation heat transfer from the section. When the heating jig is accommodated in the housing chamber surrounded by the wall and the heating jig is heated together with the heated object by radiant heat from the wall, the mounting portion is moved from the edge portion to the central portion. Increase the temperature toward. Therefore, the total amount of heat received by the object to be heated by the radiant heat transfer from the wall and the radiant heat transfer from the mounting surface due to the effect due to the difference in the thermal emissivity of the mounting surface is the center of the mounting surface. The difference between the one placed on the portion and the one placed on the edge side portion of the placement surface is reduced.
以下、本発明の加熱用治具の実施形態の具体例を示すことにより、本発明の加熱用治具および加熱用治具の使用方法の内容をより詳しく説明する。 Hereinafter, the content of the heating jig of the present invention and the method of using the heating jig will be described in more detail by showing specific examples of embodiments of the heating jig of the present invention.
図7は、本発明の加熱用治具の一実施形態である棚51の斜視図である。この図に示す棚51は、棚板53の表裏2つの表面の一方の表面を載置面55として被加熱体31を載置する。棚板53の載置面55とは反対側の表面に支持部57を結合し、支持部57によって床41と棚板55との間に空間を有するかたちで保持する。 FIG. 7 is a perspective view of a shelf 51 which is an embodiment of the heating jig of the present invention. In the shelf 51 shown in this figure, the heated object 31 is placed with one of the two front and back surfaces of the shelf plate 53 as a placement surface 55. A support portion 57 is coupled to the surface of the shelf board 53 opposite to the mounting surface 55, and is held by the support portion 57 in a form having a space between the floor 41 and the shelf board 55.
図8は、図7に示す棚51の載置面55の熱放射率に関して説明するための図である。図7に示す棚51を炉に収容して炉壁からの放射伝熱によって被加熱体を加熱する場合、棚板53には、縁側部分から中心部分に向かって、領域Pa,Pb,Pc,Pd,Peの順に熱が伝わり、このような熱の伝わり方が載置面55における領域Pa〜Peの表面温度の違いとして現れる。そのため、加熱初期では、棚板53の載置面55の各領域Pa〜Peの表面温度Ta〜Teは、Ta>Tb>Tc>Td>Te、という関係になる。このような載置面55の表面温度の分布に同様に、被加熱体31が炉壁からの放射伝熱により受ける熱量の大きさは、熱量の大きいものから小さいものの順にならべると、領域Pa,Pb,Pc,Pd,Peの載置されたもの熱量の順になる。一方、棚51では、載置面55の領域Pc〜Pe(図8中のドット模様)の熱放射率が領域Pa,Pbの熱放射率より大きい。そのため、被加熱体31は、載置面55の領域Pc〜Peに載置された場合には、載置面55からの放射伝熱による熱量が多く、載置面55の領域Pa,Pbに載置された場合には、載置面55からの放射伝熱による熱量が少ない。したがって、炉壁からの放射伝熱により受ける熱量と載置面55からの放射伝熱による熱量の合計については、載置面55の領域Pa〜Peに載置された被加熱体31の間で差が少なくなる。 FIG. 8 is a diagram for explaining the thermal emissivity of the placement surface 55 of the shelf 51 shown in FIG. When the shelf 51 shown in FIG. 7 is housed in a furnace and the object to be heated is heated by radiant heat transfer from the furnace wall, the shelf plate 53 has regions P a , P b , P c, P d, heat is transferred in the order of P e, appears as a difference in the surface temperature of the area P a to P e in such heat transferred how the mounting surface 55. Therefore, in the initial stage of heating, the surface temperatures T a to T e of the regions P a to P e of the placement surface 55 of the shelf plate 53 are in a relationship of T a > T b > T c > T d > T e . Become. Similarly to the distribution of the surface temperature of the mounting surface 55, when the magnitude of the amount of heat received by the heated body 31 by the radiant heat transfer from the furnace wall is arranged in order from the largest to the smallest, the region P a , P b , P c , P d , and Pe are placed in order of the amount of heat. On the other hand, in the shelf 51, the thermal emissivity of the areas P c to P e (dot pattern in FIG. 8) of the placement surface 55 is larger than the thermal emissivities of the areas P a and P b . Therefore, the object to be heated 31, when placed in the region P c to P e of the mounting face 55 is often heat by radiant heat transfer from the mounting surface 55, the area of the mounting face 55 P a , when it is placed on the P b is the amount of heat by radiant heat transfer from the mounting surface 55 is small. Therefore, from the heat and the mounting surface 55 for receiving the radiant heat transfer from the furnace wall for the total amount of heat by radiation heat transfer, of the mounting face 55 area P a to P e to the placed in the object to be heated 31 The difference between them is reduced.
