JP5413021B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP5413021B2
JP5413021B2 JP2009174937A JP2009174937A JP5413021B2 JP 5413021 B2 JP5413021 B2 JP 5413021B2 JP 2009174937 A JP2009174937 A JP 2009174937A JP 2009174937 A JP2009174937 A JP 2009174937A JP 5413021 B2 JP5413021 B2 JP 5413021B2
Authority
JP
Japan
Prior art keywords
relay
driving
driving means
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009174937A
Other languages
Japanese (ja)
Other versions
JP2011029046A (en
Inventor
裕二 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009174937A priority Critical patent/JP5413021B2/en
Publication of JP2011029046A publication Critical patent/JP2011029046A/en
Application granted granted Critical
Publication of JP5413021B2 publication Critical patent/JP5413021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は一般家庭やレストラン及びオフィスなどで使用される加熱調理器に関するものである。   The present invention relates to a cooking device used in general homes, restaurants and offices.

従来、調理器の抵抗負荷等のヒータ制御には交流電源とこのヒータを接点を持つリレーで導通制御して加熱を行うのが一般的である。この際、リレーの接点駆動には励磁コイルに直流電流を流すことにより発生する直流磁束により磁化された鉄心等の磁力によりリレーの接点を機械的に閉じる方式を用いる場合、マイクロコンピュータの出力ポートより出力される論理値、即ち直流電圧の有無により励磁コイルに電流を流すトランジスタ(ドライブ回路)を直流駆動してリレー接点を閉じる構成が開示されている。   Conventionally, for heater control such as a resistance load of a cooking appliance, heating is generally performed by controlling conduction with an AC power source and a relay having a contact with the heater. At this time, when using a system in which the relay contact is mechanically closed by a magnetic force of an iron core or the like magnetized by a DC magnetic flux generated by passing a DC current through the exciting coil, the relay contact is driven from the microcomputer output port. There is disclosed a configuration in which a transistor (drive circuit) that passes a current through an exciting coil is driven by a DC to close a relay contact depending on the output logical value, that is, the presence or absence of a DC voltage.

特開平11−297467号公報Japanese Patent Laid-Open No. 11-297467

しかしながら、前記従来の構成では、制御回路は印刷配線板上に実装されると共に、印刷配線板の配線により電気的接続がなされている場合には、万一この駆動信号系の源流側付近、マイクロコンピュータの出力ポートからドライブ回路のトランジスタまでの印刷配線経路に誤動作や故障、或いは異物の付着等不具合が生じて直流的な電圧が出力され続けるような状態になった際には、制御回路の正常な動作に関わりなくリレー接点が閉じ続けるという課題を有していた。   However, in the conventional configuration, when the control circuit is mounted on the printed wiring board and is electrically connected by the wiring of the printed wiring board, in the unlikely event that the drive signal system is located near the source side, If the printed wiring path from the computer output port to the transistor in the drive circuit malfunctions, breaks down, or adheres to foreign matter, causing a DC voltage to be continuously output, the control circuit is normal. There was a problem that the relay contact kept closing regardless of the normal operation.

本発明は、前記従来の課題を解決するもので、交流電源と抵抗負荷の接続を、抵抗負荷の各々両端に設けた2つのリレー接点を用い、抵抗負荷を非通電時は交流電源から抵抗負荷の両端を切り離す構成とすることで、万一、一方のリレーまたは駆動回路が故障してその接点が閉じ続ける状態になっても、他方のリレーが抵抗負荷と交流電源の接続を解除して抵抗負荷の意図しない連続通電を防止すると共に、マイクロコンピュータを使用してリレーを駆動して抵抗負荷に通電している場合に、マイクロコンピュータの暴走やラッチアップによって抵抗負荷が連続通電されるような状態になっても、一方のリレーは確実に非導通になることで、より安全性の高い加熱調理器を提供することを目的とする。   The present invention solves the above-described conventional problems, and uses two relay contacts provided on both ends of each of the resistance loads for connection between the AC power source and the resistance load. When the resistance load is not energized, the AC power source is connected to the resistance load. By disconnecting both ends of the relay, even if one of the relays or the drive circuit breaks down and the contact continues to close, the other relay releases the connection between the resistive load and the AC power A state in which a resistive load is continuously energized due to runaway or latch-up of the microcomputer when the microcomputer is used to drive a relay and energize a resistive load while preventing unintended continuous energization of the load Even if it becomes, it aims at providing a heating cooker with higher safety | security by making one relay surely non-conducting.

前記従来の課題を解決するために、本発明の加熱調理器は、加熱部と、マイクロコンピュータを有し前記加熱部の動作を制御する制御部と、を備え、前記加熱部は抵抗負荷と前記抵抗負荷の両端にそれぞれ接続し、接点を備えた第1のリレー及び第2のリレーとの直列体から成り、前記直列体と交流電源とは並列接続され、前記制御部は前記交流電源から動作電源を得て、前記第1のリレー及び前記第2のリレーを各々駆動する第1の駆動手段及び第2の駆動手段を有し、前記抵抗負荷に通電する際は前記第1のリレーを駆動して導通状態とした後に前記第2のリレーを導通・非導通とすることで、前記抵抗負荷の加熱出力を可変させると共に、前記第1の駆動手段は、前記マイクロコンピュータが出力する所定の周期及び所定の振幅のパルス電圧を印加し、抵抗と第1のコンデンサからなる微分回路を介して直流成分を除去した後、第2のコンデンサからなる充電回路にて蓄えられた電圧を基に前記第1のリレーを駆動し、前記第2の駆動手段は駆動信号伝達に、直流信号のみを用いて第2のリレーを駆動すると共に、前記パルス電圧の印加を停止して前記第2のコンデンサに蓄えていた電圧を放電して前記第1のリレーの駆動を停止して前記抵抗負荷を非導通にするように構成したものである。
In order to solve the conventional problem, a cooking device of the present invention includes a heating unit and a control unit that has a microcomputer and controls the operation of the heating unit, and the heating unit includes a resistance load and Each of the resistive loads is connected to both ends of the first and second relays having contacts, and the series body and the AC power source are connected in parallel, and the control unit includes the AC power source. to obtain operating power from the first relay and has a first drive means and second drive means for each driving the second relay, when energizing the resistive load of the first relay The second relay is made conductive / non-conductive after being driven to turn on and off, thereby changing the heating output of the resistance load, and the first drive means is a predetermined output outputted by the microcomputer. Of period and predetermined amplitude The first relay is driven based on the voltage stored in the charging circuit consisting of the second capacitor after the DC voltage is removed through the differential circuit consisting of the resistor and the first capacitor. and said second drive means, the drive signal transfer, to drive the second relay with only a DC signal, a voltage which has been stored in said second capacitor to stop application of the pulse voltage The first load is discharged to stop the driving of the first relay, and the resistance load is made non-conductive .

