JP5408740B2 - Method for producing granulated activated carbon and granulated activated carbon - Google Patents

Method for producing granulated activated carbon and granulated activated carbon Download PDF

Info

Publication number
JP5408740B2
JP5408740B2 JP2011147191A JP2011147191A JP5408740B2 JP 5408740 B2 JP5408740 B2 JP 5408740B2 JP 2011147191 A JP2011147191 A JP 2011147191A JP 2011147191 A JP2011147191 A JP 2011147191A JP 5408740 B2 JP5408740 B2 JP 5408740B2
Authority
JP
Japan
Prior art keywords
activated carbon
binder
mixing
granulated
granulated activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011147191A
Other languages
Japanese (ja)
Other versions
JP2013014456A (en
Inventor
秀哉 上川
Original Assignee
トクラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクラス株式会社 filed Critical トクラス株式会社
Priority to JP2011147191A priority Critical patent/JP5408740B2/en
Publication of JP2013014456A publication Critical patent/JP2013014456A/en
Application granted granted Critical
Publication of JP5408740B2 publication Critical patent/JP5408740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、造粒活性炭の製造方法及び造粒活性炭に関する。   The present invention relates to a method for producing granulated activated carbon and granulated activated carbon.

水道水に含まれる遊離残留塩素や有機物等の微量成分を除去するため、活性炭を利用した浄水器カートリッジが使用されている。
また、活性炭を取り扱い易くするため、造粒活性炭も使用されている。賦活後造粒法による造粒活性炭は、通常、粉末活性炭にバインダーと水とを加えてニーダー等で混練する混練工程、混練物をペレッター等で造粒する造粒工程、及び、造粒物を乾燥させる乾燥工程を経て得られる。なお、固形物を含む素材を混練するためには、固形物に液状分散媒を加えておく必要がある。
In order to remove trace components such as free residual chlorine and organic substances contained in tap water, a water purifier cartridge using activated carbon is used.
In addition, granulated activated carbon is also used to facilitate handling of activated carbon. Granulation activated carbon by the granulation method after activation is usually a kneading step of adding a binder and water to powdered activated carbon and kneading with a kneader, etc., a granulation step of granulating the kneaded product with a pelleter, and the granulated product. Obtained through a drying step of drying. In addition, in order to knead the raw material containing a solid material, it is necessary to add a liquid dispersion medium to the solid material.

特許文献1には、バインダーとしてA群バインダーとB群バインダーとを併用し、混練物を造粒して200℃以下で乾燥、硬化させた後に常温まで冷却することが示されている。A群バインダーには、アクリル・スチレン系エマルジョン(ASE)又はアクリル系エマルジョン(AE)を用いている。エマルジョンで構成されるA群バインダーは、バインダーが液状分散媒に分散している。また、B群バインダーには、カルボキシメチルセルロース(CMC)又はポリビニルアルコール(PVA)を用いている。特許文献1の段落0011に記載されるように、B群バインダーは、水溶液からなる。
すなわち、粉末活性炭はバインダーとともに水等の液状分散媒が加えられて混練されるため、混練後に乾燥工程が設けられている。
Patent Document 1 discloses that a group A binder and a group B binder are used in combination as a binder, the kneaded product is granulated, dried and cured at 200 ° C. or lower, and then cooled to room temperature. As the group A binder, an acrylic / styrene emulsion (ASE) or an acrylic emulsion (AE) is used. In the group A binder composed of an emulsion, the binder is dispersed in a liquid dispersion medium. Moreover, carboxymethylcellulose (CMC) or polyvinyl alcohol (PVA) is used for the B group binder. As described in paragraph 0011 of Patent Document 1, the group B binder is an aqueous solution.
That is, since the powdered activated carbon is kneaded by adding a liquid dispersion medium such as water together with the binder, a drying step is provided after the kneading.

なお、特許文献2には、水を分散媒として活性炭微粒子及びポリオレフィン樹脂粒子を懸濁させ、ポリオレフィン樹脂が溶融又は半溶融状態となるまで加熱、攪拌し、冷却、ろ過、水洗、乾燥を行うことにより、ポリオレフィン樹脂粒子を核とし、活性炭微粒子を表面に配置した機能性吸着玉を製造することが示されている。   In Patent Document 2, activated carbon fine particles and polyolefin resin particles are suspended using water as a dispersion medium, and heated, stirred, cooled, filtered, washed with water, and dried until the polyolefin resin is in a molten or semi-molten state. Shows that a functional adsorbent ball in which activated carbon fine particles are arranged on the surface using polyolefin resin particles as a core is produced.

特開2004−10434号公報JP 2004-10434 A 特開平8−332381号公報Japanese Patent Laid-Open No. 8-3332381

上述した技術は、粉末活性炭にバインダーと液状分散媒とを加えて混練する必要があるため、混練後に乾燥工程が必要である。   The technique described above requires a drying step after kneading because it is necessary to add a binder and a liquid dispersion medium to powdered activated carbon and knead them.

以上を鑑み、本発明は、造粒活性炭の製造工程を短縮する目的を有している。   In view of the above, the present invention has the object of shortening the production process of granulated activated carbon.

本発明は、粉砕状、粒状及び繊維状から選ばれる一種以上の活性炭100重量部と、平均粒径1〜500μmの固化した熱可塑性のバインダー2〜70重量部と、を含む素材を液状分散媒非存在下で混合した後、液状分散媒非存在下で前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して該温度で混合し、混合終了後に混合物を砕いて造粒活性炭を形成する製造方法の態様を有する。
また、本発明は、粉砕状、粒状及び繊維状から選ばれる一種以上の活性炭100重量部と、平均粒径1〜500μmの固化した熱可塑性のバインダー2〜70重量部と、を含む素材を液状分散媒非存在下で混合した後、液状分散媒非存在下で前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して該温度で混合し、混合終了後に混合物を砕いて得られる造粒活性炭の態様を有する。
The present invention provides a liquid dispersion medium comprising a material containing 100 parts by weight of one or more activated carbons selected from pulverized, granular and fibrous, and 2 to 70 parts by weight of a solidified thermoplastic binder having an average particle diameter of 1 to 500 μm. After mixing in the absence, the mixture is heated to a temperature above the softening temperature of the binder and the binder does not ignite in the absence of a liquid dispersion medium and mixed at the temperature. After mixing, the mixture is crushed to form granulated activated carbon. It has the aspect of the manufacturing method to do.
Further, the present invention provides a liquid material comprising 100 parts by weight of one or more types of activated carbon selected from pulverized, granular and fibrous, and 2 to 70 parts by weight of a solidified thermoplastic binder having an average particle diameter of 1 to 500 μm. After mixing in the absence of a dispersion medium, the mixture is heated to a temperature not lower than the softening temperature of the binder in the absence of a liquid dispersion medium and heated to a temperature at which the binder does not ignite and mixed at the temperature. It has an aspect of granular activated carbon.

すなわち、固化した熱可塑性のバインダーの平均粒径が1〜500μmであるので、活性炭とバインダーとに働く静電付着力が大きく、液状分散媒が無くても加熱前の混合でバインダーが良好に分散する。このため、加熱して前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度で混合することにより活性炭同士がバインダーで接着し、混合終了後に混合物を砕くことにより造粒活性炭が得られる。本製造方法は、混合物から液状分散媒を除去する乾燥工程が不要であるので、造粒活性炭の製造工程を短縮することが可能となる。 That is, since the average particle size of the solidified thermoplastic binder is 1 to 500 μm, the electrostatic adhesion acting on the activated carbon and the binder is large, and the binder is well dispersed by mixing before heating even without a liquid dispersion medium. To do. For this reason, activated carbon adheres with a binder by heating and mixing at a temperature not lower than the softening temperature of the binder and the binder does not ignite, and granulated activated carbon is obtained by crushing the mixture after completion of mixing. Since this production method does not require a drying step of removing the liquid dispersion medium from the mixture, the production step of the granulated activated carbon can be shortened.

