JP2011159635A - Solid lithium secondary battery and method for manufacturing the same - Google Patents

Solid lithium secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2011159635A
JP2011159635A JP2011070338A JP2011070338A JP2011159635A JP 2011159635 A JP2011159635 A JP 2011159635A JP 2011070338 A JP2011070338 A JP 2011070338A JP 2011070338 A JP2011070338 A JP 2011070338A JP 2011159635 A JP2011159635 A JP 2011159635A
Authority
JP
Japan
Prior art keywords
insulating frame
electrode layer
current collecting
collecting member
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011070338A
Other languages
Japanese (ja)
Other versions
JP5218586B2 (en
JP2011159635A5 (en
Inventor
Yasushi Tsuchida
靖 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008114360A priority Critical patent/JP2009266589A/en
Priority to US12/385,851 priority patent/US20090269670A1/en
Priority to CN200910139219.9A priority patent/CN101567465B/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011070338A priority patent/JP5218586B2/en
Publication of JP2011159635A publication Critical patent/JP2011159635A/en
Priority to US13/657,180 priority patent/US8652673B2/en
Publication of JP2011159635A5 publication Critical patent/JP2011159635A5/ja
Application granted granted Critical
Publication of JP5218586B2 publication Critical patent/JP5218586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Conductive Materials (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid lithium secondary battery where internal short-circuit and fall-off of a current collector are suppressed. <P>SOLUTION: A solid electrolyte layer and solid-state electrode layer are formed inside a frame of an electric insulation properties and the current collector is held by the frame of the electric insulation properties, thereby suppressing displacement or fall-off of the current collector. Preferably, powder, which is a material of the electrode layer is filled between the current collector and the frame to hold the current collector to the frame. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、固体型のリチウム二次電池およびその製造方法に関する。 The present invention relates to a solid-state lithium secondary battery and a method for manufacturing the same.

リチウム二次電池はエネルギー密度が高く、高電圧を出力できることから、電気自動車やハイブリッド自動車などのバッテリ、あるいはノートパソコンや携帯電話などのポータブル電気機器の電源として期待されている。リチウム二次電池として、近年、液体電解質に代えて固体電解質を用いた固体リチウム二次電池が提案されている。固体リチウム二次電池は、安全性や生産性に優れていると考えられ、将来の二次電池として期待されている。固体リチウム二次電池は、正極層、固体電解質層、負極層が順番に積層され、その両側に集電板が取り付けられた構造であり、一般に、粉末成形法により成形される。すなわち、金型に正極材料、電解質材料、負極材料を入れてプレスをして電極層と電解質層とが積層構造をなすペレット(以下、電解質電極積層体ということがある)を作成し、当該ペレットを金型から取り出した後に集電板を取り付けて、電池を製造する。 Lithium secondary batteries have high energy density and can output high voltages, so they are expected as power sources for batteries for electric vehicles and hybrid vehicles, and portable electric devices such as notebook computers and mobile phones. In recent years, a solid lithium secondary battery using a solid electrolyte instead of a liquid electrolyte has been proposed as a lithium secondary battery. Solid lithium secondary batteries are considered to be excellent in safety and productivity, and are expected as future secondary batteries. A solid lithium secondary battery has a structure in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially laminated, and current collectors are attached to both sides thereof, and is generally formed by a powder forming method. That is, a positive electrode material, an electrolyte material, and a negative electrode material are placed in a mold and pressed to create a pellet in which the electrode layer and the electrolyte layer have a laminated structure (hereinafter sometimes referred to as an electrolyte electrode laminate). After the battery is taken out of the mold, a current collector plate is attached to manufacture a battery.

上記のようにして固体リチウム二次電池を製造する場合、金型から取り出す際にペレットの側面が金型の内面とこすれ合うために、電解質層の側面に電極材料が付着し、電池が内部短絡を起こすという問題があった。そのため、電気絶縁性の枠体を用いてその内部に電極層と電解質層とを一体に形成する固体リチウム二次電池が提案されている(下記特許文献1参照)。この固体リチウム二次電池によれば、ペレットの側面がこすれることがないので、電池の内部短絡を防止することができる。ところで、電池を製造するためには、上述のとおり、正極層、電解質層、負極層からなる積層体に集電板を取り付ける必要がある。当該集電板が電解質電極積層体から外れる、または電極層との接着面積が低下すると、生産性の低下や接触抵抗の増加などの問題を生じえた。そのため、電解質電極積層体と集電板とを固定するために何らかの手段を講じる必要があった。 When manufacturing a solid lithium secondary battery as described above, since the side surface of the pellet rubs against the inner surface of the mold when taking out from the mold, the electrode material adheres to the side surface of the electrolyte layer, and the battery is internally short-circuited. There was a problem of waking up. For this reason, a solid lithium secondary battery has been proposed in which an electrode layer and an electrolyte layer are integrally formed therein using an electrically insulating frame (see Patent Document 1 below). According to this solid lithium secondary battery, since the side surface of the pellet is not rubbed, an internal short circuit of the battery can be prevented. By the way, in order to manufacture a battery, it is necessary to attach a current collecting plate to a laminate composed of a positive electrode layer, an electrolyte layer, and a negative electrode layer as described above. When the current collector plate is detached from the electrolyte electrode laminate or the adhesion area with the electrode layer is reduced, problems such as a decrease in productivity and an increase in contact resistance may occur. Therefore, it is necessary to take some means to fix the electrolyte electrode laminate and the current collector plate.

特開平9−35724号公報Japanese Patent Laid-Open No. 9-35724 特開2003−168416号公報JP 2003-168416 A 特開平11−97072号公報JP-A-11-97072

本発明は、上記問題点に鑑みてなされたものであり、電気絶縁性の枠体を用いた固体リチウム二次電池において、集電板の電解質電極積層体からの脱落または電極層との接触面積の低下など(以下、脱落等という)を抑制することができる固体リチウム二次電池およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and in a solid lithium secondary battery using an electrically insulating frame, the current collector plate is detached from the electrolyte electrode laminate or the contact area with the electrode layer It is an object of the present invention to provide a solid lithium secondary battery and a method for manufacturing the same, which can suppress a decrease in battery life (hereinafter referred to as dropout).

上記の課題を解決するため、第1の発明は、固体リチウム二次電池であって、
電気絶縁性で筒状の絶縁枠と、
前記絶縁枠の内部に形成された固体電解質層と、
少なくとも前記固体電解質層の一方の面に積層され、前記絶縁枠の内部に形成される電極層と、
前記電極層に積層され、前記絶縁枠によって保持されている集電部材と、
を備えることを特徴とする。
In order to solve the above problems, the first invention is a solid lithium secondary battery,
An electrically insulating and cylindrical insulating frame;
A solid electrolyte layer formed inside the insulating frame;
An electrode layer laminated on at least one surface of the solid electrolyte layer and formed inside the insulating frame;
A current collecting member laminated on the electrode layer and held by the insulating frame;
It is characterized by providing.

第2の発明は、第1の発明において、
前記電極層は、
前記絶縁枠の内部において前記電解質層の一方に積層され、粉体を圧縮して形成される正極層と、
前記絶縁枠の内部において前記電解質層の他方に積層され、粉体を圧縮して形成される負極層と、
を含み、
前記集電部材は、
前記正極層に積層され、前記絶縁枠によって保持される正極集電部材と、
前記負極層に積層され、前記絶縁枠によって保持される負極集電部材と、
を含む、ことを特徴とする。
According to a second invention, in the first invention,
The electrode layer is
A positive electrode layer formed by compressing powder, laminated on one of the electrolyte layers inside the insulating frame;
A negative electrode layer formed by compressing a powder layered on the other of the electrolyte layers inside the insulating frame;
Including
The current collecting member is
A positive electrode current collecting member laminated on the positive electrode layer and held by the insulating frame;
A negative electrode current collecting member laminated on the negative electrode layer and held by the insulating frame;
It is characterized by including.

第3の発明は、第1または第2の発明において、
前記集電板は、少なくともその一部が前記絶縁枠内になるように配置され、
前記絶縁枠と、前記集電部材の外周側面との間に、該集電部材に接する電極層の材料である粉体が充填されていることを特徴とする。
According to a third invention, in the first or second invention,
The current collector plate is disposed so that at least a part thereof is within the insulating frame,
The insulating frame and an outer peripheral side surface of the current collecting member are filled with powder that is a material of an electrode layer in contact with the current collecting member.

