JP2011184213A - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP2011184213A
JP2011184213A JP2010048196A JP2010048196A JP2011184213A JP 2011184213 A JP2011184213 A JP 2011184213A JP 2010048196 A JP2010048196 A JP 2010048196A JP 2010048196 A JP2010048196 A JP 2010048196A JP 2011184213 A JP2011184213 A JP 2011184213A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
furnace pressure
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048196A
Other languages
Japanese (ja)
Inventor
Osamu Kubota
治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010048196A priority Critical patent/JP2011184213A/en
Publication of JP2011184213A publication Critical patent/JP2011184213A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a silicon single crystal, by which generation of pinholes in a silicon single crystal can be remarkably suppressed. <P>SOLUTION: A method for producing a silicon single crystal by Czochralski method is provided, wherein the method includes, for example: in a control range (Ss-Es) of the furnace pressure from at least after a silicon raw material is melted (Ss) until pulling a straight body part of the silicon single crystal is finished (Es), a step of always gradually increasing (Rp) the furnace pressure without reducing the pressure (Fig.(a)); a step of keeping constant pressure (Cp) without reducing the furnace pressure, with addition of a step of gradually increasing (Rp) the furnace pressure (Figs.(b) and (c)); and a plurality of steps of keeping constant pressure (Cp) without reducing the furnace pressure and of gradually increasing Rp the furnace pressure (Fig.(d)). The step of gradually increasing Rp the furnace pressure is preferably carried out in the range from 20 Torr to 85 Torr. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、チョクラルスキー法(以下、CZ法という)によるシリコン単結晶の製造方法に関し、特に、シリコン単結晶中のピンホールの発生を抑制することができるシリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon single crystal by the Czochralski method (hereinafter referred to as CZ method), and more particularly, to a method for producing a silicon single crystal that can suppress the generation of pinholes in the silicon single crystal.

近年、シリコン単結晶の引上げ時において、シリコン融液中に存在する気泡がシリコン単結晶中に取り込まれやすくなり、ピンホールという欠陥が発生しやすいという問題がある。   In recent years, when a silicon single crystal is pulled, there is a problem that bubbles existing in the silicon melt are easily taken into the silicon single crystal, and defects such as pinholes are likely to occur.

このような問題に対して、多結晶シリコン原料を5〜60mbarの炉内圧で溶融し、100mbar以上の炉内圧でシリコン単結晶の引上げを行う方法(例えば、特許文献1)、多結晶シリコン原料を65〜400mbarの炉内圧力で溶解し、そのシリコン融液からの単結晶引上げを、溶解時の炉内圧力より低く、且つ95mbar以下の炉内圧力で行う方法(例えば、特許文献2)が知られている。   To solve this problem, a method of melting a polycrystalline silicon raw material at a furnace pressure of 5 to 60 mbar and pulling up a silicon single crystal at a furnace pressure of 100 mbar or more (for example, Patent Document 1), There is known a method of melting at a furnace pressure of 65 to 400 mbar and pulling the single crystal from the silicon melt at a furnace pressure lower than the furnace pressure at the time of melting and not more than 95 mbar (for example, Patent Document 2). It has been.

特開平5−9097号公報JP-A-5-9097 特開2000−169287号公報JP 2000-169287 A

しかしながら、特許文献1、2に記載の方法は、シリコン単結晶引上げ中の炉内圧を上記特定範囲の一定の炉内圧に制御するものであり、この方法ではシリコン単結晶中のピンホールの発生を抑制するには限界があるものであった。   However, the methods described in Patent Documents 1 and 2 control the furnace pressure during pulling of the silicon single crystal to a constant furnace pressure within the above specific range. In this method, generation of pinholes in the silicon single crystal is suppressed. There was a limit to the suppression.

本発明は、上記技術的課題を解決するためになされたものであり、シリコン単結晶中のピンホールの発生を大きく抑制することができるシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made to solve the above technical problem, and an object of the present invention is to provide a method for producing a silicon single crystal capable of greatly suppressing the generation of pinholes in the silicon single crystal.