図9は、本発明の加熱用治具の一実施形態である棚組60の斜視図である。この図に示す棚組60は、2つの棚51a,51bを横に並べて組み合わせたものである。棚51a,51bでは、棚板53a,53bが、同じ長さの支持部57よって床41側から支えられている。したがって、棚板53a,51bの載置面55a,55bは、略同一平面上に並ぶことになる。よって、図9に示すように棚51a,51bを近接させて並べて棚組60を構成した場合、棚組60は、載置面55a,55bを組み合わせた1つの載置面61を有するようになる。 FIG. 9 is a perspective view of a shelf assembly 60 that is an embodiment of the heating jig of the present invention. The shelf assembly 60 shown in this figure is a combination of two shelves 51a and 51b arranged side by side. In the shelves 51a and 51b, the shelves 53a and 53b are supported from the floor 41 side by the support portions 57 having the same length. Therefore, the mounting surfaces 55a and 55b of the shelf plates 53a and 51b are arranged on substantially the same plane. Therefore, when the shelf assembly 60 is configured by arranging the shelves 51a and 51b close to each other as shown in FIG. 9, the shelf assembly 60 has one placement surface 61 in which the placement surfaces 55a and 55b are combined. .
図10は、図9に示す棚組60の載置面61の熱放射率に関して説明するための図である。図9に示す棚組60を炉に収容して炉壁からの放射伝熱によって被加熱体31とともに棚組60を加熱する場合、棚組60には、縁側部分から中心部分に向かって、領域Pf,Pg,Ph,Piの順に熱が伝わり、このような熱の伝わり方が載置面55における領域Pf〜Piの表面温度の違いとして現れる。そのため、加熱初期では、棚組60の載置面61における各領域Pf〜Piの表面温度Tf〜Tiは、Tf>Tg>Th>Ti、という関係になる。なお、棚51aおよび棚51bの縁側のうち、棚51aと棚51bとが近接している部分は、棚51aと棚51bを組みわせた棚組60では中心部分になるため、炉壁からの放射伝熱を受けにくい。棚組60では、載置面61の領域Ph,Pi(図10中のドット模様)の熱放射率が領域Pf,Pgの熱放射率より大きい。したがって、先に述べた図7に示す棚51と同様の作用によって、炉壁からの放射伝熱により受ける熱量と載置面55からの放射伝熱による熱量の合計については、載置面61の領域Pf〜Piに載置された被加熱体31の間で差が少なくなる。 FIG. 10 is a diagram for explaining the thermal emissivity of the mounting surface 61 of the shelf assembly 60 shown in FIG. When the shelf assembly 60 shown in FIG. 9 is housed in a furnace and the shelf assembly 60 is heated together with the heated body 31 by radiant heat transfer from the furnace wall, the shelf assembly 60 has a region from the edge side portion toward the central portion. P f, P g, P h , heat is transferred in the order of P i, appears as a difference in the surface temperature of the region P f to P i in such heat transferred how the mounting surface 55. Therefore, in the initial stage of heating, the surface temperatures T f to T i of the regions P f to P i on the placement surface 61 of the shelf set 60 have a relationship of T f > T g > T h > T i . Of the edge sides of the shelf 51a and the shelf 51b, the portion where the shelf 51a and the shelf 51b are close to each other becomes a central portion in the shelf assembly 60 in which the shelf 51a and the shelf 51b are assembled. Difficult to receive heat transfer. In the shelf set 60, the thermal emissivity of the areas P h and P i (dot pattern in FIG. 10) of the placement surface 61 is larger than the thermal emissivity of the areas P f and P g . Therefore, the total amount of heat received by the radiant heat transfer from the furnace wall and the radiant heat transfer from the mounting surface 55 by the same action as the shelf 51 shown in FIG. The difference between the heated bodies 31 placed in the areas P f to P i is reduced.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(1)棚組
図11に、電気炉11の炉内12に収容されている棚組21の正面図を表す。四角形(幅200×長さ300mm)の棚板25aの下面の四隅それぞれに脚28(高さ20mm)が設けられたアルミナ質材料から形成された棚23a(図11中の白抜き)と、前記棚23aの全表面に厚さ170μmのコート層を設けた棚23b(図11中のドット模様)を、それぞれ複数個作製した(棚23bは、棚25aの表面のコート層を設けた棚板25bを有する)。コート層は、酸化チタンとSiO2の混合物(TiO=50質量%、SiO2=50質量%に、外配合で、水ガラス3重量%と水40重量%と有機バインダーPVP(ポリビニルピロリドン)3重量%を含む混合スラリーを、スプレー塗布して設けた。
(1) Shelf assembly FIG. 11 is a front view of the shelf assembly 21 accommodated in the furnace 12 of the electric furnace 11. A shelf 23a (outlined in FIG. 11) formed of an alumina material provided with legs 28 (height 20 mm) at each of the four corners of the lower surface of a square (width 200 × length 300 mm) shelf plate 25a; A plurality of shelves 23b (dot pattern in FIG. 11) provided with a coat layer having a thickness of 170 μm on the entire surface of the shelf 23a were prepared (the shelf 23b is a shelf plate 25b provided with a coat layer on the surface of the shelf 25a). Have). The coating layer is a mixture of titanium oxide and SiO 2 (TiO = 50% by mass, SiO 2 = 50% by mass, with external formulation, 3% by weight of water glass, 40% by weight of water, and 3% by weight of organic binder PVP (polyvinylpyrrolidone)). % Was provided by spray coating.
