JP5414060B2 - MOS transistor circuit with level converter circuit - Google Patents

MOS transistor circuit with level converter circuit Download PDF

Info

Publication number
JP5414060B2
JP5414060B2 JP2010067481A JP2010067481A JP5414060B2 JP 5414060 B2 JP5414060 B2 JP 5414060B2 JP 2010067481 A JP2010067481 A JP 2010067481A JP 2010067481 A JP2010067481 A JP 2010067481A JP 5414060 B2 JP5414060 B2 JP 5414060B2
Authority
JP
Japan
Prior art keywords
potential
power supply
circuit
low
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010067481A
Other languages
Japanese (ja)
Other versions
JP2011199814A (en
Inventor
敏弘 関川
雅和 日置
帆平 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010067481A priority Critical patent/JP5414060B2/en
Publication of JP2011199814A publication Critical patent/JP2011199814A/en
Application granted granted Critical
Publication of JP5414060B2 publication Critical patent/JP5414060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Logic Circuits (AREA)

Description

本発明は絶縁ゲート電界効果トランジスタを用いたレベルコンバータ回路の改良技術に関する。特に、CMOS回路において低電源電圧回路からの低論理信号振幅が高電源電圧回路の論理しきい値電圧より小さい場合に低論理信号振幅の信号を高電源電圧回路の高論理信号振幅の信号に変換可能な静的動作のレベルコンバータ(Level Converter、 LC)回路に関する。なお、静的動作とは、MOSトランジスタを用いた論理回路が、時間的に変化しない入力論理信号が入力ノードに印加されたとき、その出力ノードにはやはり時間的に変化しない論理信号であって、その論理回路の論理作用を入力論理信号に施した結果の論理信号が出力される動作を言う。   The present invention relates to an improved technique of a level converter circuit using an insulated gate field effect transistor. In particular, in a CMOS circuit, when the low logic signal amplitude from the low power supply voltage circuit is smaller than the logic threshold voltage of the high power supply voltage circuit, the low logic signal amplitude signal is converted to the high logic signal amplitude signal of the high power supply voltage circuit. It relates to a level converter (LC) circuit capable of static operation. The static operation is a logic signal that does not change in time at the output node when an input logic signal that does not change in time is applied to the input node in a logic circuit using MOS transistors. , An operation of outputting a logic signal as a result of applying the logic action of the logic circuit to the input logic signal.

まず、本願明細書で使用する用語、記号の定義をする。図3はCMOSインバータの回路図とそれを表す記号を示している。
図3のMPはP形の絶縁ゲート電界効果トランジスタ(PMOST)であり、
MNはN形の絶縁ゲート電界効果トランジスタ(NMOST)である。
INはその入力ノード、
OUTはその出力ノードを示す。
VDDは高電位側電源線の電位であり、
VSSは低電位側電源線の電位である。
VDD−VSSを電源電圧と称する。
なお、VSS<VDDである。また電源線については、その電位を表す記号と同じ記号で示す。例えば、電源線VDDと述べるときは、電位がVDDである電源線を表す。
さらに、VDDとVSSとの差、すなわち電源電圧の値が大きい回路を高電源電圧回路、小さい場合を低電源電圧回路と称する。
First, terms and symbols used in this specification are defined. FIG. 3 shows a circuit diagram of a CMOS inverter and a symbol representing it.
MP in FIG. 3 is a P-type insulated gate field effect transistor (PMOST),
MN is an N-type insulated gate field effect transistor (NMOST).
IN is the input node,
OUT indicates the output node.
VDD is the potential of the high potential side power line,
VSS is a potential of the low potential side power supply line.
VDD-VSS is referred to as a power supply voltage.
Note that VSS <VDD. The power supply line is indicated by the same symbol as the symbol indicating the potential. For example, the power supply line VDD represents a power supply line whose potential is VDD.
Further, a circuit having a large difference between VDD and VSS, that is, a power supply voltage value is called a high power supply voltage circuit, and a circuit having a small power supply voltage value is called a low power supply voltage circuit.

図4は、図3に示すような、一般的なCMOSインバータの入出力特性曲線(非特許文献1参照)を模式的に示している。図4の横軸は入力電圧VIN(ノードINに印加される電圧)、縦軸は出力電圧VOUT(出力ノードOUTで観測される電圧)である。
遷移領域(TR)とは出力電圧がVDDからVSSに、あるいはこの逆の場合に変化する途中の段階にある入力電圧範囲を言い、通常次のように定義される。すなわち、この入出力特性曲線には接線(直線で表示)の傾きが−1となる入力電圧値が通常2カ所あるが、この入力電圧値のうち、入力電圧値の低い方を遷移領域下限(TRL)とし、入力電圧の高い方を遷移領域上限(TRH)とし、これらの電圧で挟まれた入力電圧範囲を遷移領域(TR)とする。
FIG. 4 schematically shows an input / output characteristic curve (see Non-Patent Document 1) of a general CMOS inverter as shown in FIG. The horizontal axis in FIG. 4 is the input voltage VIN (voltage applied to the node IN), and the vertical axis is the output voltage VOUT (voltage observed at the output node OUT).
The transition region (TR) is an input voltage range that is in the middle of changing when the output voltage changes from VDD to VSS or vice versa, and is usually defined as follows. That is, this input / output characteristic curve usually has two input voltage values at which the slope of the tangent (represented by a straight line) is −1. Of these input voltage values, the lower one of the input voltage values is designated as the transition region lower limit ( TRL), the higher input voltage is the transition region upper limit (TRH), and the input voltage range sandwiched between these voltages is the transition region (TR).

また、出力電圧が(VDD+VSS)/2に等しくなる入力電圧をそのインバータの論理しきい値電圧(VTL)と称する。VTLはTR内に位置する。VTLはVDDとVSSの平均値であることが望ましい。
さらに、VDDとVSSの差を論理振幅(LS)と言う。一般に、CMOSインバータが確実に動作するためにはこの遷移領域を渡りきるように入力電圧を変化させねばならない。なお、横軸の入力電圧VINのVDDは、出力電圧VDDと同じ電圧値を表す。
An input voltage whose output voltage is equal to (VDD + VSS) / 2 is referred to as a logical threshold voltage (VTL) of the inverter. VTL is located in TR. VTL is preferably an average value of VDD and VSS.
Further, the difference between VDD and VSS is referred to as a logic amplitude (LS). In general, in order for the CMOS inverter to operate reliably, the input voltage must be changed so as to cross this transition region. Note that VDD of the input voltage VIN on the horizontal axis represents the same voltage value as the output voltage VDD.

さて、絶縁ゲート電界効果トランジスタ(MOST)を用いた論理集積回路では動作速度を損なうことなく消費電力の低減化を図ることが望まれる。
そのための方法の一つとして、動作速度が遅くてよい部分回路の電源電圧を、他の高速動作しなければならない部分の電源電圧より小さくすることがある。この場合、電源電圧の小さい低電源電圧回路からの低論理信号振幅の論理信号で、高論理信号振幅の信号で動作している電源電圧の大きい高電源電圧回路を論理的に誤ることなく駆動しなければならない。
In a logic integrated circuit using an insulated gate field effect transistor (MOST), it is desired to reduce power consumption without deteriorating the operation speed.
As one of the methods for that purpose, the power supply voltage of the partial circuit whose operation speed may be slow may be made smaller than the power supply voltage of the other part that must operate at high speed. In this case, a logic signal with a low logic signal amplitude from a low power supply voltage circuit with a small power supply voltage is used to drive a high power supply voltage circuit with a large power supply voltage operating with a signal with a high logic signal amplitude without logical error. There must be.

