JP5412853B2 - Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery - Google Patents

Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery Download PDF

Info

Publication number
JP5412853B2
JP5412853B2 JP2009019347A JP2009019347A JP5412853B2 JP 5412853 B2 JP5412853 B2 JP 5412853B2 JP 2009019347 A JP2009019347 A JP 2009019347A JP 2009019347 A JP2009019347 A JP 2009019347A JP 5412853 B2 JP5412853 B2 JP 5412853B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
mass
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019347A
Other languages
Japanese (ja)
Other versions
JP2010177079A (en
Inventor
英郎 坂田
明天 高
博之 有馬
瞳 中澤
俊郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009019347A priority Critical patent/JP5412853B2/en
Publication of JP2010177079A publication Critical patent/JP2010177079A/en
Application granted granted Critical
Publication of JP5412853B2 publication Critical patent/JP5412853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池の正極の製造方法、および正極ならびにリチウム二次電池に関する。   The present invention relates to a method for producing a positive electrode of a lithium secondary battery, and a positive electrode and a lithium secondary battery.

リチウム二次電池の正極は、正極活物質および結着剤を水性分散媒に混練分散させたペーストを集電体に塗工し乾燥して製造されている。正極活物質としてはリチウム含有遷移金属複合酸化物が有用であり、結着剤としてはポリテトラフルオロエチレン(PTFE)が使用され、集電体としてはアルミニウム箔に代表される金属箔が用いられている。しかし、PTFEは正極活物質との接着性は良好であるが集電体との接着性に難がある。また、リチウム含有遷移金属複合酸化物は硬い材料であるため、正極の柔軟性を損なう傾向にある。   A positive electrode of a lithium secondary battery is manufactured by applying a paste obtained by kneading and dispersing a positive electrode active material and a binder in an aqueous dispersion medium to a current collector and drying it. A lithium-containing transition metal composite oxide is useful as the positive electrode active material, polytetrafluoroethylene (PTFE) is used as the binder, and a metal foil typified by aluminum foil is used as the current collector. Yes. However, although PTFE has good adhesion to the positive electrode active material, it has difficulty in adhesion to the current collector. Further, since the lithium-containing transition metal composite oxide is a hard material, it tends to impair the flexibility of the positive electrode.

これらの点を、特許文献1では、200〜400℃で接着力が低下する結着剤A(アクリル系ゴム質共重合体やゴム系重合体)と200〜400℃で接着力が低下しない結着剤B(PTFE、FEP、PFAなど)を併用し、塗工時の集電体との接着性を結着剤Aで確保した後、200℃以上で熱処理することにより結着剤Aを分解除去して集電体との接着力を低下させることで、正極の柔軟性を向上させている。   According to Patent Document 1, these points are the binding agent A (acrylic rubbery copolymer or rubber polymer) whose adhesive strength decreases at 200 to 400 ° C. and the adhesive strength which does not decrease at 200 to 400 ° C. Adhesive B (PTFE, FEP, PFA, etc.) is used in combination, and adhesiveness with the current collector during coating is secured with binder A, and then heat-treated at 200 ° C. or higher to decompose binder A The flexibility of the positive electrode is improved by removing and reducing the adhesive force with the current collector.

特開2007−128660号公報JP 2007-128660 A

しかし、特許文献1に提案されている技術では、200℃以上の温度での熱処理が必要となり、製造設備やエネルギーコストに課題がある。   However, the technique proposed in Patent Document 1 requires heat treatment at a temperature of 200 ° C. or higher, and there are problems in manufacturing equipment and energy costs.

本発明は、比較的低い温度での熱処理を行うことで充分な接着力を確保でき、しかもリチウム二次電池特性に悪影響を与えない正極を提供することを目的とする。   An object of the present invention is to provide a positive electrode that can ensure a sufficient adhesive force by performing a heat treatment at a relatively low temperature and that does not adversely affect the characteristics of the lithium secondary battery.

本発明は、リチウム含有遷移金属複合酸化物(a)、ポリテトラフルオロエチレン(b)、アクリル酸系樹脂(c)および水性分散媒(d)を含むリチウム二次電池用正極形成ペーストを集電体に塗工し、200℃未満の温度にて熱処理する工程を含むリチウム二次電池の正極の製造方法に関する。   The present invention collects a positive electrode-forming paste for a lithium secondary battery containing a lithium-containing transition metal composite oxide (a), polytetrafluoroethylene (b), an acrylic resin (c) and an aqueous dispersion medium (d). The present invention relates to a method for producing a positive electrode of a lithium secondary battery including a step of applying a heat treatment at a temperature of less than 200 ° C.

リチウム含有遷移金属複合酸化物(a)としては、リチウム含有遷移金属複合酸化物が、式(1):LiaMn2-b1 b4(式中、0.9≦a;0≦b≦1.5;M1はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガン複合酸化物、式(2):LiNi1-c2 c2(式中、0≦c≦0.5;M2はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、またはLiCo1-d3 d2(式中、0≦d≦0.5;M3はFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が好ましく、なかでも、LiCoO2、LiNiO2、LiMn24、LiNi0.8Co0.15Al0.052、またはLiNi1/3Co1/3Mn1/32が特に好ましい。 As the lithium-containing transition metal composite oxide (a), a lithium-containing transition metal composite oxide is represented by the formula (1): Li a Mn 2-b M 1 b O 4 (where 0.9 ≦ a; 0 ≦ b ≦ 1.5; M 1 is selected from the group consisting of Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge. Lithium-manganese composite oxide represented by formula (2): LiNi 1-c M 2 c O 2 (where 0 ≦ c ≦ 0.5; M 2 is Fe, Co, Lithium nickel represented by Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge) the composite oxide or LiCo 1-d M 3 d O 2, ( wherein, 0 ≦ d ≦ 0.5; M 3 is Fe, Ni, Mn Lithium-cobalt composite oxidation represented by Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge) Of these, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNi 1/3 Co 1/3 Mn 1/3 O 2 are particularly preferable.