各請求項に係る発明において、上記粉砕状及び上記粒状には、粉末状が含まれる。上記粉砕状の概念と上記粒状の概念とは、一部が重複するものとする。上記粉砕状の概念と上記繊維状の概念とは、一部が重複するものとする。
上記平均粒径は、50μm以上の粒子についてはJIS K1474:2007(活性炭試験方法)に規定される50%粒径(D50、メジアン径)とし、50μm未満の粒子についてはJIS K5600-9-3:2006(塗料一般試験方法−第9部:粉体塗料−第3節:レーザ回折による粒度分布の測定方法)に準拠した粒子径分布からJIS Z8819-2(粒子径測定結果の表現―第2部:粒子径分布からの平均粒子径又は平均粒子直径及びモーメントの計算)に従って求められる重み付き体積平均粒子径とする。
上記液状分散媒は、液体の分散媒を意味する。
上記軟化温度は、JIS K7206:1999(プラスチック―熱可塑性プラスチック―ビカット軟化温度(VST)試験方法)に規定されるビカット軟化温度とする。
上記混合終了後に混合物を砕いて造粒活性炭を製造することには、混合終了後に混合物を粗破砕し分級して造粒活性炭を製造すること、分級せずに造粒活性炭を製造すること、等が含まれる。
混合される素材には、金属処理剤といったイオン交換体等、活性炭及びバインダー以外の素材が含まれても良い。
In the invention according to each claim, the pulverized form and the granular form include a powder form. The pulverized concept and the granular concept partially overlap. The pulverized concept and the fibrous concept partially overlap.
The average particle diameter is 50% particle diameter (D50, median diameter) defined in JIS K1474: 2007 (activated carbon test method) for particles of 50 μm or more, and JIS K5600-9-3 for particles of less than 50 μm: From JIS Z8819-2 (Expression of particle size measurement result-Part 2) from particle size distribution in accordance with 2006 (General coating test method-Part 9: Powder coating-Section 3: Measurement method of particle size distribution by laser diffraction) : Average particle diameter from particle size distribution or calculation of average particle diameter and moment).
The liquid dispersion medium means a liquid dispersion medium.
The softening temperature is the Vicat softening temperature specified in JIS K7206: 1999 (plastic-thermoplastic-Vicat softening temperature (VST) test method).
In order to produce granulated activated carbon by crushing the mixture after completion of the above mixing, coarsely crushing and classifying the mixture after completion of mixing, producing granulated activated carbon, producing granulated activated carbon without classification, etc. Is included.
The material to be mixed may include materials other than activated carbon and a binder, such as an ion exchanger such as a metal treating agent.

ところで、前記活性炭に、平均粒径1〜500μmの活性炭と、平均繊維径5〜100μm及び平均繊維長15〜500μmの繊維状活性炭と、から選ばれる一種以上の活性炭を用いても良い。活性炭とバインダーとに働く静電付着力がさらに大きくなるので、加熱前の混合でバインダーの分散がさらに良好となる。従って、より均質な造粒活性炭を得ることが可能となる。
ここで、上記平均繊維径は、顕微鏡を用いて複数の繊維の径を実測した値の相加平均とする。
上記平均繊維長は、顕微鏡を用いて複数の繊維の長さを実測した値の相加平均とする。
By the way, you may use 1 or more types of activated carbon chosen from the activated carbon with an average particle diameter of 1-500 micrometers, and the fibrous activated carbon with an average fiber diameter of 5-100 micrometers and an average fiber length of 15-500 micrometers for the said activated carbon. Since the electrostatic adhesion force acting on the activated carbon and the binder is further increased, the dispersion of the binder is further improved by mixing before heating. Therefore, it is possible to obtain a more uniform granulated activated carbon.
Here, the average fiber diameter is an arithmetic average of values obtained by actually measuring the diameters of a plurality of fibers using a microscope.
The average fiber length is an arithmetic average of values obtained by actually measuring the lengths of a plurality of fibers using a microscope.

また、前記バインダーに、平均分子量50万〜1000万の熱可塑性樹脂を用いても良い。バインダーが溶融しても活性炭表面に拡がり難いので、造粒活性炭の吸着活性を向上させることが可能となる。
ここで、上記平均分子量は、粘度法による測定値とする。
Further, a thermoplastic resin having an average molecular weight of 500,000 to 10,000,000 may be used for the binder. Even if the binder melts, it is difficult to spread on the surface of the activated carbon, so that the adsorption activity of the granulated activated carbon can be improved.
Here, the average molecular weight is a value measured by a viscosity method.

請求項1に係る発明によれば、造粒活性炭の製造工程を短縮することが可能となる。
請求項2に係る発明では、より均質な造粒活性炭を得ることが可能となる。
請求項3に係る発明では、造粒活性炭の吸着活性を向上させることが可能となる。
請求項4に係る発明では、粒径の揃った造粒活性炭を製造することが可能となる。
請求項5に係る発明では、製造工程を短縮させる造粒活性炭を提供することができる。
According to the invention which concerns on Claim 1, it becomes possible to shorten the manufacturing process of granulated activated carbon.
In the invention which concerns on Claim 2, it becomes possible to obtain a more uniform granulated activated carbon.
In the invention which concerns on Claim 3, it becomes possible to improve the adsorption activity of granulated activated carbon.
In the invention according to claim 4, it becomes possible to produce granulated activated carbon having a uniform particle diameter.
In the invention which concerns on Claim 5, the granulated activated carbon which shortens a manufacturing process can be provided.

造粒活性炭100の製造方法を例示する流れ図。The flowchart which illustrates the manufacturing method of the granulated activated carbon 100. FIG. 浄水器カートリッジC1を例示する図。The figure which illustrates water purifier cartridge C1. 実施例及び比較例において通水量に対する遊離残留塩素濃度の変化を示した図。The figure which showed the change of the free residual chlorine concentration with respect to the amount of water flow in an Example and a comparative example.

(1)造粒活性炭の製造方法の説明:
まず、図1を参照して本発明の一実施形態に係る造粒活性炭の製造方法を説明する。
本製造方法は、粉砕状、粒状及び繊維状から選ばれる一種以上の活性炭(11)100重量部と、平均粒径1〜500μmの固化した熱可塑性のバインダー(12)2〜70重量部と、を含む素材を液状分散媒非存在下で混合した後、液状分散媒非存在下でバインダー(12)の軟化温度以上かつバインダー(12)が発火しない温度に加熱して混合し、混合終了後に混合物(40)を砕いて造粒活性炭(100)を形成するものである。
(1) Description of production method of granulated activated carbon:
First, the manufacturing method of the granulated activated carbon which concerns on one Embodiment of this invention with reference to FIG. 1 is demonstrated.
The production method comprises 100 parts by weight of one or more types of activated carbon (11) selected from pulverized, granular and fibrous, 2 to 70 parts by weight of a solidified thermoplastic binder (12) having an average particle size of 1 to 500 μm, After mixing in the absence of a liquid dispersion medium, the mixture is heated to a temperature not lower than the softening temperature of the binder (12) and at a temperature at which the binder (12) does not ignite in the absence of the liquid dispersion medium. (40) is crushed to form granulated activated carbon (100).

なお、バインダーの軟化温度が範囲Tsl〜Tsh(℃)で示される場合、加熱混合温度の下限をTshとすればよい。バインダーの軟化温度が不明である場合、軟化温度よりも高い融点を加熱混合温度の下限とすればよい。また、バインダーの発火点が最低温度Tilで示される場合、加熱混合温度の上限をTil未満とすればよい。 When the softening temperature of the binder is indicated by the range T sl to T sh (° C.), the lower limit of the heating and mixing temperature may be T sh . When the softening temperature of the binder is unknown, a melting point higher than the softening temperature may be set as the lower limit of the heating and mixing temperature. Further, when the ignition point of the binder is indicated by the minimum temperature Til , the upper limit of the heating and mixing temperature may be less than Til .