しかし、図5はそれぞれ低電位側電源電圧をGNDと共通にした従来回路において、低電源電圧で動作するCMOSインバータを高電源電圧で動作するCMOSインバータに直接接続した回路図であるが、例えばこの図5のように、共に共通の低電位側電源線GND(接地、電位は0V)に接続され、低電源電圧(VDDL)で動作しているCMOSインバータ(LPS_INVERTER)の出力を高電源電圧(VDDH)で動作しているCMOSインバータ(HPS_INVERTER)の入力に直接接続すると具合の悪いことが起る。ここで、0<VDDL<VDDHである。なお、低電源電圧で動作している論理回路からの出力信号は、一般にはゲート回路とかインバータ以外の論理回路からの論理信号もあり得るが、通常バッファ回路としてインバータを用いることが多いのでCMOSインバータからの出力信号で説明する。   However, FIG. 5 is a circuit diagram in which a CMOS inverter that operates at a low power supply voltage is directly connected to a CMOS inverter that operates at a high power supply voltage in a conventional circuit in which the low-potential side power supply voltage is shared with GND. As shown in FIG. 5, the output of the CMOS inverter (LPS_INVERTER) connected to the common low-potential side power supply line GND (ground, potential is 0 V) and operating at the low power supply voltage (VDDL) is connected to the high power supply voltage (VDDH). If it is directly connected to the input of the CMOS inverter (HPS_INVERTER) that is operating at Here, 0 <VDDL <VDDH. An output signal from a logic circuit operating at a low power supply voltage can be a logic signal from a logic circuit other than a gate circuit or an inverter in general. However, since an inverter is usually used as a buffer circuit, a CMOS inverter The output signal from will be described.

さて、図5のHPS_INVERTERの入出力特性を模式図で示したものが図6である。図6は前記図4の特性に対応する。
原点は、GND(この記号が電位を示す場合は0Vを意味する)とする。入力電圧VINを0Vから増加していくとき、入力電圧VINがHPS_INVERTERの論理しきい値電圧(VTLH)を越えると、出力電圧は論理信号のハイレベル(VDDH)からローレベル(GND=0V)に遷移する。
逆に、入力電圧VINをハイレベルから減少していくときは、入力電圧VINがHPS_INVERTERの論理しきい値電圧VTLHより小さくなると、出力電圧は論理信号のローレベルからハイレベルへ遷移する。
FIG. 6 is a schematic diagram showing the input / output characteristics of HPS_INVERTER in FIG. FIG. 6 corresponds to the characteristics of FIG.
The origin is GND (when this symbol indicates a potential, it means 0V). When the input voltage VIN is increased from 0V, when the input voltage VIN exceeds the logical threshold voltage (VTLH) of HPS_INVERTER, the output voltage is changed from the high level (VDDH) to the low level (GND = 0V) of the logical signal. Transition.
Conversely, when the input voltage VIN is decreased from the high level, when the input voltage VIN becomes lower than the logical threshold voltage VTLH of HPS_INVERTER, the output voltage transitions from the low level of the logic signal to the high level.

LSH(高電源電圧回路側の論理振幅)は、HPS_INVERTERの論理信号振幅であり、TRHはHPS_INVERTERの遷移領域を示している。TRHの下限値はTRHL、上限値はTRHHで示した。TRHの幅、すなわちTRHHとTRHLの差はインバータに用いるNMOST(MN)のしきい値電圧VthnとPMOST(MP)のしきい値電圧Vthp(<0)やそれぞれの電流駆動力(具体的には絶対値の等しいゲート電圧と絶対値の等しいドレイン電圧を印加した時のそれぞれのドレイン電流の絶対値の大きさで評価され、この値が大きいものほど電流駆動力が大きいとする)の大きさに依存する。また、TRHの幅は、Vthnと|Vthp|が共に大きいとき、小さくなる傾向になる。   LSH (logic amplitude on the high power supply voltage circuit side) is a logic signal amplitude of HPS_INVERTER, and TRH indicates a transition region of HPS_INVERTER. The lower limit value of TRH is indicated by TRHL, and the upper limit value is indicated by TRHH. The width of TRH, that is, the difference between TRHH and TRHL, is the threshold voltage Vthn of NMOST (MN) and the threshold voltage Vthp (<0) of PMOST (MP) used for the inverter, and the respective current driving forces (specifically, It is evaluated by the magnitude of the absolute value of each drain current when a gate voltage having the same absolute value and a drain voltage having the same absolute value are applied, and the larger the value, the greater the current driving force). Dependent. Also, the width of TRH tends to decrease when both Vthn and | Vthp |

なお、図6にはLPS_INVERTERの入出力特性曲線も図示している。その特性曲線は、入力電位がVDDLからGNDに変化するとき、出力ノードN1、すなわちHPS_INVERTERの入力ノードで見られる電位変化を模式的に示している。VTLLはLPS_INVERTERの論理しきい値電圧を示す。
なお、図6の横軸の入力電圧VINのVTLL、VDDLおよびVDDHは、出力電圧VTLL、VDDLおよびVDDHと同じ電圧値を表す。
一般にインバータの確実な動作のためには入力電圧をTRHの下限値TRHLより低くするか、上限値TRHHより高くすることが必要である。
FIG. 6 also shows an input / output characteristic curve of LPS_INVERTER. The characteristic curve schematically shows the potential change seen at the output node N1, that is, the input node of HPS_INVERTER, when the input potential changes from VDDL to GND. VTLL indicates the logical threshold voltage of LPS_INVERTER.
Note that VTLL, VDDL, and VDDH of the input voltage VIN on the horizontal axis in FIG. 6 represent the same voltage values as the output voltages VTLL, VDDL, and VDDH.
Generally, for reliable operation of the inverter, it is necessary to make the input voltage lower than the lower limit value TRHL of TRH or higher than the upper limit value TRHH.

しかし、図6の場合、HPS_INVERTERの入力はノードN1の電位であり、そのハイレベルの値は低論理信号振幅のLPS_INVERTERの出力のハイレベル、VDDLであるので、もしVDDL(この場合は低論理信号振幅、LSLに等しい)がTRHLより小さいと図6に示されたように当然ながらTRHを越えることができず、HPS_INVERTERの出力はローレベルに反転しない。すなわち、VDDLがVDDHより著しく小さい場合は、図5の回路では正しく動作しない場合がある。   However, in the case of FIG. 6, the input of HPS_INVERTER is the potential of the node N1, and the high level value is the high level of the output of LPS_INVERTER with the low logic signal amplitude, VDDL. If the amplitude (equal to LSL) is smaller than TRHL, it is natural that TRH cannot be exceeded as shown in FIG. 6, and the output of HPS_INVERTER is not inverted to low level. That is, when VDDL is significantly smaller than VDDH, the circuit of FIG. 5 may not operate correctly.