アクリル酸系樹脂(c)としては、ポリアクリル酸、ポリアクリル酸アンモニウム、ポリアクリル酸ナトリウム、アクリル酸系共重合体のアンモニウム塩およびアクリル酸系共重合体のナトリウム塩よりなる群から選ばれる少なくとも1種であることが、集電体との接着性が良好なうえに、ペーストの安定性や耐酸化性に優れる点から好ましい。   The acrylic acid resin (c) is at least selected from the group consisting of polyacrylic acid, ammonium polyacrylate, sodium polyacrylate, an ammonium salt of an acrylic acid copolymer, and a sodium salt of an acrylic acid copolymer. One type is preferable from the viewpoints of excellent adhesion to the current collector and excellent paste stability and oxidation resistance.

本発明はまた、本発明の製造方法により得られるリチウム二次電池の正極、さらには正極、負極および非水電解液を備えてなり、該正極が本発明の正極であるリチウム二次電池にも関する。   The present invention also includes a positive electrode of a lithium secondary battery obtained by the production method of the present invention, and further includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the positive electrode is a positive electrode of the present invention. Related.

本発明によれば、比較的低い温度での熱処理を行うことで充分な接着力を確保でき、しかもリチウム二次電池特性に悪影響を与えない正極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, sufficient adhesive force can be ensured by performing the heat processing at a comparatively low temperature, and the positive electrode which does not have a bad influence on a lithium secondary battery characteristic can be provided.

酸化電位を測定するために、参考例でLSV測定したポリアクリル酸系樹脂(A−10H)とポリフッ化ビニリデン(PVdF)を用いた電極の電位と電流の関係を示すチャートである。It is a chart which shows the relationship between the electric potential of the electrode using the polyacrylic acid-type resin (A-10H) and polyvinylidene fluoride (PVdF) which measured LSV in the reference example in order to measure an oxidation potential.

本発明のリチウム二次電池の正極の製造方法は、リチウム含有遷移金属複合酸化物(a)、ポリテトラフルオロエチレン(b)、アクリル酸系樹脂(c)および水性分散媒(d)を含むリチウム二次電池用正極形成ペーストを集電体に塗工し、200℃未満の温度にて熱処理する工程を含む。   The method for producing a positive electrode of a lithium secondary battery according to the present invention includes a lithium-containing transition metal composite oxide (a), polytetrafluoroethylene (b), an acrylic acid resin (c), and an aqueous dispersion medium (d). It includes a step of applying a positive electrode forming paste for a secondary battery to a current collector and heat-treating it at a temperature of less than 200 ° C.

まず、リチウム二次電池用正極形成ペーストについて説明する。   First, the positive electrode forming paste for a lithium secondary battery will be described.

(a)リチウム含有遷移金属複合酸化物
リチウム含有遷移金属複合酸化物としては、式(1):LiaMn2-b1 b4(式中、0.9≦a;0≦b≦1.5;M1はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガン複合酸化物、式(2):LiNi1-c2 c2(式中、0≦c≦0.5;M2はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、またはLiCo1-d3 d2(式中、0≦d≦0.5;M3はFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が好ましく例示できる。
(A) Lithium-containing transition metal composite oxide As the lithium-containing transition metal composite oxide, the formula (1): Li a Mn 2-b M 1 b O 4 (where 0.9 ≦ a; 0 ≦ b ≦ 1.5; M 1 is at least one selected from the group consisting of Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge Lithium-manganese composite oxide represented by the formula (2): LiNi 1-c M 2 c O 2 (where 0 ≦ c ≦ 0.5; M 2 is Fe, Co, Mn, Lithium / nickel composite oxidation represented by Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge) Or LiCo 1-d M 3 d O 2 (where 0 ≦ d ≦ 0.5; M 3 is Fe, Ni, Mn, C lithium / cobalt composite oxidation represented by at least one metal selected from the group consisting of u, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge) A thing can be illustrated preferably.

なかでも具体的には、LiCoO2、LiMnO2、LiNiO2、LiMn24、LiNi0.8Co0.15Al0.052、またはLiNi1/3Co1/3Mn1/32が、エネルギー密度が高く、高出力なリチウム二次電池を提供できる点から好ましい。 Specifically, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNi 1/3 Co 1/3 Mn 1/3 O 2 has an energy density. It is preferable from the viewpoint of providing a high and high output lithium secondary battery.

リチウム含有遷移金属複合酸化物(a)の配合量は、リチウム二次電池用正極形成ペースト全体の50〜99質量%、さらには80〜99質量%が、電池容量が高い点から好ましい。   The blending amount of the lithium-containing transition metal composite oxide (a) is preferably 50 to 99% by mass, more preferably 80 to 99% by mass, based on the whole positive electrode forming paste for a lithium secondary battery, from the viewpoint of high battery capacity.

(b)PTFE
PTFE(b)は、主として正極活物質であるリチウム含有遷移金属複合酸化物(a)間の接着のための結着剤として用いられる。PTFEはテトラフルオロエチレンの単独重合体であってもよいし、ヘキサフルオロプロピレンやパーフルオロ(アルキルビニルエーテル)などの他の単量体が少量共重合された変性PTFEであってもよい。
(B) PTFE
PTFE (b) is mainly used as a binder for adhesion between lithium-containing transition metal composite oxides (a) that are positive electrode active materials. PTFE may be a tetrafluoroethylene homopolymer or a modified PTFE obtained by copolymerizing a small amount of other monomers such as hexafluoropropylene or perfluoro (alkyl vinyl ether).

PTFE(b)の配合量は、リチウム二次電池用正極形成ペースト全体の0.5〜15質量%、さらには0.5〜10質量%が、電池容量が高い点から好ましい。   The blending amount of PTFE (b) is preferably 0.5 to 15% by mass, more preferably 0.5 to 10% by mass, based on the total positive electrode forming paste for a lithium secondary battery, from the viewpoint of high battery capacity.