これによって、交流電源と抵抗負荷の接続を、抵抗負荷の各々両端に設けた2つのリレー接点を用い、抵抗負荷を非通電時は交流電源から抵抗負荷の両端を切り離す構成とすることで、非使用時には抵抗負荷を交流電源から完全に切り離せると共に、万一、一方のリレーまたは駆動回路が故障してその接点が閉じ続ける状態になっても、他方のリレーが抵抗負荷と交流電源の接続を解除して抵抗負荷の意図しない連続通電を防止したり、マイクロコンピュータを使用しリレーを駆動して抵抗負荷に通電している場合に、マイクロコンピュータの暴走やラッチアップによって、第2の駆動手段へ入力が第2のリレー導通論理となり、第1の駆動手段への入力が直流信号となるか或いは所定の周期を大きく外れたパルス信号となり、第1のリレーは確実に非導通にすることができる。また、所定の周期及
び所定の振幅のパルス電圧の印加を停止して、充電回路に蓄えた電荷が放電し、最終段のトランジスタ等の導通を遮断し、励磁コイルの励磁を停止することで、第1のリレーの接続端を開くことができる。
Thus, the connection between the AC power source and the resistive load is configured by using two relay contacts provided at both ends of the resistive load, and by disconnecting the both ends of the resistive load from the AC power source when the resistive load is not energized. In use, the resistive load can be completely disconnected from the AC power source, and even if one of the relays or the drive circuit breaks down and the contact continues to close, the other relay connects the resistive load to the AC power source. When the resistance load is released to prevent unintentional continuous energization, or when the microcomputer is used to drive the relay and the resistance load is energized, the microcomputer runs away or latches up to the second drive means. The input becomes the second relay conduction logic, and the input to the first driving means becomes a DC signal or a pulse signal greatly deviating from a predetermined period, and the first relay It can be reliably rendered non-conductive. In addition, a predetermined cycle and
Then, the application of the pulse voltage with a predetermined amplitude is stopped, the electric charge stored in the charging circuit is discharged, the conduction of the final stage transistor or the like is interrupted, and the excitation of the exciting coil is stopped, thereby The connection end can be opened.

本発明の加熱調理器は、接点を接続端とする励磁式の2つのリレーで交流電源と抵抗負荷とを接続し、その一方のリレーの駆動方法は、矩形波等の周期パルス電圧を微分回路にて直流成分を除去した電圧を充電することで得た電圧を基に駆動するようにしているので、微分回路より前段の部分で、マイクロコンピュータを含む駆動信号系の印刷配線経路に誤動作や故障、或いは異物の付着等不具合が生じて直流的な電圧が出力され続けるような状態になった場合は、第1の駆動手段の最終段に駆動信号が伝達されず、第1のリレーの接続端を開として交流電源と抵抗負荷の接続を断つことができる。また、所定の周期及び所定の振幅のパルス電圧の印加を停止して、充電回路に蓄えた電荷が放電し、最終段のトランジスタ等の導通を遮断し、励磁コイルの励磁を停止することで、第1のリレーの接続端を開くことができる。
The heating cooker of the present invention connects an AC power source and a resistive load with two excitation-type relays having contact points as connection ends, and a driving method for one of the relays uses a periodic pulse voltage such as a rectangular wave as a differentiation circuit. Since the drive is based on the voltage obtained by charging the voltage from which the DC component has been removed in the circuit, malfunction or failure occurs in the printed wiring path of the drive signal system including the microcomputer in the stage before the differentiation circuit. Or, when a problem such as adhesion of foreign matter occurs and the DC voltage continues to be output, the drive signal is not transmitted to the final stage of the first drive means, and the connection end of the first relay Can be disconnected to disconnect the AC power supply and the resistive load. In addition, by stopping the application of a pulse voltage with a predetermined period and a predetermined amplitude, the charge stored in the charging circuit is discharged, the conduction of the transistor at the final stage is cut off, and the excitation of the excitation coil is stopped, The connection end of the first relay can be opened.

本発明の実施の形態1における加熱調理器のブロック図The block diagram of the heating cooker in Embodiment 1 of this invention 本発明の実施の形態1における駆動手段の各部動作波形(定常時)図FIG. 6 is an operation waveform (steady state) diagram of each part of the driving unit according to the first embodiment of the present invention. 本発明の実施の形態1における駆動手段の各部動作波形(動作開始時)図FIG. 6 is an operation waveform (at the start of operation) of each part of the driving unit according to Embodiment 1 of the present invention.