そこで、この間の信号レベル変換を行う回路として、図7に示されるレベルコンバータ(LC)回路がLPS_INVERTERとHPS_INVERTERとの間に必要とされる。
図7は、LPS_INVERTERとHPS_INVERTERの間にレベルコンバータ(LC)回路を介在させた回路構成図である。
すなわち、LC回路は入力ノードには低い論理信号振幅の信号が印加されるが出力ノードには高い論理信号振幅の論理信号が出力される回路である。もちろん必要な動作速度を満足すること、消費電力が少ないこと、用いる素子数が少ないことなどが要求される。
Therefore, a level converter (LC) circuit shown in FIG. 7 is required between LPS_INVERTER and HPS_INVERTER as a circuit for performing signal level conversion during this period.
FIG. 7 is a circuit configuration diagram in which a level converter (LC) circuit is interposed between LPS_INVERTER and HPS_INVERTER.
That is, the LC circuit is a circuit in which a signal having a low logic signal amplitude is applied to the input node, but a logic signal having a high logic signal amplitude is output to the output node. Of course, it is required to satisfy a required operating speed, to consume less power, and to use a smaller number of elements.

従来のLC回路は、例えば、下記非特許文献2に示されていて、図8に示す回路構成を有する。
図8において、MP1およびMP2はPMOSTであり、MN1およびMN2はNMOSTである。QおよびQBは出力ノードであり、互いに相補であって、定常状態においてどちらか一方が確実に高電源電圧回路のハイレベル、すなわちVDDHとなるように、MP1およびMP2とで正帰還回路が構成されている。また、これによって定常的な電流を極めて少なくなるようにしてある。また、灰色(△記号内が白地ではない意味)のインバータ記号は低電源電圧回路で用いられるインバータ(LPS_INVERTER)であり、その出力のハイレベルはVDDLである。また、このLC回路の入力、ノードLC_INのハイレベルはVDDLで、ローレベルはGND(0V)である。すなわち、低電源電圧回路の論理レベルで駆動され、したがって、MN1とMN2およびLPS_INVERTERも同じ論理レベルで駆動される。
A conventional LC circuit is shown, for example, in Non-Patent Document 2 below, and has a circuit configuration shown in FIG.
In FIG. 8, MP1 and MP2 are PMOSTs, and MN1 and MN2 are NMOSTs. Q and QB are output nodes, which are complementary to each other, and in a steady state, a positive feedback circuit is configured with MP1 and MP2 to ensure that one of them is at the high level of the high power supply voltage circuit, that is, VDDH. ing. This also makes it possible to reduce the steady current very much. An inverter symbol in gray (meaning that the Δ symbol is not white) is an inverter (LPS_INVERTER) used in the low power supply voltage circuit, and the output high level is VDDL. The high level of the input of the LC circuit, the node LC_IN, is VDDL, and the low level is GND (0 V). That is, it is driven at the logic level of the low power supply voltage circuit, and therefore MN1 and MN2 and LPS_INVERTER are also driven at the same logic level.

上記従来のLCはVDDLがMN1のしきい値電圧以下のとき動作に支障があることが下記参考文献3などで指摘されている。
すなわち、定常状態において、LC_INがローレベル(0V)で、ノードQがローレベル、ノードQBがハイレベルであったとする時、LC_INをハイレベル(VDDL)としてQをローレベルからハイレベルに遷移させようとする場合に、MN1はサブしきい値で動作するのに対し、MP1はゲートの電位はQの電位で0Vであって、スーパーしきい値で動作しているため、MN1の電流駆動力よりもMP1の電流駆動力の方が桁違いに大きくノードQBの電位をMP2が導通するようになるまで下げられない。そのためQはハイレベルのままでLCの目的を達成できないことである。
It has been pointed out in the following Reference 3 etc. that the conventional LC has a problem in operation when VDDL is equal to or lower than the threshold voltage of MN1.
That is, in a steady state, when LC_IN is at a low level (0 V), the node Q is at a low level, and the node QB is at a high level, LC_IN is set to a high level (VDDL) and Q is changed from a low level to a high level. In this case, MN1 operates at the subthreshold, whereas MP1 operates at the superthreshold because the gate potential is 0V at the Q potential, so that the current driving capability of MN1. The current driving power of MP1 is much larger than that of MP1, and the potential of node QB cannot be lowered until MP2 becomes conductive. Therefore, Q remains at a high level and the LC purpose cannot be achieved.

上記の欠点を改良した図9に示すLC回路が参考文献3で提案されている。
図8との違いは、
(1)PMOSTのMP1とNMOSTのMN1との間にPMOSTのMP3によるMOSダイオードが挿入されており、同様に、PMOSTのMP2とNMOSTのMN2との間にPMOSTのMP4によるMOSダイオードが挿入されていること、
(2)出力ノードQはMP2とMP4との接続点に設けられ、その相補出力ノードQBはMP1とMP3との接続点に設けられていること、
(3)MP1のゲートはMP4とMN2との接続点であるノードN3に接続され、MP2のゲートはMP3とMN1との接続点であるノードN2に接続されていること、
(4)出力ノードQBはNMOSTのMN3を通してGNDに接続され、そのゲートはLC_INに接続されており、同様に出力ノードQはNMOSTのMN4を通してGNDに接続され、そのゲートはLC_INの反転LC_INB(LPS_INVERTERの出力)に接続されていることである。
An LC circuit shown in FIG. 9 in which the above drawbacks are improved is proposed in Reference 3.
The difference from FIG.
(1) A MOS diode formed by MP3 of PMOST is inserted between MP1 of PMOST and MN1 of NMOST. Similarly, a MOS diode formed by MP4 of PMOST is inserted between MP2 of PMOST and MN2 of NMOST. Being
(2) The output node Q is provided at the connection point between MP2 and MP4, and its complementary output node QB is provided at the connection point between MP1 and MP3.
(3) The gate of MP1 is connected to node N3, which is the connection point between MP4 and MN2, and the gate of MP2 is connected to node N2, which is the connection point between MP3 and MN1,
(4) Output node QB is connected to GND through MN3 of NMOST, and its gate is connected to LC_IN. Similarly, output node Q is connected to GND through MN4 of NMOST, and its gate is inverted LC_INB (LPS_INVERTER of LC_IN). Output).

MOSダイオードMP3およびMP4の働きはそれぞれMP1およびMP2の電流駆動力を弱めることであり、それによってサブしきい値で動作するMN1またはMN2によってもノードN2またはN3の電位を、MP2またはMP1が導通する状態まで低下できることにこのLC回路の特徴がある。MN3およびMN4の働きは、定常状態においてMP3またはMP4からなるダイオードによる電圧降下分だけGNDレベル(0V)よりQBまたはQのローレベルが上昇し、次段に悪影響を及ぼすことを避けるためMN3またはMN4で放電し確実にGNDレベルとすることである。   The functions of the MOS diodes MP3 and MP4 are to weaken the current driving power of the MP1 and MP2, respectively, so that the potential of the node N2 or N3 is also conducted by the MN1 or MN2 operating at the subthreshold. This LC circuit is characterized in that it can be reduced to a state. The functions of MN3 and MN4 are to prevent the low level of QB or Q from rising from the GND level (0V) by the voltage drop due to the diode consisting of MP3 or MP4 in the steady state, and to avoid adversely affecting the next stage. It is to discharge to the GND level surely.