(c)アクリル酸系樹脂
アクリル酸系樹脂(c)も結着剤であるが、主としてリチウム含有遷移金属複合酸化物(a)やPTFE(b)と集電体との接着力の増強用として機能する。
(C) Acrylic acid-based resin Acrylic acid-based resin (c) is also a binder, but mainly for enhancing adhesion between lithium-containing transition metal composite oxide (a) or PTFE (b) and the current collector. Function.

アクリル酸系樹脂(ゴム質ではない)としては、酸化電位が高いものが好ましく、たとえばポリアクリル酸、ポリアクリル酸アンモニウム、ポリアクリル酸ナトリウム、アクリル酸系共重合体のアンモニウム塩およびアクリル酸系共重合体のナトリウム塩よりなる群から選ばれる少なくとも1種が好ましく例示できる。これらの対リチウム換算の酸化電位は4.3V以上である。また、ポリアクリル酸、アクリル酸系共重合体のアンモニウム塩およびアクリル酸系共重合体のナトリウム塩の市販品としては、たとえば東亞合成(株)製のA−10H、A−93、A−7100、A−30、A−7185などが例示できる。なお、本発明において「アクリル酸系」とは、アクリル酸に限らず、メタクリル酸も含む概念である。   As the acrylic resin (not rubbery), those having a high oxidation potential are preferable. For example, polyacrylic acid, ammonium polyacrylate, sodium polyacrylate, ammonium salts of acrylic acid copolymers, and acrylic acid copolymers. A preferred example is at least one selected from the group consisting of sodium salts of polymers. These oxidation potentials in terms of lithium are 4.3 V or more. Examples of commercially available products of polyacrylic acid, ammonium salt of acrylic acid copolymer and sodium salt of acrylic acid copolymer include, for example, A-10H, A-93, and A-7100 manufactured by Toagosei Co., Ltd. , A-30, A-7185, and the like. In the present invention, “acrylic acid type” is a concept including not only acrylic acid but also methacrylic acid.

アクリル酸系樹脂(c)の配合量は、リチウム二次電池用正極形成ペースト全体の0.2〜20質量%、さらには0.5〜10質量%が好ましい。配合量が少なくなると正極集電体との接着性が弱くなり、多くなりすぎるとペーストの粘度が高くなりすぎて、塗工しにくくなるほか、活物質表面を樹脂が覆い抵抗が高くなり電池容量が小さくなる傾向がある。   The blending amount of the acrylic resin (c) is preferably 0.2 to 20% by mass, more preferably 0.5 to 10% by mass, based on the whole positive electrode forming paste for a lithium secondary battery. When the amount is too small, the adhesion to the positive electrode current collector is weakened. When the amount is too large, the paste becomes too viscous and difficult to apply, and the active material surface is covered with resin, resulting in high resistance and battery capacity. Tends to be smaller.

(d)水性分散媒
水性分散媒(d)としては、水が最も好ましい。また、エタノールなどの親水性の有機溶媒を併用してもよい。
(D) Aqueous dispersion medium As the aqueous dispersion medium (d), water is most preferable. Moreover, you may use together hydrophilic organic solvents, such as ethanol.

水性分散媒(d)の配合量は、リチウム二次電池用正極形成ペーストの残余の量であり、塗工がしやすくなる量とすればよい。   The amount of the aqueous dispersion medium (d) is the remaining amount of the positive electrode forming paste for a lithium secondary battery, and may be an amount that facilitates coating.

(e)他の成分
必要に応じて、成分(a)〜(d)に加えて、リチウム二次電池の正極の製造に使用する添加剤を配合することができる。そうした添加剤としては、たとえば導電材、増粘剤、他の重合体、界面活性剤などがあげられる。
(E) Other component In addition to component (a)-(d), the additive used for manufacture of the positive electrode of a lithium secondary battery can be mix | blended as needed. Examples of such additives include conductive materials, thickeners, other polymers, and surfactants.

導電材としては、たとえばアセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック;グラファイト、炭素繊維などの炭素質材料があげられる。   Examples of the conductive material include conductive carbon black such as acetylene black and ketjen black; and carbonaceous materials such as graphite and carbon fiber.

増粘剤としては、カルボキシメチルセルロース(CMC)などが例示できる。なお、アクリル酸系樹脂(c)にはペーストを増粘する作用もあり、増粘剤を別途添加しなくても安定したペーストを調製することができる。   Examples of the thickener include carboxymethyl cellulose (CMC). The acrylic resin (c) also has an action of thickening the paste, and a stable paste can be prepared without adding a thickener separately.

他の重合体としては、従来からリチウム二次電池用正極に配合されている各種の樹脂やゴムがあげられ、本発明の効果を損なわない量で配合してもよい。具体的には、たとえばフッ素樹脂(フッ化ビニリデン(VdF)/ヘキサフルオロプロピレン(HFP)共重合体、テトラフルオロエチレン(TFE)/VdF共重合体、VdF/TFE/HFP共重合体、TFE/エチレン系共重合体、TFE/プロピレン系共重合体など)またはフッ素ゴムなどがあげられる。   Examples of other polymers include various resins and rubbers that have been conventionally blended in positive electrodes for lithium secondary batteries, and may be blended in amounts that do not impair the effects of the present invention. Specifically, for example, fluororesin (vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, tetrafluoroethylene (TFE) / VdF copolymer, VdF / TFE / HFP copolymer, TFE / ethylene). Copolymer, TFE / propylene copolymer, etc.) or fluororubber.

これらの成分を適宜混合し、撹拌などによって均一の混合物としてリチウム二次電池用正極形成ペーストが調製される。   These components are mixed as appropriate, and a positive electrode forming paste for a lithium secondary battery is prepared as a uniform mixture by stirring or the like.

本発明の製造方法では、このリチウム二次電池用正極形成ペーストを集電体に塗工し、200℃未満の温度で熱処理する。   In the production method of the present invention, the positive electrode forming paste for a lithium secondary battery is applied to a current collector and heat-treated at a temperature of less than 200 ° C.