第1の発明は、加熱部と、マイクロコンピュータを有し前記加熱部の動作を制御する制御部と、を備え、前記加熱部は抵抗負荷と前記抵抗負荷の両端にそれぞれ接続し、接点を備えた第1のリレー及び第2のリレーとの直列体から成り、前記直列体と交流電源とは並列接続され、前記制御部は前記交流電源から動作電源を得て、前記第1のリレー及び前記第2のリレーを各々駆動する第1の駆動手段及び第2の駆動手段を有し、前記抵抗負荷に通電する際は前記第1のリレーを駆動して導通状態とした後に前記第2のリレーを導通・非導通とすることで、前記抵抗負荷の加熱出力を可変させると共に、前記第1の駆動手段は、前記マイクロコンピュータが出力する所定の周期及び所定の振幅のパルス電圧を印加し、抵抗と第1のコンデンサからなる微分回路を介して直流成分を除去した後、第2のコンデンサからなる充電回路にて蓄えられた電圧を基に前記第1のリレーを駆動し、前記第2の駆動手段は駆動信号伝達に、直流信号を用いて第2のリレーを駆動すると共に、前記パルス電圧の印加を停止して前記第2のコンデンサに蓄えていた電圧を放電して前記第1のリレーの駆動を停止して前記抵抗負荷を非導通にするように構成したものである。これにより、制御部は、交流電源に接続されることで動作電源を得るので、制御部の駆動指令に従って第1及び第2のリレーを駆動して抵抗負荷を通電制御し被加熱物を加熱することができる。また、第1のリレーの駆動には、第1の駆動手段にて所定の周期及び所定の振幅のパルス電圧を印加し、抵抗と第1のコンデンサからなる微分回路を介して直流成分を除去した後、第2のコンデンサからなる充電回路にて蓄えられた電圧を基に、最終段に設けたトランジスタ等を導通させることで、第1のリレーの励磁コイルに電流を流すことにより、第1のリレーの接続端を閉じ、所定の周期及び所定の振幅のパルス電圧の印加を停止して、充電回路に蓄えた電荷が放電し、最終段のトランジスタ等の導通を遮断し、励磁コイルの励磁を停止することで、第1のリレーの接続端を開くことができる。第2のリレーの駆動には、第1のリレーの駆動とは異なり、第2の駆動手段にて直流の駆動信
号により、最終段に設けたトランジスタ等を導通させることで、第2のリレーの励磁コイルに電流を流すことにより、第2のリレーの接続端を閉じ、直流の駆動信号の印加を停止して、最終段のトランジスタ等の導通を遮断し、励磁コイルの励磁を停止することで、第2のリレーの接続端を開くことができる。更に、制御回路が印刷配線板上に実装されると共に、印刷配線板の配線により電気的接続がなされている場合には、万一第1のリレーの駆動信号系の微分回路より前段の印刷配線経路に誤動作や故障、或いは異物の付着等不具合が生じて直流的な電圧が出力され続けるような状態になった際には、その直流信号を微分回路にて伝達しないので、最終段のトランジスタ等の駆動は停止され、第1のリレーの接続端を開状態に維持することができる。また、駆動回路をマイクロコンピュータ等のプログラミングにより動作させている場合には、プログラミングの不具合やマイクロコンピュータの暴走等で、駆動回路に出力されるパルスの周波数やデューティ比が規定以下に低下する状態になった場合でも、充電回路の電圧が、最終段のトランジスタの駆動電圧に達しないようにできるので、最終段のトランジスタ等の駆動は停止され、第1のリレーの接続端を開状態に維持することができる。
The first invention includes a heating unit, and a control unit for controlling the operation of the heating unit has a microcomputer, the heating unit is connected respectively with a resistive load across said resistive load, the contacts consists of a series of a first relay and a second relay provided with, said series body and an AC power source connected in parallel, the control unit obtains the operating power from the AC power source, the first relay and the second has a first driving means and second driving means each for driving the relay, when energizing the resistive load the second after a conductive state by driving the first relay The heating output of the resistive load is varied by turning on and off the relay of the relay, and the first driving means applies a pulse voltage having a predetermined period and a predetermined amplitude output from the microcomputer. Resistor and first condenser After through the differentiating circuit to remove DC components consisting of the first relay is driven based on the voltage stored in the charging circuit of a second capacitor, said second drive means, the drive signal For transmission, the second relay is driven using a DC signal, and the application of the pulse voltage is stopped and the voltage stored in the second capacitor is discharged to stop the driving of the first relay. The resistance load is configured to be non-conductive . As a result, the control unit obtains an operating power source by being connected to the AC power source, so that the first and second relays are driven according to the drive command of the control unit to control energization of the resistive load and heat the object to be heated. be able to. For driving the first relay, a pulse voltage having a predetermined period and a predetermined amplitude is applied by the first driving means, and a direct current component is removed through a differential circuit composed of a resistor and a first capacitor. Then, based on the voltage stored in the charging circuit composed of the second capacitor, the transistor provided in the final stage is made conductive, so that the current flows through the exciting coil of the first relay. Close the connection end of the relay, stop applying the pulse voltage with a predetermined period and amplitude, discharge the charge stored in the charging circuit, cut off the conduction of the final stage transistor, etc., and excite the excitation coil By stopping, the connection end of the first relay can be opened. In driving the second relay, unlike the driving of the first relay, the transistor provided in the final stage is made conductive by the DC driving signal by the second driving means, so that the second relay is driven. By passing a current through the exciting coil, the connection end of the second relay is closed, the application of the DC drive signal is stopped, the conduction of the transistor in the final stage is cut off, and the excitation of the exciting coil is stopped. The connection end of the second relay can be opened. Furthermore, when the control circuit is mounted on the printed wiring board and electrically connected by the wiring of the printed wiring board, the printed wiring in the previous stage should be different from the differential circuit of the drive signal system of the first relay. When a malfunction such as malfunction or failure in the path, or adhesion of foreign matter occurs and the DC voltage continues to be output, the DC signal is not transmitted by the differentiation circuit. Is stopped, and the connection end of the first relay can be kept open. In addition, when the drive circuit is operated by programming such as a microcomputer, the frequency and duty ratio of the pulses output to the drive circuit are reduced below a specified level due to programming defects or microcomputer runaway. Even in this case, the voltage of the charging circuit can be prevented from reaching the driving voltage of the final stage transistor, so that the driving of the final stage transistor and the like is stopped, and the connection end of the first relay is maintained in the open state. be able to.