活性炭11の原料となる炭素質材料は、賦活することによって活性炭を形成することができればよく、植物系、石炭系、石油系、合成樹脂系、天然素材系、各種有機灰、等を用いることができる。植物系の炭素質材料には、ヤシ殻やアーモンド殻といった果実殻、木材、おが屑、竹、草、等を用いることができる。石炭系の炭素質材料には、泥炭、亜炭、かつ炭、瀝青炭、無煙炭、等を用いることができる。石油系の炭素質材料には、石油ピッチ等を用いることができる。合成樹脂系の炭素質材料には、フェノール系樹脂、エポキシ系樹脂、ユリア系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂、等を用いることができる。天然素材系の炭素質材料には、木綿といった天然繊維、レーヨンといった再生繊維、アセテートといった半合成繊維、等を用いることができる。   The carbonaceous material used as the raw material of the activated carbon 11 only needs to be able to form activated carbon by activation, and plant-based, coal-based, petroleum-based, synthetic resin-based, natural material-based, various organic ash, etc. may be used. it can. As the plant-based carbonaceous material, fruit shells such as coconut shells and almond shells, wood, sawdust, bamboo, grass and the like can be used. As the coal-based carbonaceous material, peat, lignite, and charcoal, bituminous coal, anthracite, or the like can be used. Petroleum pitch or the like can be used as the petroleum-based carbonaceous material. As the synthetic resin-based carbonaceous material, phenol resin, epoxy resin, urea resin, polyamide resin, polyvinyl alcohol resin, polyacrylonitrile resin, polyolefin resin, and the like can be used. As the natural carbonaceous material, natural fibers such as cotton, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, and the like can be used.

粉砕状の活性炭には、上述した炭素質材料の賦活物を砕いて得られる活性炭、炭素質材料の粉砕物を賦活して得られる活性炭、等を用いることができる。粉砕状活性炭には、100メッシュ(直径0.15mm)よりも小さい粉末活性炭が含まれるものとする。
粒状の活性炭には、ヤシ殻系活性炭、木炭、竹炭、石炭系活性炭、合成樹脂系活性炭、等を用いることができる。粒状活性炭は、賦活物を砕いて所定粒度にふるい分けして得られる活性炭でも良いし、所定粒度の炭素質材料を賦活して得られる活性炭でも良い。粒状活性炭には、粉末活性炭が含まれるものとする。粒状活性炭の平均粒径は、1〜500μmが好ましく、2〜300μmがより好ましい。平均粒径を前記上限以下とすることにより、活性炭11とバインダー12とに良好な静電付着力が働き、前混合工程S1でバインダー12が良好に分散する。また、平均粒径を前記下限以上とすることにより、前混合工程S1の前混合を容易にすることができる。
As the pulverized activated carbon, activated carbon obtained by crushing the activated carbonaceous material described above, activated carbon obtained by activating the pulverized carbonaceous material, or the like can be used. The pulverized activated carbon includes powdered activated carbon smaller than 100 mesh (diameter 0.15 mm).
As the granular activated carbon, coconut shell activated carbon, charcoal, bamboo charcoal, coal activated carbon, synthetic resin activated carbon, or the like can be used. The granular activated carbon may be activated carbon obtained by crushing an activated material and sieving to a predetermined particle size, or activated carbon obtained by activating a carbonaceous material having a predetermined particle size. The granular activated carbon includes powdered activated carbon. 1-500 micrometers is preferable and, as for the average particle diameter of granular activated carbon, 2-300 micrometers is more preferable. By setting the average particle size to be equal to or less than the above upper limit, good electrostatic adhesion acts on the activated carbon 11 and the binder 12, and the binder 12 is well dispersed in the premixing step S1. Moreover, premixing of premixing process S1 can be made easy by making an average particle diameter more than the said minimum.

繊維状の活性炭には、石炭ピッチ、石油ピッチ、合成樹脂系活性炭、天然素材系活性炭、等を用いることができる。繊維状活性炭の平均繊維径は、5〜100μmが好ましく、7〜70μmがより好ましい。繊維状活性炭の平均繊維長は、15〜500μmが好ましく、20〜300μmがより好ましい。平均繊維径や平均繊維長を前記上限以下とすることにより、活性炭11とバインダー12とに良好な静電付着力が働き、前混合工程S1でバインダー12が良好に分散する。また、平均繊維径や平均繊維長を前記下限以上とすることにより、前混合を容易にすることができる。   As the fibrous activated carbon, coal pitch, petroleum pitch, synthetic resin activated carbon, natural material activated carbon, or the like can be used. 5-100 micrometers is preferable and, as for the average fiber diameter of fibrous activated carbon, 7-70 micrometers is more preferable. The average fiber length of the fibrous activated carbon is preferably 15 to 500 μm, and more preferably 20 to 300 μm. By setting the average fiber diameter and average fiber length to the upper limit or less, good electrostatic adhesion acts on the activated carbon 11 and the binder 12, and the binder 12 is well dispersed in the premixing step S1. Moreover, premixing can be facilitated by setting the average fiber diameter and the average fiber length to be not less than the lower limit.

前混合に用いる活性炭11は、粉砕状活性炭のみ、粒状活性炭のみ、又は、繊維状活性炭のみでも良いが、粉砕状活性炭と粒状活性炭の組合せ、粉砕状活性炭と繊維状活性炭の組合せ、粒状活性炭と繊維状活性炭の組合せ、粉砕状活性炭と粒状活性炭と繊維状活性炭の組合せ、でも良い。また、平均粒径の異なる複数種類の粒状活性炭を組み合わせて使用しても良いし、平均繊維径や平均繊維長の異なる複数種類の繊維状活性炭を組み合わせて使用しても良い。さらに、上述した活性炭から選ばれる一種以上の第一の活性炭とバインダーとを含む素材を前混合した後、上述した活性炭から選ばれる一種以上の第二の活性炭を少なくとも加えて前混合しても良い。   Activated carbon 11 used for pre-mixing may be pulverized activated carbon only, granular activated carbon only, or fibrous activated carbon only, but a combination of pulverized activated carbon and granular activated carbon, a combination of pulverized activated carbon and fibrous activated carbon, granular activated carbon and fiber A combination of granular activated carbon, a combination of pulverized activated carbon, granular activated carbon and fibrous activated carbon may be used. Further, a plurality of types of granular activated carbon having different average particle diameters may be used in combination, or a plurality of types of fibrous activated carbon having different average fiber diameters and average fiber lengths may be used in combination. Furthermore, after premixing a material containing at least one type of first activated carbon selected from the above-mentioned activated carbon and a binder, at least one type of second activated carbon selected from the above-mentioned activated carbon may be added and premixed. .

バインダー12には、平均粒径1〜500μm(より好ましくは2〜300μm)の固化した熱可塑性のバインダーを用いる。平均粒径が前記上限以下であるので、活性炭11とバインダー12とに働く静電付着力が大きく、液状分散媒が無くても加熱前の混合でバインダー12が良好に分散する。また、平均粒径が前記下限以上であるので、前混合工程S1の混合を容易にすることができる。   As the binder 12, a solidified thermoplastic binder having an average particle diameter of 1 to 500 μm (more preferably 2 to 300 μm) is used. Since the average particle size is not more than the above upper limit, the electrostatic adhesive force acting on the activated carbon 11 and the binder 12 is large, and the binder 12 is well dispersed by mixing before heating even without a liquid dispersion medium. Moreover, since an average particle diameter is more than the said minimum, mixing of premixing process S1 can be made easy.