集電体としては、化学的に安定な電子伝導体であれば特に限定されない。かかる集電体を構成する材料としては、例えば、アルミニウムやその合金、ステンレス鋼、ニッケルやその合金、チタンやその合金、炭素、導電性樹脂などの他に、アルミニウムまたはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、アルミニウムおよびアルミニウム合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることにより接着性があがるため好ましい。   The current collector is not particularly limited as long as it is a chemically stable electron conductor. Examples of the material constituting the current collector include aluminum and its alloys, stainless steel, nickel and its alloys, titanium and its alloys, carbon, conductive resin, etc., as well as carbon or aluminum on the surface of aluminum or stainless steel. A material obtained by treating titanium is used. Of these, aluminum and aluminum alloys are particularly preferable. These materials can also be used after oxidizing the surface. In addition, the surface of the current collector is preferably provided with irregularities on the surface, so that the adhesiveness is improved.

塗工方法としては、通常の方法でよく、たとえばスリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、およびディップコーターなどを用いて行うことができる。   As a coating method, a normal method may be used, and for example, a slit die coater, a reverse roll coater, a lip coater, a blade coater, a knife coater, a gravure coater, and a dip coater can be used.

集電体にペーストが塗工された正極は、熱処理に供される。   The positive electrode with the paste applied to the current collector is subjected to heat treatment.

本発明において熱処理は200℃未満で行われる。200℃以上、特に300℃以上で熱処理すると製造設備やエネルギーコストで不利となる。好ましい上限は180℃、さらには160℃である。熱処理温度が低すぎると処理に時間が掛かりすぎるので、好ましい下限は130℃、さらには140℃である。   In the present invention, the heat treatment is performed at less than 200 ° C. Heat treatment at 200 ° C. or higher, particularly 300 ° C. or higher is disadvantageous in terms of manufacturing equipment and energy costs. A preferable upper limit is 180 ° C., further 160 ° C. If the heat treatment temperature is too low, the treatment takes too much time, so the preferred lower limit is 130 ° C., further 140 ° C.

熱処理は、電極中に水分がなくなればよいので、塗工後直ちに行ってもよいし、圧延(プレス)した後に行ってもよいし、自然乾燥させた後に行ってもよい。また、熱処理を2回以上行ってもよい。   The heat treatment may be performed immediately after coating because it is sufficient if the electrode has no moisture, may be performed after being rolled (pressed), or may be performed after being naturally dried. Moreover, you may perform heat processing 2 times or more.

熱処理時間は温度によって異なるが、通常、15分間〜7時間程度である。   The heat treatment time varies depending on the temperature, but is usually about 15 minutes to 7 hours.

熱処理された正極は、通常、要すればさらに圧延処理された後、切断処理され、所定の厚さと寸法に加工されてリチウム二次電池用正極が得られる。圧延処理および切断処理は、通常の方法でよい。   The heat-treated positive electrode is usually further subjected to a rolling treatment if necessary, and then cut and processed into a predetermined thickness and size to obtain a positive electrode for a lithium secondary battery. The rolling process and the cutting process may be ordinary methods.

本発明は、本発明の製造方法で製造されたリチウム二次電池用正極にも関する。本発明のリチウム二次電池用正極は、集電体に、リチウム含有遷移金属複合酸化物(a)、要すれば他の成分(e)が、結着剤であるPTFE(b)とアクリル酸系樹脂(c)で接着されたものである。   The present invention also relates to a positive electrode for a lithium secondary battery manufactured by the manufacturing method of the present invention. In the positive electrode for a lithium secondary battery of the present invention, the current collector includes a lithium-containing transition metal composite oxide (a), and if necessary, the other component (e) includes a binder PTFE (b) and acrylic acid. Bonded with a system resin (c).

この本発明の正極は集電体との接着力に優れているため、正極の柔軟性が向上しており、巻回型のリチウム二次電池のように巻いても割れや脱落は生じない。   Since the positive electrode of the present invention is excellent in adhesive strength with the current collector, the flexibility of the positive electrode is improved, and even if it is wound like a wound type lithium secondary battery, it does not break or fall off.

また、本発明はリチウム二次電池にも関する。本発明のリチウム二次電池は、正極、負極および非水電解液を備えており、特に正極として本発明のリチウム二次電池用正極を用いたものである。   The present invention also relates to a lithium secondary battery. The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. In particular, the positive electrode for a lithium secondary battery of the present invention is used as the positive electrode.

本発明で負極に使用する負極活物質としては炭素材料があげられ、リチウムイオンを挿入可能な金属酸化物や金属窒化物などもあげられる。炭素材料としては天然黒鉛、人造黒鉛、熱分解炭素類、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛などがあげられ、リチウムイオンを挿入可能な金属酸化物としては、スズやケイ素、チタンを含む金属化合物、たとえば酸化スズ、酸化ケイ素、チタン酸リチウムなどがあげられ、金属窒化物としては、Li2.6Co0.4Nなどがあげられる。 Examples of the negative electrode active material used for the negative electrode in the present invention include carbon materials, such as metal oxides and metal nitrides into which lithium ions can be inserted. Examples of carbon materials include natural graphite, artificial graphite, pyrolytic carbons, cokes, mesocarbon microbeads, carbon fibers, activated carbon, and pitch-coated graphite. Metal oxides capable of inserting lithium ions include tin and Examples of the metal compound include silicon and titanium, such as tin oxide, silicon oxide, and lithium titanate. Examples of the metal nitride include Li 2.6 Co 0.4 N.

非水電解液も、電解質塩と電解質塩の溶解用の有機溶媒を含む電解液でリチウム二次電池に使用される非水電解液であれば特に制限されない。   The non-aqueous electrolyte is not particularly limited as long as it is an electrolyte containing an electrolyte salt and an organic solvent for dissolving the electrolyte salt and is used in a lithium secondary battery.