しかし、定常状態においてQがローレベル、QBがハイレベルのとき、LC_INにハイレベル(VDDL)を入力して状態を反転しようとすると、確かにMP2は導通状態となり、Qはハイレベル(VDDH)へと上昇を開始し、やがてMP2は非導通状態になるものの、QBの電位はサブしきい値で動作するMN1とMN3で放電されるからQがハイレベルになる時間よりもQBがローレベルになる時間の方が長くなるのが欠点である。
上記各従来例のLC回路は用いるトランジスタ数が多いことも欠点でもある。第8図では、6個(LC_INBを生成するためのLPS_INVERTERも必要なため)、第9図(LC_INBを生成するためのLPS_INVERTERも必要なため)では10個である。そのため、回路の性能をきめ細かに設計するために、局所的に論理レベルを変化させたい小さな部分回路に用いるのは素子面積の増加が顕著になり不利である。
However, when Q is at a low level and QB is at a high level in a steady state, if a high level (VDDL) is input to LC_IN to invert the state, MP2 is surely turned on and Q is at a high level (VDDH). However, MPB becomes non-conductive eventually, but the potential of QB is discharged by MN1 and MN3 operating at the subthreshold, so that QB becomes low level than the time when Q becomes high level. It is a disadvantage that the time is longer.
Each of the conventional LC circuits has a drawback that a large number of transistors are used. In FIG. 8, there are 6 (because LPS_INVERTER for generating LC_INB is also necessary), and 10 in FIG. 9 (since LPS_INVERTER for generating LC_INB is also necessary). For this reason, in order to finely design the performance of the circuit, it is disadvantageous to use it for a small partial circuit whose logic level is to be locally changed because the increase in the element area becomes remarkable.

特許第3543117号公報Japanese Patent No. 3543117 米国特許第7061055号公報U.S. Pat. No. 7,610,555

「Modern VLSI Design(A Systems Approach)」、著者Wayne (Hendrix) Wolf、PTR Prentice Hall Englewood Cliffs,New Jersey 07632発行、P.101、fig3-15参照`` Modern VLSI Design (A Systems Approach) '', author Wayne (Hendrix) Wolf, PTR Prentice Hall Englewood Cliffs, New Jersey 07632, see pages 101 and fig 3-15 K. Usami and M. Horowitz:”Clustered Voltage Scaling Technique for Low-Power Design”, Proc. of the 1995 International symposium on Low Power Design, pp.3-7.K. Usami and M. Horowitz: “Clustered Voltage Scaling Technique for Low-Power Design”, Proc. Of the 1995 International symposium on Low Power Design, pp.3-7. H. Shao and C-Y. Tsui:”A Robust Voltage Adaptive and Low Energy Consumption Level Converter for Sub-threshold Logic”, ESSCIRC’07 pp.312-315.H. Shao and C-Y. Tsui: “A Robust Voltage Adaptive and Low Energy Consumption Level Converter for Sub-threshold Logic”, ESSCIRC’07 pp.312-315.

本発明の目的は、上記動作上の欠点を除去し、また、用いるトランジスタ数が少ない静的動作のレベルコンバータ回路を備えたMOSトランジスタ回路を提供することにある。   An object of the present invention is to provide a MOS transistor circuit having a static operation level converter circuit that eliminates the above-mentioned operational disadvantages and uses a small number of transistors.

本発明では上記目的を達成するため以下の発明特定事項からなる構成を採用する。
構成1:レベルコンバータ回路を備えたMOSトランジスタ回路は、高電源電圧回路の高電位側電源線と低電位側電源線に接続されてレベルコンバータ回路として動作する第一のCMOSインバータと、入力ノードに低電源電圧回路の論理振幅の第一の論理信号が供給され、出力ノードが第一のCMOSインバータの入力ノードに接続され、低電源電圧回路の高電位側電源線と低電位側電源線に接続されて動作する第二のCMOCインバータと、入力ノードが第一のCMOSインバータの出力ノードに接続され、高電源電圧回路の高電位側電源線と低電位側電源線に接続されて動作し、出力ノードに高電源電圧回路の論理振幅の第二の論理信号を出力する第三のCMOCインバータとを備え、低電源電圧回路の高電位側電源線の電位と低電位側電源線の電位とが、高電源電圧回路の高電位側電源線の電位と低電位側電源線の電位との間に挟まれ、かつ、第二のCMOSインバータの出力論理信号の電圧変化範囲内に第一のCMOSインバータの遷移領域が含まれるように高電源電圧回路の高電位側電源線の電位と低電位側電源線の電位とが設定され、第一のCMOSインバータを第二のCMOSインバータの出力論理信号で駆動し、第三のCMOSインバータを第一のCMOSインバータの出力論理信号で駆動するように構成する。
In order to achieve the above object, the present invention employs a configuration comprising the following invention specific items.
Configuration 1: A MOS transistor circuit having a level converter circuit is connected to a high potential side power line and a low potential side power line of a high power supply voltage circuit and operates as a level converter circuit, and an input node The first logic signal having the logic amplitude of the low power supply voltage circuit is supplied, the output node is connected to the input node of the first CMOS inverter, and the high power supply line and the low potential power supply line of the low power supply voltage circuit are connected. The second CMOC inverter operating and the input node connected to the output node of the first CMOS inverter, connected to the high potential side power line and the low potential side power line of the high power supply voltage circuit, and operated. And a third CMOC inverter that outputs a second logic signal having a logic amplitude of the high power supply voltage circuit at the node, and the potential of the high potential side power line of the low power supply voltage circuit and the low potential The potential of the power supply line is sandwiched between the potential of the high potential side power supply line and the potential of the low potential side power supply line of the high power supply voltage circuit, and within the voltage change range of the output logic signal of the second CMOS inverter The potential of the high potential side power supply line and the potential of the low potential side power supply line of the high power supply voltage circuit are set so that the transition region of the first CMOS inverter is included in the first CMOS inverter. And the third CMOS inverter is driven by the output logic signal of the first CMOS inverter .