さらに、バインダー12の配合量は、活性炭100重量部に対して2〜70重量部(より好ましくは3〜50重量部)とする。バインダーの配合量が前記下限以上であるため、加熱混合工程S2で活性炭同士が十分に接着し、造粒活性炭100の形状が十分に保持される。また、バインダーの配合量が前記上限以下であるため、活性炭の活性を有する表面が十分に残り、造粒活性炭100が良好な吸着活性を示す。バインダー12の配合比は、造粒活性炭の形状保持性の観点から、活性炭の平均粒径が小さくなるほど多くするのが好ましく、繊維状活性炭の平均繊維径が小さくなるほど多くするのが好ましく、繊維状活性炭の平均繊維長が短くなるほど多くするのが好ましい。
例えば、バインダーに平均粒径10〜30μmの粒状熱可塑性樹脂を用いる場合、平均粒径7μmの粒状活性炭100重量部に対しては配合量39〜43重量部(28〜30重量%)が特に好ましく、平均粒径90μmの粒状活性炭100重量部に対しては配合量3〜5重量部(3〜5重量%)が特に好ましく、均粒径200μmの粒状活性炭100重量部に対しては配合量2〜5重量部(2〜5重量%)が特に好ましい。
Furthermore, the compounding quantity of the binder 12 shall be 2-70 weight part (more preferably 3-50 weight part) with respect to 100 weight part of activated carbon. Since the compounding quantity of a binder is more than the said minimum, activated carbon adhere | attaches fully by heating mixing process S2, and the shape of the granulated activated carbon 100 is fully hold | maintained. Moreover, since the compounding quantity of a binder is below the said upper limit, the surface which has the activity of activated carbon fully remains, and the granulated activated carbon 100 shows favorable adsorption activity. From the viewpoint of shape retention of the granulated activated carbon, the blending ratio of the binder 12 is preferably increased as the average particle diameter of the activated carbon is decreased, and is preferably increased as the average fiber diameter of the fibrous activated carbon is decreased. It is preferable to increase as the average fiber length of the activated carbon becomes shorter.
For example, when a granular thermoplastic resin having an average particle diameter of 10 to 30 μm is used as the binder, the blending amount is preferably 39 to 43 parts by weight (28 to 30% by weight) with respect to 100 parts by weight of granular activated carbon having an average particle diameter of 7 μm. The blending amount is particularly preferably 3 to 5 parts by weight (3 to 5% by weight) for 100 parts by weight of granular activated carbon having an average particle size of 90 μm, and the blending amount is 2 for 100 parts by weight of granular activated carbon having an average particle size of 200 μm. -5 parts by weight (2-5% by weight) is particularly preferred.

バインダー12には、ポリエチレン(PE)やポリプロピレン(PP)といったポリオレフィン、ポリエチレンテレフタレートといったポリエステル、熱可塑性エラストマー、これらの樹脂に改質剤といった添加剤を添加した樹脂、これらの樹脂の混合物、等を用いることができる。なお、これらの樹脂は、熱可塑性樹脂に含まれるものとする。
熱可塑性樹脂(添加剤を除く。)の平均分子量は、50万〜1000万が好ましく、100万〜700万がより好ましい。平均分子量を前記下限以上とすることにより、バインダー12が溶融しても流動性が小さく活性炭表面に拡がり難いので、活性炭11同士が点接着し易く、造粒活性炭100の吸着活性が向上する。平均分子量を前記上限以下とすることにより、加熱混合工程S2で活性炭同士が良好に接着し、造粒活性炭100の形状が良好に保持される。熱可塑性樹脂の具体例として、三井化学株式会社製超高分子量ポリエチレンパウダー(ミペロン(登録商標)、平均粒径30μm、平均分子量200万)、同社製高分子量ポリエチレンパウダー(ハイゼックスミリオン(登録商標)、平均粒径120〜360μm、平均分子量50万〜600万)、同社製ポリエチレン(リュブマー(登録商標))、等を挙げることができる。
As the binder 12, polyolefin such as polyethylene (PE) or polypropylene (PP), polyester such as polyethylene terephthalate, thermoplastic elastomer, resin obtained by adding an additive such as a modifier to these resins, a mixture of these resins, or the like is used. be able to. These resins are included in the thermoplastic resin.
The average molecular weight of the thermoplastic resin (excluding additives) is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 7,000,000. By setting the average molecular weight to be equal to or more than the lower limit, even if the binder 12 is melted, the fluidity is small and it is difficult to spread on the activated carbon surface. By setting the average molecular weight to the upper limit or less, the activated carbon adheres well in the heating and mixing step S2, and the shape of the granulated activated carbon 100 is maintained well. As specific examples of the thermoplastic resin, ultra high molecular weight polyethylene powder (Miperon (registered trademark), average particle size 30 μm, average molecular weight 2 million) manufactured by Mitsui Chemical Co., Ltd., high molecular weight polyethylene powder (Hi-Zex Million (registered trademark), Examples include an average particle size of 120 to 360 μm, an average molecular weight of 500,000 to 6,000,000), and polyethylene (Lübmer (registered trademark)) manufactured by the same company.

上記熱可塑性樹脂は、超高分子量の材料であるため、通常、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイトI(MVR)の試験方法」に規定されたMFRが0.1g/10min未満となる。ここで、MFR0.0g/10minには、熱可塑性樹脂の分子量が極めて大きいために流動性が小さく測定することができないことが含まれる。
以上のことから、熱可塑性樹脂のMFRは、0.1g/10min未満が好ましく、0.0g/10minがより好ましい。
Since the thermoplastic resin is an ultra-high molecular weight material, it is usually specified in JIS K7210: 1999 “Plastics—Test methods for melt mass flow rate (MFR) and melt volume flow rate I (MVR) of thermoplastics”. MFR is less than 0.1 g / 10 min. Here, MFR 0.0 g / 10 min includes the fact that the flowability is small and cannot be measured because the molecular weight of the thermoplastic resin is extremely large.
From the above, the MFR of the thermoplastic resin is preferably less than 0.1 g / 10 min, and more preferably 0.0 g / 10 min.

前混合に用いる素材は、活性炭11とバインダー12の組合せのみでも良いが、活性炭100重量部に対して0.1〜60重量部の添加剤13を添加しても良い。添加剤13には、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂、これらの組合せ、といったイオン交換体等を用いることができる。陽イオン交換樹脂やキレート樹脂は、金属処理剤として機能する。
添加剤13が粒状である場合、添加剤の平均粒径は、1〜500μmが好ましく、2〜300μmがより好ましい。添加剤13が繊維状である場合、添加剤の平均繊維径は、5〜100μmが好ましく、7〜70μmがより好ましい。添加剤の平均繊維長は、15〜500μmが好ましく、20〜300μmがより好ましい。平均粒径や平均繊維径や平均繊維長を前記上限以下とすることにより、活性炭11とバインダー12と添加剤13とに良好な静電付着力が働き、前混合工程S1で添加剤13が良好に分散する。また、平均粒径や平均繊維径や平均繊維長を前記下限以上とすることにより、前混合を容易にすることができる。
The material used for the premixing may be only a combination of the activated carbon 11 and the binder 12, but 0.1 to 60 parts by weight of the additive 13 may be added to 100 parts by weight of the activated carbon. As the additive 13, an ion exchanger such as a cation exchange resin, an anion exchange resin, a chelate resin, or a combination thereof can be used. The cation exchange resin or chelate resin functions as a metal treatment agent.
When the additive 13 is granular, the average particle diameter of the additive is preferably 1 to 500 μm, and more preferably 2 to 300 μm. When the additive 13 is fibrous, the average fiber diameter of the additive is preferably 5 to 100 μm, and more preferably 7 to 70 μm. The average fiber length of the additive is preferably 15 to 500 μm, and more preferably 20 to 300 μm. By making the average particle diameter, average fiber diameter, and average fiber length not more than the above upper limits, good electrostatic adhesion acts on the activated carbon 11, the binder 12, and the additive 13, and the additive 13 is good in the premixing step S1. To disperse. Moreover, premixing can be made easy by making an average particle diameter, an average fiber diameter, and an average fiber length more than the said minimum.