第4の発明は、第3の発明において、
前記集電部材の外径は、前記絶縁枠の内径よりも200から1200マイクロメートルの範囲で小さいことを特徴とする。
According to a fourth invention, in the third invention,
The outer diameter of the current collecting member is smaller in the range of 200 to 1200 micrometers than the inner diameter of the insulating frame.

第5の発明は、電気絶縁性で筒状の絶縁枠と、前記絶縁枠の内部に形成された固体電解質層と、少なくとも前記固体電解質層の一方の面に積層され、電極層の材料である粉体をプレスすることで前記絶縁枠の内部に形成される電極層と、前記電極層に積層され、少なくとも一部が前記絶縁枠の内部に配置される集電部材と、を備える固体リチウム電池の製造方法であって、
前記集電部材に力を加えることで前記電極層の材料をプレスする工程であって、該プレスの際に、前記集電部材が前記絶縁枠に対して移動するようにプレスする、前記工程を含むことを特徴とする。
The fifth invention is an electrode layer material laminated on at least one surface of an electrically insulating and cylindrical insulating frame, a solid electrolyte layer formed inside the insulating frame, and at least one surface of the solid electrolyte layer. A solid lithium battery comprising: an electrode layer formed inside the insulating frame by pressing powder; and a current collecting member stacked on the electrode layer and disposed at least partially inside the insulating frame. A manufacturing method of
Pressing the material of the electrode layer by applying a force to the current collecting member, and pressing the current collecting member so as to move relative to the insulating frame during the pressing. It is characterized by including.

第6の発明は、固体リチウム二次電池の製造方法であって、
電気絶縁性で筒状の絶縁枠の中に、電極層の材料である粉体と、電解質層の材料である粉体と、を入れて仮プレスをし、電極層と電解質層の積層構造からなる電解質電極積層体を作成する工程と、
集電部材の少なくとも一部が前記絶縁枠内に配置されるように、前記電解質電極積層体に前記集電部材を積層する工程と、
前記集電部材が前記絶縁枠に対して移動するように、前記集電部材を積層した電解質電極積層体を本プレスする工程と、
を含むことを特徴とする。
A sixth invention is a method of manufacturing a solid lithium secondary battery,
Put the powder, which is the material of the electrode layer, and the powder, which is the material of the electrolyte layer, into a cylindrical insulating frame that is electrically insulating, and perform temporary pressing, and from the laminated structure of the electrode layer and the electrolyte layer Forming an electrolyte electrode laminate,
Laminating the current collecting member on the electrolyte electrode laminate so that at least a part of the current collecting member is disposed in the insulating frame;
Pressing the electrolyte electrode laminate in which the current collecting member is laminated so that the current collecting member moves relative to the insulating frame;
It is characterized by including.

第7の発明は、第5または第6の発明において、
前記集電部材が前記絶縁枠に対して移動する距離は、前記集電材の厚さの5分の1以上、前記集電板の厚さ以下であることを特徴とする。
A seventh invention is the fifth or sixth invention, wherein
The distance that the current collecting member moves with respect to the insulating frame is not less than one fifth of the thickness of the current collector and not more than the thickness of the current collector plate.

第8の発明は、電気絶縁性で筒状の絶縁枠と、前記絶縁枠の内部に形成された固体電解質層と、少なくとも前記固体電解質層の一方の面に積層され、電極層の材料である粉体をプレスすることで前記絶縁枠の内部に形成される電極層と、前記電極層に積層され、少なくとも一部が前記絶縁枠の内部に配置される集電部材と、を備える固体リチウム電池の製造方法であって、
前記集電部材に力を加えることで前記電極層の材料をプレスする工程であって、該プレスの際に、前記電極の材料である粉体の層が塑性変形をすることで、該電極層の材料が前記集電部材の外周と前記絶縁枠との間に入り込むようにプレスする、前記工程を含むことを特徴とする。
The eighth invention is an electrode layer material laminated on at least one surface of an electrically insulating and cylindrical insulating frame, a solid electrolyte layer formed inside the insulating frame, and at least one surface of the solid electrolyte layer. A solid lithium battery comprising: an electrode layer formed inside the insulating frame by pressing powder; and a current collecting member stacked on the electrode layer and disposed at least partially inside the insulating frame. A manufacturing method of
A step of pressing the material of the electrode layer by applying a force to the current collecting member, and the electrode layer is formed by plastically deforming a layer of the powder as the material of the electrode during the pressing. Including the step of pressing the material so that the material enters between the outer periphery of the current collecting member and the insulating frame.

第9の発明は、固体リチウム二次電池の製造方法であって、
電気絶縁性で筒状の絶縁枠の中に、電極層の材料である粉体と、電解質層の材料である粉体と、を入れて仮プレスをし、電極層と電解質層の積層構造からなる電解質電極積層体を作成する工程と、
集電部材の少なくとも一部が前記絶縁枠内に配置されるように、前記電解質電極積層体に前記集電部材を積層する工程と、
前記電極層が塑性変形をすることで、該電極層の材料が前記集電部材の外周と前記絶縁枠との間に入り込むように、前記集電部材を積層した電解質電極積層体を本プレスする工程と、
を含むことを特徴とする。
A ninth invention is a method of manufacturing a solid lithium secondary battery,
Put the powder, which is the material of the electrode layer, and the powder, which is the material of the electrolyte layer, into a cylindrical insulating frame that is electrically insulating, and perform temporary pressing, and from the laminated structure of the electrode layer and the electrolyte layer Forming an electrolyte electrode laminate,
Laminating the current collecting member on the electrolyte electrode laminate so that at least a part of the current collecting member is disposed in the insulating frame;
The electrode layer is plastically deformed so that the material of the electrode layer enters between the outer periphery of the current collecting member and the insulating frame, and this press is performed on the electrolyte electrode laminated body in which the current collecting members are laminated. Process,
It is characterized by including.

第10の発明は、第5〜第9のいずれかの発明において、
前記電極層は、
前記絶縁枠の内部において前記電解質層の一方に形成される正極層と、
前記絶縁枠の内部において前記電解質層の他方に形成される負極層と、
を含み、
前記集電部材は、
前記正極層に積層され、前記絶縁枠によって保持される正極集電部材と、
前記負極層に積層され、前記絶縁枠によって保持される負極集電部材と、
を含む、ことを特徴とする。
In a tenth aspect of the invention according to any one of the fifth to ninth aspects of the invention,
The electrode layer is
A positive electrode layer formed on one of the electrolyte layers inside the insulating frame;
A negative electrode layer formed on the other of the electrolyte layers inside the insulating frame;
Including
The current collecting member is
A positive electrode current collecting member laminated on the positive electrode layer and held by the insulating frame;
A negative electrode current collecting member laminated on the negative electrode layer and held by the insulating frame;
It is characterized by including.

第11の発明は、第5〜第10のいずれかの発明において、
前記集電部材の外径は、前記絶縁枠の内径よりも200から1200マイクロメートルの範囲で小さいことを特徴とする。
In an eleventh invention according to any one of the fifth to tenth inventions,
The outer diameter of the current collecting member is smaller in the range of 200 to 1200 micrometers than the inner diameter of the insulating frame.

上記発明の少なくとも一部は、固体電解質層と、電極層と、集電部材と、少なくとも前記固体電解質層および電極電極層の側面を被う絶縁枠と、を備える全固体リチウム電池であって、前記集電部材が前記絶縁枠によって保持されていることを特徴とする全固体リチウム電池である、ということもできる。また、上記発明の少なくとも一部は、固体電解質層と、粉体を圧縮して形成される電極層と、前記電極層に積層される集電材と、前記集電材の外周の少なくとも一部および前記電解質層の外周を被う電気絶縁性の枠体であって、前記集電材を保持する前記枠体と、を備えることを特徴とする全固体リチウム電池である、ということもできる。また、上記発明の少なくとも一部は、固体電解質層と、前記固体電解質層の一方の側に粉体を圧縮して形成される負極電極層と、前記固体電解質層の他方の側に粉体を圧縮して形成される正極電極層と、前記電極層の前記固体電解質層と接する側と反対側にそれぞれ積層された集電材と、前記集電材の外周の少なくとも一部および前記電解質層の外周を被う電気絶縁性の枠体であって、前記集電材の少なくとも一方を保持する前記枠体と、を備えることを特徴とする全固体リチウム電池である、と言うこともできる。 At least a part of the invention is an all-solid-state lithium battery comprising a solid electrolyte layer, an electrode layer, a current collecting member, and an insulating frame that covers at least the side surfaces of the solid electrolyte layer and the electrode electrode layer, It can also be said that the current collecting member is an all-solid lithium battery characterized by being held by the insulating frame. In addition, at least a part of the invention includes a solid electrolyte layer, an electrode layer formed by compressing powder, a current collector laminated on the electrode layer, at least a part of an outer periphery of the current collector, and the It can also be said that this is an all-solid-state lithium battery comprising: an electrically insulating frame covering the outer periphery of the electrolyte layer, and the frame holding the current collector. In addition, at least a part of the invention includes a solid electrolyte layer, a negative electrode layer formed by compressing powder on one side of the solid electrolyte layer, and powder on the other side of the solid electrolyte layer. A positive electrode layer formed by compression, a current collector laminated on a side of the electrode layer opposite to the side in contact with the solid electrolyte layer, at least a part of an outer circumference of the current collector and an outer circumference of the electrolyte layer It can be said that this is an all-solid-state lithium battery comprising an electrically insulating frame to be covered and the frame holding at least one of the current collectors.