構成2:構成1において、第一のCMOSインバータに用いるNMOSTのしきい値電圧を、低電源電圧回路の低電位側電源線の電位から高電源電圧回路の低電位側電源線の電位を差し引いた値より大とし、第一のCMOSインバータに用いるPMOSTのしきい値電圧の絶対値を、高電源電圧回路の高電位側電源線の電位から低電源電圧回路の高電位側電源線の電位を差し引いた値より大とした
構成3:構成1または構成2において、第一のCMOSインバータに用いるNMOSTのしきい値電圧を、低電源電圧回路の高電位側電源線の電位から高電源電圧回路の低電位側電源線の電位を差し引いた値より小とし、第一のCMOSインバータに用いるPMOSTのしきい値電圧の絶対値を、高電源電圧回路の高電位側電源線の電位から低電源電圧回路の低電位側電源線の電位を差し引いた値より小とした
構成4:構成1乃至構成3のいずれかにおいて、第一のCMOSインバータの論理しきい値電圧が、低電源電圧回路の高電位側電源線の電位と低電位側電源線の電位との和の平均値に等しくなるように、高電源電圧回路の高電位側電源線の電位と低電位側電源線の電位とを設定した。
Configuration 2: In Configuration 1, the threshold voltage of the NMOST used in the first CMOS inverter is obtained by subtracting the potential of the low-potential side power supply line of the high power supply voltage circuit from the potential of the low-potential side power supply line of the low power supply voltage circuit. The absolute value of the threshold voltage of the PMOST used for the first CMOS inverter is subtracted from the potential of the high power supply line of the high power supply voltage circuit from the potential of the high power supply line of the low power supply voltage circuit. It was larger than the value .
Configuration 3: In Configuration 1 or Configuration 2, the threshold voltage of the NMOST used for the first CMOS inverter is changed from the potential of the high-potential side power line of the low power supply voltage circuit to the potential of the low potential side power line of the high power supply voltage circuit. And the absolute value of the threshold voltage of the PMOST used in the first CMOS inverter is set to the value of the low-potential side power line of the low power-supply voltage circuit from the potential of the high-potential-side power line of the high-power-supply voltage circuit. The value was smaller than the value obtained by subtracting the potential .
Configuration 4: In any of compositions 1 through 3, the logic threshold voltage of the first CMOS inverter, the high-potential side power supply line of the low power supply voltage circuit of the sum of the potential of the low potential side power supply line The potential of the high potential side power supply line and the potential of the low potential side power supply line of the high power supply voltage circuit were set so as to be equal to the average value.

上記課題を解決するための手段の各構成における、LC回路は、高電源電圧回路側の第一のCMOSインバータ一個であるからトランジスタ数は2個と少なく、従来例と比較して素子面積の低減や消費電力の低減ができる。また、局所部分回路に用いても、それによる素子面積増加割合と消費電力の増加割合を従来よりも小さくできる。   In each configuration of the means for solving the above problems, the LC circuit is one first CMOS inverter on the high power supply voltage circuit side, so the number of transistors is as small as two, and the device area is reduced as compared with the conventional example. And power consumption can be reduced. Even if it is used for a local partial circuit, the increase rate of the element area and the increase rate of the power consumption can be made smaller than before.

本発明のLPS_INVERTERとHPS_INVERTERの間にレベルコンバータ(LC)回路を介在させた回路構成図である。FIG. 3 is a circuit configuration diagram in which a level converter (LC) circuit is interposed between LPS_INVERTER and HPS_INVERTER of the present invention. 図1の本発明の回路構成の動作原理の説明図である。It is explanatory drawing of the principle of operation of the circuit structure of this invention of FIG. CMOSインバータの回路図とその回路記号を示す。A circuit diagram of the CMOS inverter and its circuit symbol are shown. CMOSインバータの入出力特性曲線における用語の定義を示す。The definition of the term in the input-output characteristic curve of a CMOS inverter is shown. それぞれ低電位側電源電圧をGNDと共通にした従来回路において、低電源電圧で動作するCMOSインバータを高電源電圧で動作するCMOSインバータに直接接続した回路図である。FIG. 6 is a circuit diagram in which a CMOS inverter that operates at a low power supply voltage is directly connected to a CMOS inverter that operates at a high power supply voltage in a conventional circuit in which a low-potential-side power supply voltage is shared with GND. 図5のHPS_INVERTERの入出力特性の模式図である。FIG. 6 is a schematic diagram of input / output characteristics of HPS_INVERTER in FIG. 5. LPS_INVERTERとHPS_INVERTERの間にレベルコンバータ(LC)回路を介在させた回路構成図である。FIG. 6 is a circuit configuration diagram in which a level converter (LC) circuit is interposed between LPS_INVERTER and HPS_INVERTER. 従来のLC回路の回路構成である。This is a circuit configuration of a conventional LC circuit. 図8の例より改良された従来のLC回路の回路構成である。9 is a circuit configuration of a conventional LC circuit improved from the example of FIG.

本発明のレベルコンバータ回路を備えたMOSトランジスタ回路の実施の形態を図に基づいて詳細に説明する。   An embodiment of a MOS transistor circuit provided with a level converter circuit of the present invention will be described in detail with reference to the drawings.

図1は、本発明のLPS_INVERTERとHPS_INVERTERの間にレベルコンバータ(LC)回路を介在させた回路構成図である。
図1において、
・高電位側電源線VDDLおよび低電位側電源線VSSLに接続して動作させる低電源電圧回路側のCMOSインバータLPS_INVERTER(灰色(△記号内が白地ではない意味)に塗られた記号で示す)の出力ノードN1に、
・高電位側電源線VDDHおよび低電位側電源線VSSHに接続して動作させる高電源電圧回路側のCMOSインバータHPS_INVERTER_1(△記号内が白地の意味)の入力ノードを接続し、これをLC回路として用い、
・さらに必要なら、その出力ノード、OUTに高電源電圧回路側の他のCMOSインバータHPS_INVERTER_2の入力ノードを接続し、その出力ノードOUTBからノードOUTの反転出力を取り出せるようにする。
FIG. 1 is a circuit configuration diagram in which a level converter (LC) circuit is interposed between LPS_INVERTER and HPS_INVERTER according to the present invention.
In FIG.
A CMOS inverter LPS_INVERTER on the low power supply voltage circuit side that is connected to the high potential power supply line VDDL and the low potential power supply line VSSL to operate (indicated by a symbol painted on gray (meaning that the symbol inside is not white)) In the output node N1,
Connect the input node of the high power supply voltage circuit side CMOS inverter HPS_INVERTER_1 (meaning the white symbol is inside of the triangle) connected to the high potential power supply line VDDH and the low potential power supply line VSSH, and use this as the LC circuit Use
If necessary, an input node of another CMOS inverter HPS_INVERTER_2 on the high power supply voltage circuit side is connected to the output node OUT so that the inverted output of the node OUT can be taken out from the output node OUTB.

LPS_INVERTERの入力ノードINには低電源電圧回路側からの論理信号が入力される。ここで、LC回路のHPS_INVERTER_1の動作は、遷移領域下限値をTRHL、上限値をTRHHとするとき以下の条件1を満たすように設定する。
条件1:
A logic signal from the low power supply voltage circuit side is input to the input node IN of LPS_INVERTER. Here, the operation of HPS_INVERTER_1 of the LC circuit is set so as to satisfy the following condition 1 when the transition region lower limit value is TRHL and the upper limit value is TRHH.
Condition 1:

すなわち、低電源電圧回路側および高電源電圧回路側における論理振幅を保ちながら低電源電圧回路側の論理信号、具体的にはLPS_INVERTERの出力論理信号の変化範囲内に高電源電圧回路側のCMOSインバータの遷移領域が含まれるように、各MOSトランジスタの素子パラメータとともに、VSSL、VDDL、VSSH、VDDHを設定してLPS_INVERTERとHPS_INVERTER_1の動作を規定する。実際にはどちらか一方の電源電圧は規定されている場合が多いが、その場合には他方を、条件1を満たすように設定する。   That is, while maintaining the logic amplitude on the low power supply voltage circuit side and the high power supply voltage circuit side, the logic signal on the low power supply voltage circuit side, specifically, the CMOS inverter on the high power supply voltage circuit side within the change range of the output logic signal of LPS_INVERTER The operation of LPS_INVERTER and HPS_INVERTER_1 is defined by setting VSSL, VDDL, VSSH, and VDDH together with the element parameters of each MOS transistor so that the transition region is included. In practice, one of the power supply voltages is often defined, but in that case, the other is set so as to satisfy the condition 1.