前混合工程S1では、活性炭11とバインダー12と必要に応じて添加剤13とを含む素材を液状分散媒非存在下で前混合する。すなわち、水や有機溶媒等の液状分散媒を用いて素材を混練する訳ではなく、乾式条件下で素材を混合する。ここで、「混練」は、分散質の表面全体に液状分散媒をコーティングする分散操作を意味する。本製造方法は、固化した熱可塑性のバインダー12を活性炭11とバインダー12とに大きな静電付着力が働く平均粒径としているので、液状分散媒が無くても加熱前の混合でバインダー12が良好に分散する。また、液状分散媒を用いた混合と比べて、バインダーで塞がれる活性炭細孔が少なくなり、造粒活性炭の吸着能力が向上すると推測される。
前混合には、ミキサー、ブレンダー、水平円筒型、V型、二重円錐型、正方立体型、S型、連続V型、ボールミル型、ロッキング型、クロスロータリー型、リボン型、スクリュー型、ロター型、パグミル型、遊星型、タービン型、高速流動型、回転円板型、等の混合装置を使用することができる。
In the premixing step S1, a material containing activated carbon 11, a binder 12, and, if necessary, an additive 13 is premixed in the absence of a liquid dispersion medium. That is, the material is not kneaded using a liquid dispersion medium such as water or an organic solvent, but the material is mixed under dry conditions. Here, “kneading” means a dispersion operation in which the entire surface of the dispersoid is coated with a liquid dispersion medium. In this manufacturing method, since the solidified thermoplastic binder 12 has an average particle size that exerts a large electrostatic adhesion force on the activated carbon 11 and the binder 12, the binder 12 is good by mixing before heating even without a liquid dispersion medium. To disperse. Moreover, compared with the mixing using a liquid dispersion medium, the activated carbon pores plugged with the binder are reduced, and it is estimated that the adsorption ability of the granulated activated carbon is improved.
For premixing, mixer, blender, horizontal cylinder type, V type, double cone type, square solid type, S type, continuous V type, ball mill type, rocking type, cross rotary type, ribbon type, screw type, rotor type A mixing device such as a pug mill type, a planetary type, a turbine type, a high-speed flow type, or a rotating disk type can be used.

前混合時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で素材を前混合すると、活性炭11とバインダー12とに働く静電付着力によりバインダー12が良好に分散する。なお、バインダーの融点が範囲Tml〜Tmh(℃)で示される場合、前混合時の温度の上限をTml未満とすればよい。また、バインダーの軟化温度が範囲Tsl〜Tshで示される場合、前混合時の温度のより好ましい上限をTsl未満とすればよい。以下に記載される「融点未満」や「軟化温度未満」も、同様である。
上記混合装置の回転速度は、素材中でバインダー12や必要に応じて添加剤13が分散する速度であればよく、例えば、50〜50000rpmとすることができる。前混合の時間も、素材中でバインダー12や必要に応じて添加剤13が分散する時間であればよく、例えば、5〜120分とすることができる。
The temperature during premixing is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the materials are premixed at such a temperature, the binder 12 is well dispersed by the electrostatic adhesion force acting on the activated carbon 11 and the binder 12. In the case where the melting point of the binder is represented by the range T ml ~T mh (℃), the upper limit of the temperature before mixing time it may be less than T ml. Moreover, when the softening temperature of a binder is shown by the range T sl -T sh , what is necessary is just to make the more preferable upper limit of the temperature at the time of premixing less than T sl . The same applies to “below melting point” and “below softening temperature” described below.
The rotational speed of the mixing device may be a speed at which the binder 12 and, if necessary, the additive 13 are dispersed in the raw material, and may be, for example, 50 to 50000 rpm. The premixing time may be a time for dispersing the binder 12 and, if necessary, the additive 13 in the material, and may be, for example, 5 to 120 minutes.

加熱混合工程S2では、前混合工程S1で得られる前混合物20を液状分散媒非存在下でバインダー12の軟化温度以上かつバインダー12が発火しない温度に加熱して混合する。ここでも、液状分散媒を用いて素材を混練する訳ではなく、乾式条件下で素材を混合する。これにより、液状分散媒を用いた混合と比べて、バインダーで塞がれる活性炭細孔が少なくなり、造粒活性炭の吸着能力が向上すると推測される。
加熱混合には、ニーダー、ラボプラストミル、ホイール型、ボール型、ブレード型、ロール型等の混合装置に前加熱や直接加熱といった加熱の機能が備わったものを使用することができる。
In the heating and mixing step S2, the premix 20 obtained in the premixing step S1 is heated and mixed in the absence of the liquid dispersion medium to a temperature not lower than the softening temperature of the binder 12 and at which the binder 12 does not ignite. Again, the material is not kneaded using the liquid dispersion medium, but the material is mixed under dry conditions. Thereby, compared with mixing using a liquid dispersion medium, the activated carbon pores plugged with the binder are reduced, and it is estimated that the adsorption ability of the granulated activated carbon is improved.
For the heating and mixing, a kneader, a lab plast mill, a wheel type, a ball type, a blade type, a roll type or the like having a heating function such as preheating or direct heating can be used.

加熱混合の温度は、バインダー12の軟化温度以上(好ましくは融点以上、より好ましくは融点よりも10℃高い温度以上)、かつ、バインダー12が発火しない温度(好ましくは350℃未満、より好ましくは融点よりも70℃高い温度以下)とする。加熱温度が前記下限以上であるため、活性炭同士が十分に接着し、造粒活性炭100の形状が十分に保持される。また、加熱温度が前記上限以下であるため、活性炭同士が点接着し易く活性炭の活性を有する表面が十分に残り、造粒活性炭100が良好な吸着活性を示す。なお、ポリエチレン等の熱可塑性樹脂の発火点は、通常、350℃以上であるため、加熱混合温度の好ましい上限は350℃未満である。バインダーの融点が範囲Tml〜Tmhで示される場合、加熱混合温度のより好ましい上限はTml+70とすればよく、加熱混合温度の好ましい下限はTmh(より好ましくはTmh+10)とすればよい。また、加熱温度がバインダーの融点に70℃を加えた温度よりも高い場合、バインダーからガスが発生してバインダーの容積が減少するものの、バインダーが発火しない温度であれば活性炭同士を接着し造粒活性炭の形状を保持することが可能である。
上記混合装置の回転速度は、混合物の温度の偏りを少なくする速度であればよく、例えば、15〜200rpmとすることができる。加熱混合の時間は、活性炭同士が接着して混合物40が塊状となる時間であればよく、例えば、10〜120分とすることができる。
The heating and mixing temperature is equal to or higher than the softening temperature of the binder 12 (preferably higher than the melting point, more preferably higher than 10 ° C. higher than the melting point), and the temperature at which the binder 12 does not ignite (preferably less than 350 ° C., more preferably the melting point). 70 ° C. or higher). Since heating temperature is more than the above-mentioned minimum, activated carbon fully adheres and the shape of granulated activated carbon 100 is fully maintained. Moreover, since heating temperature is below the said upper limit, activated carbon is easy to carry out point adhesion, the surface which has the activity of activated carbon fully remains, and the granulated activated carbon 100 shows favorable adsorption activity. In addition, since the ignition point of thermoplastic resins, such as polyethylene, is usually 350 degreeC or more, the preferable upper limit of heating mixing temperature is less than 350 degreeC. When the melting point of the binder is shown in the range T ml to T mh , the more preferable upper limit of the heating and mixing temperature may be T ml +70, and the preferable lower limit of the heating and mixing temperature is T mh (more preferably T mh +10). That's fine. In addition, when the heating temperature is higher than the temperature obtained by adding 70 ° C. to the melting point of the binder, gas is generated from the binder and the volume of the binder is reduced. It is possible to maintain the shape of the activated carbon.
The rotational speed of the mixing device may be a speed that reduces the temperature deviation of the mixture, and can be, for example, 15 to 200 rpm. The time for heating and mixing may be any time as long as the activated carbon adheres and the mixture 40 becomes a lump, and may be, for example, 10 to 120 minutes.

造粒活性炭形成工程S3では、混合終了後の混合物40を砕いて造粒活性炭100を形成する。図1には、混合物40を粗破砕する粗破砕工程S31と、この粗破砕工程S31で得られる粗破砕物50を振動するふるいにより分級するふるい分級工程S32とを経て造粒活性炭100を形成することが示されている。   In the granulated activated carbon forming step S3, the granulated activated carbon 100 is formed by crushing the mixture 40 after mixing. In FIG. 1, the granulated activated carbon 100 is formed through a coarse crushing step S31 for roughly crushing the mixture 40 and a sieve classification step S32 for classifying the coarsely crushed product 50 obtained in the coarse crushing step S31 by a vibrating sieve. It has been shown.