第1または第2の発明によれば、集電板は絶縁性の枠体によって保持されているので、集電材の脱落等を抑制することができる。 According to the first or second invention, since the current collector plate is held by the insulating frame, it is possible to prevent the current collector from dropping off.

第3の発明によれば、枠体と集電材との間に電極層の材料である粉体が充填されている。そのため、当該粉体の弾性力によって、集電材が絶縁枠に固定される。したがって、集電材の脱落等を効果的に防止できる。すなわち本発明では、集電材は、電極材料の粉体を介して間接的に絶縁枠によって保持されている。 According to 3rd invention, the powder which is a material of an electrode layer is filled between the frame and the current collector. Therefore, the current collector is fixed to the insulating frame by the elastic force of the powder. Accordingly, it is possible to effectively prevent the current collector from falling off. That is, in the present invention, the current collector is indirectly held by the insulating frame via the electrode material powder.

第4の発明によれば、枠体と集電材との間に電極材料の粉体が入り込む間隙が形成され、当該間隙に充填された粉体の弾性力によって集電材が保持される。 According to the fourth aspect of the invention, the gap into which the electrode material powder enters is formed between the frame and the current collector, and the current collector is held by the elastic force of the powder filled in the gap.

第5〜8の発明によれば、本プレスをする際に、集電材と枠体との間に電極材料である粉体が入り込む。したがって、集電材が、粉体の弾性力を介して枠体によって保持された固体リチウム二次電池を製造することができる。 According to the fifth to eighth inventions, when the press is performed, the powder as the electrode material enters between the current collector and the frame. Therefore, the solid lithium secondary battery in which the current collector is held by the frame body through the elastic force of the powder can be manufactured.

第9の発明によれば、枠体と集電材との間に電極材料の粉体が入り込む間隙が形成されるので、本プレスによって、より確実に枠体と集電材との間に電極材料である粉体が充填される。 According to the ninth invention, the gap into which the powder of the electrode material enters is formed between the frame and the current collector, so that the present press can more reliably provide the electrode material between the frame and the current collector. A powder is filled.

実施の形態1の固体電池の斜視図である。1 is a perspective view of a solid state battery of Embodiment 1. FIG. 実施の形態1の固体電池の断面図である。2 is a cross-sectional view of the solid state battery of Embodiment 1. FIG. 実施の形態1の固体電池の断面図および一部拡大図である。2 is a cross-sectional view and a partially enlarged view of the solid state battery of Embodiment 1. FIG. 実施の形態1の固体電池の製造方法を説明するための図である。FIG. 3 is a diagram for illustrating the method for manufacturing the solid state battery of the first embodiment. 実施の形態1の固体電池の製造方法を説明するための図である。FIG. 3 is a diagram for illustrating the method for manufacturing the solid state battery of the first embodiment. 実施の形態1の固体電池の製造方法を説明するための図である。FIG. 3 is a diagram for illustrating the method for manufacturing the solid state battery of the first embodiment. 実施の形態1の固体電池の製造方法を説明するための図である。FIG. 3 is a diagram for illustrating the method for manufacturing the solid state battery of the first embodiment. 実施の形態1の固体電池の変形例の斜視図である。6 is a perspective view of a modification of the solid state battery of Embodiment 1. FIG.

以下、本発明の実施の形態を、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1の固体リチウム二次電池を示す斜視図である。図1に示すように、本実施の形態に係る固体リチウム二次電池10は、電気絶縁性の枠体12(以下、絶縁枠12という)を備える。絶縁枠12は、固体リチウム二次電池10の内、後述する電解質層、正極層、負極層の側面全てと、負極集電板14の側面の一部、および正極集電板16の側面の一部を覆うように設けられる。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a perspective view showing a solid lithium secondary battery according to Embodiment 1 of the present invention. As shown in FIG. 1, the solid lithium secondary battery 10 according to the present embodiment includes an electrically insulating frame 12 (hereinafter referred to as an insulating frame 12). The insulating frame 12 includes all of the side surfaces of an electrolyte layer, a positive electrode layer, and a negative electrode layer, which will be described later, a part of a side surface of the negative electrode current collector plate 14, and a side surface of the positive electrode current collector plate 16. It is provided so as to cover the part.

図2は、本実施の形態の固体リチウム二次電池10の断面図である。図2に示すように、本実施の形態に係るリチウム二次電池10は電解質層20と負極層22と正極層24(以下、これらを合わせて電極層ということがある)とからなる積層体(電解質電極積層体)に集電板14、16を取り付けた構造となっている。絶縁枠12は電解質層20と電極層22、24の側面部全部と、集電板14、16の側面の一部を覆うように配置されている。電解質層および電極層は全て固体の物質からなり、材料の粉体をプレスすることで形成される。 FIG. 2 is a cross-sectional view of the solid lithium secondary battery 10 of the present embodiment. As shown in FIG. 2, the lithium secondary battery 10 according to the present embodiment includes a laminate (electrolyte layer 20, negative electrode layer 22, and positive electrode layer 24 (hereinafter collectively referred to as an electrode layer) ( The current collector plates 14 and 16 are attached to the electrolyte electrode laminate. The insulating frame 12 is disposed so as to cover all the side portions of the electrolyte layer 20 and the electrode layers 22 and 24 and part of the side surfaces of the current collector plates 14 and 16. The electrolyte layer and the electrode layer are all made of a solid substance, and are formed by pressing a powder of the material.

本実施の形態では、電解質層の材料は70Li2S−30P2S5であり、正極層の材料は正極活物質であるLiCoO2と電解質層の材料である70Li2S−30P2S5とを混合したものであり、負極層の材料は負極活物質である黒鉛と電解質層の材料である70Li2S−30P2S5とを混合したものである。本実施の形態においては、70Li2S−30P2S5は平均粒径20マイクロメートル、LiCoO2は平均粒径10マイクロメートル、黒鉛は平均粒径10マイクロメートル、の粉体をそれぞれ使用している。また、絶縁枠は電気絶縁性の樹脂で構成されている。また、集電板はステンレス製で厚さ300マイクロメートルの薄板である。 In the present embodiment, the material of the electrolyte layer is 70Li2S-30P2S5, the material of the positive electrode layer is a mixture of LiCoO2 as the positive electrode active material and 70Li2S-30P2S5 as the material of the electrolyte layer, and the material of the negative electrode layer Is a mixture of graphite as the negative electrode active material and 70Li2S-30P2S5 as the material of the electrolyte layer. In the present embodiment, 70Li2S-30P2S5 uses powder having an average particle diameter of 20 micrometers, LiCoO2 uses an average particle diameter of 10 micrometers, and graphite uses an average particle diameter of 10 micrometers. The insulating frame is made of an electrically insulating resin. The current collector plate is a stainless steel plate having a thickness of 300 micrometers.

図3は、本実施の形態の固体リチウム二次電池10の断面図およびその一部を拡大した図である。図3に示すように、本実施の形態の固体リチウム二次電池10の絶縁枠12と正極集電板16の側面部との間の間隙30には、正極層24を構成する材料(すなわち正極活物質または電解質層の材料)が充填されている。同様に、絶縁枠12と負極集電板14との間の間隙には、負極層22を構成する材料(すなわち負極活物質または電解質層の材料)が充填されている。 FIG. 3 is a cross-sectional view of the solid lithium secondary battery 10 of the present embodiment and an enlarged view of a part thereof. As shown in FIG. 3, the material constituting the positive electrode layer 24 (that is, the positive electrode) is formed in the gap 30 between the insulating frame 12 of the solid lithium secondary battery 10 of the present embodiment and the side surface portion of the positive electrode current collector plate 16. Active material or electrolyte layer material). Similarly, the gap between the insulating frame 12 and the negative electrode current collector plate 14 is filled with a material constituting the negative electrode layer 22 (that is, a negative electrode active material or an electrolyte layer material).

本実施の形態では、間隙30は幅が150マイクロメートルとなるように設定している。すなわち、絶縁枠12の内径と正極集電板16の外径との差が300マイクロメートルとなるように、絶縁枠12および正極集電板16の大きさを決定している。同様に、絶縁枠12の内径と負極集電板14の外径との差は300マイクロメートルとなるように、負極集電板14の大きさを決定している。このようにして形成される、絶縁枠12と集電板14、16との間の空隙30に上述のとおり、電極層22、24の材料がそれぞれ充填されている。本実施の形態の固体リチウム二次電池10において、集電板14、16は絶縁枠12と集電板14、16との間に充填された電極材料の弾性力によって保持され、絶縁枠に固定されている。この点について、見方を変えれば、絶縁枠12は電極材料を介して集電板14、16を保持していることとなる。また、集電板は電極材料の弾性力によって、絶縁枠に固定されているとみることもできる。 In the present embodiment, the gap 30 is set to have a width of 150 micrometers. That is, the sizes of the insulating frame 12 and the positive electrode current collector plate 16 are determined so that the difference between the inner diameter of the insulating frame 12 and the outer diameter of the positive electrode current collector plate 16 is 300 micrometers. Similarly, the size of the negative electrode current collector plate 14 is determined so that the difference between the inner diameter of the insulating frame 12 and the outer diameter of the negative electrode current collector plate 14 is 300 micrometers. As described above, the gaps 30 formed between the insulating frame 12 and the current collector plates 14 and 16 are filled with the material of the electrode layers 22 and 24, respectively. In the solid lithium secondary battery 10 of the present embodiment, the current collector plates 14 and 16 are held by the elastic force of the electrode material filled between the insulating frame 12 and the current collector plates 14 and 16 and fixed to the insulating frame. Has been. From this point of view, the insulating frame 12 holds the current collecting plates 14 and 16 via the electrode material. It can also be considered that the current collector plate is fixed to the insulating frame by the elastic force of the electrode material.

[実施の形態1の固体リチウム二次電池の製造方法]
図4〜図7を参照して、本実施の形態の固体リチウム二次電池の製造方法の一例を説明する。図4に示すように、まず、絶縁枠50を電池製造用のプレス装置41にセットする。
[Method for Manufacturing Solid Lithium Secondary Battery of Embodiment 1]
With reference to FIGS. 4-7, an example of the manufacturing method of the solid lithium secondary battery of this Embodiment is demonstrated. As shown in FIG. 4, first, the insulating frame 50 is set in a press device 41 for manufacturing a battery.

次に、図5に示すように、絶縁枠50の中に、電解質材料である70Li2S−30P2S5を入れて仮プレスを行い、電解質層52を形成する。さらに、図6に示すように電解質層52の一方に正極活物質であるLiCoO2と電解質材料である70Li2S−30P2S5の混合材料を、他方に負極活物質である黒鉛と電解質材料である70Li2S−30P2S5の混合材料をそれぞれ積層し、仮プレスを行う。このように仮プレスを行って正極層と電解質層と負極層との積層体(電解質電極積層体)を絶縁枠50の中に形成する。このとき、後述する本プレスの際に、電極層がそれぞれ100マイクロメートル程度圧縮されるように仮プレス圧を設定する。 Next, as shown in FIG. 5, 70Li 2 S-30P 2 S 5, which is an electrolyte material, is placed in an insulating frame 50 and temporarily pressed to form an electrolyte layer 52. Furthermore, as shown in FIG. 6, a mixed material of LiCoO 2 that is a positive electrode active material and 70Li 2 S-30P 2 S 5 that is an electrolyte material is formed on one side of the electrolyte layer 52, and 70 Li 2 S-30P 2 S 5 that is an electrolyte material is formed on the other side. Each mixed material is laminated and temporarily pressed. Thus, temporary pressing is performed to form a laminate (electrolyte electrode laminate) of the positive electrode layer, the electrolyte layer, and the negative electrode layer in the insulating frame 50. At this time, the temporary press pressure is set so that the electrode layers are compressed by about 100 micrometers at the time of the main press described later.

次に、図7に示すように、電解質電極積層体の両側に集電板を取り付ける。電解質電極積層体の両側に集電板を取り付けた状態で、両側から集電板に力を加えてプレス(本プレス)を行う。プレスは両側から1平方センチメートルあたり5トンの力を加えて行う。ここで、プレスは、集電板60、62がそれぞれ絶縁枠50に対して移動するように行う。すなわち、集電板60、62共に、電解質層52のほうへ絶縁枠50の内部を移動するようにプレスをする。 Next, as shown in FIG. 7, current collector plates are attached to both sides of the electrolyte electrode laminate. In a state where current collector plates are attached to both sides of the electrolyte electrode laminate, pressing is performed by applying force to the current collector plates from both sides (main press). The press is applied with a force of 5 tons per square centimeter from both sides. Here, the pressing is performed such that the current collector plates 60 and 62 move relative to the insulating frame 50, respectively. That is, the current collector plates 60 and 62 are pressed so as to move inside the insulating frame 50 toward the electrolyte layer 52.

上述のように、集電板が絶縁枠に対して移動するようにプレスを行うと、電極層が塑性変形し、集電板60、62と絶縁枠50との間の隙間に電極層の材料が入り込む。換言すれば、集電板が電極層を圧縮しながら、電極層にめり込むように変位することで、集電板60、62と絶縁枠50との間の隙間に電極層の材料が充填される。そして、この電極層の材料の弾性力によって集電板は保持される。本実施の形態では、前述のとおり、集電板の厚さは300マイクロメートルであるところ、集電板60、62が共に100マイクロメートルずつ移動するように本プレスを行った。これによって、本実施例においては、集電板の側面と絶縁枠との間に電極層の材料が充填される。 As described above, when pressing is performed so that the current collector plate moves relative to the insulating frame, the electrode layer is plastically deformed, and the material of the electrode layer is formed in the gap between the current collector plates 60 and 62 and the insulating frame 50. Enters. In other words, the material of the electrode layer is filled in the gap between the current collector plates 60 and 62 and the insulating frame 50 by displacing the current collector plate so as to dig into the electrode layer while compressing the electrode layer. . The current collecting plate is held by the elastic force of the electrode layer material. In the present embodiment, as described above, the thickness of the current collector plate is 300 micrometers, and this press was performed so that both the current collector plates 60 and 62 moved by 100 micrometers. Thus, in this embodiment, the electrode layer material is filled between the side surface of the current collector plate and the insulating frame.

[実施の形態1の作用・効果]
本実施の形態の固体リチウム二次電池によれば、集電板は絶縁枠によって保持されているので、集電板が脱落等することが抑制される。集電板が製造中に脱落すれば生産性が低下し、製造後に脱落すれば充放電が困難になるところ、本実施の形態の固体リチウム二次電池によれば集電板の脱落を抑制できることから、これらの不都合を抑制することができる。また、脱落しなくとも電極層と集電板との間の接触圧や接触面積が低下すれば、接触抵抗が増加するところ、本発明の全個体リチウム二次電池によれば、集電板が絶縁枠に対して移動することを抑制できるので、電極層と集電板との接触が弱くなることも抑制できる。
[Operation and Effect of Embodiment 1]
According to the solid lithium secondary battery of the present embodiment, since the current collector plate is held by the insulating frame, the current collector plate is prevented from dropping off. If the current collector plate falls off during production, the productivity decreases, and if it falls off after production, charging / discharging becomes difficult. According to the solid lithium secondary battery of this embodiment, the current collector plate can be prevented from falling off. Therefore, these inconveniences can be suppressed. Further, if the contact pressure or contact area between the electrode layer and the current collector plate decreases without dropping, the contact resistance increases. According to the all-solid lithium secondary battery of the present invention, the current collector plate Since it can suppress moving with respect to an insulating frame, it can also suppress that the contact of an electrode layer and a current collecting plate becomes weak.

また、本実施の形態の固体リチウム二次電池によれば、絶縁枠の内径と集電板の外径との差が300マイクロメートルとなるように、絶縁枠および集電板の大きさを決定している。前述のとおり、本実施例で使用する電極の材料は平均粒径が10〜20マイクロメートルであるため、絶縁枠と集電板の側面との間に150マイクロメートル程度の間隙があれば、当該間隙に集電板を保持するのに十分な量の電極材料が充填できる。そのため、絶縁枠と集電板との間の間隙に充填された電極材料の弾性力によって、集電板が保持される。 Further, according to the solid lithium secondary battery of the present embodiment, the sizes of the insulating frame and the current collecting plate are determined so that the difference between the inner diameter of the insulating frame and the outer diameter of the current collecting plate is 300 micrometers. is doing. As described above, since the average particle size of the electrode material used in this example is 10 to 20 micrometers, if there is a gap of about 150 micrometers between the insulating frame and the side surface of the current collector plate, A sufficient amount of electrode material can be filled to hold the current collector plate in the gap. Therefore, the current collector plate is held by the elastic force of the electrode material filled in the gap between the insulating frame and the current collector plate.

また、絶縁枠と集電板との間隙に電極材料が充填されているので、電極層にある電極材料が外気に触れることがない。一般に、電極層は反応性が高く、外気に触れることで劣化などをすることがあるところ、本実施の形態によれば電極層は外気に触れることがないため、好ましい。なお、気密性を確保するために、シール材などを用いることも考えられるが、前述のとおり、電極層は反応性が高いため、電極材料とは異なる種類の樹脂などを電極層に接触させると不測の反応を起こす虞がある。これに対し、本実施の形態は電極層の材料を用いて気密性を確保し、別種のシール材を用いないので、不測の反応がおこることがない。 In addition, since the electrode material is filled in the gap between the insulating frame and the current collector plate, the electrode material in the electrode layer does not come into contact with the outside air. In general, the electrode layer is highly reactive and may be deteriorated by contact with the outside air. However, according to this embodiment, the electrode layer is not exposed to the outside air, which is preferable. Although it is conceivable to use a sealing material or the like in order to ensure hermeticity, as described above, since the electrode layer is highly reactive, a resin or the like different from the electrode material is brought into contact with the electrode layer. There is a risk of unexpected reaction. On the other hand, in this embodiment, the material of the electrode layer is used to ensure airtightness and no other type of sealing material is used, so that an unexpected reaction does not occur.

また、絶縁枠と集電板を固定する方法として、接着剤を用いることも考えられる。しかしながら上述のとおり、電極材料と異なる材料の樹脂等を電極層に接触させると不測の反応を起こす虞がある。これに対し、本実施の形態は、別種の接着剤を用いることなく集電板を絶縁枠に固定するので、不測の反応を抑制しつつ絶縁枠と集電板とを固定することができる。 Moreover, it is also conceivable to use an adhesive as a method of fixing the insulating frame and the current collector plate. However, as described above, if a resin or the like of a material different from the electrode material is brought into contact with the electrode layer, an unexpected reaction may occur. In contrast, in the present embodiment, the current collector plate is fixed to the insulating frame without using another type of adhesive, so that the insulating frame and the current collector plate can be fixed while suppressing an unexpected reaction.

また、図1に示すように、集電板はその一部が絶縁枠内部に挿入されており、一部が絶縁枠の外に出ている。そのため、電池から出力を取り出す機構を容易に取り付けることが可能であり、生産性が向上する。また、両側の集電板について、それぞれ集電板と絶縁枠との間に電極材料が充填されているので、いずれの集電板についても脱落等が抑制される。 Further, as shown in FIG. 1, a part of the current collector plate is inserted into the insulating frame, and a part of the current collector plate is outside the insulating frame. Therefore, it is possible to easily attach a mechanism for extracting output from the battery, and productivity is improved. Moreover, since the electrode material is filled between the current collector plate and the insulating frame for the current collector plates on both sides, dropping off or the like is suppressed for any current collector plate.

また、プレスを行う工程と、電極層の材料を絶縁枠と集電板との間に充填する工程とを同時に行うことができるので、製造が容易である。また、プレスした状態で絶縁板を保持できるので、適切な圧力をかけたまま固定することができる。そのため、接触抵抗が低減された固体リチウム二次電池を製造することができる。 In addition, since the pressing step and the step of filling the electrode layer material between the insulating frame and the current collector plate can be performed at the same time, manufacturing is easy. Moreover, since an insulating board can be hold | maintained in the pressed state, it can fix with applying appropriate pressure. Therefore, a solid lithium secondary battery with reduced contact resistance can be manufactured.

[実施の形態1の変形例1]
実施の形態1では、絶縁枠の内径と集電板の外径との差が300マイクロメートルとなるように、絶縁枠および集電板の大きさを決定したがこれに限らない。絶縁枠と集電板との間に電極層の材料が入り込むことが可能であり、かつ、当該電極層の材料の弾性力によって集電板を保持することができるように大きさを設定すればよい。具体的には、集電板の側面と絶縁枠との隙間が50マイクロメートルから600マイクロメートル、さらに好ましくは100マイクロメートルから600マイクロメートルであることが好ましい。すなわち、集電板の外径が絶縁枠の内径よりも100マイクロメートルから1200マイクロメートル小さいこと、さらに好ましくは200マイクロメートルから1200マイクロメートル小さいこと、が好ましい。
[Variation 1 of Embodiment 1]
In the first embodiment, the sizes of the insulating frame and the current collector plate are determined so that the difference between the inner diameter of the insulating frame and the outer diameter of the current collector plate is 300 micrometers, but the present invention is not limited to this. If the size is set so that the material of the electrode layer can enter between the insulating frame and the current collector, and the current collector can be held by the elastic force of the material of the electrode layer Good. Specifically, the gap between the side surface of the current collector plate and the insulating frame is preferably 50 micrometers to 600 micrometers, more preferably 100 micrometers to 600 micrometers. That is, it is preferable that the outer diameter of the current collector plate is smaller than the inner diameter of the insulating frame by 100 micrometers to 1200 micrometers, more preferably 200 micrometers to 1200 micrometers.

なお、絶縁枠と集電板との間への、電極層の材料の入り込みやすさは当該材料の粒径に依存すると考えられる。そのため、絶縁枠の内径と集電板の外径との差を電極層の材料の粒径に基づいて決定してもよい。具体的には、集電板の側面と絶縁枠との間の隙間が、電極層材料の平均粒径の2倍〜30倍(直径の差は平均粒径の4倍〜60倍)程度であることが好ましい。電極層材料の製造方法によっては、平均粒径よりも大きい粒径のものが材料中に混在することもありうる。そのような場合には電極層の材料物質の最大粒径に基づいて隙間の大きさを設定してもよい。具体的には、集電板の側面と絶縁枠との間の隙間が、最大粒径の1倍〜10倍(直径の差は最大粒径の2倍〜20倍)程度であることが好ましい。 Note that the ease with which the material of the electrode layer enters the insulating frame and the current collector plate is considered to depend on the particle size of the material. Therefore, the difference between the inner diameter of the insulating frame and the outer diameter of the current collector may be determined based on the particle size of the electrode layer material. Specifically, the gap between the side surface of the current collector plate and the insulating frame is about 2 to 30 times the average particle size of the electrode layer material (the difference in diameter is 4 to 60 times the average particle size). Preferably there is. Depending on the manufacturing method of the electrode layer material, a material having a particle size larger than the average particle size may be mixed in the material. In such a case, the size of the gap may be set based on the maximum particle size of the material substance of the electrode layer. Specifically, the gap between the side surface of the current collector plate and the insulating frame is preferably about 1 to 10 times the maximum particle size (the difference in diameter is 2 to 20 times the maximum particle size). .

[実施の形態1の変形例2]
実施の形態1では、電極層の材料物質の弾性力で集電板を保持することとしたが、これに限らない。絶縁枠によって集電板を保持または固定していれば足りる。例えば、絶縁枠によって直接集電板を保持してもよい。具体的には、集電板の外径と絶縁枠の内径を略同じ大きさにしてもよい。これにより、集電板を絶縁枠で直接保持でき、また、電極層の気密性を確保することができる。すなわち、集電板の脱落等を抑制する観点からは、集電板が直接または間接的に絶縁枠によって保持されていればよい。
[Modification 2 of Embodiment 1]
In the first embodiment, the current collector plate is held by the elastic force of the material substance of the electrode layer. However, the present invention is not limited to this. It is sufficient if the current collector plate is held or fixed by an insulating frame. For example, the current collector plate may be directly held by an insulating frame. Specifically, the outer diameter of the current collector plate and the inner diameter of the insulating frame may be approximately the same. Thereby, a current collection board can be directly hold | maintained with an insulating frame, and the airtightness of an electrode layer can be ensured. That is, from the viewpoint of suppressing the falling off of the current collector plate, the current collector plate may be held by the insulating frame directly or indirectly.

[実施の形態1の変形例3]
実施の形態1では、断面が円形の円筒形状の絶縁枠を用いたが、これには限らない。すなわち、電気絶縁性部材で構成され、内部に電解質電極積層体を形成可能であって、かつ、直接的または間接的に集電板を保持することができる形状であれば足りる。例えば、断面矩形で中空の筒(四角筒)のような形状や、断面多角形や楕円の筒状のものであってもよい。すなわち本願において「筒状」とは円形のものに限らない。
[Modification 3 of Embodiment 1]
In Embodiment 1, a cylindrical insulating frame having a circular cross section is used. However, the present invention is not limited to this. That is, it is sufficient if it is made of an electrically insulating member, can form the electrolyte electrode laminate inside, and can hold the current collector plate directly or indirectly. For example, the shape may be a hollow cylinder (square cylinder) with a rectangular cross section, or a cylindrical shape with a polygonal cross section or an ellipse. That is, in the present application, the “cylindrical shape” is not limited to a circular shape.

[実施の形態1の変形例4]
実施の形態1では、図1に示すように、集電板は厚さ方向の一部が絶縁枠内にあり、一部は絶縁枠の外にあるが、これに限らない。例えば、図8に示すように集電板が絶縁枠72の中に入っている構造としてもよい。この場合、電池に横向きの力が加わった場合であっても脱落等を抑制できる点で好ましい。また、実施の形態1では、負極正極の両方の集電板を絶縁枠で保持することとしたが、これに限らない。当該構成は少なくとも一方の集電板について適用すればよい。したがって、例えば、一方の負極の電極層が負極の集電板を兼ねるような構成の固体電池の場合には、正極の側に本発明を適用すればよい。
[Modification 4 of Embodiment 1]
In the first embodiment, as shown in FIG. 1, a part of the current collector plate in the thickness direction is inside the insulating frame and a part is outside the insulating frame, but the present invention is not limited to this. For example, as shown in FIG. 8, a structure in which the current collector plate is contained in the insulating frame 72 may be adopted. In this case, it is preferable in that dropout can be suppressed even when a lateral force is applied to the battery. In the first embodiment, both current collector plates of the negative electrode and the positive electrode are held by the insulating frame. However, the present invention is not limited to this. The configuration may be applied to at least one of the current collector plates. Therefore, for example, in the case of a solid battery having a configuration in which the electrode layer of one negative electrode also serves as a negative electrode current collector, the present invention may be applied to the positive electrode side.

[実施の形態1の変形例5]
実施の形態1では、正極活物質としてLiCoO2、電解質材料として70Li2S−30P2S5、負極活物質として黒鉛、集電板としてステンレスをそれぞれ用いたが、これに限らない。集電板は、絶縁枠によって、直接的にまたは間接的に保持されることができる程度の強度のある、電気伝導性の物質であればよい。例えば、アルミニウム、ニッケル、銅などを用いてもよい。
[Modification 5 of Embodiment 1]
In Embodiment 1, LiCoO2 is used as the positive electrode active material, 70Li2S-30P2S5 is used as the electrolyte material, graphite is used as the negative electrode active material, and stainless steel is used as the current collector plate. However, the present invention is not limited thereto. The current collector plate may be an electrically conductive substance having a strength that can be directly or indirectly held by an insulating frame. For example, aluminum, nickel, copper, or the like may be used.

電極活物質および電解質材料は、固体リチウム二次電池を構成しうるものであれば足りる。正極活物質として、例えば、TiS2やLiNiO2などを使用することもできる。また、負極活物質として、例えば、Li金属、Li−Al合金、Li−In合金などを使用することができる。また、例えば、電解質材料として、Li3PO4−Li2S−SiS2系ガラス、Li2O、Li2SO4、Li2CO3を使用カルコゲナイト系リチウムイオン伝導体や、ハロゲン化リチウムを含んだもの、さらには他の酸化物系リチウムイオン伝導体など他の固体電解質を用いることができる。 The electrode active material and the electrolyte material are sufficient if they can constitute a solid lithium secondary battery. For example, TiS2 or LiNiO2 can be used as the positive electrode active material. Moreover, as a negative electrode active material, Li metal, a Li-Al alloy, a Li-In alloy etc. can be used, for example. Further, for example, Li3PO4-Li2S-SiS2 glass, Li2O, Li2SO4, Li2CO3 are used as electrolyte materials. Chalcogenite lithium ion conductors, lithium halide-containing materials, and other oxide lithium ion conductors Other solid electrolytes can be used.

また、電極活物質や電解質材料の粒径についても、実施の形態1のものに限定されるものではなく、生産性などの観点から適宜選択すればよい。 Further, the particle diameters of the electrode active material and the electrolyte material are not limited to those in the first embodiment, and may be appropriately selected from the viewpoint of productivity.

[実施の形態1の変形例6]
実施の形態1の製造方法では、集電板が100マイクロメートルずつ移動するように本プレスを行ったが、これに限らない。集電板を電極層の材料の弾性力で保持できる程度、電極層の材料が充填されるように、移動量を決定すればよい。なお、集電板を電極層の材料の弾性力で保持するという観点から、集電板の絶縁枠に対する移動距離は集電板の厚さの5分の1以上、かつ、集電板の厚さ以下、であることが好ましい。すなわち、集電板の絶縁枠に対する移動距離が、集電板の厚さの5分の1以上、かつ、集電板の厚さ以下、となるように、仮プレス圧および本プレス圧を決定すればよい。
[Modification 6 of Embodiment 1]
In the manufacturing method of the first embodiment, the current press is performed so that the current collector plate moves by 100 micrometers, but the present invention is not limited to this. The amount of movement may be determined so that the material of the electrode layer is filled to the extent that the current collector plate can be held by the elastic force of the material of the electrode layer. From the viewpoint of holding the current collector plate with the elastic force of the material of the electrode layer, the moving distance of the current collector plate with respect to the insulating frame is at least one fifth of the thickness of the current collector plate, Or less. That is, the temporary press pressure and the main press pressure are determined so that the moving distance of the current collector plate with respect to the insulating frame is not less than one fifth of the thickness of the current collector plate and not more than the thickness of the current collector plate. do it.

また、実施の形態1の製造方法では、仮プレスをすることとしたが、これには限らない。すなわち、本製造方法の特徴は、集電板に力を加えて、プレスを行うことによって、電極層を構成する材料が、絶縁枠と集電板の外周との間に充填されることであり、当該作用を達成できる製造方法であれば、足りる。すなわち、仮プレスは行わなくてもよい。なお、仮プレスをすることによって、電極層の材料が一応固定されるので、生産性の観点からは仮プレスを行うことが好ましい。 Moreover, in the manufacturing method of Embodiment 1, although temporary pressing was performed, it is not restricted to this. That is, the feature of this manufacturing method is that the material constituting the electrode layer is filled between the insulating frame and the outer periphery of the current collector plate by applying a force to the current collector plate and performing pressing. Any manufacturing method that can achieve this effect is sufficient. That is, the temporary pressing may not be performed. In addition, since the material of an electrode layer is temporarily fixed by performing a temporary press, it is preferable to perform a temporary press from a viewpoint of productivity.

10 固体リチウム二次電池
12、50、72 絶縁枠
14、16、60、62 集電板
20、52 電解質層
22、54 負極層
24、56 正極層
30 間隙
41 電池製造用のプレス装置
DESCRIPTION OF SYMBOLS 10 Solid lithium secondary battery 12, 50, 72 Insulation frame 14, 16, 60, 62 Current collecting plate 20, 52 Electrolyte layer 22, 54 Negative electrode layer 24, 56 Positive electrode layer 30 Gap 41 Press apparatus for battery manufacture

Claims (11)

電気絶縁性で筒状の絶縁枠と、前記絶縁枠の内部に形成された固体電解質層と、少なくとも前記固体電解質層の一方の面に積層され、前記絶縁枠の内部に形成される電極層と、前記電極層に積層され、前記絶縁枠によって保持されている集電部材と、を備える固体リチウム二次電池であって、
前記集電板は、少なくともその一部が前記絶縁枠内に固定されており、
前記集電板は、ステンレス、アルミニウム、ニッケルおよび銅からなる群から選択される少なくとも一つの金属で形成されていることを特徴とする固体リチウム二次電池
An electrically insulating and cylindrical insulating frame; a solid electrolyte layer formed inside the insulating frame; and an electrode layer formed on at least one surface of the solid electrolyte layer and formed inside the insulating frame; the laminated on the electrode layer, a solid lithium secondary battery and a current collecting member which is held by said insulating frame,
The current collector plate is at least partially fixed in the insulating frame,
The current collector plate is formed of at least one metal selected from the group consisting of stainless steel, aluminum, nickel, and copper, and is a solid lithium secondary battery .
前記電極層は、前記絶縁枠の内部において前記電解質層の一方に積層され、粉体を圧縮して形成される正極層と、前記絶縁枠の内部において前記電解質層の他方に積層され、粉体を圧縮して形成される負極層と、を含み、
前記集電部材は、前記正極層に積層され、前記絶縁枠によって保持される正極集電部材と、前記負極層に積層され、前記絶縁枠によって保持される負極集電部材と、を含む請求項1に記載の固体リチウム二次電池。
The electrode layer is laminated on one side of the electrolyte layer inside the insulating frame and is formed by compressing powder, and is laminated on the other side of the electrolyte layer inside the insulating frame. A negative electrode layer formed by compressing
The current collecting member includes: a positive electrode current collecting member laminated on the positive electrode layer and held by the insulating frame; and a negative electrode current collecting member laminated on the negative electrode layer and held by the insulating frame. 2. The solid lithium secondary battery according to 1.
前記集電板は、少なくともその一部が前記絶縁枠内になるように配置され、
前記絶縁枠と、前記集電部材の外周側面との間に、該集電部材に接する電極層の材料である粉体が充填されていることを特徴とする請求項1または2に記載の全固体リチウム電池。
The current collector plate is disposed so that at least a part thereof is within the insulating frame,
3. The powder according to claim 1, wherein a powder which is a material of an electrode layer in contact with the current collecting member is filled between the insulating frame and an outer peripheral side surface of the current collecting member. Solid lithium battery.
前記集電部材の外径は、前記絶縁枠の内径よりも200から1200マイクロメートルの範囲で小さいことを特徴とする、請求項3に記載の固体リチウム電池。 The solid lithium battery according to claim 3, wherein an outer diameter of the current collecting member is smaller than an inner diameter of the insulating frame in a range of 200 to 1200 micrometers. 電気絶縁性で筒状の絶縁枠と、前記絶縁枠の内部に形成された固体電解質層と、少なくとも前記固体電解質層の一方の面に積層され、電極層の材料である粉体をプレスすることで前記絶縁枠の内部に形成される電極層と、前記電極層に積層され、少なくとも一部が前記絶縁枠の内部に配置される集電部材と、を備える固体リチウム電池の製造方法であって、
前記集電部材に力を加えることで前記電極層の材料をプレスする工程であって、該プレスの際に、前記集電部材が、前記固体電解質層の方へ前記絶縁枠の内部を移動するようにプレスすることで、絶縁枠内に固定される、前記工程を含む、前記固体リチウム二次電池の製造方法。
An electrically insulating and cylindrical insulating frame, a solid electrolyte layer formed inside the insulating frame, and a powder that is laminated on at least one surface of the solid electrolyte layer and is a material for the electrode layer is pressed. A solid lithium battery manufacturing method comprising: an electrode layer formed inside the insulating frame; and a current collecting member stacked on the electrode layer and disposed at least partially inside the insulating frame. ,
A step of pressing the material of the electrode layer by applying a force to the current collecting member, wherein the current collecting member moves inside the insulating frame toward the solid electrolyte layer during the pressing. The manufacturing method of the said solid lithium secondary battery including the said process fixed in an insulating frame by pressing.
電気絶縁性で筒状の絶縁枠の中に、電極層の材料である粉体と、電解質層の材料である粉体と、を入れて仮プレスをし、電極層と電解質層の積層構造からなる電解質電極積層体を作成する工程と、
集電部材の少なくとも一部が前記絶縁枠内に配置されるように、前記電解質電極積層体に前記集電部材を積層する工程と、
前記集電部材が、前記固体電解質層の方へ前記絶縁枠の内部を移動するようにプレスすることで、絶縁枠内に固定され、かつ前記集電部材を積層した電解質電極積層体を本プレスする工程と、を含む固体リチウム二次電池の製造方法。
Put the powder, which is the material of the electrode layer, and the powder, which is the material of the electrolyte layer, into a cylindrical insulating frame that is electrically insulating, and perform temporary pressing, and from the laminated structure of the electrode layer and the electrolyte layer Forming an electrolyte electrode laminate,
Laminating the current collecting member on the electrolyte electrode laminate so that at least a part of the current collecting member is disposed in the insulating frame;
The current collecting member is pressed in such a manner that the current collecting member moves inside the insulating frame toward the solid electrolyte layer, thereby fixing the electrolyte electrode laminated body in which the current collecting member is laminated and the current collecting member is laminated. A process for producing a solid lithium secondary battery.
前記集電部材が前記絶縁枠に対して移動する距離は、前記集電材の厚さの5分の1以上、前記集電板の厚さ以下であることを特徴とする、請求項5または6に記載の製造方法。 The distance by which the current collecting member moves with respect to the insulating frame is not less than one fifth of the thickness of the current collecting material and not more than the thickness of the current collecting plate. The manufacturing method as described in. 電気絶縁性で筒状の絶縁枠と、
前記絶縁枠の内部に形成された固体電解質層と、
少なくとも前記固体電解質層の一方の面に積層され、電極層の材料である粉体をプレスすることで前記絶縁枠の内部に形成される電極層と、
前記電極層に積層され、少なくとも一部が前記絶縁枠の内部に配置される集電部材と、
を備える固体リチウム電池の製造方法であって、
前記集電部材に力を加えることで前記電極層の材料をプレスする工程であって、該プレスの際に、前記電極の材料である粉体の層が塑性変形をすることで、該電極層の材料が前記集電部材の外周と前記絶縁枠との間に入り込むようにプレスする、前記工程を含む固体リチウム二次電池の製造方法。
An electrically insulating and cylindrical insulating frame;
A solid electrolyte layer formed inside the insulating frame;
An electrode layer that is laminated on at least one surface of the solid electrolyte layer and formed inside the insulating frame by pressing powder that is a material of the electrode layer; and
A current collecting member laminated on the electrode layer, at least a part of which is disposed inside the insulating frame;
A method for producing a solid lithium battery comprising:
A step of pressing the material of the electrode layer by applying a force to the current collecting member, and the electrode layer is formed by plastically deforming a layer of the powder as the material of the electrode during the pressing. A method for producing a solid lithium secondary battery including the above step, wherein the material is pressed so as to enter between the outer periphery of the current collecting member and the insulating frame.
電気絶縁性で筒状の絶縁枠の中に、電極層の材料である粉体と、電解質層の材料である粉体と、を入れて仮プレスをし、電極層と電解質層の積層構造からなる電解質電極積層体を作成する工程と、
集電部材の少なくとも一部が前記絶縁枠内に配置されるように、前記電解質電極積層体に前記集電部材を積層する工程と、
前記電極層が塑性変形をすることで、該電極層の材料が前記集電部材の外周と前記絶縁枠との間に入り込むように、前記集電部材を積層した電解質電極積層体を本プレスする工程と、
を含む固体リチウム二次電池の製造方法。
Put the powder, which is the material of the electrode layer, and the powder, which is the material of the electrolyte layer, into a cylindrical insulating frame that is electrically insulating, and perform temporary pressing, and from the laminated structure of the electrode layer and the electrolyte layer Forming an electrolyte electrode laminate,
Laminating the current collecting member on the electrolyte electrode laminate so that at least a part of the current collecting member is disposed in the insulating frame;
The electrode layer is plastically deformed so that the material of the electrode layer enters between the outer periphery of the current collecting member and the insulating frame, and this press is performed on the electrolyte electrode laminated body in which the current collecting members are laminated. Process,
Of manufacturing a solid lithium secondary battery.
前記電極層は、前記絶縁枠の内部において前記電解質層の一方に形成される正極層と、前記絶縁枠の内部において前記電解質層の他方に形成される負極層と、を含み、
前記集電部材は、前記正極層に積層され、前記絶縁枠によって保持される正極集電部材と、前記負極層に積層され、前記絶縁枠によって保持される負極集電部材と、を含む、請求項5〜9のいずれか1項に記載の固体リチウム二次電池の製造方法。
The electrode layer includes a positive electrode layer formed on one of the electrolyte layers inside the insulating frame, and a negative electrode layer formed on the other of the electrolyte layers inside the insulating frame,
The current collecting member includes a positive electrode current collecting member laminated on the positive electrode layer and held by the insulating frame, and a negative electrode current collecting member laminated on the negative electrode layer and held by the insulating frame. Item 10. The method for producing a solid lithium secondary battery according to any one of Items 5 to 9.
前記集電部材の外径は、前記絶縁枠の内径よりも200から1200マイクロメートルの範囲で小さいことを特徴とする、請求項5〜10のいずれか1項に記載の製造方法。 The manufacturing method according to claim 5, wherein an outer diameter of the current collecting member is smaller than an inner diameter of the insulating frame in a range of 200 to 1200 micrometers.
JP2011070338A 2008-04-24 2011-03-28 Solid lithium secondary battery and manufacturing method thereof Active JP5218586B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008114360A JP2009266589A (en) 2008-04-24 2008-04-24 Solid lithium secondary battery and method of manufacturing the same
US12/385,851 US20090269670A1 (en) 2008-04-24 2009-04-22 Solid lithium secondary cell, and production method therefor
CN200910139219.9A CN101567465B (en) 2008-04-24 2009-04-23 Solid lithium secondary cell, and production method therefor
JP2011070338A JP5218586B2 (en) 2008-04-24 2011-03-28 Solid lithium secondary battery and manufacturing method thereof
US13/657,180 US8652673B2 (en) 2008-04-24 2012-10-22 Solid lithium secondary cell, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008114360A JP2009266589A (en) 2008-04-24 2008-04-24 Solid lithium secondary battery and method of manufacturing the same
JP2011070338A JP5218586B2 (en) 2008-04-24 2011-03-28 Solid lithium secondary battery and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008114360A Division JP2009266589A (en) 2008-04-24 2008-04-24 Solid lithium secondary battery and method of manufacturing the same