ただし、TRH=TRHH−TRHL>LSLであると上記条件1を満足する解はないが、HPS_INVERTER_1のNMOSTのしきい値電圧VthnとPMOSTの負のしきい値電圧Vthpの絶対値|Vthp|をそれぞれ大きくすることによって、TRH<LSLとすることができる。なお、LPS_INVERTERにおいても遷移領域があるが、これは定常状態での漏洩電流が過剰に大きくならないようにするなど、動作に支障が起らないようにLSLより十分に小さく設計されているものとする。必要であればTRHをLPS_INVERTERの遷移領域幅より小さくすることも可能である。   However, there is no solution that satisfies the above condition 1 if TRH = TRHH−TRHL> LSL, but the absolute value | Vthp | of the negative threshold voltage Vthp of the NMOST and the negative threshold voltage Vthp of the PMOST is respectively calculated. By increasing it, TRH <LSL can be established. Note that there is also a transition region in LPS_INVERTER, which is designed to be sufficiently smaller than LSL so as not to hinder the operation, such as preventing the leakage current in the steady state from becoming excessively large. . If necessary, TRH can be made smaller than the transition region width of LPS_INVERTER.

特別な場合としてLPS_INVERTERの論理しきい値をVTLL、HPS_INVERTER_1の論理しきい値をVTLHとするとき、上記条件1を満たし、かつVTLH=VTLLとなるように各MOSトランジスタの素子パラメータや電源電圧を設定できる。しかし、実際にはVTLLとVTLHは素子の製造工程におけるバラツキなどで必ずしも正確に一致しない場合があるが、その差が後述する動作原理を逸脱しない範囲内であれば一致していると見なして差し支えない。
雑音余裕をハイレベル側およびローレベル側に均等に配分するために、VTLH=(VDDH+VSSH)/2、VTLL=(VDDL+VSSL)/2に設定するのが望ましい。さらに、HPS_INVERTER_2の論理しきい値電圧もLC回路に用いたHPS_INVERTER_1の論理しきい値電圧と一致させるのが望ましい。なお、高電源電圧側の回路の電源電圧はさらにレベル変換しない限りこのHPS_INVERTER_1やHPS_INVERTER_2に用いたものと同じにする。
As a special case, when the logical threshold value of LPS_INVERTER is set to VTLL and the logical threshold value of HPS_INVERTER_1 is set to VTLH, the element parameters and power supply voltage of each MOS transistor are set so that the above condition 1 is satisfied and VTLH = VTLL. it can. In practice, however, VTLL and VTTLH may not necessarily coincide with each other due to variations in the manufacturing process of the elements. However, if the difference is within a range that does not deviate from the operation principle described later, it can be considered that they coincide. Absent.
In order to evenly distribute the noise margin to the high level side and the low level side, it is desirable to set VTLH = (VDDH + VSSH) / 2 and VTLL = (VDDL + VSSL) / 2. Furthermore, it is desirable that the logical threshold voltage of HPS_INVERTER_2 also matches the logical threshold voltage of HPS_INVERTER_1 used in the LC circuit. The power supply voltage of the circuit on the high power supply voltage side is the same as that used for HPS_INVERTER_1 and HPS_INVERTER_2 unless the level is further converted.

図2で本発明の動作原理を説明する。図2はHPS_INVERTER_1の入出力特性曲線(実線)とLPS_INVERTERの入出力特性曲線(点線)を模式的に示している。横軸はHPS_INVERTER_1の入力電圧(VIN)、縦軸は出力電圧(VOUT)である。なお、図2の横軸の入力電圧VINのVSSL、VDDLおよびVDDHは、出力電圧VSSL、VDDLおよびVDDHと同じ電圧値を表す。   The operation principle of the present invention will be described with reference to FIG. FIG. 2 schematically shows an input / output characteristic curve (solid line) of HPS_INVERTER_1 and an input / output characteristic curve (dotted line) of LPS_INVERTER. The horizontal axis represents the input voltage (VIN) of HPS_INVERTER_1, and the vertical axis represents the output voltage (VOUT). Note that VSSL, VDDL, and VDDH of the input voltage VIN on the horizontal axis in FIG. 2 represent the same voltage values as the output voltages VSSL, VDDL, and VDDH.

LPS_INVERTERについてはその出力電圧がHPS_INVERTER_1の入力電圧になるように入力電圧軸と出力電圧軸とを逆転して描いている。特別な場合としてVTLH=VTLLとした場合を示した。HPS_INVERTER_1の入力電圧VINをLPS_INVERTERの出力論理信号電圧の変化範囲で変化させる。すなわち、VSSL≦VIN≦VDDLとする。また、LPS_INVERTERの出力論理信号電圧の変化範囲はHPS_INVERTER_1の遷移領域TRHを含むようにしてある。したがって、VIN=VSSLのときHPS_INVERTER_1の出力電圧VOUTはハイレベルVDDHに厳密には等しくはないが、論理信号としてみたときにハイレベルとみなしてよいVDDHに近い値となり、VIN=VDDLのときVOUTはローレベルVSSHに厳密には等しくはないが、論理信号としてみたときローレベルとみなしてよいVSSHに近い値となる。よって、低論理信号振幅LSLの入力で高論理信号振幅LSHと見なしてよい出力を得ることができる。上記記載は下記の場合を想定されるからである。 LPS_INVERTER is drawn by reversing the input voltage axis and the output voltage axis so that the output voltage becomes the input voltage of HPS_INVERTER_1. As a special case, the case where VTLH = VTLL is shown. The input voltage VIN of HPS_INVERTER_1 is changed within the change range of the output logic signal voltage of LPS_INVERTER. That is, VSSL ≦ VIN ≦ VDDL. The change range of the output logic signal voltage of LPS_INVERTER includes the transition region TRH of HPS_INVERTER_1. Therefore, when VIN = VSSL, the output voltage VOUT of HPS_INVERTER_1 is not exactly equal to the high level VDDH, but becomes a value close to VDDH that can be regarded as a high level when viewed as a logic signal, and when VIN = VDDL, VOUT is strictly not equal to the low level VSSH but ing a value close to be regarded as a low level VSSH when viewed as a logic signal. Therefore, an output that can be regarded as the high logic signal amplitude LSH at the input of the low logic signal amplitude LSL can be obtained. This is because the above description assumes the following case.

図2において、Vthn<VSSLであったり、|Vthp|<VDDH−VDDLであったりすると、例えばVIN=VSSLのときPMOSTは十分にオン状態になるがNMOSTはまだオフ状態にならず定常状態での漏洩電流が大きくなるし、また、VIN=VDDLのときNMOSTは十分にオン状態になるがPMOSTはまだオフ状態にならず、やはり定常状態での漏洩電流が大きくなる懸念がある。この場合でも、十分にハイレベルと見なせる電位としたり、十分にローレベルと見なせる電位としたりすることはできるが、確実にこれを解決するためには、Vthnと|Vthp|を以下の条件2を満たすようにすると良い。   In FIG. 2, when Vthn <VSSL or | Vthp | <VDDH−VDDL, for example, when VIN = VSSL, the PMOST is sufficiently turned on, but the NMOST is not yet turned off and is in a steady state. The leakage current increases, and when VIN = VDDL, the NMOST is sufficiently turned on, but the PMOST is not yet turned off, and there is a concern that the leakage current in the steady state is also increased. Even in this case, it can be set to a potential that can be regarded as a sufficiently high level or a potential that can be regarded as a sufficiently low level. However, in order to reliably solve this, Vthn and | Vthp | It is good to satisfy.

