JP5414371B2 - Manufacturing method of all-solid-state lithium ion secondary battery - Google Patents

Manufacturing method of all-solid-state lithium ion secondary battery Download PDF

Info

Publication number
JP5414371B2
JP5414371B2 JP2009134555A JP2009134555A JP5414371B2 JP 5414371 B2 JP5414371 B2 JP 5414371B2 JP 2009134555 A JP2009134555 A JP 2009134555A JP 2009134555 A JP2009134555 A JP 2009134555A JP 5414371 B2 JP5414371 B2 JP 5414371B2
Authority
JP
Japan
Prior art keywords
lithium ion
solid
solid electrolyte
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009134555A
Other languages
Japanese (ja)
Other versions
JP2010282803A (en
Inventor
和之 砂山
英丈 岡本
鉄也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Hitachi Zosen Corp
Original Assignee
Idemitsu Kosan Co Ltd
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Hitachi Zosen Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009134555A priority Critical patent/JP5414371B2/en
Publication of JP2010282803A publication Critical patent/JP2010282803A/en
Application granted granted Critical
Publication of JP5414371B2 publication Critical patent/JP5414371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体リチウムイオン二次電池の製造方法に関する。   The present invention relates to a method for producing an all-solid lithium ion secondary battery.

近年、携帯電話・PDA・ノートパソコンなどの高機能化に伴い、長時間使用が可能であり、且つ小型・軽量で、安全性の高い二次電池が強く要望されている。
しかし、従来から使用されてきた可燃性の有機溶媒を含むリチウム二次電池は過充電時や濫用時に液漏れや発火の危険性がある。そのため、電池の高エネルギー密度化に伴い、安全性の確保が重要な課題とされてきた。
In recent years, there has been a strong demand for a secondary battery that can be used for a long time, is small in size and light in weight, and has high safety, with an increase in functionality of a mobile phone, a PDA, a notebook personal computer, and the like.
However, a lithium secondary battery containing a flammable organic solvent that has been used conventionally has a risk of liquid leakage or ignition during overcharge or abuse. Therefore, ensuring the safety has been an important issue as the energy density of batteries increases.

このような課題を解決する電池として、有機電解液に比べて化学的に安定でかつ漏液や発火の問題のない固体電解質を電解質として用いた全固体リチウムイオン二次電池の研究開発が鋭意行われている。   Research and development of an all-solid-state lithium ion secondary battery that uses a solid electrolyte that is chemically stable and has no leakage or ignition problems compared to organic electrolytes as a battery to solve these problems. It has been broken.

ところで、上記全固体リチウムイオン二次電池の製造方法としては、電池の構成材料の粉末を加圧しペレット状にする方法(例えば、特許文献1)と、電池の構成材料を溶媒に混ぜて塗布する方法(例えば、特許文献2)が知られている。   By the way, as a manufacturing method of the all-solid-state lithium ion secondary battery, a method of pressurizing powder of a battery constituent material into a pellet form (for example, Patent Document 1) and a battery constituent material mixed in a solvent and applied. A method (for example, Patent Document 2) is known.

特開2008−257962号公報JP 2008-257932 A 特開2008−243560号公報JP 2008-243560 A

ところで、電池の構成材料の粉末を加圧しペレット状にする方法では、ペレットに割れが生じないように、面積が小さくしかも厚い形状のものしか製作することができず、したがってリチウムイオン電池の高性能化/高容量化に必要な薄膜化/大型化を実現することができないという問題があった。   By the way, in the method in which the powder of the material constituting the battery is pressed into a pellet form, only a small area and a thick shape can be manufactured so that the pellet does not crack. There has been a problem that the thinning / upsizing required for increasing the capacity / capacity cannot be realized.

また、電池の構成材料を溶媒に混ぜて塗布する方法では、溶媒乾燥後に残る残留物あるいはバインダーなどの不純物がイオン伝導性を阻害し、結果として電池の性能向上を妨げるという問題があった。   In addition, in the method of applying the constituent materials of the battery in a solvent, there is a problem that impurities such as a residue or a binder remaining after the solvent is dried impedes ionic conductivity, resulting in hindering improvement in battery performance.

そこで、本発明は、リチウムイオン電池の高性能化/高容量化に必要な薄膜化/大型化を実現し得る全固体リチウムイオン二次電池の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing an all-solid-state lithium ion secondary battery capable of realizing thinning / enlarging necessary for high performance / high capacity of a lithium ion battery.

上記課題を解決するため、本発明の請求項1に係る全固体リチウムイオン二次電池の製造方法は、正極材と負極材との間にリチウムイオン固体電解質が配置されるとともにこれら各極材の外面にそれぞれ集電体が配置されてなる全固体リチウムイオン二次電池の製造方法であって、
集電体の表面に極材および固体電解質の粉末材料を順次搬送用ガスにて吹き付けることにより、極材層および固体電解質層を形成する際に、極材および固体電解質の粉末材料に電荷を帯電させて吹き付ける方法である。
In order to solve the above-described problem, a manufacturing method of an all-solid-state lithium ion secondary battery according to claim 1 of the present invention includes a lithium ion solid electrolyte disposed between a positive electrode material and a negative electrode material, and each of these electrode materials. A method for producing an all-solid-state lithium ion secondary battery in which current collectors are respectively disposed on outer surfaces,
When the electrode material layer and the solid electrolyte layer are formed by sequentially spraying the electrode material and the solid electrolyte powder material onto the surface of the current collector with the carrier gas, the electrode material and the solid electrolyte powder material are charged. This is a method of spraying.