粗破砕工程S31では、冷えて固化した塊状の混合物40を所定の粒径(例えば10mm)程度以下に粗く砕く。混合物40を粗破砕することにより、ふるい分級工程S32の時間が短くなり、分級時に小さすぎる粒子の割合が少なくなる。
粗破砕には、ミキサー、ブレンダー、ミル、ジョークラッシャー、ジャイレトリクラッシャー、コーンクラッシャー、ハンマークラッシャー、等の破砕装置を使用することができる。
In the rough crushing step S31, the massive mixture 40 that has been cooled and solidified is roughly crushed to a predetermined particle size (for example, 10 mm) or less. By roughly crushing the mixture 40, the time of the sieve classification step S32 is shortened, and the proportion of particles that are too small during classification is reduced.
For rough crushing, a crushing device such as a mixer, blender, mill, jaw crusher, gyre crusher, cone crusher, hammer crusher, or the like can be used.

粗破砕の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で混合物40を粗破砕すると、混合物40が良好に砕かれる。
上記破砕装置の回転速度は、混合物40が粗く砕かれる速度であればよく、例えば、50〜50000rpmとすることができる。粗破砕の時間も、混合物40が粗く砕かれる時間であればよく、例えば、1〜120分とすることができる。
The rough crushing temperature is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the mixture 40 is roughly crushed at such a temperature, the mixture 40 is crushed well.
The rotational speed of the crushing apparatus may be a speed at which the mixture 40 is roughly crushed, and may be, for example, 50 to 50000 rpm. The rough crushing time may be a time during which the mixture 40 is roughly crushed, and may be, for example, 1 to 120 minutes.

ふるい分級工程S32では、振動するふるいにより塊状の粗破砕物50をさらに小さくして所定粒度にふるい分けし、所定粒度の造粒活性炭100を得る。造粒活性炭100の平均粒径は、造粒活性炭100の使用場面に応じて決定すれば良く、例えば、50μm〜5mm、より好ましくは100〜500μm程度とすることができる。
ふるい分けには、水平振動ふるいや傾斜型振動ふるいといったふるいを有するふるい分け装置等を用いることができる。
In the sieve classification step S32, the coarsely crushed material 50 is further reduced by a vibrating sieve and sieved to a predetermined particle size to obtain granulated activated carbon 100 having a predetermined particle size. What is necessary is just to determine the average particle diameter of the granulated activated carbon 100 according to the use scene of the granulated activated carbon 100, for example, can be about 50 micrometers-5 mm, More preferably, it is about 100-500 micrometers.
For sieving, a sieving apparatus having a sieve such as a horizontal vibration sieve or an inclined vibration sieve can be used.

分級時の温度は、バインダー12の融点未満が好ましく、バインダー12の軟化温度未満がより好ましく、室温でも良い。このような温度で粗破砕物50を分級すると、良好に分級される。   The temperature at the time of classification is preferably less than the melting point of the binder 12, more preferably less than the softening temperature of the binder 12, and may be room temperature. When the coarsely crushed material 50 is classified at such a temperature, it is classified well.

なお、粗破砕物50自体が造粒された状態であるので、上記ふるい分級工程S32が無くても造粒活性炭100を製造することができる。また、振動するふるいにより塊状の粗破砕物50が小さくなるので、上記粗破砕工程S31が無くても造粒活性炭100を製造することができる。   In addition, since the coarsely crushed product 50 itself is in a granulated state, the granulated activated carbon 100 can be manufactured without the sieve classification step S32. Further, since the coarse crushed material 50 is reduced by the vibrating sieve, the granulated activated carbon 100 can be produced without the coarse pulverization step S31.

造粒活性炭100は、例えば、図2に示すような浄水器カートリッジC1に使用することができる。
図2に示す浄水器カートリッジC1は、入口側の不織布C3と出口側のイオン交換繊維C4とで仕切られた円筒状の造粒活性炭充填室C2や、造粒活性炭充填室C2で囲まれた中央位置に設けられた円柱状の中空糸膜収容室C5を有し、入口C11から流入する水道水をろ過してろ過水を出口C12から出す。すなわち、不織布C3、造粒活性炭100、イオン交換繊維C4、及び、中空糸膜C6がろ材として使用されている。
The granulated activated carbon 100 can be used, for example, in a water purifier cartridge C1 as shown in FIG.
The water purifier cartridge C1 shown in FIG. 2 has a cylindrical granulated activated carbon filling chamber C2 partitioned by a nonwoven fabric C3 on the inlet side and an ion exchange fiber C4 on the outlet side, and a center surrounded by the granulated activated carbon filling chamber C2. It has a columnar hollow fiber membrane storage chamber C5 provided at a position, and the tap water flowing from the inlet C11 is filtered and the filtered water is discharged from the outlet C12. That is, the nonwoven fabric C3, the granulated activated carbon 100, the ion exchange fiber C4, and the hollow fiber membrane C6 are used as a filter medium.

不織布C3は、入口C11に流入した水道水から大きなゴミを除去する。造粒活性炭充填室C2に充填された造粒活性炭100は、遊離残留塩素や有機物等を吸着して除去する。造粒活性炭100に金属処理剤が含まれる場合、金属イオンが除去される。イオン交換繊維C4は、金属イオン等を除去する。イオン交換繊維C4は、活性炭繊維等と組み合わされて使用されてもよい。中空糸膜収容室C5に収容された中空糸膜C6は、0.1μm程度以上の細かい濁りや鉄サビや一般細菌を取り除く。
以上の他、造粒活性炭100は、空気清浄機等に用いることができる。
Nonwoven fabric C3 removes large debris from tap water flowing into inlet C11. The granulated activated carbon 100 filled in the granulated activated carbon filling chamber C2 adsorbs and removes free residual chlorine and organic matter. When the granulated activated carbon 100 contains a metal treatment agent, metal ions are removed. The ion exchange fiber C4 removes metal ions and the like. The ion exchange fiber C4 may be used in combination with activated carbon fiber or the like. The hollow fiber membrane C6 accommodated in the hollow fiber membrane accommodation chamber C5 removes fine turbidity of about 0.1 μm or more, iron rust and general bacteria.
In addition to the above, the granulated activated carbon 100 can be used in an air cleaner or the like.

本製造方法は、前混合工程S1で混合する固化した熱可塑性のバインダー12の平均粒径が1〜500μmであるので、活性炭11とバインダー12とに働く静電付着力が大きく、液状分散媒が無くても加熱前の混合でバインダー12が良好に分散する。このため、加熱混合工程S2で活性炭11同士が接着し、混合終了後に混合物40を砕くことにより造粒活性炭100が得られる。本製造方法は、混合物40から液状分散媒を除去する乾燥工程が不要であるので、造粒活性炭100の製造工程を短縮することが可能となる。
また、バインダーで塞がれる活性炭細孔が少なくなり、造粒活性炭の吸着能力が向上すると推測される。
さらに、バインダー12に平均分子量50万〜1000万の熱可塑性樹脂を用いることにより、バインダー12が溶融しても活性炭11表面に拡がり難くなり、造粒活性炭100の吸着活性を向上させることが可能となる。
In this production method, since the average particle diameter of the solidified thermoplastic binder 12 mixed in the premixing step S1 is 1 to 500 μm, the electrostatic adhesion acting on the activated carbon 11 and the binder 12 is large, and the liquid dispersion medium is Even if not, the binder 12 is well dispersed by mixing before heating. For this reason, the activated carbon 11 adhere | attaches by heating mixing process S2, and the granulated activated carbon 100 is obtained by crushing the mixture 40 after completion | finish of mixing. Since this manufacturing method does not require a drying step of removing the liquid dispersion medium from the mixture 40, the manufacturing step of the granulated activated carbon 100 can be shortened.
Moreover, it is estimated that the activated carbon pores plugged with the binder are reduced, and the adsorption ability of the granulated activated carbon is improved.
Further, by using a thermoplastic resin having an average molecular weight of 500,000 to 10,000,000 for the binder 12, it becomes difficult to spread on the surface of the activated carbon 11 even when the binder 12 melts, and the adsorption activity of the granulated activated carbon 100 can be improved. Become.

(2)実施例:
以下、実施例を示して具体的に本発明を説明するが、本発明は以下の例により限定されるものではない。
(2) Example:
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by the following examples.