条件2:
このようにすると、LPS_INVERTERからの論理信号で確実にHPS_INVERTER_1NのMOSTとPMOSTのどちらか一方がオン状態のとき、他方はオフ状態にすることができ、漏洩電流の低減が図れる。HPS_INVERTER_1の動作速度は遅くなるが、負荷を一個のインバータ程度と小さくすれば良く、またそのようにできるので欠点とはならない。
Condition 2:
In this way, when one of the MOST and PMOST of the HPS_INVERTER_1N is reliably turned on by the logic signal from the LPS_INVERTER, the other can be turned off, and the leakage current can be reduced. Although the operation speed of HPS_INVERTER_1 is slow, it is only necessary to reduce the load to about one inverter, and since this can be done, there is no disadvantage.

さらに、
条件3:
なる条件を付け加えれば、NMOSTもPMOSTもオン状態ではスーパーしきい値で動作するので動作速度の低下を抑制することができる。
further,
Condition 3:
If the above condition is added, since both the NMOST and the PMOST operate at the super threshold value in the ON state, it is possible to suppress a decrease in the operation speed.

動作速度を重視し、あえて
条件4:
とすることもあり得る。なお、HPS_INVERTER_1の次段のHPS_INVERTER_2についてはその入力信号レベルは既に変換されているので上記の限りではなく、高電源電圧で動作する通常のCMOSインバータの設定でよい
Emphasis on operating speed, Dare condition 4:
It is also possible. Note that the input signal level of HPS_INVERTER_2 subsequent to HPS_INVERTER_1 has already been converted, so that it is not limited to the above, and a normal CMOS inverter that operates at a high power supply voltage may be used.

VTLHとVTLLが一致しなくても、
条件5:
を満たしていればレベル変換は可能である。
実際にはどちらかの電源電圧が定まっている場合が多いであろう。例えば低電源電圧回路側のVSSLとVDDLが決められたとする。この場合、HPS_INVERTER_1のVTHLはVDDHとVSSHを設定したとき決められるようになっているはずであるから、簡便には条件1と、
Even if VTLL and VTLL don't match,
Condition 5:
If the condition is satisfied, level conversion is possible.
In practice, one of the power supply voltages will often be fixed. For example, it is assumed that VSSL and VDDL on the low power supply voltage circuit side are determined. In this case, VTHL of HPS_INVERTER_1 should be determined when VDDH and VSSH are set.

条件6:
とが成り立つようにVDDHとVSSHを調整すれば良い。高電源電圧回路側のVSSHとVDDHが決められている場合は、VTLHは既知であるので、上記数6と
Condition 6:
VDDH and VSSH may be adjusted so that. When VSSH and VDDH on the high power supply voltage circuit side are determined, VTLH is known.

条件7:
からVSSLおよびVDDLを設定できる。
上で説明したLC回路はバルク形MOSTだけでなく、例えば、特許文献1、2に開示されているような基板上の絶縁層上の結晶シリコンに構成され、電流が基板に平行に流れる、いわゆる、フィン型の二重絶縁ゲートゲート電界効果トランジスタ(二つのゲート電極がチャネルを挟んで一体となって形成されているものと、それぞれ電気的に分離されているものとがある)においても適用できる。
Condition 7:
To VSSL and VDDL.
The LC circuit described above is not limited to the bulk type MOST, but is formed of, for example, crystalline silicon on an insulating layer on a substrate as disclosed in Patent Documents 1 and 2, and a current flows in parallel to the substrate. The present invention can also be applied to fin-type double insulated gate gate field effect transistors (two gate electrodes are integrally formed with a channel sandwiched therebetween and others are electrically separated from each other). .

MP、MP1、MP2、MP3 : P形MOSトランジスタ
MN、MN1、MN2、 MN3、MN4 : N形MOSトランジスタ
VDD、VDDL、VDDH : 高電位側の電源電圧
VSS、VSSL、VSSH : 低電位側の電源電圧
GND : 接地
VTL、VTLL、VTLH : CMOSインバータの論理しきい値電圧
LS、LSL、LSH : CMOSインバータの論理信号振幅
TR、TRH : CMOSインバータの遷移領域
TRHL、TRHH : 遷移領域の境界値
IN、OUT、OUTB、N1、N2、N3、Q、QB、LC_IN、LC_INB : ノード
VIN : CMOSインバータの入力電圧
VOUT : CMOSインバータの出力電圧
LPS_INVERTER : 低電源電圧側回路のCMOSインバータ
HPS_INVERTER : 高電源電圧側回路のCMOSインバータ
LC : レベル変換回路
MP, MP1, MP2, MP3: P-type MOS transistors MN, MN1, MN2, MN3, MN4: N-type MOS transistors VDD, VDDL, VDDH: High-potential side power supply voltages VSS, VSSL, VSSH: Low-potential side power supply voltages GND: Ground VTL, VTLL, VTLH: CMOS inverter logic threshold voltages LS, LSL, LSH: CMOS inverter logic signal amplitude TR, TRH: CMOS inverter transition region TRHL, TRHH: Transition region boundary values IN, OUT , OUTB, N1, N2, N3, Q, QB, LC_IN, LC_INB: Node
VIN: CMOS inverter input voltage VOUT: CMOS inverter output voltage LPS_INVERTER: Low power supply voltage side circuit CMOS inverter HPS_INVERTER: High power supply voltage side circuit CMOS inverter LC: Level conversion circuit

Claims (4)

