JP5418734B2 - Method for producing austenitic stainless steel - Google Patents

Method for producing austenitic stainless steel Download PDF

Info

Publication number
JP5418734B2
JP5418734B2 JP2013526850A JP2013526850A JP5418734B2 JP 5418734 B2 JP5418734 B2 JP 5418734B2 JP 2013526850 A JP2013526850 A JP 2013526850A JP 2013526850 A JP2013526850 A JP 2013526850A JP 5418734 B2 JP5418734 B2 JP 5418734B2
Authority
JP
Japan
Prior art keywords
temperature
stainless steel
less
hot rolling
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013526850A
Other languages
Japanese (ja)
Other versions
JPWO2013018628A1 (en
Inventor
勇人 喜多
将行 渋谷
修二 吉田
朋之 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013526850A priority Critical patent/JP5418734B2/en
Application granted granted Critical
Publication of JP5418734B2 publication Critical patent/JP5418734B2/en
Publication of JPWO2013018628A1 publication Critical patent/JPWO2013018628A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、濃硝酸に対して耐食性を示すオーステナイト系ステンレス鋼の製造方法に関する。より具体的には、高温、高濃度の硝酸環境中で使用することができる高Si含有オーステナイト系ステンレス鋼の製造方法に関する。   The present invention relates to a method for producing austenitic stainless steel exhibiting corrosion resistance against concentrated nitric acid. More specifically, the present invention relates to a method for producing a high Si-containing austenitic stainless steel that can be used in a high-temperature, high-concentration nitric acid environment.

硝酸製造プラントの主要構成材料は、高温、高濃度の硝酸環境に曝される。一般にプラント用の耐食性材料としてステンレス鋼が使用される。ステンレス鋼は、硝酸中で安定な不働態皮膜を形成し、優れた耐食性を発揮する。しかし、高温、高濃度の硝酸は極めて酸化性が強く、一般のステンレス鋼では過不働態腐食を生じる。過不働態腐食では、不働態皮膜を形成するCr23の溶出に伴う全面腐食、および鋭敏化(粒界腐食の感受性が増大)した結晶粒界近傍で粒界腐食が起きる。The main components of the nitric acid production plant are exposed to a high temperature and high concentration nitric acid environment. In general, stainless steel is used as a corrosion resistant material for plants. Stainless steel forms a stable passive film in nitric acid and exhibits excellent corrosion resistance. However, high-temperature, high-concentration nitric acid is extremely oxidative, and general stainless steel causes transpassive corrosion. In the passive state corrosion, full-surface corrosion accompanied by elution of Cr 2 O 3 forming a passive film and intergranular corrosion occur near the grain boundary where sensitization (sensitivity of intergranular corrosion increases).

このような環境下でも耐食性を有する材料として、17Cr−14Ni−4Si(特許文献1)、11Cr−17Ni−6Si(特許文献2)などの高Siオーステナイト系ステンレス鋼が知られている。これらの高Siステンレス鋼は、過不働態領域で腐食により溶出したSiが再酸化されてシリケート皮膜を生成することによって、優れた硝酸耐食性を示す。これらの高Siステンレス鋼には、Nb、Ta、Ti、Zrの1種又は2種以上が添加される。これらの添加元素は、鋼中Cを固定し、鋭敏化を抑制する効果がある。特に溶接熱影響部の鋭敏化抑制に有効で、高濃度硝酸中での粒界耐食性の改善に顕著な効果がある。   High Si austenitic stainless steels such as 17Cr-14Ni-4Si (Patent Document 1) and 11Cr-17Ni-6Si (Patent Document 2) are known as materials having corrosion resistance even in such an environment. These high-Si stainless steels exhibit excellent nitric acid corrosion resistance by re-oxidizing Si eluted by corrosion in the passive state region to form a silicate film. One or more of Nb, Ta, Ti, and Zr are added to these high Si stainless steels. These additive elements have an effect of fixing C in steel and suppressing sensitization. In particular, it is effective in suppressing sensitization of the weld heat affected zone, and has a remarkable effect in improving the intergranular corrosion resistance in high-concentration nitric acid.

熱間加工におけるスラブの加熱温度は、生産性の観点からはできるだけ高温にするのが有利である。しかし、高Siステンレス鋼は、熱間加工時に所定温度より高温に加熱されると、熱間加工の途中でスラブの割れが生じるという問題がある。Siは、オーステナイト相に対する固溶度が低く、Siを多量に含有するほど、高温で金属間化合物やδフェライト等の脆化相が生成して高温延性が劣化するためである。従って、高Siステンレス鋼を工業規模で安定的に製造するには、熱間加工における加熱温度を適正に管理する必要がある。   The slab heating temperature in the hot working is advantageously as high as possible from the viewpoint of productivity. However, high Si stainless steel has a problem that cracking of the slab occurs during hot working when heated to a temperature higher than a predetermined temperature during hot working. This is because Si has a lower solid solubility in the austenite phase, and the higher the amount of Si, the more embrittled phases such as intermetallic compounds and δ ferrite are generated at high temperatures, resulting in deterioration of high temperature ductility. Therefore, in order to stably produce high-Si stainless steel on an industrial scale, it is necessary to appropriately manage the heating temperature in hot working.

特許文献3には、Siを5〜8%(本明細書では特に断りがない限り化学組成に関する「%」は「質量%」を意味する)含有する高Siステンレス鋼の鋳塊を、1050〜1100℃、かつT(℃)<1470−35×Si−5×Ni(%)を満足する温度域での均熱後に900℃以上の温度域で熱間圧延または熱間鍛造する方法が開示されている。Si含有量の増加に伴い鋳造凝固組織中に低融点の金属間化合物が形成され、均熱温度が高くなるとこの金属間化合物が部分溶融するため、熱間加工中に割れが起こる。この割れを防止するように均熱温度が特定されている。   Patent Document 3 discloses an ingot of high Si stainless steel containing 5 to 8% Si (in this specification, “%” means “% by mass” unless otherwise specified) unless otherwise specified). A method of hot rolling or hot forging in a temperature range of 900 ° C. or higher after soaking in a temperature range satisfying 1100 ° C. and T (° C.) <1470−35 × Si-5 × Ni (%) is disclosed. ing. As the Si content increases, a low-melting intermetallic compound is formed in the cast solidified structure, and when the soaking temperature rises, the intermetallic compound partially melts, so that cracking occurs during hot working. The soaking temperature is specified to prevent this cracking.