(2)電気炉
電気炉11は、有効内寸が幅500×奥行き500×高さ500mmであり、側面の構成する4面全ての炉壁14の炉内壁面18上には、それぞれヒーター13を設置した(図11)。天井側の炉壁14の中央より炉内12に向けて炉温制御熱電対15を設けた。
(2) Electric furnace The electric furnace 11 has an effective inner dimension of width 500 × depth 500 × height 500 mm, and heaters 13 are respectively placed on the furnace inner wall surfaces 18 of the four furnace walls 14 constituting the side surfaces. Installed (FIG. 11). A furnace temperature control thermocouple 15 was provided from the center of the furnace wall 14 on the ceiling side toward the furnace interior 12.
(3)加熱試験:
以下の実施例1、比較例1の棚組21を、図11に示すように電気炉11の炉内12に並べて配置し、加熱試験を実施した。
(3) Heat test:
Shelf assemblies 21 of Example 1 and Comparative Example 1 below were arranged side by side in the furnace 12 of the electric furnace 11 as shown in FIG.
(実施例1)
上6段がコート層のない棚23a、下7段がコート層のある棚23bを積み重ねた、計13段の棚組21を構成し、電気炉11の開閉扉から向かって炉内12の右側に配置した(図11中の右側)。なお、この棚21の2,5,9,13段目の棚23a,23bの棚板25a,25b裏側に、電気炉11の開閉扉から向かって左右一対(図11中の列I、列II)の熱電対16(合計8個)を設置した。
Example 1
The upper 6 tiers constitute a shelves 21 with a coat layer and the lower 7 tiers with a shelf 23b with a coat layer. (Right side in FIG. 11). It should be noted that a pair of left and right sides (rows I and II in FIG. 11) are arranged on the back side of the shelf plates 25a and 25b of the second, fifth, ninth and thirteenth shelves 23a and 23b of the shelf 21 from the open / close door of the electric furnace 11. ) Thermocouples 16 (8 in total).
(比較例1)
コート層のない棚23aを13段積み重ねた棚組21を構成し、電気炉11の開閉扉から向かって炉内12の左側に配置した(図11中の左側)。熱電対16を設置する場所は、実施例1と同じにした(図11中の列III、列IV)。
(Comparative Example 1)
A shelf assembly 21 was formed by stacking 13 shelves 23a without a coat layer and arranged on the left side of the furnace 12 from the open / close door of the electric furnace 11 (left side in FIG. 11). The place where the thermocouple 16 was installed was the same as in Example 1 (rows III and IV in FIG. 11).
電気炉11は、実施例1、比較例1の棚組21を収容後、図12に示すヒートカーブにて炉内12の雰囲気温度を昇温し、炉内12の雰囲気温度が1400℃に到達後、この雰囲気温度を保持させた。具体的には、25℃から1300℃までを6.5時間で加熱昇温させ、引き続き1300℃から1400℃までを1.0時間で加熱昇温させ、その後1400℃を3.0時間保持させた。加熱開始後、6.5時間(図12中のAに示す経過時間)、7.5時間(図12中のBに示す経過時間)、および8.9時間(図12中のCに示す経過時間)における、実施例1、比較例1の棚組21に設置した熱電対16が計測した棚板25a,25bの表面温度を、それぞれ図13、14、15のグラフに示す。図13〜15のグラフは、横軸が熱電対16の計測した棚板25a,25bの表面温度、縦軸が棚組21における棚23a,23bの段数を示す。棚組21に設置された8個の熱電対16によって計測された棚板25a,25bの表面温度のうちの最大温度と最少温度の差(ΔT)を図12に示す。図12に示す棚組内の温度差に関するグラフから、実施例1では、比較例1と比べ、棚組21内の前記最大温度と最少温度の差(ΔT)が小さくなっていることがわかる。 After the electric furnace 11 accommodates the shelf set 21 of Example 1 and Comparative Example 1, the temperature of the atmosphere in the furnace 12 is raised by the heat curve shown in FIG. 12, and the atmosphere temperature in the furnace 12 reaches 1400 ° C. Thereafter, this ambient temperature was maintained. Specifically, the temperature is raised from 25 ° C. to 1300 ° C. in 6.5 hours, then the temperature is raised from 1300 ° C. to 1400 ° C. in 1.0 hour, and then 1400 ° C. is maintained for 3.0 hours. It was. 6.5 hours (elapsed time indicated by A in FIG. 12), 7.5 hours (elapsed time indicated by B in FIG. 12), and 8.9 hours (elapsed time indicated by C in FIG. 12) after the start of heating. The surface temperatures of the shelf boards 25a and 25b measured by the thermocouple 16 installed on the shelf assembly 21 of Example 1 and Comparative Example 1 are shown in the graphs of FIGS. In the graphs of FIGS. 13 to 15, the horizontal axis indicates the surface temperature of the shelf plates 25 a and 25 b measured by the thermocouple 16, and the vertical axis indicates the number of the shelves 23 a and 23 b in the shelf assembly 21. FIG. 12 shows the difference (ΔT) between the maximum temperature and the minimum temperature among the surface temperatures of the shelf boards 25a and 25b measured by the eight thermocouples 16 installed in the shelf assembly 21. From the graph regarding the temperature difference in the shelf assembly shown in FIG. 12, it can be seen that in Example 1, the difference between the maximum temperature and the minimum temperature (ΔT) in the shelf assembly 21 is smaller than in Comparative Example 1.