[実施例1]
粉砕状活性炭として、ヤシ殻系活性炭(クラレケミカル株式会社製PGW20MP、平均粒径20μm)を用いた。バインダーとして、超高分子量ポリエチレンパウダー(三井化学株式会社製、商品名:ミペロンXM220、平均粒径30μm、平均分子量200万、推定軟化温度120〜125℃、融点136℃、MFR0.0g/10min)を用いた。ブレンダーには、株式会社小平製作所製KM-800を用いた。ラボプラストミルには、東洋精機製作所製30R150を用いた。粗破砕用の粉砕機には、大阪ケミカル株式会社製PM-2005mを用いた。
上記ヤシ殻系活性炭75gと上記超高分子量ポリエチレンパウダー25gとを上記ブレンダーに入れ、液状分散媒非存在下で室温下、200rpmで10分間、混合した。混合後の材料を上記ラボプラストミルに入れ、液状分散媒非存在下で200℃に加熱し、50rpmで10分間、混合した。混合後の材料が室温まで冷却された後、混合後の材料を粉砕機に入れて、室温下、100rpmで1分間、粗破砕した。粗破砕後の材料を振動するふるいに入れて分級し、平均粒径300μmの造粒活性炭を得た。
[Example 1]
As the pulverized activated carbon, coconut shell activated carbon (PGW20MP manufactured by Kuraray Chemical Co., Ltd., average particle size 20 μm) was used. As a binder, ultra high molecular weight polyethylene powder (Mitsui Chemical Co., Ltd., trade name: Mipperon XM220, average particle size 30 μm, average molecular weight 2 million, estimated softening temperature 120-125 ° C., melting point 136 ° C., MFR 0.0 g / 10 min) Using. KM-800 manufactured by Kodaira Manufacturing Co., Ltd. was used as the blender. As the lab plast mill, Toyo Seiki Seisakusho 30R150 was used. PM-2005m manufactured by Osaka Chemical Co., Ltd. was used as a crusher for rough crushing.
75 g of the coconut shell activated carbon and 25 g of the ultra high molecular weight polyethylene powder were put in the blender and mixed at room temperature and 200 rpm for 10 minutes in the absence of a liquid dispersion medium. The mixed material was put into the Laboplast mill, heated to 200 ° C. in the absence of a liquid dispersion medium, and mixed at 50 rpm for 10 minutes. After the mixed material was cooled to room temperature, the mixed material was put in a pulverizer and roughly crushed at 100 rpm for 1 minute at room temperature. The coarsely crushed material was placed in a vibrating screen and classified to obtain granulated activated carbon having an average particle size of 300 μm.

[比較例1]
粉砕状活性炭及びバインダーには、実施例1と同じものを用いた。パン型造粒機には、アズワン株式会社製PZ-02Rを用いた。
ヤシ殻系活性炭75gと超高分子量ポリエチレンパウダー25gとを上記パン型造粒機に入れ、水を噴霧しながら造粒を行った。得られた造粒物を80℃で1時間乾燥させた後、190℃で2時間熱処理した。処理後の造粒物を振動するふるいに入れて分級し、平均粒径300μmの造粒活性炭を得た。
[Comparative Example 1]
The same thing as Example 1 was used for the pulverized activated carbon and the binder. As the bread granulator, PZ-02R manufactured by AS ONE Co., Ltd. was used.
75 g of coconut shell activated carbon and 25 g of ultrahigh molecular weight polyethylene powder were put into the bread type granulator and granulated while spraying water. The obtained granulated product was dried at 80 ° C. for 1 hour and then heat-treated at 190 ° C. for 2 hours. The treated granulated product was placed in a vibrating screen and classified to obtain granulated activated carbon having an average particle size of 300 μm.

[比較例2]
粒状のヤシ殻系活性炭を振動するふるいに入れて分級し、平均粒径300μmの粒状活性炭を得た。従って、比較例2の粒状活性炭は、造粒活性炭ではない。
[Comparative Example 2]
The granular coconut shell activated carbon was placed in a vibrating screen and classified to obtain granular activated carbon having an average particle size of 300 μm. Therefore, the granular activated carbon of Comparative Example 2 is not a granulated activated carbon.

[評価方法]
実施例1及び比較例1について、造粒活性炭を得るまでの形成時間を比較した。
また、実施例1及び比較例1,2で得られた造粒活性炭を50ml秤量して内径80mmのカラムに充填し、JIS S3201「家庭用浄水器試験方法」に準じて、遊離残留塩素濃度2.0mg/Lの水溶液を2.5L/minで通水し浄化性能を確認した。遊離塩素の浄化性能が80%に低下するまでに通水できた水量(ろ過能力)を性能とし比較した。
[Evaluation method]
About Example 1 and Comparative Example 1, the formation time until obtaining granulated activated carbon was compared.
Further, 50 ml of the granulated activated carbon obtained in Example 1 and Comparative Examples 1 and 2 was weighed and packed into a column having an inner diameter of 80 mm, and the free residual chlorine concentration was 2 in accordance with JIS S3201 “Household water purifier test method”. Purified performance was confirmed by passing a 0.0 mg / L aqueous solution at 2.5 L / min. The amount of water that could be passed before the purification performance of free chlorine decreased to 80% (filtration capacity) was compared as performance.

[試験結果]
試験結果を図3及び表1,2に示す。なお、図3において、横軸は水溶液の通水量(L)、縦軸は遊離残留塩素濃度(遊離残留塩素濃度2.0mg/Lを100%とした相対値)を示している。
[Test results]
The test results are shown in FIG. In FIG. 3, the horizontal axis indicates the amount (L) of water passing through the aqueous solution, and the vertical axis indicates the free residual chlorine concentration (relative value with the free residual chlorine concentration of 2.0 mg / L as 100%).

Figure 0005408740
表1に示すように、実施例1は、比較例1と比べ、乾燥工程が不要であり、造粒活性炭を得るまでの形成時間が短くて済んだ。従って、本発明の製造方法は、造粒活性炭の製造工程が短縮されることが確認された。
Figure 0005408740
As shown in Table 1, Example 1 did not require a drying step, and the formation time until obtaining granulated activated carbon was shorter than that of Comparative Example 1. Therefore, it was confirmed that the manufacturing method of this invention shortens the manufacturing process of granulated activated carbon.

Figure 0005408740
表2に示すように、実施例1のろ過能力は、比較例1のろ過能力の1.7倍、比較例2のろ過能力の2.9倍であった。比較例1の製造方法は、造粒時に疎水性のバインダーが粒子表面で会合し造粒されるため造粒活性炭の表面積が小さくなり吸着能力が低下すると推測される。一方、本発明の製造方法は、より均一に分散された材料が造粒されるため造粒活性炭の表面積が大きくなり吸着能力が向上すると推測される。
Figure 0005408740
As shown in Table 2, the filtration capacity of Example 1 was 1.7 times that of Comparative Example 1 and 2.9 times that of Comparative Example 2. In the production method of Comparative Example 1, it is presumed that the hydrophobic binder associates and granulates on the particle surface at the time of granulation, so that the surface area of the granulated activated carbon is reduced and the adsorption ability is lowered. On the other hand, the production method of the present invention is presumed to increase the surface area of the granulated activated carbon and improve the adsorption capacity because the more uniformly dispersed material is granulated.

以上説明したように、本発明によると、種々の態様により、造粒活性炭の製造工程を短縮することが可能な技術等を提供することができる。
また、上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりして本発明を実施することも可能であり、公知技術並びに上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりして本発明を実施することも可能である。従って、本発明は、上述した実施形態や変形例に限られず、公知技術並びに上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成等も含まれる。
As described above, according to the present invention, a technique or the like that can shorten the manufacturing process of granulated activated carbon can be provided according to various aspects.
In addition, it is also possible to implement the present invention by mutually replacing the configurations disclosed in the above-described embodiments and modifications, and changing the combination. It is also possible to carry out the present invention by substituting each component disclosed in the above or changing the combination. Therefore, the present invention is not limited to the above-described embodiments and modifications, and includes configurations in which the configurations disclosed in the publicly known technology and the above-described embodiments and modifications are mutually replaced or combinations thereof are changed. It is.