非特許文献1には、高Siステンレス鋼(6.5Si−17Cr−22Ni−0.01Pd)における金属間化合物と熱間加工性の関係について、(a)鋳造組織の樹枝状間にはSi−Niリッチな金属間化合物が晶出し、それが多量に存在すると熱間加工性が低くなること、および(b)金属間化合物が晶出したインゴットを1000〜1150℃でソーキングした場合、1150℃では金属間化合物が部分溶解して割れを生じるが、1100℃では金属間化合物の溶融はみられず、固溶させることによって熱間加工での割れが生じなくなることが報告されている。   Non-Patent Document 1 discloses the relationship between intermetallic compounds and hot workability in high-Si stainless steel (6.5Si-17Cr-22Ni-0.01Pd). Ni-rich intermetallic compound crystallizes, and if it exists in a large amount, the hot workability becomes low, and (b) when the ingot crystallized with the intermetallic compound is soaked at 1000 to 1150 ° C, at 1150 ° C It is reported that the intermetallic compound partially dissolves and causes cracking, but no melting of the intermetallic compound is observed at 1100 ° C., and cracking during hot working does not occur when dissolved.

すなわち、非特許文献1の高Siステンレス鋼は、1100℃を超えると低融点のNi−Si系金属間化合物が部分溶解して、粒界に沿って割れが伝播することによって破壊に至ったものと推定され、実質的には熱間加工における加熱温度を1100℃以下に規定したものである。   That is, the high-Si stainless steel of Non-Patent Document 1 has broken down due to partial melting of the low-melting point Ni—Si intermetallic compound at 1100 ° C. and crack propagation along the grain boundary. It is presumed that the heating temperature in the hot working is defined as 1100 ° C. or lower.

特許文献4には、Siを4〜10%含有し、SとOを30ppm以下に規制した高Siステンレス鋼のスラブを1100℃以上1250℃以下で2時間以上ソーキング処理して熱間圧延し、熱間圧延を950℃以上で終了し、溶体化熱処理を1000℃以上1200℃以下で行う方法が開示されている。特許文献4には、高Siオーステナイト系ステンレス鋼の高温延性に影響する因子は、(1)S、Oの不純物元素および(2)鋳片の冷却中に析出する金属間化合物であること、ならびにSとOの低減および鋳片のソーキングによって金属間化合物を消滅させることによって熱間加工性が改善されることが開示されている。この金属間化合物の成分は明示されていないが、非特許文献1と同様に、低融点のNi−Si系金属間化合物であると推定される。   In Patent Document 4, a slab of high-Si stainless steel containing 4 to 10% of Si and having S and O regulated to 30 ppm or less is hot-rolled by soaking treatment at 1100 ° C. or more and 1250 ° C. or less for 2 hours or more, A method is disclosed in which hot rolling is terminated at 950 ° C. or higher and solution heat treatment is performed at 1000 ° C. or higher and 1200 ° C. or lower. In Patent Document 4, factors affecting the high-temperature ductility of high-Si austenitic stainless steel are (1) impurity elements of S and O, and (2) intermetallic compounds that precipitate during cooling of the slab, and It is disclosed that hot workability is improved by eliminating intermetallic compounds by reducing S and O and soaking slabs. Although the component of this intermetallic compound is not specified, it is presumed that it is a low melting point Ni—Si intermetallic compound as in Non-Patent Document 1.

特許文献3、4に開示された技術では、加熱温度をNi−Si金属間化合物の溶融温度以下とすることで熱間加工性を改善する。しかし、高温、高濃度硝酸環境中で使用される高Si含有オーステナイト系ステンレス鋼では、多量のSiを含有することによりCの固溶度が低下して鋭敏化し易くなるため、高濃度硝酸中における耐粒界腐食性は不芳であった。   In the techniques disclosed in Patent Documents 3 and 4, the hot workability is improved by setting the heating temperature to be equal to or lower than the melting temperature of the Ni—Si intermetallic compound. However, in a high Si content austenitic stainless steel used in a high temperature and high concentration nitric acid environment, since it contains a large amount of Si, the solid solubility of C tends to be lowered and sensitized. Intergranular corrosion resistance was poor.

特許文献1,2に開示された高Siステンレス鋼は、Nb、Ta、Ti、Zrを含有することによって鋭敏化を抑制し、硝酸耐食性を大幅に改善するが、熱間圧延の過程でヘゲ疵とよばれる表面欠陥が生じ易いという新たな課題があった。   The high-Si stainless steels disclosed in Patent Documents 1 and 2 contain Nb, Ta, Ti, and Zr, thereby suppressing sensitization and greatly improving nitric acid corrosion resistance. There was a new problem that surface defects called wrinkles were likely to occur.

この原因は明らかではなく、スラブ加熱温度を低くすれば軽減する傾向にあったが、鋼の化学組成によっては十分な軽減効果が得られ難い場合があり、必要以上に低温で加熱するかまたは熱間圧延後のヘゲ疵除去のための研削等の手入れを行うことを余儀なくされ、大幅なコストアップの要因となっていた。   The cause of this is not clear, and there was a tendency to reduce it by lowering the slab heating temperature.However, depending on the chemical composition of the steel, it may be difficult to obtain a sufficient reduction effect. It was forced to carry out grinding and the like for removing the wrinkles after hot rolling, which caused a significant cost increase.

特許3237132号明細書Japanese Patent No. 3237132 specification 特許1119398号明細書Japanese Patent No. 1119398 特開平6−93389号公報JP-A-6-93389 特開平5−51633号明細書JP-A-5-51633

NKK技報、No.154、1996、14−19頁NKK Technical Report, No.154, 1996, p.14-19

本発明の目的は、熱間圧延の過程でヘゲ疵を発生することなく、高温、高濃度硝酸環境中で使用するのに好適な耐食性を備えた高Si含有オーステナイト系ステンレス鋼を確実に製造することである。   The object of the present invention is to reliably produce high-Si austenitic stainless steel with corrosion resistance suitable for use in a high-temperature, high-concentration nitric acid environment without generating lashes during the hot rolling process. It is to be.

本発明者らは、熱間圧延の過程でヘゲ疵を発生することなく、高温、高濃度硝酸環境中で使用するのに好適な高Si含有オーステナイト系ステンレス鋼(以下ではオーステナイト系ステンレス鋼を単にステンレス鋼ということがある)を確実に製造するための条件を検討した結果、以下の事項(i)〜(iii)が明らかになった。   The present inventors have developed a high Si-containing austenitic stainless steel suitable for use in a high-temperature, high-concentration nitric acid environment (hereinafter austenitic stainless steel). As a result of investigating conditions for reliably producing (sometimes simply referred to as stainless steel), the following items (i) to (iii) were clarified.