電解質としては、たとえばLiPF6、LiBF4、LiN(SO2CF32、LiN(SO2252などの公知の電解質塩が例示でき、有機溶媒としては、たとえばエチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどの炭化水素系溶媒;HCF2CF2CH2OCF2CF2H、CF3COOCF3、CF3COOCH2CF3などのフッ素系溶媒、これらの混合溶媒などが例示できるが、これらのみに限定されるものではない。 Examples of the electrolyte include known electrolyte salts such as LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2. Examples of the organic solvent include ethylene carbonate and dimethyl Hydrocarbon solvents such as carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate; fluorine solvents such as HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 COOCF 3 , CF 3 COOCH 2 CF 3 , and mixtures thereof Although a solvent etc. can be illustrated, it is not limited only to these.

本発明のリチウム二次電池にはセパレータを配置してもよい。セパレータとしては特に制限はなく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。また、Liデントライトによって起こる短絡などの安全性向上を目的として作られたセパレータ上にアラミド樹脂を塗布したフィルムあるいはポリアミドイミドおよびアルミナフィラーを含む樹脂をセパレータ上に塗布したフィルムなどもあげられる(たとえば特開2007−299612号公報、特開2007−324073号公報参照)。   A separator may be disposed in the lithium secondary battery of the present invention. There is no restriction | limiting in particular as a separator, A microporous polyethylene film, a microporous polypropylene film, a microporous ethylene propylene copolymer film, a microporous polypropylene / polyethylene two-layer film, a microporous polypropylene / polyethylene / polypropylene three-layer film Etc. In addition, a film in which an aramid resin is coated on a separator made for the purpose of improving safety such as a short circuit caused by Li dentrite, or a film in which a resin containing polyamideimide and an alumina filler is coated on a separator can be given (for example, JP, 2007-299612, A, JP, 2007-324073, A).

本発明のリチウム二次電池は、ハイブリッド自動車用や分散電源用の大型リチウム二次電池、携帯電話、携帯情報端末などの小型のリチウム二次電池などとして有用である。   The lithium secondary battery of the present invention is useful as a large-sized lithium secondary battery for a hybrid vehicle or a distributed power source, a small-sized lithium secondary battery such as a mobile phone or a personal digital assistant.

つぎに実施例をあげて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

参考例
ポリアクリル酸樹脂、および結着剤として汎用されているPVdFの酸化電位をつぎの要領で調べた。
Reference Example The oxidation potential of polyacrylic acid resin and PVdF, which is widely used as a binder, was examined in the following manner.

リニアースイープボルタンメトリー(LSV)により、BAS社製3極式密閉式ガラスセルを用い、作用極として、アセチレンブラックとポリアクリル酸樹脂(東亞合成(株)製のA−10H)の80:20(質量比)の混合物を塗布量2.5mg、面積0.25cm2になるように塗布したものを使用した。また、対極および参照極にはリチウム金属を用い、電解液としてはLiPF6を電解質塩とするエチレンカーボネート/ジエチルカーボネート(=30/70(体積比))溶液(濃度1.0モル/リットル)を用いた。測定はポテンショ−ガルバノスタット(ソーラトロン社の1287型)を用い、25℃で走査速度5mV/secにて行った。酸化電位は、電流値が0.5mA/cm2に達した電圧とした。 80:20 (mass) of acetylene black and polyacrylic acid resin (A-10H made by Toagosei Co., Ltd.) as a working electrode using a BAS 3-pole sealed glass cell by linear sweep voltammetry (LSV) Ratio) was applied so that the coating amount was 2.5 mg and the area was 0.25 cm 2 . In addition, a lithium metal is used for the counter electrode and the reference electrode, and an ethylene carbonate / diethyl carbonate (= 30/70 (volume ratio)) solution (concentration: 1.0 mol / liter) containing LiPF 6 as an electrolyte salt is used as the electrolyte. Using. The measurement was performed using a potentio-galvanostat (1287 type manufactured by Solartron) at 25 ° C. and a scanning speed of 5 mV / sec. The oxidation potential was a voltage at which the current value reached 0.5 mA / cm 2 .

また、対照として、ポリアクリル酸樹脂(A−10H)に代えて、PVdF((株)クレハ製の#1120)を用いた場合についても、酸化電位を調べた。結果を図1に示す。   Further, as a control, the oxidation potential was also examined when PVdF (# 1120 manufactured by Kureha Co., Ltd.) was used instead of the polyacrylic acid resin (A-10H). The results are shown in FIG.

図1から、ポリアクリル酸樹脂は、汎用されているPVdFの酸化電位(4.3V)と同等以上の高い酸化電位(4.5V)を有していることが分かる。   FIG. 1 shows that the polyacrylic acid resin has a high oxidation potential (4.5 V) equal to or higher than the oxidation potential (4.3 V) of PVdF, which is widely used.

実施例1
90質量部のLiNi1/3Co1/3Mn1/32(日本化学工業(株)製)、3質量部のアセチレンブラック(電化ブラック工業(株)製)、16.1質量部のポリアクリル酸樹脂水溶液(商品名:東亞合成(株)製のA−10H。固形分含量24.9質量%)、94.9質量部の水を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の正極形成ペーストを調製した。このペーストの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、ポリアクリル酸樹脂が4質量%、PTFEが3質量%であった。
Example 1
90 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of acetylene black (manufactured by Denki Black Industry Co., Ltd.), 16.1 parts by mass of Polyacrylic acid resin aqueous solution (trade name: A-10H manufactured by Toagosei Co., Ltd., solid content 24.9% by mass), 94.9 parts by mass of water was stirred with a double arm kneader, 5.0 parts by mass of an aqueous PTFE suspension (solid content: 60% by mass) was added to prepare a positive electrode forming paste having a solid content of 50% by mass. The proportion of each component of the paste (in the solid content) is as follows: LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 90% by mass, acetylene black is 3% by mass, polyacrylic acid resin is 4% by mass, and PTFE is It was 3 mass%.

得られたペーストを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained paste was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

実施例2
ポリアクリル酸樹脂水溶液(A−10H)に代えて、ポリアクリル酸アンモニウム塩水溶液(商品名:東亞合成(株)製のA−30。固形分含量30.9質量%)を12.9質量部用いたほかは実施例1と同様にして正極形成ペーストを調製した。このペーストの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、ポリアクリル酸アンモニウム塩が4質量%、PTFEが3質量%であった。
Example 2
In place of the polyacrylic acid resin aqueous solution (A-10H), 12.9 parts by mass of an aqueous solution of ammonium polyacrylate (trade name: A-30 manufactured by Toagosei Co., Ltd., solid content 30.9% by mass) A positive electrode forming paste was prepared in the same manner as in Example 1 except that it was used. The proportion of each component of the paste (in the solid content) is 90% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, 4% by mass for ammonium polyacrylate, PTFE Was 3% by mass.

得られたペーストを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained paste was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

実施例3
ポリアクリル酸樹脂水溶液(A−10H)に代えて、アクリル酸系共重合体アンモニウム塩水溶液(商品名:東亞合成(株)製のA−93。固形分含量31.7質量%)を13.0質量部用いたほかは実施例1と同様にして正極形成ペーストを調製した。このペーストの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、アクリル酸系共重合体アンモニウム塩が4質量%、PTFEが3質量%であった。
Example 3
Instead of the polyacrylic acid resin aqueous solution (A-10H), an acrylic acid copolymer ammonium salt aqueous solution (trade name: A-93 manufactured by Toagosei Co., Ltd., solid content 31.7% by mass) is used. A positive electrode forming paste was prepared in the same manner as in Example 1 except that 0 part by mass was used. The proportion of each component of the paste (in the solid content) is 90% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, and 4% for ammonium salt of acrylic acid copolymer. %, PTFE was 3 mass%.

得られたペーストを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained paste was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

実施例4
実施例1において、熱処理温度を160℃にしたほかは同様にしてシート状の正極を作製した。
Example 4
A sheet-like positive electrode was produced in the same manner as in Example 1 except that the heat treatment temperature was changed to 160 ° C.

実施例5
実施例1において、熱処理温度を140℃にしたほかは同様にしてシート状の正極を作製した。
Example 5
A sheet-like positive electrode was produced in the same manner as in Example 1, except that the heat treatment temperature was 140 ° C.

実施例6
実施例1において、LiNi1/3Co1/3Mn1/32に代えて、LiCoO2を用いたほかは同様にして正極形成ペーストを調製し、さらに実施例1と同様にしてシート状の正極を作製した。
Example 6
A positive electrode forming paste was prepared in the same manner as in Example 1 except that LiCoO 2 was used instead of LiNi 1/3 Co 1/3 Mn 1/3 O 2. A positive electrode was prepared.

実施例7
実施例1において、LiNi1/3Co1/3Mn1/32に代えて、LiMn24を用いたほかは同様にして正極形成ペーストを調製し、さらに実施例1と同様にしてシート状の正極を作製した。
Example 7
In Example 1, a positive electrode forming paste was prepared in the same manner as in Example 1 except that LiMn 2 O 4 was used instead of LiNi 1/3 Co 1/3 Mn 1/3 O 2. A sheet-like positive electrode was produced.

実施例8
84質量部のLiNi1/3Co1/3Mn1/32(日本化学工業(株)製)、3質量部のアセチレンブラック(電化ブラック工業(株)製)、40.2質量部のポリアクリル酸樹脂水溶液(商品名:東亞合成(株)製のA−10H。固形分含量24.9質量%)、83.8質量部の水を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の正極形成ペーストを調製した。このペーストの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が84質量%、アセチレンブラックが3質量%、ポリアクリル酸樹脂が10質量%、PTFEが3質量%であった。
Example 8
84 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of acetylene black (manufactured by Denka Black Industry Co., Ltd.), 40.2 parts by mass of An aqueous polyacrylic acid resin solution (trade name: A-10H manufactured by Toagosei Co., Ltd., solid content 24.9% by mass), 83.8 parts by mass of water were stirred with a double-arm kneader, and 5.0 parts by mass of an aqueous PTFE suspension (solid content: 60% by mass) was added to prepare a positive electrode forming paste having a solid content of 50% by mass. The proportion of each component (in the solid content) of this paste is 84% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, 10% by mass for polyacrylic resin, and PTFE It was 3 mass%.

得られたペーストを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained paste was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

実施例9
93.5質量部のLiNi1/3Co1/3Mn1/32(日本化学工業(株)製)、3質量部のアセチレンブラック(電化ブラック工業(株)製)、2.0質量部のポリアクリル酸樹脂水溶液(商品名:東亞合成(株)製のA−10H。固形分含量24.9質量%)、103質量部の水を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の正極形成ペーストを調製した。このペーストの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が93.5質量%、アセチレンブラックが3質量%、ポリアクリル酸樹脂が0.5質量%、PTFEが3質量%であった。
Example 9
93.5 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of acetylene black (manufactured by Denka Black Industry Co., Ltd.), 2.0 masses Part of a polyacrylic acid resin aqueous solution (trade name: A-10H manufactured by Toagosei Co., Ltd., solid content 24.9% by mass) and 103 parts by mass of water were stirred with a double-arm kneader, 5.0 parts by mass of an aqueous PTFE suspension (solid content: 60% by mass) was added to prepare a positive electrode forming paste having a solid content of 50% by mass. The ratio of each component of the paste (in the solid content) was 93.5% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, and 0.5% for polyacrylic acid resin. %, PTFE was 3 mass%.

得られたペーストを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained paste was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

比較例1
90質量部のLiNi1/3Co1/3Mn1/32(日本化学工業(株)製)、3質量部のアセチレンブラック(電化ブラック工業(株)製)、17質量部のTFE/HFP共重合体(FEP)水性分散液(ダイキン工業(株)製のND−1。固形分含量20質量%)、60質量部のCMCのナトリウム塩水溶液(商品名:第一工業製薬(株)製のセロゲン4H。固形分含量1質量%)を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の正極形成ペーストを調製した。このペーストの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、CMCのナトリウム塩が0.6質量%、FEPが3.4質量%、PTFEが3質量%であった。
Comparative Example 1
90 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of acetylene black (manufactured by Denki Black Industry Co., Ltd.), 17 parts by mass of TFE / HFP copolymer (FEP) aqueous dispersion (ND-1 manufactured by Daikin Industries, Ltd., solid content 20% by mass), 60 parts by mass of CMC sodium salt aqueous solution (trade name: Daiichi Kogyo Seiyaku Co., Ltd.) Serogen 4H manufactured by Solid Arm Co., Ltd. (solid content 1% by mass) was stirred with a double-arm kneader, and further 5.0 parts by mass of an aqueous PTFE suspension (solid content 60% by mass) was added. A positive electrode forming paste having a content of 50% by mass was prepared. The ratio of each component of the paste (in the solid content) is 90% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, 0.6% by mass for sodium salt of CMC, FEP was 3.4% by mass and PTFE was 3% by mass.

得られたペーストを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の比較用正極を作製した。   The obtained paste was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A comparative positive electrode was produced.

試験例1(柔軟性の評価:巻き付け試験)
各実施例および比較例で作製したシート状の正極を直径2mmの円筒に巻き付けた後広げ、正極の塗膜のクラックの発生を目視で調べた。結果を表1に示す。
Test Example 1 (Evaluation of flexibility: winding test)
The sheet-like positive electrode prepared in each Example and Comparative Example was wound around a cylinder having a diameter of 2 mm and then spread, and the occurrence of cracks in the positive electrode coating film was visually examined. The results are shown in Table 1.

表1の結果から、本発明の正極が柔軟性に富むことが分かる。   From the results in Table 1, it can be seen that the positive electrode of the present invention is rich in flexibility.

試験例2(接着性の評価:粘着テープ剥離試験)
各実施例および比較例で作製したシート状の正極を(15mm×20mm)の大きさに切断し、5mm間隔で水平方向および垂直方向にそれぞれカッターナイフで傷を付けた。ついで、粘着テープを押し当てた後テープを引き剥がし、剥離試験前後の正極の重量から、剥離し試験後に正極上に残った塗膜の割合(質量%)を算出した。結果を表1に示す。
Test Example 2 (Evaluation of adhesion: adhesive tape peeling test)
The sheet-like positive electrode produced in each Example and Comparative Example was cut into a size of (15 mm × 20 mm) and scratched with a cutter knife in the horizontal direction and the vertical direction at intervals of 5 mm. Next, the pressure-sensitive adhesive tape was pressed, and then the tape was peeled off. From the weight of the positive electrode before and after the peel test, the ratio (mass%) of the coating film peeled and remained on the positive electrode after the test was calculated. The results are shown in Table 1.

表1の結果から、本発明の製造方法で作製した正極は集電体における接着性に優れることが分かる。   From the results in Table 1, it can be seen that the positive electrode produced by the production method of the present invention is excellent in adhesiveness in the current collector.

試験例3(電池特性)
(円筒型電池の作製)
各実施例および比較例で作製したシート状の正極にリード体を溶接して、帯状の正極を作製した。
Test Example 3 (Battery characteristics)
(Production of cylindrical battery)
A lead body was welded to the sheet-like positive electrode produced in each example and comparative example to produce a belt-like positive electrode.

別途、人造黒鉛粉末(日立化成(株)製。商品名MAG−D)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。   Separately, styrene-butadiene rubber dispersed with distilled water is added to artificial graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name MAG-D) so that the solid content is 6% by mass, and mixed with a disperser. After applying the slurry in a uniform manner on a negative electrode current collector (copper foil having a thickness of 10 μm), drying, forming a negative electrode mixture layer, and then compression molding with a roller press machine and cutting, It dried and welded the lead body and produced the strip | belt-shaped negative electrode.

ついで、帯状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電材の粗面側が外周側になるようにして巻回した。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。   Next, the belt-like positive electrode was overlapped with the belt-like negative electrode through a microporous polyethylene film (separator) having a thickness of 20 μm and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. In that case, it wound so that the rough surface side of the positive electrode current collector could be the outer peripheral side. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.

ついで、電解液としてLiPF6を電解質塩とするエチレンカーボネート/ジエチルカーボネート(=30/70(体積比))溶液(濃度1.0モル/リットル)を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エージングを行い、容量1800mAhの筒形のリチウム二次電池を作製した。 Next, an ethylene carbonate / diethyl carbonate (= 30/70 (volume ratio)) solution (concentration: 1.0 mol / liter) containing LiPF 6 as an electrolyte salt is injected into the battery case as the electrolyte solution, and the electrolyte solution becomes a separator or the like. After sufficiently infiltrating, a sealed lithium secondary battery having a capacity of 1800 mAh was prepared by sealing, precharging and aging.

このリチウム二次電池のサイクル特性(容量維持率)をつぎの要領で調べた。結果を表1に示す。   The cycle characteristics (capacity maintenance ratio) of this lithium secondary battery were examined as follows. The results are shown in Table 1.

表1の結果から、本発明の正極を用いたリチウム二次電池の電池特性は高いレベルで維持されていることが分かる。   From the results in Table 1, it can be seen that the battery characteristics of the lithium secondary battery using the positive electrode of the present invention are maintained at a high level.

(サイクル特性)
充放電電流をCで表示した場合、1800mAを1Cとして以下の充放電測定条件で測定を行う。
(Cycle characteristics)
When the charge / discharge current is represented by C, measurement is performed under the following charge / discharge measurement conditions with 1800 mA as 1C.

充放電条件
充電:0.5C、4.2Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C 2.5Vcut(CC放電)。
Charge / Discharge Condition Charging: Holds the charge current at 1 / 10C at 0.5C / 4.2V (CC / CV charge)
Discharge: 1C 2.5Vcut (CC discharge).

サイクル特性については上記の充放電条件で充放電試験を行い100サイクルの放電容量を測定する。サイクル特性についてはつぎの計算式で求められた値を容量維持率として記載する。   As for the cycle characteristics, a charge / discharge test is performed under the above charge / discharge conditions, and a discharge capacity of 100 cycles is measured. Regarding the cycle characteristics, the value obtained by the following calculation formula is described as the capacity retention rate.

容量維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100 Capacity retention rate (%) = 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) × 100

Figure 0005412853
Figure 0005412853

表1の結果から、比較例1に比べて実施例1〜9はいずれもサイクル特性が向上していることが分かる。この原因として塗膜と集電体との接着性が改善されているため、サイクル試験中に集電が取れなくなることによるサイクル劣化が生じなかったものと考えられる。   From the results in Table 1, it can be seen that the cycle characteristics of Examples 1 to 9 are improved compared to Comparative Example 1. As a cause of this, since the adhesion between the coating film and the current collector has been improved, it is considered that the cycle deterioration due to the failure to collect current during the cycle test did not occur.

Claims (4)

リチウム含有遷移金属複合酸化物(a)、ポリテトラフルオロエチレン(b)、アクリル酸系樹脂(c)および水性分散媒(d)を含むリチウム二次電池用正極形成ペーストを集電体に塗工し、200℃未満の温度にて熱処理する工程を含み、
前記アクリル酸系樹脂(c)は、ポリアクリル酸ある
リチウム二次電池の正極の製造方法。
Applying a positive electrode forming paste for a lithium secondary battery containing a lithium-containing transition metal composite oxide (a), polytetrafluoroethylene (b), an acrylic resin (c) and an aqueous dispersion medium (d) to a current collector And a heat treatment step at a temperature of less than 200 ° C.,
The acrylic resin (c) is a method for producing a positive electrode of a lithium secondary battery, which is polyacrylic acid.
リチウム含有遷移金属複合酸化物(a)が、式(1):LiMn2−b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、式(2):LiNi1−c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、またはLiCo1−d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物である請求項1記載の製造方法。 The lithium-containing transition metal composite oxide (a) is represented by the formula (1): Li a Mn 2-b M 1 b O 4 (where 0.9 ≦ a; 0 ≦ b ≦ 1.5; M 1 is Fe , Co, Ni, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge. Lithium / manganese spinel composite oxide, formula (2): LiNi 1-c M 2 c O 2 (where 0 ≦ c ≦ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al, Sn) , Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge, at least one metal selected from the group consisting of lithium and nickel, or LiCo 1-d M 3 d O 2 (where, 0 ≦ d ≦ 0.5; M 3 is Fe, Ni, Mn, lithium / cobalt composite oxidation represented by at least one metal selected from the group consisting of u, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge) The method according to claim 1, wherein the method is a product. 請求項1又は2記載の製造方法により得られるリチウム二次電池の正極。 The positive electrode of the lithium secondary battery obtained by the manufacturing method of Claim 1 or 2. 正極、負極および非水電解液を備えてなり、該正極が請求項3記載の正極であるリチウム二次電池。 A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode is the positive electrode according to claim 3.
JP2009019347A 2009-01-30 2009-01-30 Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery Active JP5412853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019347A JP5412853B2 (en) 2009-01-30 2009-01-30 Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019347A JP5412853B2 (en) 2009-01-30 2009-01-30 Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010177079A JP2010177079A (en) 2010-08-12
JP5412853B2 true JP5412853B2 (en) 2014-02-12

Family

ID=42707804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019347A Active JP5412853B2 (en) 2009-01-30 2009-01-30 Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5412853B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609616B2 (en) * 2010-12-16 2014-10-22 ダイキン工業株式会社 Conductive protective layer forming paste for current collecting laminates such as non-aqueous secondary batteries
EP2722912B1 (en) * 2011-06-15 2016-03-30 Toyo Ink Sc Holdings Co., Ltd. Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP6192019B2 (en) * 2013-01-31 2017-09-06 三井化学株式会社 Lithium battery and manufacturing method thereof
JP6163920B2 (en) * 2013-07-05 2017-07-19 株式会社Gsユアサ Battery manufacturing method
WO2018154787A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
JP6275307B1 (en) * 2017-04-06 2018-02-07 東洋インキScホールディングス株式会社 Aqueous electrode coating liquid and use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160656A (en) * 1986-01-08 1987-07-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for nonaqueous electrolyte battery
JPH0384858A (en) * 1989-08-28 1991-04-10 Toshiba Battery Co Ltd Manufacture of organic solvent cell
JPH08102331A (en) * 1994-09-29 1996-04-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP3460315B2 (en) * 1994-07-29 2003-10-27 宇部興産株式会社 Method for producing electrode plate and chemical battery
JP4325002B2 (en) * 1998-12-15 2009-09-02 株式会社デンソー Lithium battery
CN1824724B (en) * 2005-02-23 2011-05-18 深圳市比克电池有限公司 Water binder, its application in manufacturing lithium ion battery positive plate and battery

Also Published As

Publication number Publication date
JP2010177079A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5494497B2 (en) Slurry for positive electrode mixture of lithium secondary battery, positive electrode using the slurry, and lithium secondary battery
JP5625917B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
KR101611677B1 (en) Paste for forming conductive protection layer on collector laminate in non-aqueous rechargeable electricity-storage device
JP4637590B2 (en) Anode for lithium secondary battery and lithium secondary battery using the same
JP5382120B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
WO2011037124A1 (en) Positive electrode current collector laminate for lithium secondary battery
WO2006061940A1 (en) Lithium ion secondary battery and method for producing negative electrode thereof
JP2014132591A (en) Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery
JP5412853B2 (en) Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9112209B2 (en) Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP2015219964A (en) Positive electrode paste and method of manufacturing the same
CN109461935A (en) Electrode slice and electrochemical energy storage device
JP5636681B2 (en) Binder composition for electrode of lithium secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP2006286496A (en) Polymer cell
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP4942249B2 (en) Method for producing lithium ion secondary battery
JP5509644B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery
JP6249242B2 (en) Nonaqueous electrolyte secondary battery
JP2006139968A (en) Nonaqueous electrolyte secondary battery
JP7361316B2 (en) Secondary battery and its manufacturing method
JP2008091054A (en) Nonaqueous electrolyte secondary battery
JP7049060B2 (en) Method for manufacturing an electrode for a lithium secondary battery, a lithium secondary battery, and an electrode for a lithium secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5412853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151