本発明に係るシリコン単結晶の製造方法は、炉体内でシリコン原料を溶融してシリコン融液とした後、シリコン単結晶を引上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、少なくとも前記シリコン原料の溶融後から前記シリコン単結晶の直胴部の引上げ後までの間は、前記炉体内の炉内圧を減圧させずに制御すると共に、かつ、漸増させる過程を含むことを特徴とする。   A method for producing a silicon single crystal according to the present invention is a method for producing a silicon single crystal by the Czochralski method of pulling up a silicon single crystal after melting a silicon raw material in a furnace to form a silicon melt, The period from after the silicon raw material is melted to after the straight body portion of the silicon single crystal is pulled up includes a step of controlling and gradually increasing the furnace pressure in the furnace body without reducing the pressure. .

前記炉内圧の漸増は、20torr以上85torr以下の範囲で行うことが好ましい。   The gradual increase in the furnace pressure is preferably performed in the range of 20 to 85 torr.

前記シリコン原料の溶融時から前記シリコン単結晶の引上げ完了時に至るまでの炉内圧は、100torr以下で行うことが好ましい。   The furnace pressure from when the silicon raw material is melted to when the pulling of the silicon single crystal is completed is preferably 100 torr or less.

本発明によれば、シリコン単結晶中のピンホールの発生を大きく抑制することができるシリコン単結晶の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the silicon single crystal which can suppress generation | occurrence | production of the pinhole in a silicon single crystal largely is provided.

本発明に係わるシリコン単結晶の製造方法に用いられるシリコン単結晶引上装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the silicon single crystal pulling apparatus used for the manufacturing method of the silicon single crystal concerning this invention. 本発明に係わるシリコン単結晶の製造方法の炉内圧制御の一例を示す概念図である。It is a conceptual diagram which shows an example of the furnace pressure control of the manufacturing method of the silicon single crystal concerning this invention.

以下、本発明に係わるシリコン単結晶の製造方法について添付図面を参照して詳細に説明する。
図1は、本発明に係わるシリコン単結晶の製造方法に用いられるシリコン単結晶引上装置の一例を示す概略構成図である。図2は、本発明に係わるシリコン単結晶の製造方法の炉内圧制御(炉内圧シーケンス)の一例を示す概念図である。
Hereinafter, a method for producing a silicon single crystal according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram showing an example of a silicon single crystal pulling apparatus used in the method for producing a silicon single crystal according to the present invention. FIG. 2 is a conceptual diagram showing an example of furnace pressure control (furnace pressure sequence) in the method for producing a silicon single crystal according to the present invention.

本発明に係わるシリコン単結晶の製造方法に用いられるシリコン単結晶引上装置10は、図1に示すように、炉体12と、炉体12内に配置され、シリコン原料(主に、ポリシリコン)を保持するルツボ14と、ルツボ14の外周囲に設けられ、ルツボ14を加熱し、ルツボ14内に保持されたシリコン原料を溶融してシリコン融液16とするヒータ18と、シリコン融液16の上方に配置され、CZ法によりシリコン融液16から引上げたシリコン単結晶Igへの輻射熱を遮断する円筒形状の熱遮蔽体20とを備える。   As shown in FIG. 1, a silicon single crystal pulling apparatus 10 used in a method for producing a silicon single crystal according to the present invention is disposed in a furnace body 12 and the furnace body 12, and is a silicon raw material (mainly polysilicon). ) Holding a crucible 14, a heater 18 provided around the crucible 14, for heating the crucible 14, melting the silicon raw material held in the crucible 14 to form the silicon melt 16, and the silicon melt 16 And a cylindrical heat shield 20 that blocks radiation heat to the silicon single crystal Ig pulled from the silicon melt 16 by the CZ method.

ルツボ14は、シリコン融液16を保持する石英ルツボ14aと、石英ルツボ14aを収容するカーボンルツボ14bとで構成されている。   The crucible 14 includes a quartz crucible 14a that holds the silicon melt 16 and a carbon crucible 14b that accommodates the quartz crucible 14a.

ヒータ18の外周囲には第1保温部材22が設けられ、第1保温部材22の上部には、ヒータ18と一定の間隔を有して第2保温部材24が設けられている。   A first heat retaining member 22 is provided on the outer periphery of the heater 18, and a second heat retaining member 24 is provided above the first heat retaining member 22 with a certain distance from the heater 18.

熱遮蔽体20の上方には、熱遮蔽体20の内周側、熱遮蔽体20とシリコン融液16との間を通って、ルツボ14の下方に位置する排出口26から炉体12外に排出されるキャリアガスG1を供給するキャリアガス供給口28が設けられている。   Above the heat shield 20, it passes between the inner periphery of the heat shield 20, between the heat shield 20 and the silicon melt 16, and from the discharge port 26 located below the crucible 14 to the outside of the furnace body 12. A carrier gas supply port 28 for supplying the discharged carrier gas G1 is provided.

炉体12内には、シリコン単結晶Igを育成するために用いられる種結晶50を保持するシードチャック32が取り付けられた引上用ワイヤ34が、ルツボ14の上方に設けられている。引上用ワイヤ34は、炉体12外に設けられた回転昇降自在なワイヤ回転昇降機構36に取り付けられている。   In the furnace body 12, a pulling wire 34 to which a seed chuck 32 for holding a seed crystal 50 used for growing a silicon single crystal Ig is attached is provided above the crucible 14. The pulling wire 34 is attached to a wire rotating / lifting mechanism 36 provided outside the furnace body 12 and capable of rotating and lifting.

ルツボ14は、炉体12の底部を貫通し、炉体12外に設けられたルツボ回転昇降機構38によって回転昇降可能なルツボ回転軸40に取付けられている。   The crucible 14 passes through the bottom of the furnace body 12 and is attached to a crucible rotating shaft 40 that can be rotated up and down by a crucible rotation lifting mechanism 38 provided outside the furnace body 12.

熱遮蔽体20は、第2保温部材24の上面に取付けられた熱遮蔽体支持部材42を介してルツボ14の上方に保持されている。   The heat shield 20 is held above the crucible 14 via a heat shield support member 42 attached to the upper surface of the second heat retaining member 24.

キャリアガス供給口28には、調整弁43を介して、炉体12内にキャリアガスG1を供給するキャリアガス供給部44が接続されている。排出口26には、バタフライ弁46を介して、熱遮蔽体20の内周側、熱遮蔽体20とシリコン融液16との間を通ったキャリアガスG1を排出するキャリアガス排出部48が接続されている。調整弁43を調整することで炉体12内に供給するキャリアガスG1の供給量を、バタフライ弁46を調整することで炉体12内から排出する排出ガス(キャリアガスG1及びシリコン融液16から発生したSiOxガス等も含む)の排出量をそれぞれ制御する。   A carrier gas supply unit 44 that supplies a carrier gas G <b> 1 into the furnace body 12 is connected to the carrier gas supply port 28 via an adjustment valve 43. A carrier gas discharge part 48 that discharges the carrier gas G1 that passes between the heat shield 20 and the silicon melt 16 is connected to the discharge port 26 via a butterfly valve 46. Has been. By adjusting the adjustment valve 43, the supply amount of the carrier gas G1 supplied into the furnace body 12 is adjusted to the exhaust gas discharged from the furnace body 12 by adjusting the butterfly valve 46 (from the carrier gas G1 and the silicon melt 16). The amount of generated SiOx gas etc. is also controlled.

次に、本発明に係わるシリコン単結晶の製造方法を説明する。
本発明に係わるシリコン単結晶の製造方法は、図1に示すようなシリコン単結晶引上装置10を用いて、炉体12内でシリコン原料を溶融してシリコン融液16とする段階(S100)と、シリコン単結晶Igを引上げる段階(S200)とを備える。
シリコン単結晶Igを引上げる段階(S200)では、シードチャック32に保持された種結晶50を、シリコン融液16に接触させた後、ネック部55を形成する段階(S201)と、ネック部55を所望の結晶径まで拡径してクラウン部Igを形成する段階(S202)と、前記所望の結晶径に制御して直胴部Igを形成する段階(S203)と、前記所望の結晶径から縮径してテール部Igを形成する段階(S204)と、を備える。
Next, a method for producing a silicon single crystal according to the present invention will be described.
The method for producing a silicon single crystal according to the present invention includes the step of melting a silicon raw material in a furnace body 12 to form a silicon melt 16 using a silicon single crystal pulling apparatus 10 as shown in FIG. 1 (S100). And a step (S200) of pulling up the silicon single crystal Ig.
In the step of pulling up the silicon single crystal Ig (S200), the seed crystal 50 held on the seed chuck 32 is brought into contact with the silicon melt 16, and then the neck portion 55 is formed (S201). Is expanded to a desired crystal diameter to form the crown portion Ig 1 (S202), the step of controlling the desired crystal diameter to form the straight body portion Ig 2 (S203), and the desired crystal comprising a step (S204) for forming the tail portion Ig 3 reduced in diameter from the diameter, the.

本発明に係わるシリコン単結晶の製造方法は、上述した段階のうち、少なくとも前記シリコン原料の溶融後(S100後)から前記シリコン単結晶の直胴部の引上げ後(S203後)までの間は、前記炉体内の炉内圧を減圧させずに制御すると共に、かつ、漸増させる過程を含むことを特徴とする。   The method for producing a silicon single crystal according to the present invention includes, at least from the above-described stage, after the silicon raw material is melted (after S100) until the straight body of the silicon single crystal is pulled up (after S203). The method includes controlling the pressure inside the furnace without reducing the pressure and gradually increasing the pressure.

シリコン融液には、SiOxガスや炉内雰囲気ガス(主にアルゴンガス)などのガス成分が飽和状態で溶解されていると考えられる。そのため、シリコン融液におけるガス成分の溶解度が低下すると溶解しているガス成分が気泡となって発生し、これがシリコン単結晶中に取り込まれ、ピンホールが発生すると考えられる。
つまり、シリコン融液におけるガス成分の溶解度の低下を抑制することで気泡の発生を抑制し、ひいては、ピンホールの発生を抑制できると考えられる。
It is considered that gas components such as SiOx gas and furnace atmosphere gas (mainly argon gas) are dissolved in the silicon melt in a saturated state. Therefore, it is considered that when the solubility of the gas component in the silicon melt is lowered, the dissolved gas component is generated as bubbles, which are taken into the silicon single crystal and pinholes are generated.
That is, it is considered that the generation of bubbles can be suppressed by suppressing the decrease in the solubility of the gas component in the silicon melt, and consequently the generation of pinholes can be suppressed.

なお、溶解度に影響を及ぼす因子としては温度と圧力であるが、温度はシリコン単結晶引上げ時の引上条件によって制約される。従って、シリコン融液の溶解度の低下を抑制するには、シリコン融液における圧力制御、すなわち、炉体内の圧力制御が重要な鍵となる。   The factors affecting the solubility are temperature and pressure, but the temperature is limited by the pulling conditions when pulling up the silicon single crystal. Therefore, pressure control in the silicon melt, that is, pressure control in the furnace body is an important key for suppressing a decrease in the solubility of the silicon melt.

よって、炉体12内の炉内圧を減圧させずに制御する過程に加え、漸増させる過程を含むことで、シリコン融液におけるガス成分の溶解度の低下を抑制し、これを少なくともシリコン原料の溶融後(S100後)からシリコン単結晶の直胴部の引上げ後(S203後)までの間に適用することで、シリコン単結晶中のピンホールの発生を大きく抑制することができる。   Therefore, in addition to the process of controlling the furnace pressure in the furnace body 12 without reducing the pressure, the process of gradually increasing the pressure suppresses the decrease in the solubility of the gas component in the silicon melt, and at least after the melting of the silicon raw material. By applying between (after S100) and after pulling up the straight body of the silicon single crystal (after S203), the generation of pinholes in the silicon single crystal can be greatly suppressed.

なお、ここでいう「炉内圧を減圧させずに制御すると共に、かつ、漸増させる過程を含む」とは、シリコン原料の溶融後(S100後)Ssからシリコン単結晶の直胴部の引上げ後(S203後)Esまでの炉内圧制御範囲(Ss−Es間)において、炉内圧を減圧させずに常に漸増Rpさせること(例えば、図2(a))、炉内圧を減圧させずに一定Cpとする過程に加え、炉内圧を漸増Rpさせる過程を含むこと(例えば、図2(b)、(c))及び炉内圧を減圧させずに一定Cpとする過程と炉内圧を漸増Rpさせる過程を複数含むこと(例えば、図2(d))を含む。   Here, “including the process of controlling and gradually increasing the furnace pressure without reducing the pressure in the furnace” means that after the silicon raw material is melted (after S100), after the straight body portion of the silicon single crystal is pulled from Ss ( After S203, in the furnace pressure control range up to Es (between Ss and Es), the furnace pressure is always gradually increased Rp without reducing the pressure (for example, FIG. 2 (a)), and the constant Cp is maintained without reducing the furnace pressure. In addition to the process of gradually increasing the furnace pressure Rp (for example, FIGS. 2B and 2C), the process of making the furnace pressure constant Cp without reducing the furnace pressure, and the process of gradually increasing the furnace pressure Rp Including a plurality (for example, FIG. 2D).

前記炉内圧の漸増は、20torr以上85torr以下の範囲で行うことが好ましい。すなわち、図2に示す炉内圧増加量Δpは、20torr以上85torr以下の範囲で行うことが好ましい。
前記炉内圧の漸増が20torr未満である場合には、シリコン単結晶中のピンホールの発生を大きく抑制することが難しい。前記炉内圧の漸増が85torrを超える場合には、炉体12内の炉内圧が高くなるため、炉体12内の雰囲気ガスの整流が崩れてしまい、炉体12内の汚れが悪化し、シリコン単結晶における有転位化の原因となるため好ましくない。
The gradual increase in the furnace pressure is preferably performed in the range of 20 to 85 torr. That is, the furnace pressure increase amount Δp shown in FIG. 2 is preferably performed in the range of 20 to 85 torr.
If the gradual increase in the furnace pressure is less than 20 torr, it is difficult to largely suppress the generation of pinholes in the silicon single crystal. When the gradual increase of the furnace pressure exceeds 85 torr, the furnace pressure in the furnace body 12 becomes high, so that the rectification of the atmospheric gas in the furnace body 12 is disrupted, the contamination in the furnace body 12 is deteriorated, and silicon This is not preferable because it causes dislocations in the single crystal.

前記シリコン原料の溶融時から前記シリコン単結晶の引上げ完了時に至るまでの炉内圧は、100torr以下で行うことが好ましい。
前記炉内圧が100torrを越える場合には、炉内圧が高くなるため、炉体12内の雰囲気ガスの整流が崩れてしまい、炉体12内の汚れが悪化し、シリコン単結晶における有転位化の原因となるため好ましくない。
前記炉内圧の下限値は、装置構成上使用限界である15torr以上であることが好ましい。
The furnace pressure from when the silicon raw material is melted to when the pulling of the silicon single crystal is completed is preferably 100 torr or less.
When the furnace pressure exceeds 100 torr, the furnace pressure increases, so the rectification of the atmospheric gas in the furnace body 12 is disrupted, the contamination in the furnace body 12 is deteriorated, and dislocations in the silicon single crystal are generated. It is not preferable because it causes.
The lower limit value of the furnace pressure is preferably 15 torr or more which is a use limit in terms of the apparatus configuration.

なお、前記炉内圧の制御は、周知の方法で行うことができる。例えば、図1に示すようなシリコン単結晶引上装置10を用いる場合には、調整弁43によるキャリアガスの供給量の制御や、バタフライ弁46による排気量の制御、別途、炉体12に取り付けた図示しない真空ポンプ等により制御することができる。   The furnace pressure can be controlled by a known method. For example, when the silicon single crystal pulling apparatus 10 as shown in FIG. 1 is used, control of the supply amount of the carrier gas by the adjusting valve 43, control of the exhaust amount by the butterfly valve 46, separately attached to the furnace body 12 It can be controlled by a vacuum pump (not shown).

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により限定解釈されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limitedly interpreted by the following Example.

図1に示すシリコン単結晶引上装置10を用いて、シリコン原料360kgにて、P型、面方位<100>の直径310mmの直胴部Igを有するシリコン単結晶Igを引上げた。
その際、シリコン原料の溶融後からシリコン単結晶の直胴部の引上げ後までの間において、図2(d)に示す炉内圧シーケンスにて、炉内圧を変化させて、各々シリコン単結晶Igを引上げた(実施例1〜6)。
また、炉内圧を漸増させる過程を含まない炉内圧シーケンスにて、各々シリコン単結晶Igを引上げた(比較例1〜3)。
得られた各条件におけるシリコン単結晶Igの直胴部Igを周知の方法にて加工してシリコンウェーハとした後、全数(およそ3000枚強)のピンホール欠陥を評価し、各条件におけるピンホールの発生率を評価した。本評価では、ウェーハ面内に1個でもピンホールの発生を確認した場合は不良とした。
Using the silicon single crystal pulling apparatus 10 shown in FIG. 1, a silicon single crystal Ig having a straight body portion Ig 2 having a diameter of 310 mm and a P-type surface orientation <100> was pulled with 360 kg of silicon raw material.
At that time, the furnace pressure was changed in the furnace pressure sequence shown in FIG. 2 (d) after the silicon raw material was melted until the straight body portion of the silicon single crystal was pulled up, so that each silicon single crystal Ig (Examples 1 to 6).
Moreover, the silicon single crystal Ig was pulled up in each furnace pressure sequence not including the process of gradually increasing the furnace pressure (Comparative Examples 1 to 3).
After processing the straight body portion Ig 2 of the obtained silicon single crystal Ig under the respective conditions into a silicon wafer by a well-known method, the total number (approximately 3000 sheets) of pinhole defects was evaluated, and the pins under the respective conditions were evaluated. The incidence of holes was evaluated. In this evaluation, if even one pinhole was confirmed on the wafer surface, it was judged as defective.

本試験における炉内圧制御条件及びピンホール発生率を表1に示す。   Table 1 shows the furnace pressure control conditions and the pinhole generation rate in this test.

Figure 2011184213
Figure 2011184213

表1に示すように、実施例1から実施例6においてはピンホール発生率が非常に低いことが認められる。これに対し、炉内圧増加量Δpが10torrである場合(比較例1、2)は、比較例3に比べてピンホール発生率が若干良化するものの、その抑制効果は低いことが認められる。
また、本結果から、本発明の効果は、このように、炉内圧増加量Δpによって大きく影響するものであるため、図2(a)、(b)、(c)に示すような炉内圧シーケンスであっても同様な効果が得られると考えられる。
As shown in Table 1, in Examples 1 to 6, it is recognized that the pinhole generation rate is very low. In contrast, when the furnace pressure increase amount Δp is 10 torr (Comparative Examples 1 and 2), although the pinhole generation rate is slightly improved as compared with Comparative Example 3, it is recognized that the suppression effect is low.
Further, from this result, since the effect of the present invention is greatly influenced by the increase amount Δp in the furnace pressure in this way, the furnace pressure sequence as shown in FIGS. 2 (a), (b), and (c). However, it is considered that the same effect can be obtained.

10 シリコン単結晶引上装置
12 炉体
14 ルツボ
16 シリコン融液
18 ヒータ
20 熱遮蔽体
22 第1保温部材
24 第2保温部材
26 排出口
28 キャリアガス供給口
32 シードチャック
34 引上用ワイヤ
36 ワイヤ回転昇降機構
38 ルツボ回転昇降機構
40 ルツボ回転軸
42 熱遮蔽体支持部材
43 調整弁
44 キャリアガス供給部
46 バタフライ弁
48 キャリアガス排出部
50 種結晶
55 ネック部
60 縮径部
70 拡径部
Ig シリコン単結晶
G1 キャリアガス
DESCRIPTION OF SYMBOLS 10 Silicon single crystal pulling apparatus 12 Furnace body 14 Crucible 16 Silicon melt 18 Heater 20 Thermal shield 22 First heat retaining member 24 Second heat retaining member 26 Discharge port 28 Carrier gas supply port 32 Seed chuck 34 Pulling wire 36 Wire Rotating elevator mechanism 38 Crucible rotating elevator mechanism 40 Crucible rotating shaft 42 Heat shield support member 43 Adjusting valve 44 Carrier gas supply unit 46 Butterfly valve 48 Carrier gas discharge unit 50 Seed crystal 55 Neck part 60 Reduced diameter part 70 Expanded diameter part Ig Silicon Single crystal G1 carrier gas

Claims (3)

炉体内でシリコン原料を溶融してシリコン融液とした後、シリコン単結晶を引上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、
少なくとも前記シリコン原料の溶融後から前記シリコン単結晶の直胴部の引上げ後までの間は、前記炉体内の炉内圧を減圧させずに制御すると共に、かつ、漸増させる過程を含むことを特徴とするシリコン単結晶の製造方法。
A method for producing a silicon single crystal by the Czochralski method of pulling up a silicon single crystal after melting a silicon raw material in a furnace body to form a silicon melt,
At least from the time when the silicon raw material is melted to the time after the straight body portion of the silicon single crystal is pulled up, the pressure inside the furnace is controlled without being reduced, and includes a step of gradually increasing the pressure. A method for producing a silicon single crystal.
前記炉内圧の漸増は、20torr以上85torr以下の範囲で行うことを特徴とする請求項1に記載のシリコン単結晶の製造方法。   2. The method for producing a silicon single crystal according to claim 1, wherein the gradual increase in the furnace pressure is performed in a range of 20 to 85 torr. 前記シリコン原料の溶融時から前記シリコン単結晶の引上げ完了時に至るまでの炉内圧は、100torr以下で行うことを特徴とする請求項1又は2に記載のシリコン単結晶の製造方法。   3. The method for producing a silicon single crystal according to claim 1, wherein the furnace pressure from when the silicon raw material is melted to when the pulling of the silicon single crystal is completed is 100 torr or less.
JP2010048196A 2010-03-04 2010-03-04 Method for producing silicon single crystal Pending JP2011184213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010048196A JP2011184213A (en) 2010-03-04 2010-03-04 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048196A JP2011184213A (en) 2010-03-04 2010-03-04 Method for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JP2011184213A true JP2011184213A (en) 2011-09-22

Family

ID=44790956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048196A Pending JP2011184213A (en) 2010-03-04 2010-03-04 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2011184213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015094A1 (en) * 2015-07-17 2017-01-26 Sunedison, Inc. Methods for reducing the erosion rate of a crucible during crystal pulling
WO2017015091A1 (en) * 2015-07-17 2017-01-26 Sunedison, Inc. Methods for reducing deposits in ingot puller exhaust systems
CN115467012A (en) * 2022-10-27 2022-12-13 徐州鑫晶半导体科技有限公司 Single crystal silicon crystal growth apparatus and method for controlling the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059097A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Method for pulling up silicon single crystal
JPH08133886A (en) * 1994-11-01 1996-05-28 Sumitomo Sitix Corp Production of single crystal
JPH10182289A (en) * 1996-10-15 1998-07-07 Memc Electron Materials Inc Method for controlling oxygen content of silicon wafer added with antimony or arsenic in large amount and apparatus therefor
JP2010155726A (en) * 2008-12-26 2010-07-15 Sumco Corp Method for growing single crystal and single crystal grown by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059097A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Method for pulling up silicon single crystal
JPH08133886A (en) * 1994-11-01 1996-05-28 Sumitomo Sitix Corp Production of single crystal
JPH10182289A (en) * 1996-10-15 1998-07-07 Memc Electron Materials Inc Method for controlling oxygen content of silicon wafer added with antimony or arsenic in large amount and apparatus therefor
JP2010155726A (en) * 2008-12-26 2010-07-15 Sumco Corp Method for growing single crystal and single crystal grown by the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015094A1 (en) * 2015-07-17 2017-01-26 Sunedison, Inc. Methods for reducing the erosion rate of a crucible during crystal pulling
WO2017015091A1 (en) * 2015-07-17 2017-01-26 Sunedison, Inc. Methods for reducing deposits in ingot puller exhaust systems
CN108026659A (en) * 2015-07-17 2018-05-11 各星有限公司 The method of the corrosion rate of crucible during reduction crystal pulling
US10100428B2 (en) 2015-07-17 2018-10-16 Corner Star Limited Methods for reducing the erosion rate of a crucible during crystal pulling
US10145023B2 (en) 2015-07-17 2018-12-04 Corner Star Limited Methods for reducing deposits in ingot puller exhaust systems
CN115467012A (en) * 2022-10-27 2022-12-13 徐州鑫晶半导体科技有限公司 Single crystal silicon crystal growth apparatus and method for controlling the same
CN115467012B (en) * 2022-10-27 2024-04-05 中环领先(徐州)半导体材料有限公司 Single crystal silicon crystal growing apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US10494734B2 (en) Method for producing silicon single crystals
KR101217679B1 (en) Method for manufacturing silicon single crystal
JP4720220B2 (en) Silicon carbide ingot and method for producing the same
JP5480036B2 (en) Method for producing silicon single crystal
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP5542383B2 (en) Heat treatment method for silicon wafer
JP2011184213A (en) Method for producing silicon single crystal
JP2016183071A (en) Manufacturing method of silicon single crystal
JP2011105537A (en) Method for producing silicon single crystal
JP2007022864A (en) Method for manufacturing silicon single crystal
JP6451478B2 (en) Method for producing silicon single crystal
JP4396505B2 (en) Method for producing silicon single crystal
JP2011219300A (en) Method of manufacturing silicon single crystal, and apparatus for pulling silicon single crystal for use for the method
WO2020080247A1 (en) Method for heat-treating silicon wafer
KR100835293B1 (en) Manufacturing method of silicon single crystal ingot
JP2009274903A (en) Methods for producing silicon single crystal and silicon wafer and silicon wafer produced by the method
JP2011057460A (en) Method for growing silicon single crystal
JP6812176B2 (en) Quartz glass crucible
JP3900816B2 (en) Silicon wafer manufacturing method
JP4341379B2 (en) Single crystal manufacturing method
JP2011153034A (en) Silicon single crystal production method
JP2009173503A (en) Single crystal pulling device and method for manufacturing single crystal
JP2018035029A (en) Quartz glass crucible producing method and quartz glass crucible
KR101193678B1 (en) Method for Manufacturing large Diameter Single Crystal Ingot
US20200199776A1 (en) Method for producing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120830

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Effective date: 20130621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131025