(i)Siを多量に含有するステンレス鋼では、Ni−Si金属間化合物が生成する。その融点は、非引用文献1により開示されるように1100〜1150℃の範囲にあると推定され、この金属間化合物の生成のために熱間圧延が困難となるような大きなスラブ割れが起こる。   (I) In a stainless steel containing a large amount of Si, a Ni—Si intermetallic compound is generated. The melting point is estimated to be in the range of 1100 to 1150 ° C. as disclosed in Non-Patent Document 1, and a large slab crack that makes hot rolling difficult due to the formation of this intermetallic compound occurs.

(ii)Siを多量に含有するステンレス鋼がNb、Ta、Ti、Zr等を含有すると、金属間化合物としてNi−Si−X(X=Nb、Ti、Zr)が生成する。その融点はおおよそ1150〜1200℃の範囲であり、例えばNi−Si−Nbでは状態図計算の結果から1160℃程度となる。このNi−Si−X三元系(X=Nb、Ta、Ti、Zr)金属間化合物は、Nb、Ta、Ti、Zr等が鋼中で偏析を生じ難い元素であるために、細かく分散して存在する。Ni−Si−X金属間化合物は、このように高融点で微細に分散するため、圧延が困難となるような大きなスラブ割れの発生を引き起こさない。   (Ii) When a stainless steel containing a large amount of Si contains Nb, Ta, Ti, Zr, etc., Ni—Si—X (X = Nb, Ti, Zr) is generated as an intermetallic compound. Its melting point is in the range of approximately 1150 to 1200 ° C., and for example, Ni—Si—Nb is about 1160 ° C. from the results of the phase diagram calculation. This Ni-Si-X ternary system (X = Nb, Ta, Ti, Zr) intermetallic compounds are finely dispersed because Nb, Ta, Ti, Zr, etc. are elements that hardly segregate in steel. Exist. Since the Ni—Si—X intermetallic compound is finely dispersed in such a high melting point, it does not cause large slab cracking that makes rolling difficult.

(iii)ところが、スラブ表面近傍ではNi−Si−Xの金属間化合物を起点とした割れが発生すると、表面まで割れが伝播し、割れの内部が酸化されることによって、ヘゲ疵が多発する。このヘゲ疵は、Ni−Si−Xの金属間化合物が細かく分散しているために量的に極めて多く、大量のヘゲ疵となる。   (Iii) However, when cracks originating from the Ni—Si—X intermetallic compound occur in the vicinity of the slab surface, the cracks propagate to the surface, and the inside of the cracks are oxidized, resulting in frequent occurrence of scabs. . This beard is extremely quantitative in quantity because the intermetallic compound of Ni—Si—X is finely dispersed, and becomes a large amount of beard.

以上の結果から、熱間圧延の過程におけるヘゲ疵の発生は、上記Ni−Si−X三元系金属間化合物を起点とし、割れが表面まで伝播することによって生じることが判明した。濃硝酸環境での腐食防止の観点からSiおよびX元素の含有は必須であるので、上記の表面近傍での割れの伝播を抑制する手段について検討した。   From the above results, it has been found that the occurrence of whipping in the process of hot rolling is caused by the propagation of cracks to the surface starting from the Ni—Si—X ternary intermetallic compound. Since it is essential to contain Si and X elements from the viewpoint of preventing corrosion in a concentrated nitric acid environment, a means for suppressing the propagation of cracks in the vicinity of the surface was examined.

一般に、高温になり延性が低下すると、割れが伝播し易くなるので、鋼中の成分と延性との関係を検討した。その結果、以下の知見が得られた。   In general, cracks tend to propagate when the ductility decreases at high temperatures, so the relationship between components in steel and ductility was studied. As a result, the following knowledge was obtained.

(A)熱間圧延時の加熱温度を、鋼組成中のSi、Cr、Ni含有量との関係で規定することにより、製品表面の欠陥(ヘゲ疵)を防止することができる。   (A) By defining the heating temperature at the time of hot rolling in relation to the Si, Cr, and Ni contents in the steel composition, defects on the product surface can be prevented.

(B)圧延後の仕上げ焼鈍の温度範囲と冷却方法を規定することにより、伸びと耐力を確保しつつ、鋭敏化を抑制することができる。   (B) By defining the temperature range and cooling method of finish annealing after rolling, sensitization can be suppressed while ensuring elongation and proof stress.

以上の知見に基づく本発明は、C:0.04%以下、Cr:7〜20%、Ni:10〜22%、Si:2.5〜7%、Mn:10%以下、sol.Al:0.03%以下、P:0.03%以下、S:0.03%以下、N:0.035%以下、Nb、Ti、Ta、Zrのうち1種または2種以上の合計:0.05〜0.7%を含有し、残部がFeおよび不純物からなる化学組成を有するステンレス鋼のスラブを、熱間圧延時の加熱温度をTとし、(1)式:T=1135−90Si−2.9Cr+40Ni−ΔT中のΔTが60℃以上である加熱温度Tに加熱して熱間圧延を行うことを特徴とするオーステナイト系ステンレス鋼の製造方法である。Based on the above findings, the present invention provides C: 0.04% or less, Cr: 7-20%, Ni: 10-22%, Si: 2.5-7%, Mn: 10% or less, sol. Al: 0.03% or less, P: 0.03% or less, S: 0.03% or less, N: 0.035% or less, a total of one or more of Nb, Ti, Ta, and Zr: containing 0.05 to 0.7 percent, a slab of stainless steel having a chemical composition the balance being Fe and impurities, the heating temperature during the hot rolling and T h, (1) formula: T h = 1135 -90Si-2.9Cr + 40Ni-ΔT ΔT in is method of manufacturing an austenitic stainless steel which is characterized in that the heated hot rolling the heating temperature T h at 60 ° C. or higher.

好適態様において、本発明に係る方法は、前記熱間圧延が施されたオーステナイト系ステンレス鋼を1100〜1160℃の温度範囲で熱処理し、次いで100℃/分以上の冷却速度で冷却を行うことをさらに含む。   In a preferred embodiment, the method according to the present invention comprises heat-treating the austenitic stainless steel subjected to the hot rolling in a temperature range of 1100 to 1160 ° C., and then cooling at a cooling rate of 100 ° C./min or more. In addition.

本発明により、熱間圧延の過程でヘゲ疵を発生することなく、高温、高濃度硝酸環境中で使用するのに好適な高Si含有オーステナイト系ステンレス鋼を確実に製造することができる。   According to the present invention, a high Si-containing austenitic stainless steel suitable for use in a high-temperature, high-concentration nitric acid environment can be reliably produced without generating lashes during hot rolling.

図1は、供試鋼1の捩り試験結果を示すグラフである。FIG. 1 is a graph showing the results of a torsion test of the test steel 1. 図2は、供試鋼1のΔTとヘゲ疵発生率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between ΔT of the test steel 1 and the rate of occurrence of whipping. 図3は、供試鋼1の圧延後の熱処理温度と0.2%耐力、伸びとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the heat treatment temperature of the test steel 1 after rolling, 0.2% proof stress, and elongation.

以下、本発明に係るオーステナイト系ステンレス鋼の製造方法について、添付図面も参照しながらより詳しく説明する。前述の通り、鋼の化学組成に関する%は質量%である。また、鋼の化学組成の残部は、Feおよび不純物である。   Hereinafter, the manufacturing method of the austenitic stainless steel according to the present invention will be described in more detail with reference to the accompanying drawings. As described above, “%” related to the chemical composition of steel is “% by mass”. Moreover, the balance of the chemical composition of steel is Fe and impurities.

[鋼の化学組成]
[C:0.04%以下]
Cは,鋼の強度を高める元素ではあるが、溶接部の熱影響部において粒界にCr炭化物を生成し、鋭敏化の原因となるなど、耐食性を劣化させる元素である。したがって、C含有量は0.04%以下とする。C含有量は、好ましくは0.03%以下であり、さらに好ましくは0.02%以下である。
[Chemical composition of steel]
[C: 0.04% or less]
Although C is an element that increases the strength of steel, it is an element that deteriorates corrosion resistance, for example, forms Cr carbide at the grain boundary in the heat-affected zone of the weld and causes sensitization. Therefore, the C content is set to 0.04% or less. The C content is preferably 0.03% or less, and more preferably 0.02% or less.

[Cr:7〜20%]
Crは、ステンレス鋼の耐食性を確保するための基本元素であり、その含有量は7%以上20%以下とする。Cr含有量が7%未満では十分な耐食性を得られない。一方、Cr含有量が過剰になると、SiとNbの共存により多量のフェライトが析出した二相組織となって、加工性、耐衝撃性の低下を招くので、Cr含有量の上限を20%とする。Cr含有量の下限は10%であることが好ましく、11%であることがさらに好ましい。一方、Cr含有量の上限は19%であることが好ましく、18%であることがさらに好ましい。
[Cr: 7-20%]
Cr is a basic element for ensuring the corrosion resistance of stainless steel, and its content is 7% or more and 20% or less. If the Cr content is less than 7%, sufficient corrosion resistance cannot be obtained. On the other hand, if the Cr content is excessive, a co-existence of Si and Nb results in a two-phase structure in which a large amount of ferrite is precipitated, resulting in deterioration of workability and impact resistance, so the upper limit of Cr content is 20%. To do. The lower limit of the Cr content is preferably 10%, and more preferably 11%. On the other hand, the upper limit of the Cr content is preferably 19%, and more preferably 18%.

[Ni:10〜22%]
Niはオーステナイト相の安定化元素であり、また、ゼロ延性温度を高める効果もある。Niは10%以上22%以下の量で含有させる。Ni含有量が10%未満では目的とする耐食性と靱性が得られない。Ni含有量が22%を超えるとコスト高が著しくなる。Ni含有量の下限は12%であることが好ましく、13%であることがさらに好ましい。また、Ni含有量の上限は20%であることが好ましく、16%であることがさらに好ましい。
[Ni: 10-22%]
Ni is a stabilizing element of the austenite phase and also has an effect of increasing the zero ductility temperature. Ni is contained in an amount of 10% to 22%. If the Ni content is less than 10%, the desired corrosion resistance and toughness cannot be obtained. If the Ni content exceeds 22%, the cost increases significantly. The lower limit of the Ni content is preferably 12%, and more preferably 13%. Further, the upper limit of the Ni content is preferably 20%, and more preferably 16%.

[Si:2.5〜7%]
Siは、濃硝酸中での耐食性を高めるために2.5%以上7%以下の量で含有させる。硝酸中での耐食性を確保するシリケート皮膜を形成するためにSiを2.5%以上含有する。一方、Siを過剰に含有するとゼロ延性温度が低下する。さらにコストアップになるだけでなく、溶接性の低下を招くため、Si含有量の上限を7%とする。Si含有量の下限は3.0%であることが好ましく、3.5%であることがさらに好ましい。Si含有量の上限は6%であることが好ましく、5%であることがさらに好ましい。
[Si: 2.5-7%]
Si is contained in an amount of 2.5% or more and 7% or less in order to enhance the corrosion resistance in concentrated nitric acid. In order to form a silicate film that ensures corrosion resistance in nitric acid, Si is contained in an amount of 2.5% or more. On the other hand, when Si is contained excessively, the zero ductility temperature is lowered. Further, not only the cost is increased, but also the weldability is lowered, so the upper limit of the Si content is set to 7%. The lower limit of the Si content is preferably 3.0%, and more preferably 3.5%. The upper limit of the Si content is preferably 6%, and more preferably 5%.

[Mn:10%以下]
Mnは、オーステナイト相の安定化元素であり、脱酸剤としても含有するので、10%以下の量で含有させる。Mn含有量が10%を超えると、耐食性の低下、溶接時の高温割れ、さらには加工性の低下を招く。Mn含有量の上限は6%であることが好ましく、4%であることがさらに好ましい。また、Mnの上記の効果を確実に得るためには、Mn含有量は0.5%以上であることが好ましく、1.0%以上であることがさらに好ましい。
[Mn: 10% or less]
Mn is a stabilizing element of the austenite phase and is also contained as a deoxidizer, so it is contained in an amount of 10% or less. If the Mn content exceeds 10%, the corrosion resistance decreases, hot cracking during welding, and further the workability decreases. The upper limit of the Mn content is preferably 6%, and more preferably 4%. Moreover, in order to acquire the said effect of Mn reliably, it is preferable that Mn content is 0.5% or more, and it is further more preferable that it is 1.0% or more.

[sol.Al:0.03%以下]
Alは、脱酸剤として鋼中に含まれるが、Alを過剰に含有すると有害な介在物を生成するため、sol.Alの含有量は0.03%以下とする。
[Sol.Al: 0.03% or less]
Al is contained in the steel as a deoxidizing agent. However, since excessive inclusion of Al generates harmful inclusions, the content of sol.Al is set to 0.03% or less.

[P:0.03%以下、S:0.03%以下]
PおよびSは、いずれも、耐食性、溶接性に有害な元素であり、それぞれの含有量は低いほど好ましい。そこで、P含有量は0.03%以下、S含有量は0.03%以下とする。
[P: 0.03% or less, S: 0.03% or less]
P and S are both elements harmful to corrosion resistance and weldability, and the lower the content of each, the better. Therefore, the P content is 0.03% or less, and the S content is 0.03% or less.

[N:0.035%以下]
Nは、Nb、Ti、Ta、Zrとの親和性が高く、これらの元素によるCの固定を阻害することから、N含有量はできるだけ低い方が好ましい。そこで、N含有量は0.035%以下とする。
[N: 0.035% or less]
N has a high affinity with Nb, Ti, Ta, and Zr, and inhibits the fixation of C by these elements. Therefore, the N content is preferably as low as possible. Therefore, the N content is 0.035% or less.

[Nb、Ti、Ta、Zrの一種または2種以上の合計:0.05〜0.7%]
Nb、Ti、Ta、Zrは、いずれも、Cを固定して鋭敏化による粒界耐食性の低下を抑制する効果があり、特に溶接熱影響部の耐食性改善に有効な元素である。これらの元素の合計含有量が0.05%未満では、耐粒界腐食性の改善効果を得られず、さらに低融点Ni−Si系金属間化合物の形成による熱間加工割れが大きくなる。一方、これらの元素の合計含有量0.7%を超えると加工性が低下する。そこで、これらの元素の含有量は、1種または複数種の合計で0.05%以上0.7%以下とする。
[One or more of Nb, Ti, Ta, Zr: 0.05 to 0.7%]
Nb, Ti, Ta, and Zr all have an effect of fixing C and suppressing the decrease in intergranular corrosion resistance due to sensitization, and are particularly effective elements for improving the corrosion resistance of the weld heat affected zone. If the total content of these elements is less than 0.05%, the effect of improving the intergranular corrosion resistance cannot be obtained, and further hot working cracks due to the formation of a low melting point Ni—Si intermetallic compound become large. On the other hand, if the total content of these elements exceeds 0.7%, the workability decreases. Therefore, the content of these elements is 0.05% or more and 0.7% or less in total of one or more kinds.

[製造条件]
本発明に係るオーステナイト系ステンレス鋼の製造方法は、上記化学組成を有するステンレス鋼のスラブを、熱間圧延時の加熱温度をTとし、(1)式:T=1135−90Si−2.9Cr+40Ni−ΔT中のΔTが60℃以上である加熱温度Tに加熱して熱間圧延を行う熱間圧延工程と、好ましくはさらに1100〜1160℃の温度範囲で熱処理した後、100℃/分以上の冷却速度で冷却を行う熱処理工程(焼鈍工程)とからなる。
[Production conditions]
Method of manufacturing austenitic stainless steel according to the present invention, a slab of stainless steel having the above chemical composition, the heating temperature during the hot rolling and T h, (1) formula: T h = 1135-90Si-2. and 9Cr + 40Ni-ΔT in [Delta] T is the hot rolling step of performing the inter-heated hot rolling heating temperature T h at 60 ° C. or higher, after heat treatment preferably still a temperature range of 1100 to 1160 ° C., 100 ° C. / min It consists of a heat treatment step (annealing step) for cooling at the above cooling rate.

「熱間圧延工程」
熱間圧延に最適な加熱温度範囲を明らかにするため、高温捩り試験によって化学組成と高温変形能との関係を調べた。それにより熱間圧延におけるゼロ延性を調査することができる。
"Hot rolling process"
In order to clarify the optimum heating temperature range for hot rolling, the relationship between chemical composition and high temperature deformability was investigated by high temperature torsion test. Thereby, the zero ductility in hot rolling can be investigated.

高温捩り試験では、平行部直径8mm、長さ30mmの試験片の一方を固定して、所定の温度に保持した状態で回転速度300rpm(歪速度4.2sec−1)、軸力0kgfで一方向に捩りを加えて破断するまでの回転数を捩り回数とした。In the high-temperature torsion test, one side of a test piece having a parallel part diameter of 8 mm and a length of 30 mm is fixed and held at a predetermined temperature, with a rotational speed of 300 rpm (strain speed of 4.2 sec −1 ) and an axial force of 0 kgf in one direction. The number of rotations until twisting was applied and breaking was taken as the number of twists.

一例として、表1に供試鋼1として示す化学組成を有する高Siステンレス鋼の試験片を用いて高温戻り試験を実施した結果を、加熱温度と捩り回数との関係として図1に示す。   As an example, FIG. 1 shows the results of a high temperature return test using a test piece of high Si stainless steel having the chemical composition shown in Table 1 as test steel 1 as the relationship between the heating temperature and the number of twists.

Figure 0005418734
Figure 0005418734

図1において、捩り回数は1100℃付近で極大を示し、それよりも高温では捩り回数が著しい低下傾向を示し、1275℃では捩り始めると同時に破断した。すなわち、表1に供試鋼1として示す高Siステンレス鋼の延性がゼロになる温度(以下、「ゼロ延性温度」という)は、おおむね1275℃であることがわかる。   In FIG. 1, the number of twists reached a maximum near 1100 ° C., and the number of twists decreased significantly at a temperature higher than that. That is, it can be seen that the temperature at which the ductility of the high Si stainless steel shown as the test steel 1 in Table 1 becomes zero (hereinafter referred to as “zero ductility temperature”) is approximately 1275 ° C.

同様の方法を用いてNb、Ta、Ti、Zrの1種又は2種以上を含有する種々の化学組成からなる高Siステンレス鋼について上記高温捩り試験を行い、ゼロ延性温度を調べた。その結果、ゼロ延性温度(T0)は、Si、Cr、Ni濃度との関係として下記回帰式(2)により表すことができることを見出した。Using the same method, the high-temperature torsion test was conducted on high-Si stainless steels having various chemical compositions containing one or more of Nb, Ta, Ti, and Zr, and the zero ductility temperature was examined. As a result, it was found that the zero ductility temperature (T 0 ) can be expressed by the following regression equation (2) as the relationship with the Si, Cr, Ni concentration.

0=1135−90Si−2.9Cr+40Ni ・・・ (2)
熱間加工における加熱温度(Th)をゼロ延性温度(T0)よりも30℃以上低くすること、すなわち、加熱温度(Th)を、下記(1)式:
h=1135−90Si−2.9Cr+40Ni−ΔT ・・・ (1)
におけるΔTが30℃以上となる温度に設定することによって、Ni−Si−X三元系(X=Nb、Ta、Ti、Zr)金属間化合物を起点とする割れは起き難くなり、ヘゲ疵は減少する。ヘゲ疵が少なくなれば、簡便な表面手入れで次工程へと進めることができるため、経済性に優れる。
T 0 = 1135-90Si-2.9Cr + 40Ni (2)
The heating temperature (T h ) in the hot working is made 30 ° C. lower than the zero ductility temperature (T 0 ), that is, the heating temperature (T h ) is expressed by the following formula (1):
T h = 1135-90Si-2.9Cr + 40Ni-ΔT (1)
By setting the temperature at ΔT at 30 ° C. or higher, cracks originating from Ni—Si—X ternary (X = Nb, Ta, Ti, Zr) intermetallic compounds are less likely to occur. Decrease. If the amount of lashes is reduced, it is possible to proceed to the next process with simple surface care, which is excellent in economic efficiency.

鍛造スラブを所定の温度で加熱した後に、熱間圧延により4mm厚とした。その後、酸洗によりスケールを除去した後、以下の方法でヘゲ疵発生率を調査した。   The forged slab was heated at a predetermined temperature and then hot rolled to a thickness of 4 mm. Thereafter, the scale was removed by pickling, and then the rate of occurrence of baldness was investigated by the following method.

鋼板表面を100mm単位のメッシュに区切り、調査した全体のメッシュ数のうち、ヘゲ疵が存在するメッシュ数の比率をヘゲ疵発生率(%)とした。ヘゲ疵発生率が5%以下であれば簡便な手直しで次工程へと進めることができる。   The steel plate surface was divided into 100 mm unit meshes, and the ratio of the number of meshes with scabs out of the total number of meshes investigated was defined as the scab generation rate (%). If the rate of occurrence of lashes is 5% or less, it is possible to proceed to the next step with a simple rework.

表1に示す供試鋼1の成分から、(2)式によりゼロ延性温度T0=1275℃が得られる。図2に、供試鋼1(表1)のΔTとヘゲ疵発生率との関係を示す。From the components of the test steel 1 shown in Table 1, the zero ductility temperature T 0 = 1275 ° C. is obtained by the equation (2). FIG. 2 shows the relationship between ΔT of the test steel 1 (Table 1) and the rate of occurrence of lashes.

図2のグラフに示すように、ΔT≧30℃を満足するように熱間圧延の加熱温度Thを設定することにより、ヘゲ疵発生率が5%以下となる。一方、ΔTが30℃よりも小さく、ゼロ延性温度に近くなるほど、ヘゲ疵の発生率は急激に高くなった。As shown in the graph of FIG. 2, by setting the heating temperature T h of hot rolling so as to satisfy the [Delta] T ≧ 30 ° C., scab defect occurrence rate of 5% or less. On the other hand, as ΔT was smaller than 30 ° C. and closer to the zero ductility temperature, the rate of occurrence of lashes rapidly increased.

すなわち、ヘゲ疵を最小限にするためには、ΔTが30℃以上、望ましくは60℃以上となるように、熱間圧延の加熱温度Thを設定すればよい。この加熱温度への保持時間は特に制限されない。本発明では、加熱温度は圧延後のヘゲ疵発生を防止するために設定されるので、スラブの表面温度が所定の温度になればよい。しかし、熱間圧延に支障をきたさないようにするには、スラブ中心部までほぼ均一な温度になるまで加熱することが好ましい。これに要する加熱時間はスラブの大きさにもよるが、一般には加熱時間を60分間以上とすることが好ましい。That is, in order to minimize the scab defect is, [Delta] T is 30 ° C. or more, preferably such that 60 ° C. or higher may be set the heating temperature T h of the hot rolling. The holding time to this heating temperature is not particularly limited. In the present invention, the heating temperature is set in order to prevent the occurrence of baldness after rolling, so that the surface temperature of the slab may be a predetermined temperature. However, in order not to interfere with hot rolling, it is preferable to heat the slab to the center until the temperature is substantially uniform. The heating time required for this depends on the size of the slab, but in general, the heating time is preferably 60 minutes or more.

ΔTの上限は特に規定しない。通常の熱間圧延設備では熱間圧延終止温度が700℃以上であれば熱間圧延を実施することが可能である。望ましくはこの終止温度を950℃以上とする。   There is no particular upper limit for ΔT. In a normal hot rolling facility, hot rolling can be performed if the hot rolling end temperature is 700 ° C. or higher. Preferably, this end temperature is set to 950 ° C. or higher.

熱間圧延は一段または多段で実施することができる。多段圧延の場合、必要であれば圧延スタンド間で加熱することができる。この時の加熱温度は、上記のΔTが30℃以上となる温度にする必要は特段ないが、好ましくはΔTが30℃以上となる温度にする。それにより、その後の熱間圧延時に表面の結晶粒径が細粒化するため、割れの伝播が起こりにくく、ヘゲの発生がさらに抑制される。熱間圧延後は一般に常法により酸洗して圧延材表面の酸化スケールを除去する。   Hot rolling can be performed in one or more stages. In the case of multi-stage rolling, if necessary, it can be heated between rolling stands. The heating temperature at this time is not particularly required to be a temperature at which ΔT is 30 ° C. or higher, but is preferably a temperature at which ΔT is 30 ° C. or higher. Thereby, since the crystal grain size of the surface is refined during the subsequent hot rolling, the propagation of cracks hardly occurs, and the occurrence of lashes is further suppressed. After hot rolling, pickling is generally performed by a conventional method to remove oxide scale on the surface of the rolled material.

[熱処理工程]
熱間圧延により得られたステンレス鋼板は、焼鈍のための熱処理を行うことによって機械的特性(伸び、耐力)を調整することができるので、熱間圧延後に熱処理を実施することが好ましい。熱処理温度を高くすると、伸びは上昇するものの耐力が低下する。熱処理後の冷却速度が遅いと、クロム炭化物が析出するため、耐食性が劣化する。したがって、熱処理温度およびその後の冷却速度は、伸びと耐力を両立でき、かつ鋭敏化を防ぐように設定する必要がある。
[Heat treatment process]
Since the stainless steel plate obtained by hot rolling can adjust mechanical characteristics (elongation, yield strength) by performing a heat treatment for annealing, it is preferable to perform the heat treatment after the hot rolling. When the heat treatment temperature is increased, the proof stress is reduced although the elongation is increased. When the cooling rate after the heat treatment is slow, chromium carbide precipitates, and the corrosion resistance deteriorates. Therefore, it is necessary to set the heat treatment temperature and the subsequent cooling rate so as to achieve both elongation and yield strength and prevent sensitization.

図3には、供試鋼1の熱処理温度と0.2%耐力および伸びとの関係を示す。図3のグラフにおける丸プロットは0.2%耐力(MPa)を、四角プロットは伸び(%)をそれぞれ示す。   FIG. 3 shows the relationship between the heat treatment temperature of the test steel 1 and the 0.2% proof stress and elongation. The circle plot in the graph of FIG. 3 shows 0.2% yield strength (MPa), and the square plot shows elongation (%).

図3に示すように、1100℃以上1160℃以下で熱処理することによって、良好な伸び性と十分な耐力、具体的には、伸び:50〜53%,0.2%耐力:325〜290MPaを示すステンレス鋼を得ることができる。   As shown in FIG. 3, by performing heat treatment at 1100 ° C. or more and 1160 ° C. or less, good elongation and sufficient yield strength, specifically, elongation: 50-53%, 0.2% yield strength: 325-290 MPa The stainless steel shown can be obtained.

さらに、熱処理後の冷却速度が遅いと鋭敏化が起こり、粒界腐食感受性が高まる。冷却速度を100℃/分以上とすることによって、鋭敏化も生じず、良好な硝酸耐食性を示すステンレス鋼となる。   Further, when the cooling rate after the heat treatment is low, sensitization occurs and the intergranular corrosion sensitivity increases. By setting the cooling rate to 100 ° C./min or more, sensitization does not occur, and the stainless steel exhibits good nitric acid corrosion resistance.

このように、本発明によれば、熱間圧延の過程でヘゲ疵を発生することなく、高温、高濃度硝酸環境中で使用するのに好適な高Si含有オーステナイト系ステンレス鋼を確実に製造することができる。   Thus, according to the present invention, a high Si content austenitic stainless steel suitable for use in a high-temperature, high-concentration nitric acid environment can be reliably produced without generating lashes in the hot rolling process. can do.

上記表1に示す成分供試鋼1〜5を高周波電気炉溶解した10kg鋳塊より鍛造して得たスラブを、表2に示す所定温度で120分間加熱して、2段圧延機で厚さ4mmまで熱間圧延した。得られたステンレス鋼板を酸洗してスケールを除去した状態で、鋼板表面のヘゲ疵発生率を前述した方法で調査した。結果を表2にまとめて示す。   A slab obtained by forging a 10 kg ingot obtained by melting the component test steels 1 to 5 shown in Table 1 above in a high-frequency electric furnace was heated at a predetermined temperature shown in Table 2 for 120 minutes and then thickened with a two-stage rolling mill. Hot rolled to 4 mm. In the state where the obtained stainless steel plate was pickled and the scale was removed, the rate of occurrence of lashes on the surface of the steel plate was investigated by the method described above. The results are summarized in Table 2.

Figure 0005418734
Figure 0005418734

表2に示すように、熱間圧延時の加熱温度を成分から計算されるゼロ延性温度T0(℃)よりも30℃以上低くしたものは、ヘゲ疵発生率が5%以下であった。As shown in Table 2, when the heating temperature at the time of hot rolling was lower by 30 ° C. or more than the zero ductility temperature T 0 (° C.) calculated from the components, the rate of occurrence of whipping was 5% or less. .

これに対し、加熱温度が成分から計算されるゼロ延性温度T0(℃)よりも30℃低い温度より高くなった場合には、ヘゲ疵発生率が5%を越え、熱間圧延の過程でヘゲ疵を発生することなく、高温、高濃度硝酸環境中で使用するのに好適な高Si含有オーステナイト系ステンレス鋼を確実に製造することができなかった。On the other hand, when the heating temperature is higher than a temperature that is 30 ° C. lower than the zero ductility temperature T 0 (° C.) calculated from the components, the rate of occurrence of whipping exceeds 5%, and the hot rolling process Thus, a high Si content austenitic stainless steel suitable for use in a high-temperature, high-concentration nitric acid environment could not be reliably produced without generating baldness.

Claims (1)

質量%で、C:0.04%以下、Cr:7〜20%、Ni:10〜22%、Si:2.5〜7%、Mn:10%以下、sol.Al:0.03%以下、P:0.03%以下、S:0.03%以下、N:0.035%以下、Nb、Ti、Ta、Zrのうち1種または2種以上の合計:0.05〜0.7%を含有し、残部がFeおよび不純物からなる化学組成を有するステンレス鋼のスラブを、熱間圧延時の加熱温度をTとし、下記(1)中のΔTが60℃以上である加熱温度Tに加熱して熱間圧延を行う熱間圧延工程、および前記熱間圧延で得られたオーステナイト系ステンレス鋼を1100〜1160℃の温度範囲で熱処理し、次いで100℃/分以上の冷却速度で冷却を行う熱処理工程をさらにを含むことを特徴とするオーステナイト系ステンレス鋼の製造方法。
=1135−90Si−2.9Cr+40Ni−ΔT ・・・ (1)
In mass%, C: 0.04% or less, Cr: 7-20%, Ni: 10-22%, Si: 2.5-7%, Mn: 10% or less, sol. Al: 0.03% or less, P: 0.03% or less, S: 0.03% or less, N: 0.035% or less, a total of one or more of Nb, Ti, Ta, and Zr: containing 0.05 to 0.7 percent, a slab of stainless steel having a chemical composition the balance being Fe and impurities, the heating temperature during the hot rolling and T h, is ΔT in the following (1) 60 hot rolling step ° C. by heating to at a heating temperature T h more performing hot rolling, and the austenitic stainless steel obtained by the hot rolling and heat treatment in the temperature range of from 1,100 to 1160 ° C., then 100 ° C. The manufacturing method of an austenitic stainless steel further including the heat processing process which cools with the cooling rate of / min or more.
T h = 1135-90Si-2.9Cr + 40Ni-ΔT (1)
JP2013526850A 2011-07-29 2012-07-26 Method for producing austenitic stainless steel Active JP5418734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013526850A JP5418734B2 (en) 2011-07-29 2012-07-26 Method for producing austenitic stainless steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011166361 2011-07-29
JP2011166361 2011-07-29
PCT/JP2012/068905 WO2013018628A1 (en) 2011-07-29 2012-07-26 Method for producing austenitic stainless steel
JP2013526850A JP5418734B2 (en) 2011-07-29 2012-07-26 Method for producing austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP5418734B2 true JP5418734B2 (en) 2014-02-19
JPWO2013018628A1 JPWO2013018628A1 (en) 2015-03-05

Family

ID=47629153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013526850A Active JP5418734B2 (en) 2011-07-29 2012-07-26 Method for producing austenitic stainless steel

Country Status (7)

Country Link
US (1) US20140261917A1 (en)
EP (1) EP2737961B1 (en)
JP (1) JP5418734B2 (en)
KR (1) KR101495483B1 (en)
CN (1) CN103826766B (en)
SI (1) SI2737961T1 (en)
WO (1) WO2013018628A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849715B (en) * 2014-03-18 2015-10-28 河北师范大学 A kind of heat treating method reducing austenitic stainless cast steel part magnetic
JP6341053B2 (en) * 2014-10-20 2018-06-13 新日鐵住金株式会社 High Si austenitic stainless steel containing composite non-metallic inclusions
CN107217215A (en) * 2017-05-26 2017-09-29 黄曦雨 Austenitic stainless steel and its application and bead-welding technology
JP2020104145A (en) * 2018-12-27 2020-07-09 ヤマコー株式会社 Method for molding high-silicon stainless steel
CN110257690B (en) * 2019-06-25 2021-01-08 宁波宝新不锈钢有限公司 Resource-saving austenitic heat-resistant steel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316418A (en) * 1988-06-16 1989-12-21 Nippon Steel Corp Production of austenitic stainless steel exhibiting excellent integranular corrosion resistance in nitric acid solution
JPH0613157B2 (en) * 1986-12-03 1994-02-23 住友金属工業株式会社 Welding material for high Si austenitic stainless steel

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737669B2 (en) * 1973-10-30 1982-08-11
JPS5591960A (en) * 1978-12-28 1980-07-11 Sumitomo Chem Co Ltd High silicon-nickel-chromium steel with resistance to concentrated
JPS56139616A (en) * 1980-04-02 1981-10-31 Sumitomo Chem Co Ltd Surface detect improving method of steel plate for concentrated nitric acid
JPS5915979B2 (en) * 1980-07-03 1984-04-12 新日本製鐵株式会社 Stainless steel alloy with fewer rolling defects during hot rolling
JPH07116556B2 (en) * 1986-09-08 1995-12-13 日新製鋼株式会社 Austenitic heat resistant steel for processing
JPH01119398A (en) 1987-10-30 1989-05-11 Akua Runesansu Gijutsu Kenkyu Kumiai Water treatment equipment
JP3237132B2 (en) 1991-07-12 2001-12-10 住友化学工業株式会社 Stainless steel for concentrated nitric acid with excellent weld toughness and corrosion resistance
JPH0551633A (en) * 1991-08-27 1993-03-02 Nippon Steel Corp Production of high si-containing austenitic stainless steel
JPH05156411A (en) * 1991-12-05 1993-06-22 Nippon Stainless Steel Co Ltd High-si austenitic stainless cast steel for concentrated nitric acid having excellent castability and toughness
JP2806145B2 (en) * 1992-04-10 1998-09-30 日本鋼管株式会社 Austenitic stainless steel with excellent nitric acid corrosion resistance
JPH0693389A (en) * 1992-06-23 1994-04-05 Nkk Corp High si stainless steel excellent in corrosion resistance and ductility-toughness and its production
JP2682398B2 (en) * 1993-10-19 1997-11-26 住友金属工業株式会社 Hot rolling method for stainless steel
DE69516336T2 (en) * 1994-01-26 2000-08-24 Kawasaki Steel Co METHOD FOR PRODUCING A STEEL SHEET WITH HIGH CORROSION RESISTANCE
US5716153A (en) * 1995-11-06 1998-02-10 Saf-T Ring, Llc Safety ring binder
EP1352980A4 (en) * 2000-12-14 2004-11-17 Yoshiyuki Shimizu High silicon stainless
JP4221569B2 (en) * 2002-12-12 2009-02-12 住友金属工業株式会社 Austenitic stainless steel
EP2143815B1 (en) * 2007-04-27 2014-01-08 Japan Atomic Energy Agency Austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance, and method for producing austenitic stainless steel
KR20110128924A (en) * 2009-03-27 2011-11-30 수미도모 메탈 인더스트리즈, 리미티드 Austenitic stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613157B2 (en) * 1986-12-03 1994-02-23 住友金属工業株式会社 Welding material for high Si austenitic stainless steel
JPH01316418A (en) * 1988-06-16 1989-12-21 Nippon Steel Corp Production of austenitic stainless steel exhibiting excellent integranular corrosion resistance in nitric acid solution

Also Published As

Publication number Publication date
EP2737961A4 (en) 2015-06-03
WO2013018628A1 (en) 2013-02-07
CN103826766A (en) 2014-05-28
EP2737961A1 (en) 2014-06-04
US20140261917A1 (en) 2014-09-18
KR101495483B1 (en) 2015-02-24
KR20140037969A (en) 2014-03-27
SI2737961T1 (en) 2017-05-31
EP2737961B1 (en) 2016-12-14
JPWO2013018628A1 (en) 2015-03-05
CN103826766B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
KR101564152B1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
US8133431B2 (en) Austenitic stainless steel
JP4431905B2 (en) Austenitic heat-resistant alloy, heat-resistant pressure-resistant member made of this alloy, and manufacturing method thereof
JP5880788B2 (en) High strength oil well steel and oil well pipe
JP6075349B2 (en) Ferritic stainless steel
JP5633489B2 (en) Ni-base alloy and method for producing Ni-base alloy
US20100062279A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP5713118B2 (en) Ferritic stainless steel
KR101705135B1 (en) Ferritic stainless steel sheet
JP5418734B2 (en) Method for producing austenitic stainless steel
JP5709571B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
US8865060B2 (en) Austenitic stainless steel
CN110337503B (en) Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
JP5782753B2 (en) Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy
JP5989162B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP2017095789A (en) Ferritic stainless steel hot rolled steel sheet for flange and manufacturing method therefor
JP5709570B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP4469353B2 (en) Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone
JP5884183B2 (en) Structural stainless steel sheet
JP5476175B2 (en) Titanium coil with high strength and excellent strength stability
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
JP2017101325A (en) Ferritic stainless steel
JPH04110419A (en) Production of high ni stainless steel plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5418734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250