炉壁14およびヒーター13との位置関係から、実施例1の列Iと比較例1の列IIIおよび実施例1の列IIと比較例1の列IVが対照となる。以下、これら対照となる列同士で比較した結果を述べる。 From the positional relationship between the furnace wall 14 and the heater 13, the column I of Example 1, the column III of Comparative Example 1, the column II of Example 1, and the column IV of Comparative Example 1 serve as controls. The results of comparison between these control columns will be described below.
ここでは図13に示す加熱開始後6.5時間の結果について述べる。まず、比較例1(列IIIと列IV)では、下側の段(2,5段目)よりも上側の段(9,13段目)の温度が高い傾向があった。この傾向は、暖められた炉内ガスが上昇することによって生じたものと考える。比較例1の列IIIでは、2段目から13段目に向かうにつれて徐々に温度が高くなり、2,5,9,13段目の間の温度差の最大値は22℃であった(2段目と13段目との間の温度差)。比較例1の列IVでも、2段目から13段目に向かうにつれて徐々に温度が高くなり、2,5,9,13段目の間の温度差の最大値は21℃であった(2段目と13段目との間の温度差)。 Here, the result of 6.5 hours after the start of heating shown in FIG. 13 will be described. First, in Comparative Example 1 (row III and row IV), the temperature of the upper stage (9th and 13th stages) tended to be higher than the lower stage (2nd and 5th stages). This tendency is considered to be caused by the rise of the heated furnace gas. In column III of Comparative Example 1, the temperature gradually increased from the second stage to the thirteenth stage, and the maximum value of the temperature difference between the second, fifth, ninth, and thirteenth stages was 22 ° C. (2 Temperature difference between the 13th and 13th stages). Also in row IV of Comparative Example 1, the temperature gradually increased from the second stage to the thirteenth stage, and the maximum value of the temperature difference between the second, fifth, ninth, and thirteenth stages was 21 ° C. (2 Temperature difference between the 13th and 13th stages).
図13に示す加熱開始後6.5時間において、実施例1の列Iでは、比較例1の列IIIの同じ段数と比較して、2段目で9℃、5段目で11℃温度が高く、13段目では逆に1℃温度が低かった。実施例1の列Iでは、2,5,9,13段目の間の温度差の最大値が12℃(2段目と5段目、および2段目と13段目との間の温度差)であり、比較例1の列IIIの温度差の最大値22℃(2段目と13段目との間の温度差)よりも有意に小さくなった。特に、5,9,13段目に限定して比較した場合には、比較例1の列IIIの温度差の最大値が13℃(5段目と13段目との間の温度差)であったのに対し、実施例1の列Iの温度差の最大値は、3℃(5段目と9段目、および9段目と13段目との間の温度差)と極めて有意に小さくなった。同様に、実施例1の列IIと比較例1の列IVとを比較すると、実施例1の列IIでは、比較例1の列IVの同じ段数と比較して、2段目で9℃、5段目で12℃温度が高く、13段目では逆に3℃温度が低くなった。実施例1の列IIでは、2,5,9,13段目の間の温度差の最大値が9℃(2段目と13段目との間の温度差)であり、比較例1の列IVの温度差の最大値21℃(2段目と13段目との間の温度差)よりも有意に小さくなった。特に、5,9,13段目に限定して比較した場合には、比較例1の列IVの温度差の最大値が13℃(5段目と13段目との間の温度差)であったのに対し、実施例1の列IIの温度差の最大値は、6℃(5段目と9段目との間の温度差)と極めて有意に小さくなった。 At 6.5 hours after the start of heating shown in FIG. 13, in the column I of Example 1, the temperature of 9 ° C. in the second stage and the temperature of 11 ° C. in the fifth stage compared with the same number of stages in the column III of Comparative Example 1 On the contrary, at the 13th stage, the 1 ° C. temperature was low. In column I of Example 1, the maximum value of the temperature difference between the second, fifth, ninth and thirteenth stages is 12 ° C. (the temperature between the second and fifth stages, and the second and thirteenth stages). Difference), which was significantly smaller than the maximum temperature difference of 22 ° C. in column III of Comparative Example 1 (temperature difference between the second and thirteenth stages). In particular, when the comparison is limited to the fifth, ninth, and thirteenth stages, the maximum value of the temperature difference in the column III of Comparative Example 1 is 13 ° C. (temperature difference between the fifth and thirteenth stages). In contrast, the maximum value of the temperature difference in the column I of Example 1 was extremely significant at 3 ° C. (temperature difference between the fifth and ninth stages and between the ninth and thirteenth stages). It has become smaller. Similarly, when comparing the column II of Example 1 and the column IV of Comparative Example 1, in the column II of Example 1, compared with the same number of stages of the column IV of Comparative Example 1, 9 ° C. in the second stage, At the fifth stage, the 12 ° C. temperature was high, and at the 13th stage, the 3 ° C. temperature was low. In column II of Example 1, the maximum value of the temperature difference between the second, fifth, ninth and thirteenth stages is 9 ° C. (temperature difference between the second and thirteenth stages). It was significantly smaller than the maximum temperature difference of 21 ° C. in column IV (temperature difference between the second stage and the 13th stage). In particular, when the comparison is limited to the fifth, ninth, and thirteenth stages, the maximum value of the temperature difference in the column IV of Comparative Example 1 is 13 ° C. (temperature difference between the fifth and thirteenth stages). In contrast, the maximum value of the temperature difference in column II of Example 1 was extremely significantly reduced to 6 ° C. (temperature difference between the fifth and ninth stages).