第2の発明は、加熱部と、前記加熱部の動作を制御する制御部と、を備え、前記加熱部は、抵抗負荷と前記抵抗負荷の両端にそれぞれ接続し、接点を備えた第1のリレー及び第2のリレーとの直列体から成り、前記直列体と交流電源とは並列接続され、前記制御部は、前記交流電源から動作電源を得て、前記第1のリレー及び前記第2のリレーを各々駆動する第1の駆動手段及び第2の駆動手段を有し、前記抵抗負荷に通電する際は前記第1のリレーを駆動して導通状態とした後に前記第2のリレーを導通・非導通とすることで、前記抵抗負荷の加熱出力を可変させると共に、前記第1の駆動手段は、パルス波形が矩形である所定の周期及び所定の振幅のパルス電圧を印加し、抵抗と第1のコンデンサからなる微分回路を介して直流成分を除去した後、第2のコンデンサからなる充電回路にて蓄えられた電圧を基に前記第1のリレーを駆動し、前記第2の駆動手段は、駆動信号伝達に、直流信号を用いて第2のリレーを駆動すると共に、前記制御部が前記第1の駆動手段に入力される前記パルス電圧の振幅または周期を監視するモニタ手段を有し、前記制御部は、前記モニタ手段が検知した前記パルス電圧の振幅または周期が所定の範囲から外れると、前記第2の駆動手段が前記第2のリレーを開状態にして前記抵抗負荷への通電を停止する
ように構成したものである。これにより、矩形波は、マイクロコンピュータ等のディジタルICが内部のプログラミングで出力端子のトランジスタ等をオンオフさせることで比較的簡単に出力できる波形であるので、第1の駆動手段の構成部品点数の増加を抑制できると共に、マイクロコンピュータの該出力端子の破壊や、プログラムの暴走等による該出力端子の出力が直流電圧出力状態に固定されるような不具合が生じても、第1の駆動手段の微分回路がその直流電圧成分を除去して、充電回路には電荷の充電はされないので、第1のリレーの駆動が停止して、加熱部の抵抗負荷と交流電源との接続を断つことができる。また、マイクロコンピュータのプログラミング等を用いて第1の駆動手段に入力されるパルス電圧を生成している場合に、マイクロコンピュータは自身の出力しているパルス電圧の振幅または周期を監視しているので、パルス電圧出力端子が故障したり、パルス電圧生成プログラムに不具合が生じて、第1の駆動手段への意志しないパルス電圧の印加や、出力しているパルス電圧の異常を検知することができ、異常と判断した場合は、第2の駆動手段への直流駆動信号の出力を停止して、第2のリレーを非導通にして、第1のリレーの状態に関係なく、交流電源と抵抗負荷の導通を切断することができる。
2nd invention is provided with the heating part and the control part which controls the operation | movement of the said heating part, The said heating part is connected to the both ends of a resistive load and the said resistive load, respectively, The 1st provided with the contact It consists of a series body of a relay and a second relay, and the series body and an AC power source are connected in parallel, and the control unit obtains an operating power source from the AC power source, and the first relay and the second relay A first driving means and a second driving means for driving the relays, respectively, and when energizing the resistance load, the first relay is driven to be in a conductive state and then the second relay is turned on; By making the heating load non-conductive, the heating output of the resistance load is varied, and the first driving means applies a pulse voltage having a predetermined cycle and a predetermined amplitude in which the pulse waveform is rectangular, and the resistance and the first The DC component is removed through a differentiation circuit consisting of capacitors. After that, the first relay is driven based on the voltage stored in the charging circuit composed of the second capacitor, and the second driving means uses the DC signal to transmit the driving signal to the second relay. The control unit includes a monitoring unit that drives the relay and monitors the amplitude or cycle of the pulse voltage input to the first driving unit, and the control unit detects the pulse voltage detected by the monitoring unit. When the amplitude or cycle of the second driving means deviates from a predetermined range, the second driving means opens the second relay and stops energizing the resistance load . As a result, the square wave is a waveform that a digital IC such as a microcomputer can output relatively easily by turning on and off the transistor of the output terminal by internal programming, so the number of components of the first driving means increases. The differential circuit of the first driving means can be suppressed even if a malfunction occurs in which the output terminal of the microcomputer is fixed to the DC voltage output state due to destruction of the output terminal of the microcomputer or runaway of the program. However, since the DC voltage component is removed and the charge circuit is not charged, the driving of the first relay is stopped, and the connection between the resistance load of the heating unit and the AC power supply can be disconnected. In addition, when the pulse voltage input to the first driving means is generated by using programming of the microcomputer or the like, the microcomputer monitors the amplitude or period of the pulse voltage output by itself. The pulse voltage output terminal is broken or a failure occurs in the pulse voltage generation program, so that it is possible to detect an unintentional pulse voltage application to the first driving means or an abnormality in the output pulse voltage, If it is determined that there is an abnormality, the output of the DC drive signal to the second drive means is stopped, the second relay is made non-conductive, and the AC power source and the resistive load are not affected regardless of the state of the first relay. The conduction can be cut off.

第3の発明は、特に第1または第2の発明において、少なくとも前記第1のリレーと前記第1の駆動手段を含む前記制御部の一部を印刷配線板に載置し、前記印刷配線板の印刷配線及び信号リード線にて構成要素の電気接続を成し、前記第1の駆動手段の前記微分回路より後段よりも、前記パルス電圧が印加されている前記微分回路より前段の電気接続経路を長くなるように構成したものである。これにより、万一印刷配線板の印刷配線や配線板に実装されている電子部品に異物の付着等の不具合が生じる場合でも、第1のリレーの駆動信号系の微分回路より前段の印刷配線経路を後段の印刷配線経路よりも長く、即ち、第1のリレーの駆動に関する信号経路全体に対して、パルス電圧で伝送されている信号経路を可能な限り長く、直流電圧で伝送される信号経路を可能な限り短くすることで、異物付着による第1のリレーが意図しない駆動状態になるリスクを軽減し、抵抗負荷が意図しない通電状態になることを防止することができる。
A third invention is, in particular, the first or second aspect of the invention, placed on the printed circuit board part of the control unit comprising at least the first relay the first driving means, said printed circuit board It forms an electrical connection of the components in the printing wires and the signal leads than said stage subsequent to the differential circuit of the first driving means, the former-stage electrical connection path from said differentiating circuit the pulse voltage is applied Is configured to be long. As a result, even if there is a problem such as adhesion of foreign matter to the printed wiring of the printed wiring board or the electronic components mounted on the wiring board, the printed wiring path before the first relay drive signal system differentiation circuit Is longer than the printed wiring path at the subsequent stage, that is, the signal path transmitted by the pulse voltage is as long as possible with respect to the entire signal path related to the driving of the first relay, and the signal path transmitted by the DC voltage is By making it as short as possible, it is possible to reduce the risk that the first relay due to the adhering foreign matter becomes an unintended driving state, and it is possible to prevent the resistance load from being unintentionally energized.