高電源電圧回路の高電位側電源線と低電位側電源線に接続されてレベルコンバータ回路として動作する第一のCMOSインバータと、
入力ノードに低電源電圧回路の論理振幅の第一の論理信号が供給され、出力ノードが前記第一のCMOSインバータの入力ノードに接続され、前記低電源電圧回路の高電位側電源線と低電位側電源線に接続されて動作する第二のCMOCインバータと、
入力ノードが前記第一のCMOSインバータの出力ノードに接続され、前記高電源電圧回路の高電位側電源線と低電位側電源線に接続されて動作し、出力ノードに前記高電源電圧回路の論理振幅の第二の論理信号を出力する第三のCMOCインバータと
を備え、前記低電源電圧回路の高電位側電源線の電位と低電位側電源線の電位とが、前記高電源電圧回路の高電位側電源線の電位と低電位側電源線の電位との間に挟まれ、かつ、前記第二のCMOSインバータの出力論理信号の電圧変化範囲内に前記第一のCMOSインバータの遷移領域が含まれるように前記高電源電圧回路の高電位側電源線の電位と低電位側電源線の電位とが設定され、前記第一のCMOSインバータを前記第二のCMOSインバータの出力論理信号で駆動し、前記第三のCMOSインバータを前記第一のCMOSインバータの出力論理信号で駆動するように構成したことを特徴とするレベルコンバータ回路を備えたMOSトランジスタ回路。
A first CMOS inverter connected to the high potential side power supply line and the low potential side power supply line of the high power supply voltage circuit and operating as a level converter circuit;
The first logic signal having the logic amplitude of the low power supply voltage circuit is supplied to the input node, the output node is connected to the input node of the first CMOS inverter, and the low potential power supply line of the low power supply voltage circuit and the low potential A second CMOC inverter connected to the side power supply line and operating;
An input node is connected to an output node of the first CMOS inverter, operates by being connected to a high potential side power line and a low potential side power line of the high power voltage circuit, and the logic of the high power voltage circuit is connected to an output node. A third CMOC inverter for outputting a second logic signal of amplitude;
The potential of the high potential side power line and the potential of the low potential side power line of the low power supply voltage circuit are the potential of the potential of the high potential side power line and the potential of the low potential side power line of the high power supply voltage circuit. The potential of the high-potential-side power supply line of the high-power-supply voltage circuit so that the transition region of the first CMOS inverter is included in the voltage change range of the output logic signal of the second CMOS inverter. And the potential of the low potential side power supply line are set, the first CMOS inverter is driven by the output logic signal of the second CMOS inverter, and the third CMOS inverter is driven by the output logic of the first CMOS inverter. A MOS transistor circuit having a level converter circuit characterized by being configured to be driven by a signal .
前記第一のCMOSインバータに用いるNMOSTのしきい値電圧を、前記低電源電圧回路の低電位側電源線の電位から前記高電源電圧回路の低電位側電源線の電位を差し引いた値より大とし、前記第一のCMOSインバータに用いるPMOSTのしきい値電圧の絶対値を、前記高電源電圧回路の高電位側電源線の電位から前記低電源電圧回路の高電位側電源線の電位を差し引いた値より大としたことを特徴とする請求項1記載のレベルコンバータ回路を備えたMOSトランジスタ回路。 The threshold voltage of the NMOST used for the first CMOS inverter is set larger than a value obtained by subtracting the potential of the low potential side power line of the high power supply voltage circuit from the potential of the low potential side power line of the low power supply voltage circuit. The absolute value of the threshold voltage of the PMOST used for the first CMOS inverter is obtained by subtracting the potential of the high potential side power line of the low power source voltage circuit from the potential of the high potential side power source line of the high power source voltage circuit. 2. A MOS transistor circuit comprising a level converter circuit according to claim 1, wherein the MOS transistor circuit is larger than the value . 前記第一のCMOSインバータに用いるNMOSTのしきい値電圧を、前記低電源電圧回路の高電位側電源線の電位から前記高電源電圧回路の低電位側電源線の電位を差し引いた値より小とし、前記第一のCMOSインバータに用いるPMOSTのしきい値電圧の絶対値を、前記高電源電圧回路の高電位側電源線の電位から前記低電源電圧回路の低電位側電源線の電位を差し引いた値より小としたことを特徴とする請求項1又は2記載のレベルコンバータ回路を備えたMOSトランジスタ回路。 The threshold voltage of the NMOST used for the first CMOS inverter is set to be smaller than a value obtained by subtracting the potential of the low potential side power line of the high power supply voltage circuit from the potential of the high potential side power line of the low power supply voltage circuit. The absolute value of the threshold voltage of the PMOST used for the first CMOS inverter is obtained by subtracting the potential of the low potential side power line of the low power source voltage circuit from the potential of the high potential side power line of the high power source voltage circuit. MOS transistor circuit having a level converter circuit according to claim 1 or 2, characterized in that the smaller than the value. 前記第一のCMOSインバータの論理しきい値電圧が、前記低電源電圧回路の高電位側電源線の電位と低電位側電源線の電位との和の平均値に等しくなるように、前記高電源電圧回路の高電位側電源線の電位と低電位側電源線の電位とが設定されていることを特徴とする請求項1乃至3のうちいずれか項記載のレベルコンバータ回路を備えたMOSトランジスタ回路。 The high power supply voltage is set so that a logic threshold voltage of the first CMOS inverter is equal to an average value of the sum of the potential of the high potential power supply line and the potential of the low potential power supply line of the low power supply voltage circuit. MOS transistor having a level converter circuit according to any one of claims 1 to 3, characterized in that the potential of the high potential side power supply line potential and the low potential side power supply line of the voltage circuit is set circuit.
JP2010067481A 2010-03-24 2010-03-24 MOS transistor circuit with level converter circuit Expired - Fee Related JP5414060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067481A JP5414060B2 (en) 2010-03-24 2010-03-24 MOS transistor circuit with level converter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067481A JP5414060B2 (en) 2010-03-24 2010-03-24 MOS transistor circuit with level converter circuit

Publications (2)

Publication Number Publication Date
JP2011199814A JP2011199814A (en) 2011-10-06
JP5414060B2 true JP5414060B2 (en) 2014-02-12

Family

ID=44877400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067481A Expired - Fee Related JP5414060B2 (en) 2010-03-24 2010-03-24 MOS transistor circuit with level converter circuit

Country Status (1)

Country Link
JP (1) JP5414060B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355119A (en) * 1998-06-05 1999-12-24 Hitachi Ltd Elc-cmos level conversion circuit and control signal generation circuit
JP2000013212A (en) * 1998-06-22 2000-01-14 Sony Corp Input circuit
JP2002370348A (en) * 2001-06-15 2002-12-24 Canon Inc Substrate for recording head, recording head and recorder
JP3996070B2 (en) * 2003-02-06 2007-10-24 三菱電機株式会社 Level shifter circuit

Also Published As

Publication number Publication date
JP2011199814A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
US7683668B1 (en) Level shifter
TWI497915B (en) Level shifter circuit and operation method thereof
JP6336831B2 (en) Interface circuit and semiconductor integrated circuit using the same
CN106899288B (en) Level conversion circuit
TWI737299B (en) Buffer circuit and buffering method
US20140111010A1 (en) Apparatus for Reference Voltage Generating Circuit
CN112019203B (en) Level conversion circuit
US7671655B2 (en) Level conversion circuit for a semiconductor circuit
KR100801031B1 (en) Level shifting circuit and method
TWI719267B (en) Shift circuit
JP5215356B2 (en) Level converter circuit
US9787310B2 (en) Level-shifter circuit for low-input voltages
CN109417606B (en) Level converter capable of outputting positive and negative voltages
JP4386918B2 (en) Level shift circuit and semiconductor integrated circuit having the same
JP4724575B2 (en) Level conversion circuit
US9935636B1 (en) CMOS input buffer with low supply current and voltage down shifting
JP5414060B2 (en) MOS transistor circuit with level converter circuit
TWI455484B (en) Level shifter
US9537469B2 (en) CMOS level shifter with reduced high voltage transistor count
CN108206689B (en) Level shift driving circuit
TW201315151A (en) Level shift circuit
JP5414061B2 (en) Logic circuit, selector circuit and integrated circuit using pass transistor
JP2006352204A (en) Potential detection circuit and semiconductor integrated circuit with same
CN220156507U (en) Level conversion circuit
US8502559B2 (en) Level translator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5414060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees