JP5418009B2 - Silicon single crystal manufacturing apparatus and manufacturing method - Google Patents

Silicon single crystal manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP5418009B2
JP5418009B2 JP2009145774A JP2009145774A JP5418009B2 JP 5418009 B2 JP5418009 B2 JP 5418009B2 JP 2009145774 A JP2009145774 A JP 2009145774A JP 2009145774 A JP2009145774 A JP 2009145774A JP 5418009 B2 JP5418009 B2 JP 5418009B2
Authority
JP
Japan
Prior art keywords
pressure
gas
furnace
single crystal
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009145774A
Other languages
Japanese (ja)
Other versions
JP2011001223A5 (en
JP2011001223A (en
Inventor
正夫 齊藤
啓一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009145774A priority Critical patent/JP5418009B2/en
Publication of JP2011001223A publication Critical patent/JP2011001223A/en
Publication of JP2011001223A5 publication Critical patent/JP2011001223A5/ja
Application granted granted Critical
Publication of JP5418009B2 publication Critical patent/JP5418009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶の製造装置及び製造方法、特に、ヒ素等の不純物を添加したシリコン融液を有する溶融炉内のガスを排出し減圧雰囲気にした状態で、チョクラルスキー法によるシリコン単結晶の引上げを行うシリコン単結晶の製造装置に関するものである。   The present invention relates to an apparatus and method for producing a silicon single crystal, and more particularly, to a silicon single crystal produced by the Czochralski method in a state where a gas in a melting furnace having a silicon melt added with an impurity such as arsenic is exhausted to a reduced pressure atmosphere. The present invention relates to a silicon single crystal manufacturing apparatus for pulling up a crystal.

シリコンウェーハの製造工程において、シリコン単結晶の電気抵抗率を変化させるため、単結晶の引上げに用いられるシリコン融液中に、不純物(p型としてB、n型としてP、As等)を添加する方法がある。また、電気抵抗率を低くするためには、ヒ素や赤リン、アンチモン等の不純物を添加するのが有効である。   In the silicon wafer manufacturing process, impurities (B for p-type, P, As for n-type, etc.) are added to the silicon melt used to pull up the single crystal in order to change the electrical resistivity of the silicon single crystal. There is a way. In order to reduce the electrical resistivity, it is effective to add impurities such as arsenic, red phosphorus, and antimony.

ただし、前記シリコン融液中に添加された不純物は、一般的に、揮発性が高く蒸発しやすいものが多い。シリコン融液内の不純物が蒸発すると、シリコン融液が所望の不純物濃度を確保できないため、製品の抵抗率が悪化するという問題や、蒸発した不純物が単結晶製造装置内に充満するという環境上の問題の原因となることから、不純物の蒸発を防ぐために種々の方法が開発されている。   However, many impurities added to the silicon melt are generally highly volatile and easily evaporated. If the impurities in the silicon melt evaporate, the silicon melt cannot secure the desired impurity concentration, so that the resistivity of the product deteriorates and the environment where the evaporated impurities fill the single crystal manufacturing apparatus. Various methods have been developed to prevent evaporation of impurities because they cause problems.

不純物の蒸発を防ぐ方法の1つとして、通常低圧(2666〜15998Pa程度)に制御されている溶融炉内の圧力を、高めに設定する方法が挙げられる。例えば図2に示す半導体結晶の製造装置1のように、圧力調整バルブ160等を用いて溶融炉内ガスの排気量を調整することで、溶融炉内の圧力を比較的高めの減圧雰囲気にする方法等である。   As one method for preventing evaporation of impurities, there is a method in which the pressure in the melting furnace, which is normally controlled at a low pressure (about 2666-15998 Pa), is set higher. For example, as in the semiconductor crystal manufacturing apparatus 1 shown in FIG. 2, the pressure inside the melting furnace is adjusted to a relatively high reduced pressure atmosphere by adjusting the exhaust amount of the gas in the melting furnace using the pressure adjusting valve 160 or the like. Method.

しかしながら、従来の方法では、シリコン融液中に添加された不純物の蒸発を防ぐ点では有効であるものの、実際に、圧力調整バルブ160等による炉内ガスの排出量の調整だけでは、炉内圧力を高く制御することが困難となり、特に、20kPa以上の炉内圧力に達した場合には、圧力制御が不安定になるという問題がある。   However, although the conventional method is effective in preventing evaporation of impurities added to the silicon melt, the pressure in the furnace is actually only adjusted by adjusting the discharge amount of the gas in the furnace by the pressure adjusting valve 160 or the like. In particular, when the pressure in the furnace reaches 20 kPa or more, the pressure control becomes unstable.

また、上述の課題を解決するための手段として、溶融炉内ガスを排気するための排気ポンプの能力を低いものに交換するという手段が考えられるが、その場合、製造するシリコン単結晶によって、製造装置内の真空ポンプを交換しなければならず、工業的に製品を量産するという点からは現実的ではない。   In addition, as a means for solving the above-mentioned problems, a means of replacing the exhaust pump for exhausting the gas in the melting furnace with a low one can be considered. The vacuum pump in the apparatus must be replaced, which is not realistic from the viewpoint of industrially mass-producing products.

本発明の目的は、装置の複雑な調整を必要とすることなく、シリコン単結晶引上げ時の溶融炉内の圧力を高く制御し、シリコン融液中に添加された不純物の蒸発を抑制できるシリコン単結晶の製造装置及び製造方法を提供することにある。   The object of the present invention is to control the pressure in the melting furnace at the time of pulling the silicon single crystal high without requiring complicated adjustment of the apparatus and to suppress evaporation of impurities added to the silicon melt. An object is to provide a crystal manufacturing apparatus and a manufacturing method.

本発明者らは、シリコン単結晶の引上げのためのシリコン融液を有する溶融炉と、該溶融炉内のガスを排出し炉内圧力を減圧するための排気手段とを具えるシリコン単結晶の製造装置について、上記の課題を解決するため検討を重ねた結果、ガス供給手段をさらに具え、前記排気手段とガス供給手段の相互調整により、従来の方法のように減圧の調整を図るのではなく、減圧は通常通り行いながらも、ガス供給手段により積極的に排気手段の配管近くにガスを取り込んで圧力の調整を図ることができ、比較的容易に、前記溶融炉内の圧力を26kPa以上の減圧雰囲気を実現できることを見出した。   The inventors of the present invention provide a silicon single crystal comprising a melting furnace having a silicon melt for pulling up the silicon single crystal, and an exhaust means for discharging the gas in the melting furnace and reducing the pressure in the furnace. As a result of repeated studies on the manufacturing apparatus to solve the above-described problems, the apparatus further includes a gas supply means, and the adjustment of the reduced pressure is not attempted by the mutual adjustment of the exhaust means and the gas supply means as in the conventional method. While the pressure is reduced as usual, the gas supply means can actively take in gas near the piping of the exhaust means to adjust the pressure, and the pressure in the melting furnace can be adjusted to 26 kPa or more relatively easily. It has been found that a reduced pressure atmosphere can be realized.

上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)ヒ素、赤リン又はアンチモンを含有するシリコン単結晶の引上げのためのシリコン融液を有する溶融炉と、該溶融炉とガス管を介して接続し、該溶融炉内のガスを排出し炉内圧力を減圧するための排気手段とを具えるシリコン単結晶の製造装置であって、
該製造装置は、目標炉内圧力と実際の炉内圧力との差から、前記ガス供給手段をフィードバック制御する制御手段、並びに、前記排気手段の排気量を制御することで、前記炉内圧力の調整を図る排気調整手段、をさらに具えるとともに、
前記排気手段の接続されたガス管と同一のガス管に接続したガス供給手段をさらに具え、該排気手段及び該ガス供給手段は、前記同一のガス管からそれぞれ分岐して配設されており、排気手段によって減圧を行いながら、該ガス供給手段によりガス(アルゴンを除く)を取り込んで排気手段へ送りこみ圧力の調整を図ることで、前記溶融炉内の圧力を、26kPa以上の減圧雰囲気に維持することを特徴とするシリコン単結晶の製造装置。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A melting furnace having a silicon melt for pulling up a silicon single crystal containing arsenic, red phosphorus or antimony is connected to the melting furnace via a gas pipe, and the gas in the melting furnace is discharged. An apparatus for producing a silicon single crystal comprising an exhaust means for reducing the pressure in the furnace,
The manufacturing apparatus controls the gas supply means by feedback control from the difference between the target furnace pressure and the actual furnace pressure, and the exhaust amount of the exhaust means, thereby controlling the furnace pressure. In addition to further providing exhaust adjustment means for adjustment,
Gas supply means connected to the same gas pipe as the gas pipe to which the exhaust means is connected , and the exhaust means and the gas supply means are arranged separately from the same gas pipe, while depressurized by pre Symbol exhaust means, by achieving takes in adjustment of the pressure infeed to an exhaust means of the gas (excluding argon) by the gas supply means, the pressure of the melting furnace, 26 kPa or more pressure atmosphere An apparatus for producing a silicon single crystal, characterized by being maintained at

(2)ヒ素、赤リン又はアンチモンを含有するシリコン融液を有する溶融炉内のガスを排出し減圧雰囲気にした状態で、チョクラルスキー法によるシリコン単結晶の引上げを行うシリコン単結晶の製造方法であって、
前記溶融炉内のガスを該溶融炉とガス管を介して接続された排気手段によって排出するとともに、炉内圧力が26kPa以上の減圧雰囲気を維持するように、ガス(アルゴンを除く)を、前記溶融炉外部から、前記排気手段の接続されたガス管と同一のガス管に接続されたガス供給手段へ取り込んで、該ガス管を通じて取り込んだガスを前記排気手段へ送りこみ、さらに、シリコン単結晶引上げ時に、目標炉内圧力と実際の炉内圧力との差から前記溶融炉外部のガスの取り込み量のフィードバック制御を行い、排気量を制御することで、前記炉内圧力の調整を図ことを特徴とするシリコン単結晶の製造方法。
(2) A method for producing a silicon single crystal by pulling up the silicon single crystal by the Czochralski method in a state where the gas in the melting furnace having a silicon melt containing arsenic, red phosphorus or antimony is discharged and in a reduced pressure atmosphere Because
The gas in the melting furnace is discharged by exhaust means connected to the melting furnace via a gas pipe, and the gas (excluding argon) is used so that the pressure in the furnace is maintained at a reduced pressure atmosphere of 26 kPa or more. From outside the melting furnace, the gas pipe connected to the same gas pipe as the gas pipe to which the exhaust means is connected is taken in, the gas taken in through the gas pipe is sent to the exhaust means, and further a silicon single crystal during the pulling, performs the melting furnace external uptake of feedback control of the gas from the difference between the actual reactor pressure and the target furnace pressure, by controlling the exhaust volume, it Ru FIG adjustment of the furnace pressure A method for producing a silicon single crystal characterized by

この発明によれば、装置の複雑な調整を必要とすることなく、シリコン単結晶引上げ時の溶融炉内の圧力を高く制御し、シリコン融液中に添加された不純物の蒸発を抑制できるシリコン単結晶の製造装置及び製造方法の提供が可能となった。   According to the present invention, without requiring complicated adjustment of the apparatus, the pressure in the melting furnace at the time of pulling the silicon single crystal is controlled to be high, and the evaporation of impurities added to the silicon melt can be suppressed. A crystal manufacturing apparatus and a manufacturing method can be provided.

本発明に従うシリコン単結晶の製造装置を説明するための図である。It is a figure for demonstrating the manufacturing apparatus of the silicon single crystal according to this invention. 従来のシリコン単結晶の製造装置を説明するための図である。It is a figure for demonstrating the manufacturing apparatus of the conventional silicon single crystal. 実施例及び比較例のシリコン単結晶製造装置について、時間に対する圧力の変動を示したグラフである。It is the graph which showed the fluctuation | variation of the pressure with respect to time about the silicon single crystal manufacturing apparatus of an Example and a comparative example. 実施例及び比較例の製造装置中のシリコン融液について、結晶固化率に対する電気抵抗率を示したグラフである。It is the graph which showed the electrical resistivity with respect to the crystal solidification rate about the silicon melt in the manufacturing apparatus of an Example and a comparative example. シリコン単結晶中に含有されるヒ素濃度とシリコン単結晶の電気抵抗率との関係を示したグラフである。It is the graph which showed the relationship between the arsenic density | concentration contained in a silicon single crystal, and the electrical resistivity of a silicon single crystal.

本発明によるシリコン単結晶の製造装置について、図面を参照しながら説明する。
本発明のシリコン単結晶の製造装置は、図1に示すように、シリコン単結晶の引上げのためのシリコン融液を有する溶融炉10と、該溶融炉10内のガスを排出し炉内圧力を減圧するための排気手段30とを具えるシリコン単結晶の製造装置1である。
An apparatus for producing a silicon single crystal according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, an apparatus for producing a silicon single crystal according to the present invention includes a melting furnace 10 having a silicon melt for pulling up a silicon single crystal, and a gas in the melting furnace 10 is discharged to reduce the pressure in the furnace. A silicon single crystal manufacturing apparatus 1 including an exhaust means 30 for decompressing.

そして、本発明の製造装置1は、ガス供給手段30をさらに具え、排気手段20とガス供給手段30の相互調整により、前記溶融炉10内の圧力を、26kPa以上の減圧雰囲気に維持することを特徴とする。   The production apparatus 1 of the present invention further includes a gas supply means 30 and maintains the pressure in the melting furnace 10 in a reduced pressure atmosphere of 26 kPa or more by mutual adjustment of the exhaust means 20 and the gas supply means 30. Features.

上記構成を採用することで、排気手段20を用いて減圧は通常通り行いながら、ガス供給手段30を用いて、外部から溶融炉10内に積極的にガス31を取り込み、排気手段20による減圧とガス供給手段30による取り込んだガスとの調整によって、溶融炉10内の圧力の調整を比較的容易、かつ確実に行うことができ、従来の製造装置では制御が困難であった26kPa以上という、高い減圧雰囲気を実現することができる。   By adopting the above configuration, while the pressure reduction using the exhaust means 20 is performed as usual, the gas 31 is actively taken into the melting furnace 10 from the outside using the gas supply means 30, and the pressure reduction by the exhaust means 20 is performed. By adjusting with the gas taken in by the gas supply means 30, the pressure in the melting furnace 10 can be adjusted relatively easily and reliably, and it is as high as 26 kPa or more, which was difficult to control with the conventional manufacturing apparatus. A reduced pressure atmosphere can be realized.

ここで、前記減圧雰囲気の圧力を26kPa以上としたのは、炉内の圧力が26kPa未満の場合、炉内圧力が低すぎるため、シリコン融液に添加された不純物の蒸発を、十分に抑制できない恐れがあるからである。   Here, the pressure of the reduced-pressure atmosphere is set to 26 kPa or more because when the pressure in the furnace is less than 26 kPa, the pressure in the furnace is too low, and thus evaporation of impurities added to the silicon melt cannot be sufficiently suppressed. Because there is a fear.

なお、図2に示すように、従来のシリコン単結晶製造装置100では、圧力調整バルブ160のみによって、溶融炉110内の圧力を調整しており、高い減圧雰囲気(約20kPa以上)については、バルブ160の動きの制御が煩雑となる結果、実現は困難である。   As shown in FIG. 2, in the conventional silicon single crystal manufacturing apparatus 100, the pressure in the melting furnace 110 is adjusted only by the pressure adjustment valve 160. For a high-pressure reduced atmosphere (about 20 kPa or more), the valve As a result of complicated control of the movement of 160, realization is difficult.

前記溶融炉10は、図1に示すように、チョクラルスキー法によるシリコン単結晶の引上げに用いられるシリコン融液が充填された炉のことである。本発明では、通常用いられる溶融炉であれば特に限定はないが、溶融炉内のシリコン融液については、本発明による効果を発揮する点から、不純物が添加されていることが好ましい。   As shown in FIG. 1, the melting furnace 10 is a furnace filled with a silicon melt used for pulling a silicon single crystal by the Czochralski method. In the present invention, there is no particular limitation as long as it is a commonly used melting furnace, but it is preferable that an impurity is added to the silicon melt in the melting furnace in order to exhibit the effects of the present invention.

また、前記シリコン融液は、ヒ素、赤リン又はアンチモンを含有するこれらの材料がシリコン融液中に添加された場合、揮発性が非常に高く、蒸発する量が大きいことため、本発明の製造装置による26kPa以上に炉内圧力を上昇させて、不純物の蒸発を抑制する効果が最も顕著に発揮できるためである。また、その他の不純物、例えばボロン等を添加した場合には、炉内圧力を高くする必要はないためである。 The silicon melt contains arsenic, red phosphorus, or antimony . When these materials are added to the silicon melt, the volatility is very high and the amount of evaporation is large. Therefore, the furnace pressure is increased to 26 kPa or more by the production apparatus of the present invention, and impurities are evaporated. This is because the suppressing effect can be exhibited most remarkably. Further, when other impurities such as boron are added, it is not necessary to increase the pressure in the furnace.

ここで、上述の不純物をシリコン融液に添加した場合、得られるシリコン単結晶については、電気抵抗率が低くなる。図5は、シリコン単結晶中に含有されるヒ素濃度(atoms/cm3)とシリコン単結晶の電気抵抗率の関係を示したグラフであるが、図5からわかるように、ヒ素の含有量が多くなるほど、電気抵抗率(Ω/cm)が低下することがわかる。 Here, when the above-mentioned impurities are added to the silicon melt, the electrical resistivity of the obtained silicon single crystal is low. FIG. 5 is a graph showing the relationship between the arsenic concentration (atoms / cm 3 ) contained in the silicon single crystal and the electrical resistivity of the silicon single crystal. As can be seen from FIG. 5, the arsenic content is It can be seen that the electrical resistivity (Ω / cm) decreases as the number increases.

前記排気手段20は、図1に示すように、ガス管80を通して溶融炉10に接続した状態で設けられ、前記溶融炉内のガスを排出し、炉内圧を低下させるための手段である。前記排気手段20については、炉内ガスを排出できれば特に限定する必要はないが、例えば、真空ポンプ等を用いることができる。   As shown in FIG. 1, the exhaust means 20 is provided in a state connected to the melting furnace 10 through a gas pipe 80, and is a means for discharging the gas in the melting furnace and reducing the furnace pressure. The exhaust means 20 is not particularly limited as long as the in-furnace gas can be exhausted. For example, a vacuum pump or the like can be used.

前記ガス供給手段は、図1に示すように、ガス管80接続した状態で設けられ、外部からガス31を供給し、炉内圧を上昇させるための手段である。具体的なガス供給手段30としては、専用のバルブや、ガス供給用のポンプ等が挙げられる。このガス供給手段30によるガス13供給と、前記排気手段30による炉外へのガスの排出との相互作用によって、前記溶融炉1内の圧力を26kPa以上に調整することが可能となる。 As shown in FIG. 1, the gas supply means is provided in a state of being connected to a gas pipe 80 , and is a means for supplying gas 31 from the outside and increasing the furnace pressure. Specific examples of the gas supply means 30 include a dedicated valve and a gas supply pump. By the interaction between the supply of the gas 13 by the gas supply means 30 and the discharge of the gas outside the furnace by the exhaust means 30, the pressure in the melting furnace 1 can be adjusted to 26 kPa or more.

また、本発明のシリコン単結晶製造装置1は、図1に示すように、目標炉内圧力と実際の炉内圧力との差から、前記ガス供給手段30へのガス供給量をフィードバック制御する制御手段40をさらに具えるこの制御手段40を用いることによって、より正確に、目標炉内圧力を実現できるからである。 Further, as shown in FIG. 1, the silicon single crystal manufacturing apparatus 1 of the present invention performs feedback control of the gas supply amount to the gas supply means 30 from the difference between the target furnace pressure and the actual furnace pressure. A means 40 is further provided . This is because the use of this control means 40 can achieve the target furnace pressure more accurately.

ここで、フィードバック制御の一例を示す。
炉内圧力は、排気手段20(真空ポンプ)の排気能力が一定である場合、
炉内圧力(Pa)=炉内ガス流量(L/min)×大気圧(Pa)/排気量(L/min)
で定められる。そして、ガス供給手段30によって炉内圧力の調整を図った場合、
炉内圧力(Pa)=(炉内ガス流量(L/min)×大気圧(Pa)+供給したガス流量(L/min)×大気圧(Pa))/排気量(L/min)
で定められる。
例えば、炉内圧力:715.65 Pa、炉内ガス(Ar)流量:60 L/min、排気量:8495.04 L/minの炉内雰囲気で、炉内圧力を13332 Paに設定する場合、上記の式から
供給流量(L/min)=(13332(Pa)×8495.04(L/min))/101325(Pa)−60(L/min)
となり、炉内へのガスの供給量(L/min)を、1057.749 L/minとなるように、ガス供給手段30のフィードバック制御を行えばいいことがわかる。
Here, an example of feedback control is shown.
When the exhaust capability of the exhaust means 20 (vacuum pump) is constant,
Furnace pressure (Pa) = Furnace gas flow rate (L / min) x Atmospheric pressure (Pa) / Displacement (L / min)
Determined by And when adjusting the pressure in the furnace by the gas supply means 30,
Furnace pressure (Pa) = (furnace gas flow rate (L / min) x atmospheric pressure (Pa) + supplied gas flow rate (L / min) x atmospheric pressure (Pa)) / displacement (L / min)
Determined by
For example, when the furnace pressure is set to 13332 Pa in the furnace atmosphere: furnace pressure: 715.65 Pa, furnace gas (Ar) flow rate: 60 L / min, displacement: 8495.04 L / min Supply flow rate (L / min) = (13332 (Pa) x 8495.04 (L / min)) / 101325 (Pa)-60 (L / min)
Thus, it is understood that the feedback control of the gas supply means 30 may be performed so that the gas supply amount (L / min) into the furnace becomes 1057.749 L / min.

なお、前記制御手段40のフィードバック制御については、上述の方法でなくとも、目標炉内圧力と実際の炉内圧力との差に基づき制御できればよい。また、図1に示すように、前記制御手段40は、前記ガス供給手段30及び溶融炉内の圧力を測定するための真空計50に接続した状態で設けられることが好ましい。   The feedback control of the control means 40 may be controlled based on the difference between the target furnace pressure and the actual furnace pressure, instead of the method described above. Moreover, as shown in FIG. 1, it is preferable that the said control means 40 is provided in the state connected to the said gas supply means 30 and the vacuum gauge 50 for measuring the pressure in a melting furnace.

さらに、本発明による製造装置1は、図1に示すように、さらに高い精度で、所望の炉内圧を実現する点から、前記排気手段20の排気量を制御することで、前記炉内圧力の調整を図る排気調整手段60を具えるこの排気調整手段60は、排気手段20の排気量を調整できれば特に限定はされず、例えば、従来の製造装置で用いられている圧力調整バルブ等を用いることができる。また、前記排気調整手段60についても、前記制御手段40と接続されることが好ましい。前記ガス供給手段30の動きと調整を図ることで、炉内圧力を高い精度で維持できることに加え、高炉内圧、低炉内圧制御の切り替えが容易に可能となるためである。 Furthermore, as shown in FIG. 1, the manufacturing apparatus 1 according to the present invention controls the exhaust pressure of the exhaust means 20 by controlling the exhaust amount of the exhaust means 20 in order to achieve a desired furnace pressure with higher accuracy. Exhaust adjusting means 60 is provided for adjustment . The exhaust adjusting unit 60 is not particularly limited as long as the exhaust amount of the exhaust unit 20 can be adjusted. For example, a pressure adjusting valve used in a conventional manufacturing apparatus can be used. Further, the exhaust adjustment means 60 is also preferably connected to the control means 40. This is because by adjusting the movement and adjustment of the gas supply means 30, it is possible to maintain the furnace pressure with high accuracy and to easily switch between the high furnace pressure and the low furnace pressure control.

次に、本発明によるシリコン単結晶の製造方法を説明する。
本発明の製造方法は、シリコン融液を有する溶融炉内のガスを排出し減圧雰囲気にした状態で、チョクラルスキー法によるシリコン単結晶の引上げを行うシリコン単結晶の製造方法であって、シリコン単結晶引上げ時に、前記溶融炉内のガスを排出するとともに、炉内圧力が26kPa以上の減圧雰囲気を維持するように排気手段の配管近くにガスを供給することを特徴とする。
Next, a method for producing a silicon single crystal according to the present invention will be described.
The production method of the present invention is a method for producing a silicon single crystal in which the silicon single crystal is pulled by the Czochralski method in a state where the gas in the melting furnace containing the silicon melt is discharged and the atmosphere is reduced. When pulling up the single crystal, the gas in the melting furnace is discharged, and the gas is supplied near the piping of the exhaust means so as to maintain a reduced pressure atmosphere with a furnace pressure of 26 kPa or more.

上記構成を採用することで、炉内ガスの排出によって、前記溶融炉内の減圧は通常通り行いながら、外部から溶融炉内に積極的にガスを取り込み、減圧と取り込んだガスとの調整によって、溶融炉内の圧力の調整を比較的容易、かつ確実に行うことができ、従来の製造方法では制御が困難であった26kPa以上という、高い減圧雰囲気を実現することができる。   By adopting the above-described configuration, by discharging the gas in the furnace, while the decompression in the melting furnace is normally performed, the gas is actively taken into the melting furnace from the outside, and by adjusting the decompression and the taken-in gas, The pressure in the melting furnace can be adjusted relatively easily and reliably, and a high-pressure reduced atmosphere of 26 kPa or more, which is difficult to control with the conventional manufacturing method, can be realized.

なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。 The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

(実施例)
実施例として、図1に示すように、シリコン単結晶の引上げのためのシリコン融液を有する溶融炉10と、該溶融炉10内のガスを排出し炉内圧力を減圧するための排気手段20と、排気手段20との相互調整により前記溶融炉10内の圧力を調整するガス供給手段30と、目標炉内圧力と実際の炉内圧力との差から、前記ガス供給手段30へのガス供給量をフィードバック制御する制御手段40と、前記排気手段20の排気量を制御することで、前記炉内圧力の調整を図る排気調整手段60とを具えるシリコン単結晶の製造装置1を製造した。
(Example)
As an example, as shown in FIG. 1, a melting furnace 10 having a silicon melt for pulling up a silicon single crystal, and an exhaust means 20 for discharging the gas in the melting furnace 10 and reducing the pressure in the furnace. And gas supply means 30 for adjusting the pressure in the melting furnace 10 by mutual adjustment with the exhaust means 20, and gas supply to the gas supply means 30 from the difference between the target furnace pressure and the actual furnace pressure The silicon single crystal manufacturing apparatus 1 including the control means 40 for feedback control of the amount and the exhaust adjustment means 60 for adjusting the pressure in the furnace by controlling the exhaust amount of the exhaust means 20 was manufactured.

(比較例)
比較例1として、図2に示すように、ガス供給手段30を具えていないこと以外は、実施例と同様の構成を具えるシリコン単結晶の製造装置100を製造した。
(Comparative example)
As Comparative Example 1, as shown in FIG. 2, a silicon single crystal manufacturing apparatus 100 having the same configuration as that of the example except that the gas supply means 30 was not provided was manufactured.

(評価方法)
(1)炉内圧力の変動
実施例の製造装置を用いて、溶融炉内の圧力を、11998Paから所定の圧力(26664Pa、39996Pa、53328Pa)まで上昇させた後、200分間、圧力の維持を行ったときの、炉内圧力(Pa)の変動を測定した。また、比較例の製造装置を用いて、溶融炉内の圧力を、11998Paから26664Paまで上昇させた後、200分間、圧力の維持を行ったときの、炉内圧力(Pa)の変動を測定した。
時間(分)に対する圧力(Pa)の変動を示したグラフを図3に示す。
(Evaluation method)
(1) Fluctuation in furnace pressure After increasing the pressure in the melting furnace from 11998 Pa to a predetermined pressure (26664 Pa, 39996 Pa, 53328 Pa) using the manufacturing apparatus of the example, the pressure is maintained for 200 minutes. The fluctuation of the pressure in the furnace (Pa) was measured. In addition, using the manufacturing apparatus of the comparative example, after the pressure in the melting furnace was increased from 11998 Pa to 26664 Pa, the fluctuation in the furnace pressure (Pa) was measured when the pressure was maintained for 200 minutes. .
The graph which showed the fluctuation | variation of the pressure (Pa) with respect to time (minutes) is shown in FIG.

(2)シリコン単結晶の抵抗
実施例及び比較例の製造装置を用いて、表1に示す条件(シリコンチャージ量、ヒ素添加量、引上げ速度(結晶直胴部育成途中に速度が変化する)、溶融炉内の圧力、Ar流量)に従って、200mmサイズの単結晶シリコンを製造した。
そして製造されたシリコン単結晶について、電気抵抗率(Ω/cm)を測定し、結晶固化率に対する電気抵抗率を図4に示す。なお、単結晶シリコンの電気抵抗率(Ω/cm)は、実施例では2つのサンプル、比較例では3つのサンプルについて測定した。ここで、電気抵抗率は、低いほどシリコン単結晶中にヒ素が含有されていることを意味する。また、結晶固化率が高くなるにつれて、シリコン融液中のヒ素濃度が濃くなり、抵抗率が低くなることがわかる。
(2) Resistivity of silicon single crystal Conditions shown in Table 1 (silicon charge amount, arsenic addition amount, pulling speed (speed changes during crystal straight body growth) using the manufacturing apparatuses of the examples and comparative examples. 200 mm size single crystal silicon was manufactured according to the pressure in the melting furnace and the Ar flow rate.
Then, the electrical resistivity (Ω / cm) of the manufactured silicon single crystal was measured, and the electrical resistivity relative to the crystal solidification rate is shown in FIG. The electrical resistivity (Ω / cm) of single crystal silicon was measured for two samples in the example and three samples in the comparative example. Here, the lower the electrical resistivity, the more arsenic is contained in the silicon single crystal. It can also be seen that as the crystal solidification rate increases, the arsenic concentration in the silicon melt increases and the resistivity decreases.

Figure 0005418009
Figure 0005418009

図3から、比較例のシリコン単結晶製造装置では、26664Paの圧力制御がバラついているのに対し、実施例のシリコン単結晶製造装置では、26664Pa、39996Pa、53328Paのいずれの炉内圧力であっても、一定に圧力制御できていることがわかる。これは、実施例の製造装置には、ガス供給手段が具えられているためだと考えられる。
また、図4から、単結晶の引上げが進む(結晶固化率が高くなる)につれて、実施例のシリコン単結晶の電気抵抗率が比較例のそれよりも小さくなっていることから、本願発明の圧力制御によって、融液中のヒ素が蒸発されずに含有し続けていることがわかる。
From FIG. 3, the pressure control of 26664 Pa varies in the silicon single crystal manufacturing apparatus of the comparative example, whereas in the silicon single crystal manufacturing apparatus of the example, any furnace pressure of 26664 Pa, 39996 Pa, 53328 Pa is obtained. It can also be seen that the pressure can be controlled constantly. This is considered to be because the manufacturing apparatus of the example is provided with gas supply means.
Further, from FIG. 4, as the pulling of the single crystal proceeds (the crystal solidification rate increases), the electrical resistivity of the silicon single crystal of the example becomes smaller than that of the comparative example. It can be seen that arsenic in the melt continues to be contained without being evaporated by the control.

この発明によれば、装置の複雑な調整を必要とすることなく、シリコン単結晶引上げ時の溶融炉内の圧力を高く制御し、シリコン融液中に添加された不純物の蒸発を抑制できるシリコン単結晶の製造装置及び製造方法を提供することが可能になった。   According to the present invention, without requiring complicated adjustment of the apparatus, the pressure in the melting furnace at the time of pulling the silicon single crystal is controlled to be high, and the evaporation of impurities added to the silicon melt can be suppressed. It has become possible to provide a crystal manufacturing apparatus and a manufacturing method.

1、100 シリコン単結晶の製造装置
10、110 溶融炉
20、120 排気手段
30 ガス供給手段
40、140 制御手段
50、150 真空計
60、160 排気調整手段
DESCRIPTION OF SYMBOLS 1,100 Silicon single crystal manufacturing apparatus 10, 110 Melting furnace 20, 120 Exhaust means 30 Gas supply means 40, 140 Control means 50, 150 Vacuum gauge 60, 160 Exhaust adjustment means

Claims (2)

ヒ素、赤リン又はアンチモンを含有するシリコン単結晶の引上げのためのシリコン融液を有する溶融炉と、該溶融炉とガス管を介して接続し、該溶融炉内のガスを排出し炉内圧力を減圧するための排気手段とを具えるシリコン単結晶の製造装置であって、
該製造装置は、目標炉内圧力と実際の炉内圧力との差から、前記ガス供給手段をフィードバック制御する制御手段、並びに、前記排気手段の排気量を制御することで、前記炉内圧力の調整を図る排気調整手段、をさらに具えるとともに、
前記排気手段の接続されたガス管と同一のガス管に接続したガス供給手段をさらに具え、該排気手段及び該ガス供給手段は、前記同一のガス管からそれぞれ分岐して配設されており、排気手段によって減圧を行いながら、該ガス供給手段によりガス(アルゴンを除く)を取り込んで排気手段へ送りこみ圧力の調整を図ることで、前記溶融炉内の圧力を、26kPa以上の減圧雰囲気に維持することを特徴とするシリコン単結晶の製造装置。
A melting furnace having a silicon melt for pulling up a silicon single crystal containing arsenic, red phosphorus or antimony, connected to the melting furnace via a gas pipe, and discharging the gas in the melting furnace to increase the pressure in the furnace An apparatus for producing a silicon single crystal comprising an exhaust means for decompressing
The manufacturing apparatus controls the gas supply means by feedback control from the difference between the target furnace pressure and the actual furnace pressure, and the exhaust amount of the exhaust means, thereby controlling the furnace pressure. In addition to further providing exhaust adjustment means for adjustment,
Gas supply means connected to the same gas pipe as the gas pipe to which the exhaust means is connected , and the exhaust means and the gas supply means are arranged separately from the same gas pipe, while depressurized by pre Symbol exhaust means, by achieving takes in adjustment of the pressure infeed to an exhaust means of the gas (excluding argon) by the gas supply means, the pressure of the melting furnace, 26 kPa or more pressure atmosphere An apparatus for producing a silicon single crystal, characterized by being maintained at
ヒ素、赤リン又はアンチモンを含有するシリコン融液を有する溶融炉内のガスを排出し減圧雰囲気にした状態で、チョクラルスキー法によるシリコン単結晶の引上げを行うシリコン単結晶の製造方法であって、
前記溶融炉内のガスを該溶融炉とガス管を介して接続された排気手段によって排出するとともに、炉内圧力が26kPa以上の減圧雰囲気を維持するように、ガス(アルゴンを除く)を、前記溶融炉外部から、前記排気手段の接続されたガス管と同一のガス管に接続されたガス供給手段へ取り込んで、該ガス管を通じて取り込んだガスを前記排気手段へ送りこみ、さらに、シリコン単結晶引上げ時に、目標炉内圧力と実際の炉内圧力との差から前記溶融炉外部のガスの取り込み量のフィードバック制御を行い、排気量を制御することで、前記炉内圧力の調整を図ことを特徴とするシリコン単結晶の製造方法。
A method for producing a silicon single crystal, wherein a silicon single crystal is pulled by a Czochralski method in a state where a gas in a melting furnace having a silicon melt containing arsenic, red phosphorus or antimony is discharged and in a reduced pressure atmosphere. ,
The gas in the melting furnace is discharged by exhaust means connected to the melting furnace via a gas pipe, and the gas (excluding argon) is used so that the pressure in the furnace is maintained at a reduced pressure atmosphere of 26 kPa or more. From outside the melting furnace, the gas pipe connected to the same gas pipe as the gas pipe to which the exhaust means is connected is taken in, the gas taken in through the gas pipe is sent to the exhaust means, and further a silicon single crystal during the pulling, performs the melting furnace external uptake of feedback control of the gas from the difference between the actual reactor pressure and the target furnace pressure, by controlling the exhaust volume, it Ru FIG adjustment of the furnace pressure A method for producing a silicon single crystal characterized by
JP2009145774A 2009-06-18 2009-06-18 Silicon single crystal manufacturing apparatus and manufacturing method Active JP5418009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145774A JP5418009B2 (en) 2009-06-18 2009-06-18 Silicon single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145774A JP5418009B2 (en) 2009-06-18 2009-06-18 Silicon single crystal manufacturing apparatus and manufacturing method

Publications (3)

Publication Number Publication Date
JP2011001223A JP2011001223A (en) 2011-01-06
JP2011001223A5 JP2011001223A5 (en) 2012-03-01
JP5418009B2 true JP5418009B2 (en) 2014-02-19

Family

ID=43559526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145774A Active JP5418009B2 (en) 2009-06-18 2009-06-18 Silicon single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5418009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595318B2 (en) * 2011-03-29 2014-09-24 グローバルウェーハズ・ジャパン株式会社 Single crystal pulling apparatus and single crystal pulling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117191A (en) * 1984-11-12 1986-06-04 Toshiba Ceramics Co Ltd Device for preparing silicon single crystal
TW554093B (en) * 2000-02-28 2003-09-21 Shinetsu Handotai Kk Method for preparing silicon single crystal and silicon single crystal
JP2007112663A (en) * 2005-10-20 2007-05-10 Sumco Techxiv株式会社 Apparatus and method for manufacturing semiconductor single crystal
JP5186684B2 (en) * 2007-08-02 2013-04-17 Sumco Techxiv株式会社 Semiconductor single crystal manufacturing equipment

Also Published As

Publication number Publication date
JP2011001223A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US10400353B2 (en) Method for controlling resistivity and N-type silicon single crystal
TWI541375B (en) Formed sic product and method for producing the same
TWI553144B (en) Ga 2 O 3 A method for producing a crystalline film
US8642154B2 (en) Silicon carbide crystal ingot, silicon carbide crystal wafer, and method for fabricating silicon carbide crystal ingot
KR102054186B1 (en) Method for producing monocrystalline silicon
WO2008038689A1 (en) Silicon single crystal manufacturing method, silicon single crystal, silicon wafer, apparatus for controlling manufacture of silicon single crystal, and program
US10494734B2 (en) Method for producing silicon single crystals
JP2022180551A (en) Methods for forming single crystal silicon ingots with improved resistivity control
JP2024087083A (en) Tungsten Sputtering Target
JP5418009B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
WO2012029952A1 (en) Method for producing silicon carbide single crystal, silicon carbide single crystal, and silicon carbide single crystal substrate
JP4442892B2 (en) Method for producing arsenic dopant for pulling silicon single crystal
TWI579243B (en) 钌Sintered sputtering target and bismuth alloy sintered body sputtering target
JP2018140915A5 (en)
CN105209405B (en) Oxidate sintered body and the sputtering target comprising the oxidate sintered body
JP2014189419A (en) Ingot, silicon carbide substrate, and production method of ingot
US9250014B2 (en) Vacuum storage method and device for crystalline material
JP2017031007A (en) Method for storing hydrogen doped silica powder and method for manufacturing quartz glass crucible for pulling silicon single crystal
JP5544859B2 (en) Manufacturing method of silicon epitaxial wafer
JP6305775B2 (en) Oxide sintered body, oxide semiconductor film, and thin film transistor
KR20160066239A (en) Preparation method of tungsten sputtering target and the tungsten sputtering target prepared thereby
JP2012031023A (en) Method for producing silicon single crystal
JP2004131376A (en) Silicon carbide single crystal, and method and apparatus for producing the same
JP2011184213A (en) Method for producing silicon single crystal
JP2011093771A (en) Silicon carbide single crystal, silicon carbide single crystal substrate, and process for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5418009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250