以下本発明の加熱調理器の実施の形態を図面に基づいて説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of a heating cooker according to the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明の実施の形態の構成を示すブロック図である。また、図2は本発明の実施の形態における第1の駆動手段の
定常時の各部動作波形図で、横軸は時間経過を示す、図3は本発明の実施の形態における第1の駆動手段の動作開始時の各部動作波形図で、横軸は時間経過を示すものである。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment of the present invention. FIG. 2 is an operation waveform diagram of each part at the time of steady operation of the first driving means in the embodiment of the present invention, the horizontal axis indicates the time passage, and FIG. 3 is the first driving means in the embodiment of the present invention. In the operation waveform diagram of each part at the start of the operation, the horizontal axis indicates the passage of time.

図1において、交流電源1が、第1のリレー2の接続端である接点と抵抗負荷3aと第2のリレー4の接続端である接点との直列体と並列接続されている。   In FIG. 1, an AC power source 1 is connected in parallel with a series body of a contact that is a connection end of a first relay 2, a contact that is a connection end of a resistance load 3 a and a second relay 4.

制御部5は交流電源1の電圧をから動作電圧を生成する制御電源回路10と、この制御電源回路10が生成した電源電圧で動作するマイクロコンピュータ11を含み、第1のリレー2を励磁により駆動する第1の駆動手段12と第2のリレー4を励磁により駆動する第2の駆動手段17とを有する。第1の駆動手段12はマイクロコンピュータ11から出力される所定周期、所定振幅の矩形パルスを、第1のコンデンサ13aと抵抗13bからなる微分回路13により直流成分を除去した電圧に変換し、この電圧を第2のコンデンサ14aを含む充電回路14にて保持し、この充電電圧により、最終段の第1のトランジスタ15を導通させて第1のリレー2の励磁コイル2aに電流を流して第1のリレー2を駆動している。第2の駆動手段17はマイクロコンピュータ11から出力される2値の直流電圧信号を最終段の第2のトランジスタ18に与え、第2のトランジスタ18を導通させて第2のリレー4の励磁コイル4aに電流を流して第2のリレー4を駆動している。モニタ手段19は第1の駆動手段12の微分回路13への入力信号を監視している。また、LED等の表示素子やブザー等から成る報知手段16は、制御部5の動作状態に応じた報知や表示を行い、使用者に機器の動作状態を示している。   The control unit 5 includes a control power supply circuit 10 that generates an operation voltage from the voltage of the AC power supply 1, and a microcomputer 11 that operates with the power supply voltage generated by the control power supply circuit 10, and drives the first relay 2 by excitation. The first driving means 12 and the second driving means 17 for driving the second relay 4 by excitation. The first driving means 12 converts a rectangular pulse having a predetermined period and a predetermined amplitude output from the microcomputer 11 into a voltage from which a DC component has been removed by a differentiation circuit 13 including a first capacitor 13a and a resistor 13b. Is held by the charging circuit 14 including the second capacitor 14a, and the first transistor 15 in the final stage is made conductive by this charging voltage, and a current is passed through the exciting coil 2a of the first relay 2 so that the first The relay 2 is driven. The second drive means 17 applies the binary DC voltage signal output from the microcomputer 11 to the second transistor 18 at the final stage, and turns on the second transistor 18 to activate the exciting coil 4a of the second relay 4. To drive the second relay 4. The monitoring means 19 monitors the input signal to the differentiation circuit 13 of the first driving means 12. In addition, the notification means 16 including a display element such as an LED or a buzzer performs notification and display according to the operation state of the control unit 5 to indicate the operation state of the device to the user.

以上のように構成された加熱調理器について、その動作、作用を説明する。   About the heating cooker comprised as mentioned above, the operation | movement and an effect | action are demonstrated.

交流電源1の電圧が制御部5に印加されることで制御電源回路10が動作を開始し制御電源が生成される。この制御電源により、マイクロコンピュータ11は動作を開始する。この時、抵抗負荷3aは第1のリレー2と第2のリレー4により交流電源1から切り離されており、これにより抵抗負荷3aの絶縁劣化による漏電等の不具合が機器未使用時に継続しないようにしている。   When the voltage of the AC power supply 1 is applied to the control unit 5, the control power supply circuit 10 starts to operate and a control power supply is generated. The microcomputer 11 starts operation by this control power supply. At this time, the resistance load 3a is disconnected from the AC power source 1 by the first relay 2 and the second relay 4, so that a fault such as leakage due to insulation deterioration of the resistance load 3a does not continue when the device is not used. ing.

使用者がスイッチ等(図示せず)を操作することで被加熱体(図示せず)を加熱すべく、加熱部3の加熱動作を開始させると、第1の駆動手段12に第1のリレー2を駆動すべく、図3(3a)に示すように、振幅の最小側が制御電源の0Vを基準とした波高値5V、周期約2ms、デューティ比約50%の矩形波をマイクロコンピュータ11の一端子より出力する。矩形波は、マイクロコンピュータ11の内部のプログラミングで出力端子のトランジスタ等をオンオフさせることで比較的簡単に出力できる波形であるので、駆動手段の構成部品点数の増加を抑制している。この矩形波が微分回路13に印加されると、第1のコンデンサ13aと抵抗13bにて該矩形波の直流成分が除去された図3(3c)に示すような電圧が抵抗13bに生成される。この電圧をダイオードにて逆阻止された状態で接続された第2のコンデンサ14aに蓄えていき図3(3d)に示すように増加して、本実施の形態では約2.5Vになると第1のトランジスタ15を導通状態にして励磁コイル2aに電流を流し第1のリレー2の接続端である接点が閉状態になる。また、図3の各部波形は、十分時間が経過すると図2に示すようになり安定する。また、前記矩形波の供給を停止すると、コンデンサ14aに蓄えていた電圧は放電され、約2.5V未満になると、トランジスタ15を非導通状態にして、第1のリレー2の接続端である接点が開状態になる。   When the user starts a heating operation of the heating unit 3 so as to heat an object to be heated (not shown) by operating a switch or the like (not shown), the first driving unit 12 causes the first relay to operate. 3, a rectangular wave having a minimum amplitude of 5 V with a reference value of 0 V of the control power supply as a reference, a period of about 2 ms, and a duty ratio of about 50% as shown in FIG. Output from the terminal. Since the rectangular wave is a waveform that can be output relatively easily by turning on and off the transistor of the output terminal by programming inside the microcomputer 11, the increase in the number of components of the driving means is suppressed. When this rectangular wave is applied to the differentiating circuit 13, a voltage as shown in FIG. 3 (3c) in which the DC component of the rectangular wave is removed by the first capacitor 13a and the resistor 13b is generated in the resistor 13b. . This voltage is stored in the second capacitor 14a connected in the reversely blocked state by the diode, and increases as shown in FIG. 3 (3d). In this embodiment, when the voltage reaches about 2.5V, the first capacitor The transistor 15 is turned on to pass a current through the exciting coil 2a, and the contact that is the connection end of the first relay 2 is closed. Further, each part waveform in FIG. 3 becomes stable as shown in FIG. 2 when a sufficient time has elapsed. When the supply of the rectangular wave is stopped, the voltage stored in the capacitor 14a is discharged. When the voltage is less than about 2.5V, the transistor 15 is turned off, and the contact which is the connection end of the first relay 2 Becomes open.

この第1のリレー2が閉じた後、所定の時間後、本実施の形態では約500ms後(リレー2接点の開状態から閉になるまでの遅延時間と、第1の駆動回路12の応答遅延時間との和より十分大きな時間として設定)に、第2のリレー4を駆動する動作に移る。これは、第1のリレー2の接点が閉じる際には零電流の閉動作とすることでアークの発生を抑
制し、第1のリレー2の接点の長寿命化或いは低接点容量化を図り、第2のリレー4の接点にだけアークを発生するようにして第2のリレー4の接点のみに耐アーク性、接点容量を強化したものを使用することで機器の低コスト化を図っている。第2のリレー4の駆動は、マイクロコンピュータ11の他端子より直流の2値の電圧、本実施の形態では5Vと0Vであり、0Vで駆動停止、5Vで駆動と言う論理としており、を出力する。マイクロコンピュータ11が5Vを出力すると第2の駆動手段17の最終段の第2のトランジスタ18が導通状態となり第2の励磁コイル4aに電流を流し第2のリレー4の接続端である接点が閉状態になり、抵抗負荷3aに通電される。この第2のリレー4を開閉制御することで、抵抗負荷3aの通電量を可変して被加熱体への加熱火力を制御している。
In this embodiment, after the first relay 2 is closed, after a predetermined time, about 500 ms later (the delay time until the relay 2 contact is closed from the open state and the response delay of the first drive circuit 12). The operation proceeds to driving the second relay 4 at a time sufficiently larger than the sum of the time. This is because when the contact of the first relay 2 is closed, a zero current closing operation is performed to suppress the generation of an arc, thereby extending the life of the contact of the first relay 2 or reducing the contact capacity. The cost of the equipment is reduced by using an arc resistance generated only at the contact point of the second relay 4 so that arc resistance and contact capacity are enhanced only at the contact point of the second relay 4. The drive of the second relay 4 is a binary voltage of direct current from the other terminal of the microcomputer 11, which is 5V and 0V in the present embodiment, the drive is stopped at 0V, and the drive is driven at 5V. To do. When the microcomputer 11 outputs 5 V, the second transistor 18 in the final stage of the second driving means 17 is turned on, current flows through the second exciting coil 4a, and the contact that is the connection end of the second relay 4 is closed. Then, the resistance load 3a is energized. By controlling the opening and closing of the second relay 4, the heating power to the heated object is controlled by changing the energization amount of the resistance load 3 a.

第1の駆動手段12は、前述のように矩形パルスを起点として微分回路13、充電回路14を経由した結果得られた電圧で最終段の第1のトランジスタ15の導通を維持する構成にしているので、微分回路13よりも前段での信号異常、例えばマイクロコンピュータ11の暴走による駆動パルス出力の0Vを含む直流電圧状態、あるいは、制御部5が印刷配線板に配置され、その印刷配線で電気的接続を形成している場合において、第1のリレー2の駆動信号系の微分回路より前段の印刷配線経路に誤動作や故障、或いは異物の付着等不具合が生じたことによる微分回路13への直流電圧出力状態では、最終段の第1のトランジスタ15は駆動されず、第1のリレー2の接続端が開に維持されるので、意図しない抵抗負荷3aの導通状態は回避され、機器の安全性が高まる。   As described above, the first driving means 12 is configured to maintain the conduction of the first transistor 15 in the final stage with the voltage obtained as a result of passing through the differentiation circuit 13 and the charging circuit 14 starting from the rectangular pulse. Therefore, a signal abnormality at a stage before the differentiation circuit 13, for example, a DC voltage state including 0V of a driving pulse output due to runaway of the microcomputer 11, or the control unit 5 is arranged on the printed wiring board, and the printed wiring is electrically In the case where the connection is formed, the DC voltage to the differentiating circuit 13 due to malfunction or failure in the printed wiring path upstream of the differentiating circuit of the drive signal system of the first relay 2 or the occurrence of a defect such as adhesion of foreign matter. In the output state, the first transistor 15 in the final stage is not driven, and the connection end of the first relay 2 is kept open. It is, increases the safety of the equipment.

また、本実施の形態では、制御回路5を印刷配線板に搭載し構成部品の電気的接続を形成しており、更に第1のリレー2の駆動信号系の微分回路13より前段の印刷配線経路を後段の印刷配線経路よりも長くしている(微分回路13を含み、この後段の回路をより第1のリレー2の極近傍に実装することで実現)ので、異物付着等により第1のリレー2の意図しない閉状態となるリスクを低減し、機器の安全性を更に高めている。   In the present embodiment, the control circuit 5 is mounted on the printed wiring board to form the electrical connection of the components, and further the printed wiring path preceding the differentiation circuit 13 of the drive signal system of the first relay 2. Is longer than the printed wiring path in the subsequent stage (including the differentiation circuit 13 and realized by mounting the subsequent circuit in the immediate vicinity of the first relay 2). 2) The risk of unintentional closing will be reduced and the safety of the equipment will be further enhanced.

モニタ手段19は、マイクロコンピュータ11が出力しているパルス電圧の周期或いは振幅と所定値以上の差があると、第1のリレー2の駆動回路側に何らかの不具合が発生していると判断して、抵抗負荷3aに通電しているもう一方の第2のリレー4の駆動を停止して抵抗負荷3aへの通電も停止する動作を行う。これにより、マイクロコンピュータ11の該信号出力端子の破壊やプログラムラッチアップ等で通常出力しているパルス電圧とずれたものになっていることをマイクロコンピュータ11で検出して、破壊していない可能性のある第2のリレー4への駆動信号出力端子の出力を0V、即ち駆動停止状態にして第2のリレー4の接点を開くように動作することで、機器の安全性を高めている。   The monitoring means 19 determines that a problem has occurred on the drive circuit side of the first relay 2 if there is a difference greater than a predetermined value from the period or amplitude of the pulse voltage output from the microcomputer 11. Then, the driving of the other second relay 4 energizing the resistance load 3a is stopped and the energization to the resistance load 3a is also stopped. Thereby, the microcomputer 11 may detect that the signal output terminal of the microcomputer 11 is deviated from the pulse voltage normally output due to destruction of the signal output terminal or program latch-up, and the possibility that the microcomputer 11 is not destroyed. By operating the output of the drive signal output terminal to the second relay 4 with 0V, that is, the drive stop state to open the contact of the second relay 4, the safety of the device is enhanced.

以上のように本実施の形態によれば、接点を接続端とする励磁式の第1のリレー2と第2のリレー4とで交流電源1と抵抗負荷3aを接続し、第1のリレー2の駆動方法は、矩形波等の周期パルス電圧を微分回路13にて直流成分を除去した電圧を充電することで得た電圧を基に駆動するようにしているので、微分回路13より前段の部分で、駆動信号系の印刷配線経路に誤動作や故障、或いは異物の付着等不具合が生じて直流的な電圧が出力され続けるような状態になった場合は、第1の駆動手段12の最終段の第1のトランジスタ15に駆動信号が伝達されず、第1のリレー2の接続端を開として交流電源1と抵抗負荷3aの接続を断ち、機器の安全性を高めることができる。   As described above, according to the present embodiment, the first relay 2 is connected to the AC power source 1 and the resistive load 3a by the first relay 2 and the second relay 4 having the contact point as the connection end. Is driven based on a voltage obtained by charging a periodic pulse voltage such as a rectangular wave with a voltage obtained by removing a DC component in the differentiating circuit 13. Thus, when a malfunction such as malfunction or failure occurs in the printed wiring path of the drive signal system, or a foreign matter adheres to the DC voltage, the final stage of the first drive means 12 is reached. The drive signal is not transmitted to the first transistor 15, the connection end of the first relay 2 is opened, the connection between the AC power supply 1 and the resistance load 3a is cut off, and the safety of the device can be improved.

尚、本実施の形態では加熱部は1つとしているが、複数の加熱部を有する場合でも同様の効果であるし、その際、第1のリレーを共通として、対応する(抵抗)負荷とそれと直列に負荷の他端をそれぞれ別のリレーとで交流電源と接続する構成とすれば、第1の駆動手段12の構成は1つのまま、同様の効果を得られることは言うまでもないことである。   In this embodiment, the number of heating units is one. However, the same effect can be obtained even when a plurality of heating units are provided. In this case, the first relay is used in common and the corresponding (resistive) load and the same are used. Needless to say, if the other end of the load is connected to the AC power supply by another relay in series, the same effect can be obtained while the configuration of the first driving means 12 remains one.

本発明の加熱調理器は、加熱部として、電気エネルギーを使用する抵抗負荷を有し、マイクロコンピュータや印刷配線板を使用して実施する形態である際に有用となるので、上記熱源を単独に使用する電気加熱調理器の他、ロースタ用のシーズヒータや、ラジェントヒータを備えたIHクッキングヒータ、オーブン用のシーズヒータ等を備えたオーブン電子レンジ等の電気調理器等に適用できる。   The heating cooker of the present invention has a resistive load that uses electrical energy as a heating unit, and is useful when the embodiment is implemented using a microcomputer or a printed wiring board. In addition to the electric heating cooker to be used, it can be applied to an electric cooker such as an oven microwave oven equipped with a sheath heater for roaster, an IH cooking heater equipped with a radiant heater, a sheathed heater for oven, and the like.

1 交流電源
2 第1のリレー
3 加熱部
3a 抵抗負荷
4 第2のリレー
5 制御部
12 第1の駆動手段
13 微分回路
13a 第1のコンデンサ
13b 抵抗
14 充電回路
14a 第2のコンデンサ
17 第2の駆動手段
19 モニタ手段
DESCRIPTION OF SYMBOLS 1 AC power supply 2 1st relay 3 Heating part 3a Resistive load 4 2nd relay 5 Control part 12 1st drive means 13 Differentiation circuit 13a 1st capacitor | condenser 13b Resistance 14 Charging circuit 14a 2nd capacitor | condenser 17 2nd capacitor | condenser Drive means 19 Monitor means

Claims (3)