また、請求項2に係る全固体リチウムイオン二次電池の製造方法は、請求項1に記載の製造方法において、搬送用ガスとして不活性ガスを用いる方法である。
また、請求項3に係る全固体リチウムイオン二次電池の製造方法は、請求項1または2に記載の製造方法において、露点が−80℃以下の不活性ガスを用いる方法である。
Moreover, the manufacturing method of the all-solid-state lithium ion secondary battery which concerns on Claim 2 is a method of using inert gas as carrier gas in the manufacturing method of Claim 1.
Moreover, the manufacturing method of the all-solid-state lithium ion secondary battery which concerns on Claim 3 is a method using the inert gas whose dew point is -80 degrees C or less in the manufacturing method of Claim 1 or 2.

また、請求項4に係る全固体リチウムイオン二次電池の製造方法は、請求項1乃至3のいずれかに記載の製造方法において、固体電解質として硫化物系無機固体電解質を用いる方法である。   A method for producing an all-solid-state lithium ion secondary battery according to claim 4 is a method using a sulfide-based inorganic solid electrolyte as the solid electrolyte in the production method according to any one of claims 1 to 3.

さらに、請求項5に係る全固体リチウムイオン二次電池の製造方法は、請求項1乃至4のいずれかに記載の製造方法において、極材層および固体電解質の形成後、加圧するとともに帯電した電荷を除電する方法である。   Furthermore, the manufacturing method of the all-solid-state lithium ion secondary battery which concerns on Claim 5 is a manufacturing method in any one of Claims 1 thru | or 4. WHEREIN: After formation of an electrode material layer and a solid electrolyte, it is pressurized and charged. Is a method of removing static electricity.

上記請求項1に記載の製造方法によると、集電体の表面に極材および固体電解質の粉末材料を搬送用ガスにて吹き付けることにより、極材層および固体電解質層を形成する際に、極材および固体電解質の粉末材料に電荷を帯電させて吹き付けるようにしたので、均一な厚さで粉体の層が形成されて成形加圧時の圧力が全体にかかることになり、したがってペレット成形法のように加圧による割れが生じないため、リチウムイオン二次電池の高性能化/高容量化に必要な薄膜化/大型化が可能となる。また、溶媒やバインダーなどの添加物が不要であるため、不純物の残留による電池性能の劣化がない。   According to the manufacturing method of claim 1, when the electrode material layer and the solid electrolyte layer are formed by spraying the electrode material and the solid electrolyte powder material onto the surface of the current collector with a carrier gas, Since the electric charge is charged and sprayed on the material and the powder material of the solid electrolyte, a powder layer is formed with a uniform thickness, and the pressure at the time of molding press is applied to the whole, so the pellet molding method Thus, since cracking due to pressurization does not occur, it is possible to reduce the film thickness and increase the size necessary for high performance / high capacity lithium ion secondary batteries. Further, since additives such as a solvent and a binder are unnecessary, battery performance is not deteriorated due to residual impurities.

さらに、粉末材料に電荷を帯電させて吹き付けるため、集電体と極材同士、極材と固体電解質同士の密着性が高まり、電池性能の向上を図ることができる。
また、請求項2〜請求項4に記載の製造方法によると、搬送用ガスに不活性ガスを用いるとともにその露点が−80℃以下となるようにして水分を除去するようにしたので、水分と固体電解質例えば硫化物系無機固体電解質の材料粉末とが反応するのを阻止することができ、したがって電池性能が低下するのを防止することができる。特に、水分による電池性能の劣化が特に顕著な硫化物系無機固体電解質を用いた全固体リチウムイオン二次電池において、高性能化/高容量化に必要な薄膜化/大型化が可能となる。
Furthermore, since the powder material is charged with electric charge and sprayed, the adhesion between the current collector and the electrode material and between the electrode material and the solid electrolyte is increased, and the battery performance can be improved.
Moreover, according to the manufacturing method of Claims 2-4, since it was made to remove | eliminate a water | moisture content so that the dew point might be -80 degrees C or less while using inert gas for conveyance gas, It is possible to prevent the solid electrolyte, for example, the sulfide-based inorganic solid electrolyte material powder from reacting with each other, and thus it is possible to prevent the battery performance from deteriorating. In particular, in an all-solid-state lithium ion secondary battery using a sulfide-based inorganic solid electrolyte in which deterioration of battery performance due to moisture is particularly remarkable, thinning / enlargement necessary for high performance / high capacity is possible.

さらに、請求項5に記載の製造方法によると、加圧後に帯電した電荷を除電するようにしたので、帯電により増加した粉末の電気抵抗が低下するため、電池性能の向上を図ることができる。   Further, according to the manufacturing method of the fifth aspect, since the electric charge charged after pressurization is removed, the electric resistance of the powder increased by the charging is lowered, so that the battery performance can be improved.

本発明の実施例に係るリチウムイオン二次電池の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the lithium ion secondary battery which concerns on the Example of this invention. 本発明の実施例に係るリチウムイオン二次電池の製造方法に用いられる静電製膜装置の概略構成を示す図である。It is a figure which shows schematic structure of the electrostatic film forming apparatus used for the manufacturing method of the lithium ion secondary battery which concerns on the Example of this invention. 同静電製膜装置の要部断面図である。It is principal part sectional drawing of the electrostatic film forming apparatus. 本発明のリチウムイオン二次電池の製造方法を説明する要部断面図である。It is principal part sectional drawing explaining the manufacturing method of the lithium ion secondary battery of this invention. 同リチウムイオン二次電池の充放電特性を比較したグラフである。It is the graph which compared the charging / discharging characteristic of the lithium ion secondary battery.

以下、本発明の実施の形態に係る全固体リチウムイオン二次電池の製造方法について、具体的に示した実施例に基づき説明する。
まず、全固体リチウムイオン二次電池の構成について説明する。
Hereinafter, the manufacturing method of the all-solid-state lithium ion secondary battery which concerns on embodiment of this invention is demonstrated based on the Example specifically shown.
First, the configuration of the all solid lithium ion secondary battery will be described.

本実施例に係る全固体リチウムイオン二次電池は、概略的には、正負の集電体、正負の極材層および固体電解質層から構成されている。
上記集電体としては、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、錫、またはこれらの合金等からなる板状体や箔状体、または粉体などが用いられる。この他、各種材料を製膜したものを用いることができる。
The all-solid-state lithium ion secondary battery according to this example is generally composed of a positive and negative current collector, a positive and negative electrode material layer, and a solid electrolyte layer.
As the current collector, a plate-like body or foil-like body made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, tin, or an alloy thereof, or the like Powder or the like is used. In addition to these, films formed from various materials can be used.

上記固体電解質としては、リチウムイオン伝導性固体物質が用いられる。つまり、リチウムイオン固体電解質が用いられる。このリチウムイオン伝導性固体物質については、特に限定されず、例えば有機化合物、無機化合物または有機・無機両化合物からなる材料を用いることができ、さらにリチウムイオン電池分野で公知のものを使用することができる。特に、硫化物系無機固体電解質はイオン伝導性が他の無機化合物より高いことが知られている。   A lithium ion conductive solid material is used as the solid electrolyte. That is, a lithium ion solid electrolyte is used. The lithium ion conductive solid substance is not particularly limited, and for example, a material composed of an organic compound, an inorganic compound, or both an organic / inorganic compound can be used, and a known material in the lithium ion battery field can be used. it can. In particular, it is known that sulfide-based inorganic solid electrolytes have higher ionic conductivity than other inorganic compounds.

また、正極材としては、電池分野において正極活物質として使用されているものを使用することができる。例えば、酸化物系ではコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)などである。一方、負極材としては、電池分野において負極活物質として使用されているものを使用することができる。例えば、天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などを用いることができる。 Moreover, as a positive electrode material, what is used as a positive electrode active material in the battery field | area can be used. For example, in the oxide system, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and the like. On the other hand, as a negative electrode material, what is used as a negative electrode active material in the battery field | area can be used. For example, natural graphite, artificial graphite, graphite carbon fiber, resin-fired carbon, or the like can be used.

ところで、固体の極材においては、電子伝導性に加えてイオン伝導性(イオン伝導度でもある)を向上させるために、極材の粒子同士を密着させて粒子間の接合点や面を多く存在させることにより、イオン伝導パスをより多く確保することが重要となる。そのため、電解質等のイオン伝導活物質を混合させてなる極合材が用いられる。したがって、極材としては、極活物質にリチウムイオン固体電解質を混合したもの(所謂、正極合材、負極合材)が用いられる。なお、この混合割合は、電極の設計に合わせて適宜調整される。   By the way, in order to improve the ionic conductivity (also ionic conductivity) in addition to the electronic conductivity, the solid electrode material has many particles and contact points between the particles. Thus, it is important to secure more ion conduction paths. Therefore, an electrode mixture obtained by mixing an ion conductive active material such as an electrolyte is used. Therefore, as the electrode material, a material in which a lithium ion solid electrolyte is mixed with an electrode active material (so-called positive electrode mixture, negative electrode mixture) is used. This mixing ratio is appropriately adjusted according to the design of the electrode.

図1に、本実施例に係る全固体リチウムイオン二次電池の模式図を示す。
この全固体リチウムイオン二次電池(以下、単に、二次電池ともいう)は、負極材1と正極材2との間にリチウムイオン固体電解質3が配置(積層)され、また負極材1の固体電解質3とは反対側の表面に負極集電体4が、および正極材2の固体電解質3とは反対側の表面に正極集電体5が配置(積層)されたものである。
In FIG. 1, the schematic diagram of the all-solid-state lithium ion secondary battery which concerns on a present Example is shown.
In this all solid lithium ion secondary battery (hereinafter, also simply referred to as a secondary battery), a lithium ion solid electrolyte 3 is disposed (laminated) between the negative electrode material 1 and the positive electrode material 2, and the solid of the negative electrode material 1 A negative electrode current collector 4 is disposed (laminated) on the surface opposite to the electrolyte 3, and a positive electrode current collector 5 is disposed on the surface of the positive electrode material 2 opposite to the solid electrolyte 3.

以下、全固体リチウムイオン二次電池の製造方法について説明する。
この製造方法を簡単に説明すると、含有水分が露点−80℃以下となるように管理された不活性ガス[搬送用ガス(キャリアガスともいう)であり、具体的には窒素ガスが用いられる]を粉末材料の搬送用および吹付用(噴出用)として使用し、負極集電体(または正極集電体)の一方の表面に、静電気を帯びた、つまり電荷を帯電させた極材粉末材料および固体電解質粉末材料を順次付着させて製膜する製造方法、簡単に説明すれば、静電法を用いた電池の製造方法である。
Hereinafter, the manufacturing method of an all-solid-state lithium ion secondary battery is demonstrated.
Briefly explaining this production method, an inert gas [a carrier gas (also referred to as a carrier gas), specifically nitrogen gas is used] which is controlled so that the water content is a dew point of −80 ° C. or lower. Is used for conveying and spraying (spraying) powder material, and on one surface of the negative electrode current collector (or positive electrode current collector), A manufacturing method in which solid electrolyte powder materials are sequentially deposited to form a film, and in brief, a manufacturing method of a battery using an electrostatic method.

ここで、全固体リチウムイオン二次電池の製造方法を図面に基づき説明する。
この製造方法は、上述したように、静電法を用いて製膜を行うものであり、まず静電法を行うための、つまり静電製膜工程で用いられる静電製膜装置について説明する。
Here, the manufacturing method of an all-solid-state lithium ion secondary battery is demonstrated based on drawing.
As described above, this manufacturing method performs film formation using an electrostatic method. First, an electrostatic film forming apparatus for performing an electrostatic method, that is, used in an electrostatic film forming process will be described. .

図2および図3に示すように、この静電製膜装置11は、内部に粉末材料を供給し得る材料供給通路12aを有するとともに先端部が絞られてなる材料の噴出用ノズル(スプレーノズルともいう)12と、この噴出用ノズル12に材料供給配管13を介して接続された材料供給装置14と、この材料供給装置14および材料供給配管13途中にガス供給配管15を介してキャリアガスである不活性ガスGを吹き込み材料供給装置14から供給された粉末材料を噴出用ノズル12に供給するためのガス供給装置(例えば、ガスホルダーである)16と、上記噴出用ノズル12内に挿入された針状電極17と、上記噴出用ノズル12の先端開口部12bに対向する位置で且つ所定距離はなれた位置に設けられた板状の対向電極18と、これら両電極17,18間に高電圧、例えば、20〜100kV(範囲内)の直流電気を印加するための直流電源19とから構成されている。なお、粉末材料の供給を確実に行い得るように、不活性ガスGの供給箇所は、材料供給装置14の入口側と出口側の2箇所にされている。   As shown in FIG. 2 and FIG. 3, the electrostatic film forming apparatus 11 has a material supply passage 12a through which a powder material can be supplied and a material ejection nozzle (also called a spray nozzle) whose tip is narrowed. 12), a material supply device 14 connected to the ejection nozzle 12 via a material supply pipe 13, and a carrier gas via a gas supply pipe 15 in the middle of the material supply device 14 and the material supply pipe 13. A gas supply device (for example, a gas holder) 16 for supplying the inert gas G to the injection nozzle 12 with the powder material supplied from the blowing material supply device 14 and the injection nozzle 12 inserted therein. The needle-like electrode 17, the plate-like counter electrode 18 provided at a position facing the tip opening 12 b of the ejection nozzle 12 and at a predetermined distance, and both of these electrodes High voltage between 17 and 18, for example, and a DC power source 19. for applying a DC electric 20~100KV (range). In addition, the supply location of the inert gas G is made into the two places of the inlet side of the material supply apparatus 14, and an exit side so that supply of a powder material can be performed reliably.

次に、全固体リチウムイオン二次電池のより具体的な製造方法を、図4に基づき説明する。
まず、図4(a)に示すように、いずれかの電極集電体、例えば負極集電体4を対向電極18の上面に配置するとともに、その上面に負極材1を形成するためのマスク材21を配置する。
Next, a more specific manufacturing method of the all solid lithium ion secondary battery will be described with reference to FIG.
First, as shown in FIG. 4A, a mask material for disposing any electrode current collector, for example, the negative electrode current collector 4 on the upper surface of the counter electrode 18 and forming the negative electrode material 1 on the upper surface. 21 is arranged.

そして、この対向電極18と針状電極17との間に直流電源19により、20〜100kVの高電圧の直流電気を印加するとともに、材料供給装置14およびガス供給装置16により、粉末の負極材1を不活性ガスGにより噴出用ノズル12に導きその先端開口部12bから負極集電体4の表面に噴出させれば(吹き付ければ)、両電極17,18間で発生するコロナ放電により負極材1に電荷(正の電荷)が帯電するとともに、その帯電した電荷に作用するクーロン力により、負極材1が負極集電体4の表面に付着し、図4(b)に示すように、負極集電体4の表面に所定膜厚の負極材1が形成される。すなわち、静電法つまり静電塗装の原理により、負極材1が製膜されることになる。   A high-voltage direct current electricity of 20 to 100 kV is applied between the counter electrode 18 and the needle electrode 17 by a direct current power source 19, and the powder negative electrode material 1 is formed by the material supply device 14 and the gas supply device 16. Is guided to the ejection nozzle 12 by the inert gas G and ejected from the tip opening 12b onto the surface of the negative electrode current collector 4 (if sprayed), the negative electrode material is generated by corona discharge generated between the electrodes 17 and 18. 1 is charged with a charge (positive charge), and the negative electrode material 1 adheres to the surface of the negative electrode current collector 4 due to the Coulomb force acting on the charged charge. As shown in FIG. A negative electrode material 1 having a predetermined thickness is formed on the surface of the current collector 4. That is, the negative electrode material 1 is formed by the electrostatic method, that is, the principle of electrostatic coating.

言い換えれば、噴出用ノズル12内の針状電極17の尖端部と対向電極18とが十分離されていることにより両電極17,18間で発生するコロナ放電により、噴出用ノズル12内に供給された粉末材料に電荷が帯電され、この帯電された粉末材料は対向電極18にクーロン力によって引き寄せられるため、対向電極18側に粉末材料が製膜されることになる。なお、対向電極18そのものを負極集電体(または正極集電体)とすることもできる。   In other words, the tip of the needle electrode 17 in the ejection nozzle 12 and the counter electrode 18 are sufficiently separated from each other, so that they are supplied into the ejection nozzle 12 by corona discharge generated between the electrodes 17 and 18. The charged powder material is charged, and the charged powder material is attracted to the counter electrode 18 by the Coulomb force, so that the powder material is formed on the counter electrode 18 side. Note that the counter electrode 18 itself may be a negative electrode current collector (or a positive electrode current collector).

次に、負極集電体4に負極材1が製膜されてなる積層体を次工程に移動させて、上述したものと同様の静電製膜装置により、負極材1の表面にリチウムイオン固定電解質3を形成する。   Next, the laminate in which the negative electrode material 1 is formed on the negative electrode current collector 4 is moved to the next step, and lithium ion fixation is performed on the surface of the negative electrode material 1 by the electrostatic film forming apparatus similar to that described above. The electrolyte 3 is formed.

すなわち、図4(c)に示すように、負極材1の上面に固体電解質3を形成するためのマスク材22を配置した後、その静電製膜装置の材料供給装置から供給された固体電解質の粉末材料を噴出用ノズル12から噴出させて、所定膜厚のリムイオン固体電解質3を静電法により形成する。   That is, as shown in FIG. 4C, after disposing the mask material 22 for forming the solid electrolyte 3 on the upper surface of the negative electrode material 1, the solid electrolyte supplied from the material supply device of the electrostatic film forming apparatus. The rim ion solid electrolyte 3 having a predetermined film thickness is formed by an electrostatic method.

次に、図4(d)に示すように、負極集電体4および負極材1の上面にリチウムイオン固体電解質3が形成されてなる積層体を次工程に移動させて、やはり、上述したものと同様の静電製膜装置により、固体電解質3の表面に正極材2を形成する。   Next, as shown in FIG. 4 (d), the laminate in which the lithium ion solid electrolyte 3 is formed on the upper surfaces of the negative electrode current collector 4 and the negative electrode material 1 is moved to the next step, and the above-described one is also used. The positive electrode material 2 is formed on the surface of the solid electrolyte 3 by the same electrostatic film forming apparatus.

すなわち、図4(e)に示すように、固体電解質3の上面に他方の電極である正極材2を形成するためのマスク材23を配置した後、静電製膜装置の材料供給装置から不活性ガスにより供給された正極材2の粉末材料を噴出用ノズル12から噴出させて、所定膜厚の正極材2を静電法により形成する。   That is, as shown in FIG. 4 (e), after the mask material 23 for forming the positive electrode material 2 as the other electrode is disposed on the upper surface of the solid electrolyte 3, the material supply device of the electrostatic film-forming apparatus is not used. The powder material of the positive electrode material 2 supplied by the active gas is ejected from the ejection nozzle 12, and the positive electrode material 2 having a predetermined film thickness is formed by an electrostatic method.

次に、負極集電体4の上面に、負極材1、リチウムイオン固体電解質3および正極材2が順次形成されてなる積層体(図4(f)に示す)を次のプレス成形工程に移動させて、例えば単動式プレス(ロールプレスでもよい)により、所定圧力でもってその表面を押圧する。このプレス成形により、粉末同士(粒子同士)の接触性が高められて電子・イオン伝導性の向上が図られる。   Next, the laminate (shown in FIG. 4 (f)) in which the negative electrode material 1, the lithium ion solid electrolyte 3 and the positive electrode material 2 are sequentially formed on the upper surface of the negative electrode current collector 4 is moved to the next press molding step. Then, the surface is pressed with a predetermined pressure by, for example, a single-action press (or a roll press). By this press molding, the contact property between powders (particles) is enhanced, and the electron / ion conductivity is improved.

さらに、上記得られた積層体の正極材2の上面に、正極集電体5が載置されて略完成状態の電池が得られる。
そして、最後に、略完成状態の二次電池を熱圧着式のラミネートフィルム中に挿入するとともに、内部のガスを吸引しながら封止を行うことにより、二次電池の完成品が得られる。この封止により、充放電時の圧密性が高められるとともに、水分と反応して変質する固体電解質例えば硫化物系固体電解質が大気から保護される。なお、構成材料中の微量なガスが加圧力により外部に排出されるため、ラミネートフィルム中のガスを吸引する際にラミネートフィルムと垂直方向に加圧することが望ましい。
Further, the positive electrode current collector 5 is placed on the upper surface of the positive electrode material 2 of the laminate obtained as described above to obtain a substantially completed battery.
Finally, the substantially completed secondary battery is inserted into a thermocompression-bonded laminate film and sealed while sucking the internal gas, whereby a finished product of the secondary battery is obtained. By this sealing, the compactness at the time of charging / discharging is enhanced, and a solid electrolyte, for example, a sulfide-based solid electrolyte that changes by reacting with moisture is protected from the atmosphere. In addition, since a very small amount of gas in the constituent material is discharged to the outside by the applied pressure, it is desirable to pressurize in the direction perpendicular to the laminate film when the gas in the laminate film is sucked.

なお、マスク材の開口については、順次、下層部の上面に、所定の上層部が形成し得るような大きさにされている。例えば、負極材1を形成するマスク材21の開口部は負極集電体4よりも小さくされ、またリチウムイオン伝導を行うとともに正極と負極を電気的に分かつための固体電解質層3を形成するマスク材22の開口部は負極材1よりも少し大きくされ、さらに正極材2を形成するマスク材23の開口部は固体電解質3よりも小さく且つ負極材1と同じ大きさになるようにされている。   Note that the openings of the mask material are sequentially sized so that a predetermined upper layer portion can be formed on the upper surface of the lower layer portion. For example, the opening of the mask material 21 that forms the negative electrode material 1 is made smaller than the negative electrode current collector 4, and the mask that forms the solid electrolyte layer 3 that conducts lithium ions and electrically separates the positive electrode and the negative electrode. The opening of the material 22 is made slightly larger than the negative electrode material 1, and the opening of the mask material 23 forming the positive electrode material 2 is made smaller than the solid electrolyte 3 and the same size as the negative electrode material 1. .

ところで、上記製造工程においては、正極材2を製膜した後にプレス成形を行う加圧成形工程を配置したが、つまり、負極材1、固体電解質3および正極材2の三層を合わせた状態でプレス成形を行うように説明したが、一層毎の製膜後に、すなわち負極集電体4に負極材1を製膜させた後、および負極材1に固体電解質3を製膜させた後において、それぞれ加圧成形工程を配置してもよい。   By the way, in the said manufacturing process, although the press-molding process which press-forms after forming the positive electrode material 2 into a film is arrange | positioned, in other words, in the state which match | combined the three layers of the negative electrode material 1, the solid electrolyte 3, and the positive electrode material 2. Although described as performing press molding, after film formation for each layer, that is, after the negative electrode material 1 is formed on the negative electrode current collector 4 and after the solid electrolyte 3 is formed on the negative electrode material 1, Each may be provided with a pressure forming step.

上述したように、粉末材料を供給するためのキャリアガスとしては、製膜材料の変質を防止するために、窒素ガスなどの不活性ガスが用いられるとともに、固体電解質として硫化物系固体電解質を用いる場合には、含有する硫黄成分が水分と非常に反応し易く、特にキャリアガスとは接触が大きいためにキャリアガス中に含まれる水分はできる限り微量に制限することが必要であるため、露点が−80℃以下となるようにされている。   As described above, an inert gas such as nitrogen gas is used as the carrier gas for supplying the powder material in order to prevent alteration of the film forming material, and a sulfide solid electrolyte is used as the solid electrolyte. In this case, the sulfur component contained is very easy to react with moisture, and since the contact with the carrier gas is particularly large, it is necessary to limit the moisture contained in the carrier gas to a trace amount as much as possible. It is made to become -80 degrees C or less.

さらに、2種類以上の材料、例えば材料の粒径、形状、比重などが異なる材料が混合されてなる合材を、キャリアガスによって搬送する際に、混合部である材料供給装置と噴出用ノズルとの間の距離が長いと、所定の混合比が得られない場合や、製膜層の上部と下部で混合比が異なる場合が生じる。このため、材料供給装置と噴出用ノズルとの間はできるだけ近づけるようにするとともに静電塗装で用いられるような屈曲性を有する材料供給チューブの替わりに、四フッ化エチレン樹脂テフロン登録商標)などの流動性が良い硬質のチューブまたは配管を使用する必要がある。
Furthermore, when transporting a mixture of two or more types of materials, for example, materials having different particle diameters, shapes, specific gravity, and the like, using a carrier gas, a material supply device that is a mixing unit and an ejection nozzle If the distance between them is long, a predetermined mixing ratio may not be obtained, or the mixing ratio may be different between the upper part and the lower part of the film forming layer. For this reason, the tetrafluoroethylene resin ( Teflon : registered trademark) is used instead of the material supply tube having flexibility as used in electrostatic coating while keeping the material supply device and the ejection nozzle as close as possible. It is necessary to use a hard tube or piping with good fluidity.

さらに、静電製膜時に印加する電圧は一般的に20〜100kVであり、電圧が高い方が粉末材料に印加される電荷は大きくなり付着力が大きい。また、電圧が低いと逆に付着力が小さくなるために、同時に吐出されるキャリアガスによって付着した材料が一定膜厚以上のものは除去されてしまう。このため、キャリアガスや対向高さを共通とした同材料の製膜においては、印加電圧の大きさ(高さ)により、製膜できる膜厚の制御が可能となる。   Furthermore, the voltage applied during electrostatic film formation is generally 20 to 100 kV, and the higher the voltage, the greater the charge applied to the powder material and the greater the adhesion. On the other hand, when the voltage is low, the adhesive force is reduced, so that the material adhered by the carrier gas discharged at the same time is removed from a certain film thickness. For this reason, in the film formation of the same material using the same carrier gas and opposite height, the film thickness that can be formed can be controlled by the magnitude (height) of the applied voltage.

防錆や美観を目的とした一般のスプレー式静電製膜塗装では、膜厚の違いによって要求する性能に大きな差異は生じないが、全固体リチウムイオン二次電池においては膜厚が電池性能に大きく影響を及ぼす。   In general spray-type electrostatic film coating for the purpose of rust prevention and aesthetics, the required performance does not vary greatly depending on the difference in film thickness. It has a big impact.

そこで、次の方法により膜厚を従来よりも精密に制御することが出来る。
すなわち、或る膜を形成する場合(一つの層を形成する場合)、製膜工程を2度に分けて行い、その中間工程として膜厚計測を行う。具体的に説明すれば、一度目の製膜により所定の80〜90%の膜厚が得られるような条件で製膜を行う。一回の製膜では所定の膜厚に対し、±10%程度の精度で膜厚制御が可能であることから、一度目の製膜の後に行う膜厚計測の結果を受けて、2度目の製膜を行うことで、最終的に得られる膜厚精度は所定のものに対し±1〜2%となる。
Therefore, the film thickness can be controlled more precisely than before by the following method.
That is, when a certain film is formed (when a single layer is formed), the film forming process is performed twice, and the film thickness is measured as an intermediate process. If it demonstrates concretely, film-forming will be performed on the conditions that predetermined | prescribed film thickness of 80 to 90% is obtained by film-forming of the 1st time. Since the film thickness can be controlled with an accuracy of about ± 10% with respect to a predetermined film thickness in one film formation, the film thickness measurement performed after the first film formation is received for the second time. By performing the film formation, the finally obtained film thickness accuracy is ± 1 to 2% with respect to a predetermined one.

ここで、本実施例に係る二次電池と、従来のペレットタイプの二次電池との性能を比較した結果について説明する。
なお、ペレットタイプの二次電池は、割れを生じずに電池として安定して動作させるために、固体電解質と正極材(正極合材である)との合計厚さが約475μm必要となり、且つその大きさについても、φ10程度必要となる。
Here, the result of comparing the performance of the secondary battery according to this example and the conventional pellet type secondary battery will be described.
The pellet type secondary battery requires about 475 μm in total thickness of the solid electrolyte and the positive electrode material (which is a positive electrode mixture) in order to stably operate as a battery without cracking, and its size is large. Also, about φ10 is required.

ところで、リチウムイオン二次電池においては、リチウムイオンが電池内を移動するために正負の電極間をできるだけ近づけることが重要となる(通常の有機電解液を用いた電池では、約200μm程度である)。   By the way, in the lithium ion secondary battery, it is important to make the positive and negative electrodes as close as possible in order for lithium ions to move in the battery (in a battery using a normal organic electrolyte, it is about 200 μm). .

一方、固体電解質をリチウムイオン伝導体とした全固体リチウムイオン電池においては、液電池よりもイオン伝導性が低下するため、液電池よりも、さらに正負の極間距離を小さくする必要がある。   On the other hand, in an all-solid-state lithium ion battery using a solid electrolyte as a lithium ion conductor, the ionic conductivity is lower than that of a liquid battery. Therefore, it is necessary to further reduce the distance between positive and negative electrodes as compared with a liquid battery.

以下、本実施例の製造方法により作製した薄型電池と、上述したペレット成型法による電池との比較について説明する。
本実施例に係る電池では、固体電解質層、正極材層の双方を静電法により製膜しているのに対し、ペレット成型による電池では静電法は用いていないが、固体電解質層の厚み以外についは、本実施例に係る電池と同じ構成にされている。そして、ここでは、固体電解質層の厚みによる電池性能について比較する。
Hereinafter, a comparison between a thin battery manufactured by the manufacturing method of this example and a battery by the above-described pellet molding method will be described.
In the battery according to this example, both the solid electrolyte layer and the positive electrode material layer are formed by the electrostatic method, whereas the pellet method battery does not use the electrostatic method, but the thickness of the solid electrolyte layer Other than that, the battery has the same configuration as that of the battery according to this example. And here, the battery performance by the thickness of a solid electrolyte layer is compared.

この性能試験では、双方とも、厚み100μmのインジウム箔を負極としており、負極であるインジウム箔を負極集電体としたステンレス板上に置き、その上に固体電解質の粉末を静電法により製膜する。このときの固体電解質の厚みは加圧成形後に79μmである。そして、その上に正極材を静電法により製膜する。このときの正極材の厚みは加圧成形後で43μmであった。ペレット成型法による電池では、固体電解質の厚みは405μm、正極材の厚みは43μm(本実施例に係る電池と同じである)とする。また、このときの加圧成形力は、255MPa(2.6t/cm)同一である。双方を加圧治具に治め、78.5MPa(800kg/cm)の圧力を与えた状態で充放電試験を行い容量の比較をする。充電電流を0.5mA/cm、放電電流を2.0mA/cmとした結果を図5に示す。 In both of these performance tests, an indium foil having a thickness of 100 μm was used as a negative electrode, and the indium foil as a negative electrode was placed on a stainless steel plate having a negative electrode current collector, and a solid electrolyte powder was formed thereon by an electrostatic method. To do. The thickness of the solid electrolyte at this time is 79 μm after pressure molding. Then, a positive electrode material is formed thereon by an electrostatic method. The thickness of the positive electrode material at this time was 43 μm after pressure molding. In the battery by the pellet molding method, the thickness of the solid electrolyte is 405 μm, and the thickness of the positive electrode material is 43 μm (same as the battery according to this example). Further, the pressure molding force at this time is the same as 255 MPa (2.6 t / cm 2 ). Both are governed by a pressure jig, and a charge / discharge test is performed in a state where a pressure of 78.5 MPa (800 kg / cm 2 ) is applied, and the capacities are compared. FIG. 5 shows the results when the charging current is 0.5 mA / cm 2 and the discharging current is 2.0 mA / cm 2 .

図5から、ペレット成型による電池では正極重量あたり容量が約97mAh/gであったのに対し、本実施例(本発明品である)の電池では120mAh/gの容量を実現することができた。すなわち、電池性能が向上しているのが良く分かる。   As shown in FIG. 5, the pellet molded battery had a capacity per positive electrode weight of about 97 mAh / g, whereas the battery of this example (the product of the present invention) achieved a capacity of 120 mAh / g. . That is, it can be clearly seen that the battery performance is improved.

ところで、上記実施の形態においては、負極集電体上に負極材、固体電解質、正極材の順に製膜するように説明したが、これとは逆に、正極集電体上に正極材、固体電解質、負極材の順で製膜を行ってもよく、また製造時に、粉末材料に印加する直流電源の極性を逆にしてもよい(図面では、針状電極側を電源の正極に接続したが、負極に接続してもよい)。   In the above embodiment, the negative electrode material, the solid electrolyte, and the positive electrode material are formed in this order on the negative electrode current collector. On the contrary, the positive electrode material and the solid material are formed on the positive electrode current collector. The electrolyte may be formed in the order of the negative electrode material, and the polarity of the DC power source applied to the powder material may be reversed during manufacture (in the drawing, the needle electrode side is connected to the positive electrode of the power source). Or may be connected to the negative electrode).

1 負極材
2 正極材
3 固体電解質
4 負極集電体
5 正極集電体
11 静電製膜装置
12 噴出用ノズル
13 材料供給配管
14 材料供給装置
15 ガス供給配管
16 ガス供給装置
17 針状電極
18 対向電極
19 直流電源
DESCRIPTION OF SYMBOLS 1 Negative electrode material 2 Positive electrode material 3 Solid electrolyte 4 Negative electrode collector 5 Positive electrode collector 11 Electrostatic film-forming apparatus 12 Nozzle 13 for ejection 13 Material supply piping 14 Material supply device 15 Gas supply piping 16 Gas supply device 17 Needle-shaped electrode 18 Counter electrode 19 DC power supply

Claims (5)

正極材と負極材との間にリチウムイオン固体電解質が配置されるとともにこれら各極材の外面にそれぞれ集電体が配置されてなる全固体リチウムイオン二次電池の製造方法であって、
集電体の表面に極材および固体電解質の粉末材料を順次搬送用ガスにて吹き付けることにより、極材層および固体電解質層を形成する際に、極材および固体電解質の粉末材料に電荷を帯電させて吹き付けることを特徴とする全固体リチウムイオン二次電池の製造方法。
A method for producing an all-solid-state lithium ion secondary battery in which a lithium ion solid electrolyte is disposed between a positive electrode material and a negative electrode material, and a current collector is disposed on the outer surface of each of these electrode materials,
When the electrode material layer and the solid electrolyte layer are formed by sequentially spraying the electrode material and the solid electrolyte powder material onto the surface of the current collector with the carrier gas, the electrode material and the solid electrolyte powder material are charged. A method for producing an all-solid-state lithium ion secondary battery, characterized by being sprayed.
搬送用ガスとして不活性ガスを用いることを特徴とする請求項1記載の全固体リチウムイオン二次電池の製造方法。   2. The method for producing an all-solid-state lithium ion secondary battery according to claim 1, wherein an inert gas is used as the carrier gas. 露点が−80℃以下の不活性ガスを用いることを特徴とする請求項1または2に記載の全固体リチウムイオン二次電池の製造方法。   The method for producing an all-solid-state lithium ion secondary battery according to claim 1, wherein an inert gas having a dew point of −80 ° C. or lower is used. 固体電解質として硫化物系無機固体電解質を用いること特徴とする請求項1乃至3のいずれか一項に記載の全固体リチウムイオン二次電池の製造方法。   The method for producing an all-solid-state lithium ion secondary battery according to any one of claims 1 to 3, wherein a sulfide-based inorganic solid electrolyte is used as the solid electrolyte. 極材層および固体電解質層の形成後、加圧するとともに帯電した電荷を除電することを特徴とする請求項1乃至4のいずれか一項に記載の全固体リチウムイオン二次電池の製造方法。   5. The method for producing an all-solid-state lithium ion secondary battery according to claim 1, wherein after forming the electrode material layer and the solid electrolyte layer, pressure is applied and the charged electric charge is removed.
JP2009134555A 2009-06-04 2009-06-04 Manufacturing method of all-solid-state lithium ion secondary battery Active JP5414371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134555A JP5414371B2 (en) 2009-06-04 2009-06-04 Manufacturing method of all-solid-state lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134555A JP5414371B2 (en) 2009-06-04 2009-06-04 Manufacturing method of all-solid-state lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2010282803A JP2010282803A (en) 2010-12-16
JP5414371B2 true JP5414371B2 (en) 2014-02-12

Family

ID=43539386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134555A Active JP5414371B2 (en) 2009-06-04 2009-06-04 Manufacturing method of all-solid-state lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5414371B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471307B2 (en) * 2009-10-29 2014-04-16 日本ゼオン株式会社 Electrochemical element manufacturing method, electrochemical element electrode, and electrochemical element
JP6066574B2 (en) * 2012-03-05 2017-01-25 日立造船株式会社 Manufacturing method of all-solid-state secondary battery
JP6216154B2 (en) * 2012-06-01 2017-10-18 株式会社半導体エネルギー研究所 Negative electrode for power storage device and power storage device
CN103509500B (en) * 2012-06-26 2016-06-08 湖州欧美化学有限公司 For the aqueous binder of lithium-ion secondary cell
DE102013204875A1 (en) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Electrode and method for manufacturing an electrode
JP2015060720A (en) * 2013-09-19 2015-03-30 株式会社村田製作所 Solid battery
JP2015060721A (en) * 2013-09-19 2015-03-30 株式会社村田製作所 Solid battery
JP6681603B2 (en) * 2015-05-26 2020-04-15 パナソニックIpマネジメント株式会社 All-solid-state lithium-ion secondary battery and method for manufacturing the same
JP6608188B2 (en) 2015-06-23 2019-11-20 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
CN107305961B (en) 2016-04-25 2022-03-29 松下知识产权经营株式会社 Battery, battery manufacturing method, and battery manufacturing apparatus
CN109075396A (en) * 2016-04-26 2018-12-21 日立造船株式会社 Solid state secondary battery
JP6943656B2 (en) * 2017-07-12 2021-10-06 日立造船株式会社 Coin-type battery and its manufacturing method
CN113314767B (en) * 2021-05-28 2022-04-15 中南大学 All-solid-state battery preparation method and all-solid-state battery
CN114400368B (en) * 2022-01-14 2023-06-20 厦门海辰储能科技股份有限公司 Sulfide solid electrolyte layer, preparation method thereof and lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466082B2 (en) * 1998-03-31 2003-11-10 松下電器産業株式会社 Manufacturing method of fuel cell electrode
JP2001351616A (en) * 2000-06-05 2001-12-21 Toyota Motor Corp Manufacturing method of electrode
JP5417989B2 (en) * 2009-05-21 2014-02-19 トヨタ自動車株式会社 Method for producing solid electrolyte battery

Also Published As

Publication number Publication date
JP2010282803A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5414371B2 (en) Manufacturing method of all-solid-state lithium ion secondary battery
JP5383463B2 (en) Manufacturing method of all-solid-state lithium ion secondary battery
US11233269B2 (en) All-solid-state battery with varied binder concentration
JP6066574B2 (en) Manufacturing method of all-solid-state secondary battery
JP6975392B2 (en) Electrode body for all-solid-state battery and its manufacturing method
RU2513987C2 (en) Metal lithium superdispersed deposited powder
US10490804B2 (en) Method for producing a galvanic element and galvanic element
US20180048040A1 (en) Capacitor-battery hybrid formed by plasma powder electrode coating
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
US20200044283A1 (en) All-solid battery and method for producing the same
EP3576208B1 (en) All-solid-state battery and production method of the same
JP2011159635A (en) Solid lithium secondary battery and method for manufacturing the same
US20200313229A1 (en) Electrode body for all-solid-state battery and production method thereof
WO2013080988A1 (en) Collector for electrodes, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN111430675A (en) Preparation method and application of lithium metal negative plate
CN115249809A (en) Electrode layer and all-solid-state battery
CN101752610A (en) Non-aqueous electrolyte lithium metal battery and preparation method thereof
JPWO2011070748A1 (en) Nonaqueous electrolyte secondary battery and charging method thereof
Stumper et al. Application of thin lithium foil for direct contact prelithiation of anodes within lithium-ion battery production
CN102122725B (en) Lithium-iron disulfide battery
US11444319B2 (en) All-solid battery and method of manufacturing the same
Uemura et al. All-solid secondary batteries with sulfide-based thin film electrolytes
WO2017217079A1 (en) All-solid battery
CN207624803U (en) A kind of lithium ion cell positive structure and lithium ion battery
CN102136565A (en) Iron oxide-selenium nano composite cathode material for lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250