次に、図14に示す加熱開始後7.5時間の結果について述べる。比較例1の列IIIでは2段目から13段目に向かうにつれて徐々に温度が高くなり、2,5,9,13段目の間の温度差の最大値は12℃であった(2段目と13段目との間の温度差)。比較例1の列IVでも、2段目から13段目に向かうにつれて徐々に温度が高くなり、2,5,9,13段目の間の温度差の最大値は13℃であった(2段目と13段目との間の温度差)。 Next, the result of 7.5 hours after the start of heating shown in FIG. 14 will be described. In the column III of Comparative Example 1, the temperature gradually increased from the second stage to the thirteenth stage, and the maximum value of the temperature difference between the second, fifth, ninth and thirteenth stages was 12 ° C. (two stages Temperature difference between the first and the 13th stage). In row IV of Comparative Example 1, the temperature gradually increased from the second stage to the thirteenth stage, and the maximum value of the temperature difference between the second, fifth, ninth, and thirteenth stages was 13 ° C. (2 Temperature difference between the 13th and 13th stages).
図14に示す加熱開始後7.5時間において、実施例1の列Iでは、比較例1の列IIIの同じ段数と比較して、2段目で2℃、5段目で3℃温度が高く、13段目では逆に1℃温度が低かった。実施例1の列Iでは、2,5,9,13段目の間の温度差の最大値が9℃(2段目と13段目との間の温度差)であり、比較例1の列IIIの温度差の最大値12℃(2段目と13段目との間の温度差)よりも有意に小さくなった。特に、5,9,13段目に限定して比較した場合には、比較例1の列IIIの温度差の最大値が6℃(5段目と13段目との間の温度差)であったのに対し、実施例1の列Iの温度差の最大値は、2℃(5段目と13段目との間の温度差)と極めて有意に小さくなった。同様に、実施例1の列IIと比較例1の列IVとを比較すると、実施例1の列IIでは、比較例1の列IVの同じ段数と比較して、2段目で3℃、5段目で3℃温度が高く、逆に9段目で1℃、13段目で2℃温度が低くなった。実施例1の列IIでは、2,5,9,13段目の間の温度差の最大値が8℃(2段目と13段目との間の温度差)であり、比較例1の列IVの温度差の最大値13℃(2段目と13段目との間の温度差)よりも有意に小さくなった。特に、5,9,13段目に限定して比較した場合には、比較例1の列IVの温度差の最大値が8℃(5段目と13段目との間の温度差)であったのに対し、実施例1の列IIの温度差の最大値は、3℃(5段目と13段目との間の温度差)と極めて有意に小さくなった。 In 7.5 hours after the start of heating shown in FIG. 14, in the column I of Example 1, the temperature was 2 ° C. in the second stage and 3 ° C. in the fifth stage as compared with the same number of stages in the column III of Comparative Example 1. On the contrary, at the 13th stage, the 1 ° C. temperature was low. In column I of Example 1, the maximum value of the temperature difference between the second, fifth, ninth and thirteenth stages is 9 ° C. (temperature difference between the second and thirteenth stages). It was significantly smaller than the maximum temperature difference of 12 ° C. in column III (temperature difference between the second stage and the 13th stage). In particular, when the comparison is limited to the fifth, ninth and thirteenth stages, the maximum value of the temperature difference in the column III of Comparative Example 1 is 6 ° C. (temperature difference between the fifth and thirteenth stages). On the other hand, the maximum value of the temperature difference in the column I of Example 1 was extremely significantly reduced to 2 ° C. (temperature difference between the 5th and 13th stages). Similarly, when comparing the column II of Example 1 and the column IV of Comparative Example 1, in the column II of Example 1, compared with the same number of stages in the column IV of Comparative Example 1, 3 ° C. in the second stage, The third stage had a high 3 ° C. temperature, conversely, the ninth stage had a 1 ° C. temperature, and the thirteenth stage had a 2 ° C. temperature low. In column II of Example 1, the maximum value of the temperature difference between the second, fifth, ninth and thirteenth stages is 8 ° C. (temperature difference between the second and thirteenth stages). It was significantly smaller than the maximum value of 13 ° C. of the temperature difference in row IV (temperature difference between the second and thirteenth stages). In particular, when the comparison is limited to the fifth, ninth, and thirteenth stages, the maximum value of the temperature difference in the column IV of Comparative Example 1 is 8 ° C. (temperature difference between the fifth and thirteenth stages). In contrast, the maximum value of the temperature difference in the column II of Example 1 was extremely significantly reduced to 3 ° C. (temperature difference between the fifth stage and the 13th stage).
最後に、図15に示す加熱開始後8.9時間の結果について述べる。加熱開始後8.9時間は、炉内温度を1400℃で保持している定常状態である。そのため、実施例1(列Iと列II)と比較例1(列IIIと列IV)の間では、温度に大きな差が認められない。これは、温度定常状態の伝熱が、反射と放射の熱量和でバランスするためで、放射率と反射率の和が1になるボルツマン則にて説明できる。 Finally, the result of 8.9 hours after the start of heating shown in FIG. 15 will be described. 8.9 hours after the start of heating is a steady state in which the furnace temperature is maintained at 1400 ° C. Therefore, a large difference in temperature is not recognized between Example 1 (row I and row II) and Comparative example 1 (row III and row IV). This is because the heat transfer in a steady temperature state is balanced by the sum of the amount of heat of reflection and radiation, and can be explained by Boltzmann's law where the sum of emissivity and reflectance is 1.
以下の比較例2,3の棚組21を、図16に示すように電気炉11の炉内12に並べて配置し、加熱試験を実施した。 The shelf sets 21 of Comparative Examples 2 and 3 below were arranged side by side in the furnace 12 of the electric furnace 11 as shown in FIG.
(比較例2)
コート層のある棚23bを13段積み重ねた棚組21を構成し、電気炉11の開閉扉から向かって炉内12の右側に配置した(図16中の右側)。熱電対16を設置する場所は、実施例1と同じにした(図16中の列V、列VI)。
(Comparative Example 2)
A shelf assembly 21 was formed by stacking 13 shelves 23b with a coat layer and arranged on the right side of the furnace 12 from the open / close door of the electric furnace 11 (right side in FIG. 16). The place where the thermocouple 16 was installed was the same as that in Example 1 (column V and column VI in FIG. 16).
(比較例3)
コート層のない棚23aを13段積み重ねた棚組21を構成し、電気炉11の開閉扉から向かって炉内12の左側に配置した(図16中の左側)。熱電対16を設置する場所は、実施例1と同じにした(図16中の列VII、列VIII)。
(Comparative Example 3)
A shelf assembly 21 was formed by stacking 13 shelves 23a without a coat layer and arranged on the left side of the furnace 12 from the open / close door of the electric furnace 11 (left side in FIG. 16). The place where the thermocouple 16 was installed was the same as in Example 1 (row VII, row VIII in FIG. 16).
電気炉11は、比較例2,3の棚組21を収容後、図17に示すヒートカーブにて炉内12の雰囲気温度を昇温し、炉内12の雰囲気温度が1400℃に到達後、この雰囲気温度を保持させた。具体的には、25℃から1300℃までを6.5時間で加熱昇温させ、引き続き1300℃から1400℃までを1.0時間で加熱昇温させ、その後1400℃を3.0時間保持させる条件で加熱した。加熱開始後、6.5時間(図17中のDに示す経過時間)、および7.5時間(図17中のEに示す経過時間)における、比較例2、3の棚組21に設置した熱電対16が計測した棚板25a,25bの表面温度を、それぞれ図18,19のグラフに示す。図18,19のグラフは、横軸が熱電対16の計測した棚板25a,25bの表面温度、縦軸が棚組21における棚23a,23bの段数を示す。 After the electric furnace 11 accommodates the shelf set 21 of Comparative Examples 2 and 3, the temperature of the atmosphere in the furnace 12 is increased by the heat curve shown in FIG. 17, and after the atmosphere temperature in the furnace 12 reaches 1400 ° C., This ambient temperature was maintained. Specifically, the temperature is raised from 25 ° C. to 1300 ° C. in 6.5 hours, the temperature is raised from 1300 ° C. to 1400 ° C. in 1.0 hour, and then 1400 ° C. is maintained for 3.0 hours. Heated under conditions. After the start of heating, it was installed on the shelf set 21 of Comparative Examples 2 and 3 at 6.5 hours (elapsed time indicated by D in FIG. 17) and 7.5 hours (elapsed time indicated by E in FIG. 17). The surface temperatures of the shelf boards 25a and 25b measured by the thermocouple 16 are shown in the graphs of FIGS. In the graphs of FIGS. 18 and 19, the horizontal axis indicates the surface temperature of the shelf plates 25 a and 25 b measured by the thermocouple 16, and the vertical axis indicates the number of the shelves 23 a and 23 b in the shelf assembly 21.
加熱開始後、6.5時間および7.5時間のいずれの場合においても、比較例2の方が、比較例3に比べ、棚の熱放射率が大きいことに起因し、棚組の温度が高かった。しかし、棚組内の温度分布は、比較例2,3の間でほぼ同じであり、実施例1のように温度分布を小さくする効果は観察されなかった。したがって、全ての棚の熱放射率を一律に大きくしても、棚組内の温度分布を小さくする効果は生じないことが判明した。 In both cases of 6.5 hours and 7.5 hours after the start of heating, the temperature of the shelf assembly is higher in Comparative Example 2 than in Comparative Example 3, because the thermal emissivity of the shelf is larger. it was high. However, the temperature distribution in the shelf assembly was almost the same between Comparative Examples 2 and 3, and the effect of reducing the temperature distribution as in Example 1 was not observed. Therefore, it has been found that even if the thermal emissivity of all the shelves is uniformly increased, the effect of reducing the temperature distribution in the shelves is not produced.