加熱部と、マイクロコンピュータを有し前記加熱部の動作を制御する制御部と、を備え、前記加熱部は抵抗負荷と前記抵抗負荷の両端にそれぞれ接続し、接点を備えた第1のリレー及び第2のリレーとの直列体から成り、前記直列体と交流電源とは並列接続され、前記制御部は前記交流電源から動作電源を得て、前記第1のリレー及び前記第2のリレーを各々駆動する第1の駆動手段及び第2の駆動手段を有し、前記抵抗負荷に通電する際は前記第1のリレーを駆動して導通状態とした後に前記第2のリレーを導通・非導通とすることで、前記抵抗負荷の加熱出力を可変させると共に、前記第1の駆動手段は、前記マイクロコンピュータが出力する所定の周期及び所定の振幅のパルス電圧を印加し、抵抗と第1のコンデンサからなる微分回路を介して直流成分を除去した後、第2のコンデンサからなる充電回路にて蓄えられた電圧を基に前記第1のリレーを駆動し、前記第2の駆動手段は駆動信号伝達に、直流信号を用いて第2のリレーを駆動すると共に、前記パルス電圧の印加を停止して前記第2のコンデンサに蓄えていた電圧を放電して前記第1のリレーの駆動を停止して前記抵抗負荷を非導通にするように構成した加熱調理器。 A heating unit, and a control unit for controlling the operation of the heating unit has a microcomputer, the heating unit is connected respectively with a resistive load across said resistive load, the first relay having a contact and consists of a series of a second relay, said series body and an AC power source connected in parallel, the control unit obtains the operating power from the AC power source, said first relay and said second relay First driving means and second driving means for driving each of the first and second driving means. When energizing the resistance load, the first relay is driven to be in a conductive state, and then the second relay is turned on / off. By making the heating load variable, the heating output of the resistance load is varied, and the first driving means applies a pulse voltage having a predetermined period and a predetermined amplitude output from the microcomputer , and the resistance and the first Differential consisting of capacitors After removal of the DC component through the road, said first relay is driven based on the voltage stored in the charging circuit of a second capacitor, said second drive means, the drive signal transfer, The second relay is driven using a DC signal, the application of the pulse voltage is stopped, the voltage stored in the second capacitor is discharged, and the driving of the first relay is stopped to stop the resistance. A cooking device configured to turn off the load . 加熱部と、前記加熱部の動作を制御する制御部と、を備え、前記加熱部は抵抗負荷と前記抵抗負荷の両端にそれぞれ接続し、接点を備えた第1のリレー及び第2のリレーとの直列体から成り、前記直列体と交流電源とは並列接続され、前記制御部は前記交流電源から動作電源を得て、前記第1のリレー及び前記第2のリレーを各々駆動する第1の駆動手段及び第2の駆動手段を有し、前記抵抗負荷に通電する際は前記第1のリレーを駆動して導通状態とした後に前記第2のリレーを導通・非導通とすることで、前記抵抗負荷の加熱
出力を可変させると共に、前記第1の駆動手段は、パルス波形が矩形である所定の周期及び所定の振幅のパルス電圧を印加し、抵抗と第1のコンデンサからなる微分回路を介して直流成分を除去した後、第2のコンデンサからなる充電回路にて蓄えられた電圧を基に前記第1のリレーを駆動し、前記第2の駆動手段は駆動信号伝達に、直流信号を用いて第2のリレーを駆動すると共に、前記制御部が前記第1の駆動手段に入力される前記パルス電圧の振幅または周期を監視するモニタ手段を有し、前記制御部は、前記モニタ手段が検知した前記ルス電圧の振幅または周期が所定の範囲から外れると、前記第2の駆動手段が前記第2のリレーを開状態にして前記抵抗負荷への通電を停止するように構成した加熱調理器。
A heating unit, and a control unit for controlling the operation of the heating unit, the heating unit is connected respectively with a resistive load across said resistive load, the first relay and a second relay provided with contacts consists of a series of a, said series body and an AC power source connected in parallel, the control unit obtains the operating power from the AC power source, the respectively driving said first relay and said second relay Having a driving means and a second driving means, when energizing the resistance load, the first relay is driven to be in a conductive state, and then the second relay is turned on / off. The heating output of the resistive load is varied, and the first driving means applies a pulse voltage having a predetermined period and a predetermined amplitude in which the pulse waveform is rectangular, and a differential circuit comprising a resistor and a first capacitor After removing the DC component through Driving the first relay based on the voltage stored in the charging circuit composed of a capacitor, the second drive means, the drive signal transfer, to drive the second relay with a DC signal, has a monitoring means for monitoring the amplitude or period of the pulse voltage by the control unit is input to said first drive means, wherein the control unit, amplitude or period of the pulse voltage in which the monitoring means has detected When the value falls outside the predetermined range, the cooking device wherein the second driving means is configured to stop the power supply to the second of said resistive load relay in the open state.
少なくとも前記第1のリレーと前記第1の駆動手段を含む前記制御部の一部を印刷配線板に載置し、前記印刷配線板の印刷配線及び信号リード線にて構成要素の電気接続を成し、前記第1の駆動手段の前記微分回路より後段よりも、前記パルス電圧が印加されている前記微分回路より前段の電気接続経路を長くなるように構成した請求項1または2に記載の加熱調理器。 At least placing a portion of the control unit including the said first relay the first drive means to the printed circuit board, forming an electrical connection of the components in the printed circuit and the signal leads of the printed circuit board and, wherein said than stage subsequent to the differential circuit of the first driving means, heating according to claim 1 or 2 pulse voltage is configured to be longer the former-stage electrical connection path from said differentiating circuit is applied Cooking device.
JP2009174937A 2009-07-28 2009-07-28 Cooker Expired - Fee Related JP5413021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174937A JP5413021B2 (en) 2009-07-28 2009-07-28 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174937A JP5413021B2 (en) 2009-07-28 2009-07-28 Cooker

Publications (2)

Publication Number Publication Date
JP2011029046A JP2011029046A (en) 2011-02-10
JP5413021B2 true JP5413021B2 (en) 2014-02-12

Family

ID=43637561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174937A Expired - Fee Related JP5413021B2 (en) 2009-07-28 2009-07-28 Cooker

Country Status (1)

Country Link
JP (1) JP5413021B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549166A (en) * 1991-08-05 1993-02-26 Hitachi Ltd Dc power throw-in unit
JP3257389B2 (en) * 1996-03-06 2002-02-18 松下電器産業株式会社 Cooking device

Also Published As

Publication number Publication date
JP2011029046A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
EP1919260B1 (en) Electric device and heating cooking device
US20180259582A1 (en) Household appliance
EP2934064B1 (en) Power management for home appliances
JP3926143B2 (en) Power supply
JP5413021B2 (en) Cooker
CN102770934A (en) Circuit assembly for operating a household appliance and corresponding method
EP1988207A2 (en) A door-lock system for a household electrical appliance
JP5413022B2 (en) Cooker
JP5217779B2 (en) Cooker
JP4915186B2 (en) Cooker
JP5045143B2 (en) Induction heating device
US10692675B2 (en) Contactor having electronic coil control
JP4497237B2 (en) Induction heating device
JP3928604B2 (en) Cooker
JP3928582B2 (en) Induction heating cooker
JPH11260540A (en) Induction heating cooking device
JP4946140B2 (en) Electrical equipment
KR100347103B1 (en) Relay Protection Method used Triac
JP2008258049A (en) Heating cooker
JP4301114B2 (en) Induction heating device
JP2003163072A (en) Heat cooker
WO2018135036A1 (en) Heating device and relay switching control method
KR101059016B1 (en) Microwave power supply circuit
JP2003123962A (en) Microwave oven
CN111799130A (en) Electromagnetic relay contact or coil abnormity monitoring circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

LAPS Cancellation because of no payment of annual fees