Publications (3)

Publication Number Publication Date
JP2011159635A true JP2011159635A (en) 2011-08-18
JP2011159635A5 JP2011159635A5 (en) 2012-12-06
JP5218586B2 JP5218586B2 (en) 2013-06-26

Family

ID=51494667

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008114360A Pending JP2009266589A (en) 2008-04-24 2008-04-24 Solid lithium secondary battery and method of manufacturing the same
JP2011070338A Active JP5218586B2 (en) 2008-04-24 2011-03-28 Solid lithium secondary battery and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008114360A Pending JP2009266589A (en) 2008-04-24 2008-04-24 Solid lithium secondary battery and method of manufacturing the same

Country Status (3)

Country Link
US (2) US20090269670A1 (en)
JP (2) JP2009266589A (en)
CN (1) CN101567465B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116983A1 (en) * 2016-12-22 2018-06-28 日立造船株式会社 Method and apparatus for producing all-solid-state battery
JP2019040821A (en) * 2017-08-28 2019-03-14 日産自動車株式会社 Method and apparatus for manufacturing electrode
DE112022001408T5 (en) 2021-03-10 2024-01-11 Tdk Corporation SOLID STATE BATTERY

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402853B2 (en) * 2010-06-29 2014-01-29 トヨタ自動車株式会社 Method for producing power generation element of solid battery
KR20130108244A (en) * 2010-08-26 2013-10-02 스미토모덴키고교가부시키가이샤 Nonaqueous electrolyte battery and method for manufacturing same
TWI446381B (en) * 2011-04-28 2014-07-21 Ultracap Technologies Corp Assembly structure and manufacturing method of super capacitor
JP5177315B2 (en) 2011-08-11 2013-04-03 トヨタ自動車株式会社 Sulfide-based solid battery
EP4224500A1 (en) * 2013-03-14 2023-08-09 Tesla, Inc. Electrode graphite film and electrode divider ring for an energy storage device
US10090566B2 (en) * 2013-08-27 2018-10-02 Robert Bosch Gmbh Solid state battery with offset geometry
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2016012495A (en) * 2014-06-30 2016-01-21 トヨタ自動車株式会社 Lithium solid type secondary battery, and method for manufacturing the same
JP6248888B2 (en) * 2014-10-14 2017-12-20 トヨタ自動車株式会社 All solid battery
JP6180063B2 (en) * 2015-03-19 2017-08-16 日本碍子株式会社 Battery and its assembly method
CN106784492A (en) * 2017-01-23 2017-05-31 华霆(合肥)动力技术有限公司 A kind of laminated type safeguard structure and battery modules
CN111477972A (en) * 2020-03-13 2020-07-31 苏州宇量电池有限公司 Pile type lithium ion battery and lithium ion battery pack
CN112133955B (en) * 2020-09-28 2021-12-07 蜂巢能源科技有限公司 Cell structure of solid-state battery and preparation method thereof
KR20220048096A (en) * 2020-10-12 2022-04-19 현대자동차주식회사 An apparatus for producing all solid state battery comprising reference electrode and producing method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513102A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of fully solid electrochemical element
JPH0935724A (en) * 1995-07-17 1997-02-07 Matsushita Electric Ind Co Ltd Whole solid lithium battery
JP2001155763A (en) * 1999-11-26 2001-06-08 Kyocera Corp Solid electroltic cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079811B2 (en) * 1987-09-09 1995-02-01 シャープ株式会社 Battery manufacturing method
JP2612002B2 (en) 1987-09-09 1997-05-21 シャープ株式会社 Battery
JPH1197072A (en) 1997-07-23 1999-04-09 Sanyo Electric Co Ltd Sealed nonaqueous electrlyte battery using laminate facing body
JP4147442B2 (en) * 1999-09-30 2008-09-10 ソニー株式会社 Non-aqueous electrolyte type secondary battery
JP3730164B2 (en) 2001-12-04 2005-12-21 松下電器産業株式会社 All-solid-state battery and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513102A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of fully solid electrochemical element
JPH0935724A (en) * 1995-07-17 1997-02-07 Matsushita Electric Ind Co Ltd Whole solid lithium battery
JP2001155763A (en) * 1999-11-26 2001-06-08 Kyocera Corp Solid electroltic cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116983A1 (en) * 2016-12-22 2018-06-28 日立造船株式会社 Method and apparatus for producing all-solid-state battery
JPWO2018116983A1 (en) * 2016-12-22 2019-10-24 日立造船株式会社 Manufacturing method and manufacturing apparatus for all solid state battery
US11302958B2 (en) 2016-12-22 2022-04-12 Hitachi Zosen Corporation Method and apparatus for producing all-solid-state battery
JP2019040821A (en) * 2017-08-28 2019-03-14 日産自動車株式会社 Method and apparatus for manufacturing electrode
DE112022001408T5 (en) 2021-03-10 2024-01-11 Tdk Corporation SOLID STATE BATTERY

Also Published As

Publication number Publication date
JP2009266589A (en) 2009-11-12
CN101567465A (en) 2009-10-28
US20090269670A1 (en) 2009-10-29
US8652673B2 (en) 2014-02-18
US20130065123A1 (en) 2013-03-14
CN101567465B (en) 2015-06-17
JP5218586B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
JP5720779B2 (en) Bipolar all-solid battery
KR100686804B1 (en) Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same
KR100624971B1 (en) Electrode Plate of Secondary Battery and Method of fabricating the same
US9853274B2 (en) Solid battery
CN110249467B (en) All-solid-state battery and method for manufacturing same
JP6066574B2 (en) Manufacturing method of all-solid-state secondary battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
EP3654438B1 (en) Coin-shaped battery and method for producing same
JP5321196B2 (en) Manufacturing method of all-solid lithium secondary battery
CN110226255B (en) All-solid-state battery and method for manufacturing same
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
KR102508381B1 (en) All-solid-state secondary battery and its manufacturing method
CN111799440B (en) Nonaqueous electrolyte secondary battery
JP2011124084A (en) All-solid-state battery
JP2012238583A (en) Energy storage apparatus and method for manufacturing the same
JP2009193728A (en) All-solid battery and its manufacturing method
JP2011096550A (en) Solid battery, and manufacturing method of solid battery
JP5327020B2 (en) All solid battery
JP2020095852A (en) All-solid battery
US20220093907A1 (en) Secondary battery
JP2014086213A (en) Method of manufacturing all-solid-state battery
CN106784643B (en) Lithium ion secondary battery
JP4436485B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
TWI360250B (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3