11…活性炭、12…バインダー、13…添加剤、
20…前混合物、40…混合物、50…粗破砕物、
100…造粒活性炭、
C1…浄水器カートリッジ、
C2…造粒活性炭充填室、C3…不織布、C4…イオン交換繊維、
C5…中空糸膜収容室、C6…中空糸膜、
C11…入口、C12…出口、
S1…前混合工程、S2…加熱混合工程、S3…造粒活性炭形成工程、
S31…粗破砕工程、S32…ふるい分級工程。
11 ... Activated carbon, 12 ... Binder, 13 ... Additive,
20 ... pre-mixture, 40 ... mixture, 50 ... crushed material,
100 ... Granulated activated carbon,
C1 ... Water purifier cartridge,
C2 ... Granulated activated carbon filling chamber, C3 ... Nonwoven fabric, C4 ... Ion exchange fiber,
C5 ... hollow fiber membrane storage chamber, C6 ... hollow fiber membrane,
C11 ... Inlet, C12 ... Exit,
S1 ... Pre-mixing step, S2 ... Heat mixing step, S3 ... Granulated activated carbon forming step,
S31 ... coarse crushing step, S32 ... sieve classification step.

Claims (5)

粉砕状、粒状及び繊維状から選ばれる一種以上の活性炭100重量部と、平均粒径1〜500μmの固化した熱可塑性のバインダー2〜70重量部と、を含む素材を液状分散媒非存在下で混合した後、液状分散媒非存在下で前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して該温度で混合し、混合終了後に混合物を砕いて造粒活性炭を形成することを特徴とする造粒活性炭の製造方法。 In the absence of a liquid dispersion medium, a material containing 100 parts by weight of one or more types of activated carbon selected from pulverized, granular, and fibrous forms, and 2 to 70 parts by weight of a solidified thermoplastic binder having an average particle diameter of 1 to 500 μm. After mixing, the mixture is heated to a temperature not lower than the softening temperature of the binder and the binder does not ignite in the absence of a liquid dispersion medium and mixed at the temperature, and after completion of mixing, the mixture is crushed to form granulated activated carbon. A method for producing granulated activated carbon. 前記活性炭に、平均粒径1〜500μmの活性炭と、平均繊維径5〜100μm及び平均繊維長15〜500μmの繊維状活性炭と、から選ばれる一種以上の活性炭を用いることを特徴とする請求項1に記載の造粒活性炭の製造方法。   The activated carbon is one or more kinds of activated carbon selected from activated carbon having an average particle diameter of 1 to 500 µm and fibrous activated carbon having an average fiber diameter of 5 to 100 µm and an average fiber length of 15 to 500 µm. A method for producing granulated activated carbon according to 1. 前記バインダーに、平均分子量50万〜1000万の熱可塑性樹脂を用いることを特徴とする請求項1又は請求項2に記載の造粒活性炭の製造方法。   The method for producing granulated activated carbon according to claim 1 or 2, wherein a thermoplastic resin having an average molecular weight of 500,000 to 10,000,000 is used for the binder. 前記混合終了後に混合物を粗破砕し、振動するふるいにより粗破砕物を分級して造粒活性炭を形成することを特徴とする請求項1〜請求項3のいずれか一項に記載の造粒活性炭の製造方法。   The granulated activated carbon according to any one of claims 1 to 3, wherein the mixture is roughly crushed and the coarsely crushed material is classified by a vibrating sieve to form a granulated activated carbon. Manufacturing method. 粉砕状、粒状及び繊維状から選ばれる一種以上の活性炭100重量部と、平均粒径1〜500μmの固化した熱可塑性のバインダー2〜70重量部と、を含む素材を液状分散媒非存在下で混合した後、液状分散媒非存在下で前記バインダーの軟化温度以上かつ前記バインダーが発火しない温度に加熱して該温度で混合し、混合終了後に混合物を砕いて得られる造粒活性炭。 In the absence of a liquid dispersion medium, a material containing 100 parts by weight of one or more types of activated carbon selected from pulverized, granular, and fibrous forms, and 2 to 70 parts by weight of a solidified thermoplastic binder having an average particle diameter of 1 to 500 μm. Granulated activated carbon obtained by mixing, mixing at the temperature above the softening temperature of the binder and at a temperature at which the binder does not ignite in the absence of a liquid dispersion medium , and mixing the mixture at the end of mixing.
JP2011147191A 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon Active JP5408740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147191A JP5408740B2 (en) 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147191A JP5408740B2 (en) 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon

Publications (2)

Publication Number Publication Date
JP2013014456A JP2013014456A (en) 2013-01-24
JP5408740B2 true JP5408740B2 (en) 2014-02-05

Family

ID=47687515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147191A Active JP5408740B2 (en) 2011-07-01 2011-07-01 Method for producing granulated activated carbon and granulated activated carbon

Country Status (1)

Country Link
JP (1) JP5408740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182819B2 (en) * 2013-07-25 2017-08-23 大阪ガスケミカル株式会社 Water purification cartridge, water purifier
JP6767146B2 (en) * 2016-03-30 2020-10-14 株式会社Lixil Granulated activated carbon

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864133A (en) * 1981-10-12 1983-04-16 Toyobo Co Ltd Preparation of adsorbing and desorbing body
JP2926275B2 (en) * 1990-12-11 1999-07-28 クラレケミカル株式会社 Adsorbent filter
ES2115773T3 (en) * 1992-07-29 1998-07-01 Minnesota Mining & Mfg AIR FILTER WITH ACTIVATED CARBON AND BINDING.
JPH09183604A (en) * 1995-12-28 1997-07-15 Kyocera Corp Solid activated carbon, its production and electric double layer capacitor
KR20070100783A (en) * 2005-02-02 2007-10-11 구라레 케미칼 가부시키가이샤 Composite adsorbents, process for producing the same, and water-purifying material and water purifier
CN101925540B (en) * 2007-12-21 2012-09-05 3M创新有限公司 Liquid filtration systems
JP2009262079A (en) * 2008-04-25 2009-11-12 Mitsuboshi Belting Ltd Water treatment device

Also Published As

Publication number Publication date
JP2013014456A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
CN104854036B (en) Water treatment filter and manufacture method thereof
JP4855251B2 (en) Spherical activated carbon and method for producing the same
CN105920920B (en) One kind is based on grapheme material technology for making net filter
CN108439403B (en) Method for preparing biomass-formed activated carbon by low-temperature pre-pyrolysis and superfine raw materials
JPH0516371B2 (en)
JP6767146B2 (en) Granulated activated carbon
CN101195485A (en) Production method of bamboo absorbent charcoal
CN106794444A (en) The manufacture method of the adsorbent comprising activated carbon
JP5408741B2 (en) Method for producing granulated activated carbon and granulated activated carbon
TW200415123A (en) Adsorption material, process for producing it, clear water material and water purifier
JP5408740B2 (en) Method for producing granulated activated carbon and granulated activated carbon
KR101844686B1 (en) A manufacturing method for activated carbon blockfilter for water purification
CN111511466B (en) Adsorption filter
JP5868363B2 (en) Water purification cartridge and water purifier
WO2014017196A1 (en) Cylindrical carbonaceous object containing activated carbon or activated carbon material, cylindrical carbonaceous object module, filter cartridge, water purifier, water faucet, and method for producing same
JP6957297B2 (en) Granulated activated carbon and its manufacturing method
JP5775038B2 (en) Method for producing activated carbon or cylindrical carbonaceous material containing activated carbon raw material
JP6174556B2 (en) Modified activated carbon, method for producing the same, and filtration cartridge
JPWO2017086177A1 (en) Composite gas adsorbent, adsorption filter using the same, and method for producing composite gas adsorbent
JP7453462B1 (en) Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
JP4666452B2 (en) Compressed activated carbon block
TWI753390B (en) Composite aggregate particles, and adsorbents, shaped bodies, and water purifiers using the same
JP7039395B2 (en) Fibrous binder for granulation
JP7086734B2 (en) Method for manufacturing activated carbon molded product
WO2007039019A1 (en) Moulded filter and process for making same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5408740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250