本発明は、被加熱体を収納して加熱するための加熱用収納体およびその使用方法、ならびに加熱用治具および加熱用治具の使用方法として利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used as a heating storage body for storing and heating a heated body, a method for using the same, and a heating jig and a heating jig.
1:加熱用収納体、5:載置部、7:固定部、9:載置面、11:炉(電気炉)、12:炉内、13:ヒーター、14:炉壁、15:炉温制御熱電対、16:熱電対、17:炉内壁面、21:棚組、23,23a,23b:棚、25:棚板、27:受け部、28:脚、29:支持部、31:被加熱体、41:床、51,51a,51b:棚、53,53a,53b:棚板、55,55a,55b:載置面、57:支持部、60:棚組、61:載置面。 1: Heating container, 5: Placement part, 7: Fixed part, 9: Placement surface, 11: Furnace (electric furnace), 12: Furnace, 13: Heater, 14: Furnace wall, 15: Furnace temperature Control thermocouple, 16: thermocouple, 17: furnace inner wall surface, 21: shelf assembly, 23, 23a, 23b: shelf, 25: shelf board, 27: receiving part, 28: leg, 29: support part, 31: covered Heating body, 41: floor, 51, 51a, 51b: shelf, 53, 53a, 53b: shelf board, 55, 55a, 55b: placement surface, 57: support section, 60: shelf assembly, 61: placement surface.
Claims (9)
1の前記載置部に設けられた前記載置面と前記1の載置部の隣に配置された前記載置部との間に空間を有して前記複数の載置部が積み重なるように前記複数の載置部を着脱可能に固定する固定部とを有し、
前記複数の載置部は、他の前記載置部に設けられた前記載置面の熱放射率とは異なる熱放射率を有する前記載置面が設けられた前記載置部を含んでいる加熱用収納体。 A plurality of placement portions each having a placement surface on which the object to be heated is placed;
The plurality of placement units are stacked so as to have a space between the placement surface provided in the first placement unit and the placement unit disposed next to the first placement unit. A fixing portion that detachably fixes the plurality of placement portions;
The plurality of placement units include the placement unit described above in which the placement surface having a thermal emissivity different from the thermal emissivity of the placement surface provided in the other placement unit is provided. Storage body for heating.
1の前記載置部に設けられた前記載置面と前記1の載置部の上隣に配置された前記載置部の前記載置面に対して反対側の表面との間に空間を有して前記複数の載置部が積み重なる請求項1に記載の加熱用収納体。 The mounting portion has a plate shape, and the mounting surface is provided on one of the two front and back surfaces of the plate shape,
A space is provided between the mounting surface provided on the mounting unit of 1 and the surface opposite to the mounting surface of the mounting unit disposed on the first mounting unit. The heating container according to claim 1, wherein the plurality of mounting portions are stacked.
1の前記単体に設けられた前記載置面と前記1の単体の隣に配置された前記単体との間に空間を有して前記複数の単体が積み重なるように、1の前記単体に設けられた前記固定部が他の前記単体に着脱可能に接続されている請求項1〜3のいずれか一項に記載の加熱用収納体。 A plurality of single units provided with the mounting unit described above and the fixing unit coupled to the mounting unit described above,
The single unit is provided with a space between the mounting surface provided on the single unit and the single unit disposed adjacent to the single unit, and the plurality of units are stacked. The heating container according to any one of claims 1 to 3, wherein the fixing portion is detachably connected to the other unit.
前記載置面に前記被加熱体を載置することにより前記被加熱体を前記加熱用収納体に収納して、加熱手段によって前記被加熱体を前記加熱用収納体とともに加熱する場合に、
それぞれの前記載置部に設けられた前記載置面の熱放射率の大小の昇順が各前記載置面の面した空間の雰囲気温度の高低の降順と対応するように、前記複数の載置部を積み重ねて使用する加熱用収納体の使用方法。 Using the heating storage body according to any one of claims 1 to 4,
When the heated body is stored in the heating storage body by placing the heated body on the placement surface, and the heated body is heated together with the heating storage body by a heating unit,
The plurality of placements such that the ascending order of the thermal emissivity of the placement surface provided in each placement portion corresponds to the descending order of the atmospheric temperature of the space facing the placement surface. How to use a heating container that stacks parts.
それぞれの前記載置部に設けられた前記載置面の前記熱放射率がより上方に配置された前記載置部に設けられた前記載置面の前記熱放射率以上となるように、前記複数の載置部を積み重ねつつ前記載置面に前記被加熱体を載置して前記被加熱体を前記加熱用収納体に収納し、
前記加熱用収納体を壁部に囲まれた収容室内に収容して、前記収容室内の雰囲気温度を上昇させることにより前記被加熱体を前記加熱用収納体とともに加熱する加熱用収納体の使用方法。 Using the heating storage body according to any one of claims 1 to 4,
The thermal emissivity of the mounting surface provided in each of the mounting units is higher than the thermal emissivity of the mounting surface provided in the mounting unit disposed above. Placing the heated body on the placement surface while stacking a plurality of placement portions, and storing the heated body in the heating storage body,
A method of using a heating storage body that houses the heating storage body together with the heating storage body by storing the heating storage body in a storage chamber surrounded by a wall and raising the ambient temperature in the storage chamber .
前記載置面の中心部分の熱放射率が前記載置面の縁側部分の熱放射率より大きい加熱用治具。 It has a plate-like shape and has a placement portion on which one of the two front and back surfaces is a placement surface for placing the object to be heated,
A heating jig in which the thermal emissivity of the central portion of the mounting surface is greater than the thermal emissivity of the edge side portion of the mounting surface.
前記載置面が、前記複数の板形状の部材の表裏2つの表面のうちの1の表面を略同一平面上に並べて合わせることにより形成されている請求項7に記載の加熱用治具。 The mounting portion is composed of a plurality of plate-shaped members,
The heating jig according to claim 7, wherein the placement surface is formed by aligning and aligning one of the two front and back surfaces of the plurality of plate-shaped members on substantially the same plane.
前記載置面に前記被加熱体を載置した前記加熱用治具を壁部に囲まれた収容室内に収容し、
前記壁部からの放射伝熱によって、前記被加熱体とともに前記加熱用治具を加熱する加熱用治具の使用方法。 Using the heating jig according to claim 7 or 8,
The heating jig in which the object to be heated is placed on the placement surface is housed in a housing chamber surrounded by a wall,
A method of using a heating jig that heats the heating jig together with the heated body by radiant heat transfer from the wall.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010063412A JP5419763B2 (en) | 2010-03-19 | 2010-03-19 | Heating container and method of use thereof, and heating jig and method of use thereof |
US13/030,471 US9097463B2 (en) | 2010-02-23 | 2011-02-18 | Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device |
EP11250203.4A EP2362175B1 (en) | 2010-02-23 | 2011-02-22 | Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device |
PL11250203T PL2362175T3 (en) | 2010-02-23 | 2011-02-22 | Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device |
US14/160,617 US20140134557A1 (en) | 2010-02-23 | 2014-01-22 | Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010063412A JP5419763B2 (en) | 2010-03-19 | 2010-03-19 | Heating container and method of use thereof, and heating jig and method of use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011196602A JP2011196602A (en) | 2011-10-06 |
JP5419763B2 true JP5419763B2 (en) | 2014-02-19 |
Family
ID=44875058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010063412A Active JP5419763B2 (en) | 2010-02-23 | 2010-03-19 | Heating container and method of use thereof, and heating jig and method of use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5419763B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015059698A (en) * | 2013-09-19 | 2015-03-30 | 株式会社村田製作所 | Sagger |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2526160Y2 (en) * | 1990-05-24 | 1997-02-19 | 大同特殊鋼株式会社 | Stacked tray in vacuum heat treatment furnace |
JPH11201659A (en) * | 1998-01-14 | 1999-07-30 | Murata Mfg Co Ltd | Heat treatment tool |
JP2000241082A (en) * | 1999-02-19 | 2000-09-08 | Shinagawa Refract Co Ltd | Tool material for firing ceramics |
JP2001328870A (en) * | 2000-05-19 | 2001-11-27 | Taiyo Yuden Co Ltd | Method for burning ceramic, tunnel type burning furnace, method and apparatus for procuding ceramic electronic part and housing unit for burning ceramic electronic part |
JP4181809B2 (en) * | 2002-07-22 | 2008-11-19 | 井前工業株式会社 | Setter for firing |
JP2004060964A (en) * | 2002-07-26 | 2004-02-26 | Tokyo Yogyo Co Ltd | Baking setter and its manufacturing method |
JP2007010235A (en) * | 2005-06-30 | 2007-01-18 | Asahi Glass Co Ltd | Jig for ceramics heat treatment |
-
2010
- 2010-03-19 JP JP2010063412A patent/JP5419763B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011196602A (en) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI528013B (en) | Burn the use of the framework | |
US9279618B2 (en) | Kiln tool plate for firing ceramic material | |
JP5667105B2 (en) | Dental combustion or pressure kiln | |
JP5677658B2 (en) | kiln | |
JP2007284766A (en) | Vertical plasma cvd apparatus | |
KR20200058493A (en) | Organic film forming device | |
JP5419763B2 (en) | Heating container and method of use thereof, and heating jig and method of use thereof | |
JP4462868B2 (en) | Heating device | |
JP2011235098A (en) | Dental furnace | |
US9097463B2 (en) | Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device | |
JP6639985B2 (en) | Firing furnace | |
JP2002175868A (en) | Far-infrared thin heater and substrate-heating furnace | |
JP5989357B2 (en) | heating furnace | |
JP2008305989A (en) | Substrate carrier | |
JP5891953B2 (en) | Support member, heating plate support device, and heating device | |
JP7473147B2 (en) | Heating device and heating method | |
CN112512979B (en) | Method for ceramizing glass by using nucleation and growth density and viscosity change | |
KR20210076593A (en) | Kiln | |
JP2014080240A (en) | Workpiece housing container and optical element housing container using the same | |
JP2009159841A (en) | Food-heating oven | |
JP4561100B2 (en) | Heat treatment furnace | |
JP6990301B2 (en) | Vacuum evaporation source | |
JP2008275224A (en) | Heating cooker | |
KR20230064169A (en) | Appratus for measuring temperature, and apparatus for processing substrate having the same | |
KR102341028B1 (en) | Rack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5419763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |