JP5406447B2 - Method for producing negative electrode active material sheet for lithium ion secondary battery - Google Patents

Method for producing negative electrode active material sheet for lithium ion secondary battery Download PDF

Info

Publication number
JP5406447B2
JP5406447B2 JP2007319465A JP2007319465A JP5406447B2 JP 5406447 B2 JP5406447 B2 JP 5406447B2 JP 2007319465 A JP2007319465 A JP 2007319465A JP 2007319465 A JP2007319465 A JP 2007319465A JP 5406447 B2 JP5406447 B2 JP 5406447B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material sheet
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007319465A
Other languages
Japanese (ja)
Other versions
JP2009146580A (en
Inventor
敏明 曽我部
輝彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2007319465A priority Critical patent/JP5406447B2/en
Publication of JP2009146580A publication Critical patent/JP2009146580A/en
Application granted granted Critical
Publication of JP5406447B2 publication Critical patent/JP5406447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用負極として使用可能な負極活物質シートに関する。   The present invention relates to a negative electrode active material sheet that can be used as a negative electrode for a lithium ion secondary battery.

近年、環境影響への配慮から、風力発電や潮流発電、太陽光発電のような自然力を利用した発電方式への関心が高まっている。このような自然力を利用した発電方式は、発電量が一定しない。例えば、風力発電では電力消費量が少ない夜間に発電量が大きくなる傾向があり、太陽光発電では夜間には全く発電されない。   In recent years, due to consideration for environmental impact, interest in power generation methods using natural power such as wind power generation, tidal current power generation, and solar power generation has increased. In such a power generation method using natural force, the power generation amount is not constant. For example, wind power generation tends to increase power generation at night when power consumption is low, and solar power generation does not generate power at all at night.

このため、自然力を利用した発電方式の活用には、電力消費の少ない時間帯に発電した電気を蓄電し、電力消費の大きい時間帯に蓄電した電気エネルギーを放出する技術が不可欠である。リチウムイオン二次電池は、エネルギー密度が高く高容量であるので、自然力を利用した発電方式の上記欠点を補うための蓄電池として最適である。   For this reason, in order to utilize a power generation method using natural power, a technique for storing electricity generated in a time zone with low power consumption and discharging the electrical energy stored in a time zone with high power consumption is indispensable. A lithium ion secondary battery has a high energy density and a high capacity, and is therefore optimal as a storage battery to compensate for the above-described drawbacks of the power generation method using natural force.

このようなリチウムイオン二次電池には、炭素負極が用いられており、炭素負極は、活物質である炭素質粒子と、結着剤と、溶剤と、を混合してスラリーとなし、銅箔に塗布し、乾燥、プレスする方法により製造されているが、近年、銅価格が高騰し負極製造コストが上昇している。このため、銅箔を用いない炭素負極が望まれている。また、大規模蓄電には大量のリチウムイオン二次電池が必要であるため、大規模蓄電向きの安価なリチウムイオン二次電池に対する要望が高まっている。   In such a lithium ion secondary battery, a carbon negative electrode is used. The carbon negative electrode is a slurry obtained by mixing carbonaceous particles as an active material, a binder, and a solvent, and a copper foil. However, in recent years, the price of copper has risen and the negative electrode manufacturing cost has increased. For this reason, the carbon negative electrode which does not use copper foil is desired. Moreover, since a large amount of lithium ion secondary batteries are required for large-scale power storage, there is an increasing demand for inexpensive lithium-ion secondary batteries suitable for large-scale power storage.

銅箔を用いない負極に関する技術としては、下記特許文献1がある。   As a technique regarding the negative electrode which does not use copper foil, there is the following Patent Document 1.

特開2000-173618号公報JP 2000-173618

特許文献1は、膨張黒鉛シートを負極に用いる技術である。しかし、膨張黒鉛シートの価格が高いため、電池の低コスト化を図れないという問題がある。   Patent document 1 is a technique using an expanded graphite sheet for a negative electrode. However, since the expanded graphite sheet is expensive, there is a problem that the cost of the battery cannot be reduced.

本発明は、上記に鑑みなされたものであって、高性能な炭素負極を低コストで提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing a high performance carbon negative electrode at low cost.

上記課題を解決するための本発明は、次のように構成されている。
炭素材料粉末と、有機結着剤と、を含む負極合剤を加圧し、負極前駆体を作製する負極前駆体作製工程と、前記負極前駆体を不活性ガス雰囲気で600〜2000℃で焼成する焼成工程と、を備え、前記有機結着剤が、熱硬化性樹脂であり、前記負極前駆体作製工程は、前記負極合剤を前記熱硬化性樹脂の硬化温度以上に加熱しつつ加圧する工程であるリチウムイオン二次電池用負極の製造方法。
The present invention for solving the above problems is configured as follows.
A negative electrode mixture including a carbon material powder and an organic binder is pressurized to produce a negative electrode precursor, and the negative electrode precursor is fired at 600 to 2000 ° C. in an inert gas atmosphere. A baking step , wherein the organic binder is a thermosetting resin, and the negative electrode precursor preparation step is a step of applying pressure while heating the negative electrode mixture to a temperature equal to or higher than a curing temperature of the thermosetting resin. The manufacturing method of the negative electrode for lithium ion secondary batteries which is .

この構成によると、負極前駆体作製工程により炭素材料粉末と、有機結着剤とが強固に結合された負極前駆体が得られる。この後、不活性ガス雰囲気で焼成することにより、有機結着剤が炭素化するとともに、炭素以外の副成分が蒸散除去される。この蒸散除去により、負極に電解液の浸透性の高い気孔が形成される。 よって、円滑に電気化学的反応が進行する高性能なリチウムイオン二次電池用負極活物質シートを得ることができる。また、炭素化収率及び結着力の観点から、有機結着剤として熱硬化性樹脂を用いる。熱硬化性樹脂を用いる場合には、炭素材料粉末を結着させるために、負極前駆体作製工程において、負極合剤を熱硬化性樹脂の硬化温度以上に加熱しつつ加圧する必要がある。 According to this configuration, a negative electrode precursor in which the carbon material powder and the organic binder are firmly bonded is obtained in the negative electrode precursor manufacturing step. Thereafter, by baking in an inert gas atmosphere, the organic binder is carbonized, and subcomponents other than carbon are removed by evaporation. By this transpiration removal, pores with high electrolyte permeability are formed in the negative electrode. Therefore, a high performance negative electrode active material sheet for a lithium ion secondary battery in which an electrochemical reaction proceeds smoothly can be obtained. Further, from the viewpoint of carbonization yield and binding power, a thermosetting resin is used as the organic binder. When the thermosetting resin is used, in order to bind the carbon material powder, it is necessary to pressurize the negative electrode mixture while heating the negative electrode mixture to a temperature equal to or higher than the curing temperature of the thermosetting resin.

上記構成において、前記負極合剤は、さらに有機気孔形成剤を含む構成とすることができる。   In the above configuration, the negative electrode mixture may further include an organic pore forming agent.

有機気孔形成剤を加えると、不活性ガス雰囲気での焼成により、有機気孔形成剤が炭素化するとともに、炭素以外の副成分が蒸散除去され、負極に電解液の浸透性の高い気孔が効率よく形成される。   When an organic pore-forming agent is added, the organic pore-forming agent is carbonized by firing in an inert gas atmosphere, and subcomponents other than carbon are removed by evaporation, and pores with high electrolyte permeability are efficiently formed in the negative electrode. It is formed.

ここで、有機結着剤とは、結着作用を有する有機物全てを意味する。有機気孔形成剤とは、焼成により除去される炭素以外の成分を含む有機化合物を意味し、有機気孔形成剤は、結着性を有するものでもよく、結着性を有しないものでもよい。したがって、炭素以外の成分を含む有機結着剤は有機気孔形成剤ともなり得、結着性を有する有機気孔形成剤は有機結着剤ともなり得る。   Here, the organic binder means all organic substances having a binding action. The organic pore-forming agent means an organic compound containing a component other than carbon that is removed by firing, and the organic pore-forming agent may have binding properties or may not have binding properties. Therefore, an organic binder containing components other than carbon can be an organic pore-forming agent, and an organic pore-forming agent having binding properties can also be an organic binder.

負極活物質シートの導電性をさらに高めるためには、負極合剤に繊維状炭素質物を含ませることが好ましい。   In order to further increase the conductivity of the negative electrode active material sheet, it is preferable to include a fibrous carbonaceous material in the negative electrode mixture.

熱硬化性樹脂としては、フェノール樹脂・エポキシ樹脂が好適である。   As the thermosetting resin, a phenol resin / epoxy resin is preferable.

上記構成において、前記負極合剤全質量に占める前記有機結着剤の質量割合が、5〜50質量%である構成とすることができる。   The said structure WHEREIN: The mass ratio of the said organic binder to the said negative electrode mixture total mass can be set as the structure which is 5-50 mass%.

負極合剤全質量に占める有機結着剤の質量割合が低すぎると、電解液の浸透性の高い気孔を十分に形成できないおそれがある。他方、質量割合が高すぎると、放電容量の低下を招くおそれがある。よって、上記範囲内に規制することが好ましい。   When the mass ratio of the organic binder to the total mass of the negative electrode mixture is too low, there is a possibility that pores with high electrolyte permeability cannot be formed sufficiently. On the other hand, if the mass ratio is too high, the discharge capacity may be reduced. Therefore, it is preferable to regulate within the above range.

ここで、前記有機気孔形成剤としては、セルロース類、木綿、絹、レーヨン、植物繊維、木粉、砂糖、ポリビニルアルコール、ポリビニルクロライドよりからなる群より選択された1以上の物質が好適である。   Here, the organic pore forming agent is preferably one or more substances selected from the group consisting of celluloses, cotton, silk, rayon, vegetable fibers, wood flour, sugar, polyvinyl alcohol, and polyvinyl chloride.

上記構成において、前記負極合剤全質量に占める前記有機気孔形成剤の質量割合が、1〜20質量%である構成とすることができる。   The said structure WHEREIN: The mass ratio of the said organic pore formation agent which occupies for the said negative electrode mixture total mass can be set as the structure which is 1-20 mass%.

負極合剤全質量に占める有機気孔形成剤の質量割合が低すぎると、十分な量の気孔が形成できないおそれがある。他方、質量割合が高すぎると、放電容量の低下を招くおそれがある。よって、上記範囲内に規制することが好ましい。   If the mass ratio of the organic pore forming agent to the total mass of the negative electrode mixture is too low, there is a possibility that a sufficient amount of pores cannot be formed. On the other hand, if the mass ratio is too high, the discharge capacity may be reduced. Therefore, it is preferable to regulate within the above range.

上記製造方法により得られるリチウムイオン二次電池用負極活物質シートは、次のように構成されていることが好ましい。The negative electrode active material sheet for a lithium ion secondary battery obtained by the above production method is preferably configured as follows.
リチウムイオンを吸蔵脱離する炭素質粒子と、前記炭素質粒子を結着する焼成炭素化物質と、を有するリチウムイオン二次電池用負極活物質シート。A negative electrode active material sheet for a lithium ion secondary battery, comprising: carbonaceous particles that occlude and desorb lithium ions; and a calcined carbonized material that binds the carbonaceous particles.
この構成では、負極活物質が炭素質粒子と焼成炭素化物とから構成され、シート状であるため、銅などの集電体を用いなくともよい。よって、コストの低減を図れる。In this configuration, the negative electrode active material is composed of carbonaceous particles and calcined carbonized material and is in the form of a sheet, so that a current collector such as copper need not be used. Therefore, cost can be reduced.
また、焼成炭素化物質は、従来の樹脂製結着剤よりも導電性が高いので、導電性に優れた負極活物質が得られる。In addition, since the calcined carbonized material has higher conductivity than the conventional resin binder, a negative electrode active material having excellent conductivity can be obtained.
ここで、上記炭素質粒子は、粒子形態をとる炭素全てを意味し結晶化の程度は問わない。また、焼成炭素化物質とは、有機物が焼成されることにより炭化された炭素質をいう。Here, the carbonaceous particles mean all carbons in the form of particles, and the degree of crystallization is not limited. Moreover, a calcination carbonization substance means the carbonaceous carbonized by baking an organic substance.
なお、本発明負極活物質シートは、このままで従来の負極または負極板と同様に使用することができるものである。ただし、本発明負極活物質シートを、銅箔等からなる集電体に重ね合わせて使用することができることは勿論である。The negative electrode active material sheet of the present invention can be used in the same manner as a conventional negative electrode or negative electrode plate. However, it goes without saying that the negative electrode active material sheet of the present invention can be used by being superimposed on a current collector made of copper foil or the like.
上記構成において、前記リチウムイオン二次電池用負極活物質シートの気孔径(直径)0.05〜100μmの範囲の気孔の気孔体積が質量当たり0.07〜0.25cc/gであるとする構成とすることができる。The said structure WHEREIN: The structure which the pore volume of the range of the pore diameter (diameter) 0.05-100 micrometers of the said negative electrode active material sheet for lithium ion secondary batteries is 0.07-0.25 cc / g per mass It can be.
マクロ孔と呼ばれる0.05〜100μmの範囲の気孔は、電解液を浸透させやすく、且つリチウムイオンの伝導性がよい。上記構成では、このマクロ孔が質量当たり0.07〜0.25cc/gである。このため、負極活物質である炭素質物の周囲に十分な量の電解液が供給され、リチウムイオンの吸蔵・脱離がスムースに進行するので、充放電反応がスムースに進行し、十分な充放電効率が得られる。なお、マクロ孔が0.25cc/gを超えると、実質的に気孔量が多くなりすぎて体積当たりの容量の低下を招くことになるので好ましくない。The pores in the range of 0.05 to 100 μm called macropores are easy to permeate the electrolyte and have good lithium ion conductivity. In the said structure, this macropore is 0.07-0.25 cc / g per mass. For this reason, a sufficient amount of electrolyte is supplied around the carbonaceous material, which is the negative electrode active material, and the lithium ion insertion / desorption proceeds smoothly, so that the charge / discharge reaction proceeds smoothly and sufficient charge / discharge occurs. Efficiency is obtained. In addition, it is not preferable that the macropores exceed 0.25 cc / g because the amount of pores is substantially excessive and the capacity per volume is reduced.

上記構成において、前記リチウムイオン二次電池用負極活物質シートの気孔径(直径)0.01〜0.05μmの範囲の気孔の気孔体積が質量当たり0.05〜0.15cc/gであるとする構成とすることができる。The said structure WHEREIN: The pore volume of the range of the pore diameter (diameter) 0.01-0.05 micrometer of the said negative electrode active material sheet for lithium ion secondary batteries is 0.05-0.15 cc / g per mass. It can be set as the structure to do.
理由は定かではないが、メソ孔領域に含まれる0.01〜0.05μmの範囲の気孔が上記範囲内であると、優れた性能の負極活物質シートが得られる。これは、メソ孔がリチウムイオンや電子の伝導に影響を及ぼしているためではないかと推察される。The reason is not clear, but when the pores in the range of 0.01 to 0.05 μm included in the mesopore region are within the above range, a negative electrode active material sheet with excellent performance can be obtained. This is presumably because mesopores affect the conduction of lithium ions and electrons.
上記構成において、前記リチウムイオン二次電池用負極活物質シートの抵抗率が、10mΩ・cm以下である、とする構成とすることができる。In the above configuration, the negative electrode active material sheet for a lithium ion secondary battery may have a resistivity of 10 mΩ · cm or less.
内部抵抗が大きいと、その分放電容量が低下する。このため、リチウムイオン二次電池用負極活物質シートの抵抗率は、10mΩ・cm以下とすることが好ましい。If the internal resistance is large, the discharge capacity is reduced accordingly. For this reason, it is preferable that the resistivity of the negative electrode active material sheet for a lithium ion secondary battery is 10 mΩ · cm or less.
上記構成において、前記リチウムイオン二次電池用負極活物質シートの気孔率が、20〜70%である、とする構成とすることができる。The said structure WHEREIN: It can be set as the structure which the porosity of the said negative electrode active material sheet for lithium ion secondary batteries is 20 to 70%.
気孔率が小さいと、十分な量の電解液を保持できないため、放電容量が低下する。他方、気孔率が大きいと、活物質量が少なくなるため、その分放電容量が低下する。このため、リチウムイオン二次電池用負極活物質シートの気孔率は、上記範囲内に規制することが好ましい。If the porosity is small, a sufficient amount of electrolyte cannot be retained, and the discharge capacity is reduced. On the other hand, when the porosity is large, the amount of active material decreases, and the discharge capacity decreases accordingly. For this reason, it is preferable to regulate the porosity of the negative electrode active material sheet for a lithium ion secondary battery within the above range.
上記構成において、前記リチウムイオン二次電池用負極活物質シートが、さらに繊維状炭素質物を有する、とする構成とすることができる。The said structure WHEREIN: The said negative electrode active material sheet for lithium ion secondary batteries can be set as the structure which has a fibrous carbonaceous material further.
有機結着剤を焼成した炭素質物では、十分な導電性が得られない場合がある。この場合、繊維状の炭素質物を導電剤として含ませると、さらに良好な導電性が得られる。In the carbonaceous material obtained by firing the organic binder, sufficient conductivity may not be obtained. In this case, if a fibrous carbonaceous material is included as a conductive agent, even better conductivity can be obtained.
なお、異なる粒径の炭素質粒子を混合して用い、粒径の小さい炭素質粒子を導電剤としてもよい。Note that carbonaceous particles having different particle diameters may be mixed and used, and carbonaceous particles having a small particle diameter may be used as the conductive agent.
ここで、繊維状炭素質物とは、炭素繊維、カーボンナノファイバー、気相成長炭素繊維、カーボンナノチューブ等の、繊維形態をとる炭素質物全てを含む概念である。Here, the fibrous carbonaceous material is a concept including all carbonaceous materials in the form of fibers, such as carbon fibers, carbon nanofibers, vapor-grown carbon fibers, and carbon nanotubes.

上記で説明したように、本発明によると、電気化学的反応性に優れた高性能なリチウムイオン二次電池用負極活物質シートを低コストで提供することができる。   As described above, according to the present invention, a high-performance negative electrode active material sheet for a lithium ion secondary battery excellent in electrochemical reactivity can be provided at low cost.

本発明を実施するための最良の形態を、図面を通じて、詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   The best mode for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施の形態)
図4は、本発明にかかる負極活物質を用いた負極を示す図であり、図5は、本発明にかかる負極活物質を用いた負極を有する電池の基本構造を示す図であり、図6は、従来技術にかかる負極を示す図である。
(Embodiment)
4 is a diagram showing a negative electrode using the negative electrode active material according to the present invention, and FIG. 5 is a diagram showing a basic structure of a battery having a negative electrode using the negative electrode active material according to the present invention. These are figures which show the negative electrode concerning a prior art.

図6に示すように、従来技術にかかる負極は、銅箔からなる集電体10に炭素を主体と刷る負極活物質層11が設けられ、集電体10の負極活物質層11が設けられていない部分に、例えば銅からなる集電タブ12が取り付けられている。これに対し、本発明にかかる負極活物質を用いた負極は、図4に示すように、集電体を有さず、炭素を主体とする負極活物質1に直接、例えば銅からなる集電タブ2が取り付けられている。充放電に関与しない銅からなる集電体を有さないため、本発明にかかる負極は、従来技術に比べ、コスト安であり、且つエネルギー密度が高い。   As shown in FIG. 6, the negative electrode according to the conventional technique is provided with a negative electrode active material layer 11 that mainly prints carbon on a current collector 10 made of copper foil, and a negative electrode active material layer 11 of the current collector 10. A current collecting tab 12 made of, for example, copper is attached to the portion that is not. On the other hand, the negative electrode using the negative electrode active material according to the present invention does not have a current collector as shown in FIG. Tab 2 is attached. Since it does not have a current collector made of copper that does not participate in charging / discharging, the negative electrode according to the present invention is cheaper and has a higher energy density than the prior art.

図5に、本発明にかかる負極活物質を用いた電池の基本構造を示す。炭素を主体とする負極100と、アルミニウム箔からなる集電体にコバルト酸リチウムを主体とする正極活物質層が設けられた正極300とが、オレフィン樹脂製等のセパレータ200を介して対向配置されており、負極100には負極タブ110が取り付けられ、正極300には正極タブ310が取り付けられている。なお、この図は電池の基本構造を示す図であって、負極−セパレータ−正極−セパレータからなる電池基本単位を複数積層した構造を備えていてもよい。   FIG. 5 shows a basic structure of a battery using the negative electrode active material according to the present invention. A negative electrode 100 mainly composed of carbon and a positive electrode 300 in which a current collector made of aluminum foil is provided with a positive electrode active material layer mainly composed of lithium cobaltate are disposed to face each other with a separator 200 made of olefin resin or the like interposed therebetween. A negative electrode tab 110 is attached to the negative electrode 100, and a positive electrode tab 310 is attached to the positive electrode 300. In addition, this figure is a figure which shows the basic structure of a battery, Comprising: You may have the structure which laminated | stacked the battery basic unit which consists of a negative electrode-separator-positive electrode-separator.

また、この電池の基本構造は外装体内に電解液とともに収容され、外装体の開口が封止されることにより、リチウムイオン二次電池が完成する。   Further, the basic structure of this battery is housed together with the electrolyte in the exterior body, and the opening of the exterior body is sealed, thereby completing a lithium ion secondary battery.

正極活物質としては、公知の材料を用いることができ、例えば、LiCoO2、LiNiO2、LiNixCo1-x2、LiMnO2、LiMn24、LiFeO2が挙げられる。 As the positive electrode active material can be used a known material, for example, LiCoO 2, LiNiO 2, LiNi x Co 1-x O 2, LiMnO 2, LiMn 2 O 4, LiFeO 2 and the like.

電解液に用いる有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の一種または二種以上の混合物を用いることができる。また、電解質塩としては、LiPF6、LiBF4、LiClO4、LiCF3SO3等の一種または二種以上の混合物を用いることができる。電解質塩の濃度は、0.5〜2.0M(モル/リットル)とすることが好ましい。 Examples of the organic solvent used in the electrolytic solution include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, and the like. Alternatively, a mixture of two or more kinds can be used. As the electrolyte salt, one kind or a mixture of two or more kinds such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 can be used. The concentration of the electrolyte salt is preferably 0.5 to 2.0 M (mol / liter).

また、他の構成要素(例えば、セパレータ、外装体、封口体等)は、公知の材料を用いればよく、負極活物質の製造方法以外については、公知の製造方法を採用できる。   Moreover, what is necessary is just to use a well-known material for other components (for example, a separator, an exterior body, a sealing body, etc.), and can employ | adopt a well-known manufacturing method except the manufacturing method of a negative electrode active material.

次に、実施例を用いて本発明をさらに詳細に説明する。   Next, the present invention will be described in more detail using examples.

(実施例1)
〈負極の作製〉
(材料の混合)
炭素質粒子としての天然黒鉛(鱗片状天然黒鉛を球状化処理したもの、平均粒径18μm)69質量部と、導電剤としての気相成長炭素繊維(昭和電工株式会社製)8質量部と、有機気孔形成剤としてのメチルセルロース(キシダ化学株式会社製 350〜550mP・s)3質量%と、有機結着剤してのフェノール樹脂粉末(ベルパールR890):20質量部とを、高速流動型混合機を用いてせん断混合し、負極合剤を得た。
Example 1
<Preparation of negative electrode>
(Mixing of materials)
69 parts by mass of natural graphite (spheroidized natural graphite, average particle size 18 μm) as carbonaceous particles, 8 parts by mass of vapor-grown carbon fiber (made by Showa Denko KK) as a conductive agent, A high-speed fluid mixer comprising 3% by mass of methylcellulose (350-550 mP · s, manufactured by Kishida Chemical Co., Ltd.) as an organic pore-forming agent and 20 parts by mass of a phenol resin powder (Bellpearl R890) as an organic binder Was used to obtain a negative electrode mixture.

(負極前駆体作製工程)
内径φ55mmの金型に上記負極合剤を入れ、200℃に設定した油圧式の熱圧プレスにセットし、500kg/cm2の圧力をかけて2分間保持した。その後、冷却し、負極活物質シート前駆体を得た。金型に入れる負極合剤の量は、負極活物質シート前駆体の厚みがおよそ0.4mmになるようにした。この加熱により、フェノール樹脂が熱硬化して、負極合剤が結着される。
(Negative electrode precursor manufacturing process)
The negative electrode mixture was placed in a metal mold having an inner diameter of 55 mm, set in a hydraulic hot press set at 200 ° C., and held at a pressure of 500 kg / cm 2 for 2 minutes. Then, it cooled and the negative electrode active material sheet precursor was obtained. The amount of the negative electrode mixture placed in the mold was such that the thickness of the negative electrode active material sheet precursor was about 0.4 mm. By this heating, the phenol resin is thermoset and the negative electrode mixture is bound.

(焼成工程)
上記負極活物質シート前駆体体を黒鉛板に挟み、窒素ガス雰囲気下において室温(25℃)より昇温し、1000℃で1時間保持して、負極活物質シートを得た。この加熱により、フェノール樹脂及びメチルセルロースが炭素化し、気孔形成剤であるメチルセルロース中の炭素以外の成分が除去されて負極シート内に気孔(空隙)が形成される。
(Baking process)
The negative electrode active material sheet precursor was sandwiched between graphite plates, heated from room temperature (25 ° C.) in a nitrogen gas atmosphere, and held at 1000 ° C. for 1 hour to obtain a negative electrode active material sheet. By this heating, the phenol resin and methyl cellulose are carbonized, and components other than carbon in methyl cellulose, which is a pore forming agent, are removed, and pores (voids) are formed in the negative electrode sheet.

上記負極活物質シートを、φ16mmに打ち抜いて、実施例1にかかる負極活物質シートを作製した。この負極活物質シートのかさ密度は、1.22g/cm3であった。 The negative electrode active material sheet was punched into φ16 mm to produce a negative electrode active material sheet according to Example 1. The bulk density of this negative electrode active material sheet was 1.22 g / cm 3 .

(実施例2)
(材料の混合)
炭素質粒子としての天然黒鉛(鱗片状天然黒鉛を球状化処理したもの、平均粒径18μm)72質量部と、気相成長炭素繊維(昭和電工株式会社製)8質量部と、熱硬化性樹脂バインダとしてのフェノール樹脂粉末(ベルパールR890)20質量部とを、高速流動型混合機を用いてせん断混合し、負極合剤を得た。
(Example 2)
(Mixing of materials)
72 parts by mass of natural graphite (spheroidized natural graphite spheroidized, average particle size 18 μm) as carbonaceous particles, 8 parts by mass of vapor grown carbon fiber (manufactured by Showa Denko KK), thermosetting resin 20 parts by mass of phenol resin powder (Bellpearl R890) as a binder was shear mixed using a high-speed fluidized mixer to obtain a negative electrode mixture.

(負極前駆体作製工程)
内径φ55mmの金型に上記負極合剤を入れ、200℃に設定した油圧式の熱圧プレスにセットし、500kg/cm2の圧力をかけて2分間保持した。その後、冷却し、負極活物質シート前駆体を得た。金型に入れる負極合剤の量は、負極活物質シート前駆体の厚みがおよそ0.4mmになるようにした。この加熱により、フェノール樹脂が熱硬化して、負極合剤が結着される。
(Negative electrode precursor manufacturing process)
The negative electrode mixture was placed in a metal mold having an inner diameter of 55 mm, set in a hydraulic hot press set at 200 ° C., and held at a pressure of 500 kg / cm 2 for 2 minutes. Then, it cooled and the negative electrode active material sheet precursor was obtained. The amount of the negative electrode mixture placed in the mold was such that the thickness of the negative electrode active material sheet precursor was about 0.4 mm. By this heating, the phenol resin is thermoset and the negative electrode mixture is bound.

(焼成工程)
上記負極前駆体を黒鉛板に挟み、窒素ガス雰囲気下において室温(25℃)より昇温し、1000℃で1時間保持して、負極活物質シートを得た。この加熱により、フェノール樹脂が炭素化する。
(Baking process)
The negative electrode precursor was sandwiched between graphite plates, heated from room temperature (25 ° C.) in a nitrogen gas atmosphere, and held at 1000 ° C. for 1 hour to obtain a negative electrode active material sheet. By this heating, the phenol resin is carbonized.

上記負極活物質シートを、φ16mmに打ち抜いて、実施例2にかかる負極活物質シートを作製した。この負極活物質シートのかさ密度は、1.59g/cm3であった。 The negative electrode active material sheet was punched into φ16 mm to produce a negative electrode active material sheet according to Example 2. The bulk density of this negative electrode active material sheet was 1.59 g / cm 3 .

(比較例1)
焼成工程を行っていない負極活物質シート前駆体を負極活物質シートとして用いたこと以外は、上記実施例1と同様にして、比較例1にかかる負極活物質シートを作製した。この負極活物質シートのかさ密度は、1.34g/cm3であった。
(Comparative Example 1)
A negative electrode active material sheet according to Comparative Example 1 was produced in the same manner as in Example 1 except that a negative electrode active material sheet precursor that was not subjected to the firing step was used as the negative electrode active material sheet. The bulk density of this negative electrode active material sheet was 1.34 g / cm 3 .

(電極セルの組み立て)
アルゴンガス雰囲気のグローブボックス内で、電極セルの組み立てを行った。
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:2(25℃)で混合した混合溶媒に、LiPF6を1M(モル/リットル)に溶解した非水電解液を用意した。
(Assembly of electrode cell)
The electrode cell was assembled in a glove box in an argon gas atmosphere.
A nonaqueous electrolytic solution in which LiPF 6 was dissolved in 1 M (mol / liter) in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 (25 ° C.) was prepared.

上記非水電解液に、上記負極活物質シート、リチウム対極、リファレンス極を浸漬し、電極セルを完成させた。   The negative electrode active material sheet, the lithium counter electrode, and the reference electrode were immersed in the non-aqueous electrolyte to complete an electrode cell.

(電池特性の測定)
上記電極セルをグローブボックスから25℃の恒温槽内に移し、リチウム対極、負極活物質シート、及びリファレンス極端子に充放電装置接続コードを繋いで、充放電容量及び抵抗率を測定した。
充電条件:電流密度0.5mA/cm2の定電流で電圧が10mVとなるまで充電し、その後定電圧10mVで40時間充電。
放電条件:0.5mA/cm2の定電流で電圧が1.2Vとなるまで放電した。
また、三菱化学製 Loresta−GP MCP-T600を用いて、抵抗率を測定した。
この結果を下記表1に示す。
(Measurement of battery characteristics)
The electrode cell was transferred from a glove box into a thermostatic chamber at 25 ° C., and a charge / discharge device connection cord was connected to a lithium counter electrode, a negative electrode active material sheet, and a reference electrode terminal, and charge / discharge capacity and resistivity were measured.
Charging conditions: Charge at a constant current of 0.5 mA / cm 2 until the voltage reaches 10 mV, and then charge at a constant voltage of 10 mV for 40 hours.
Discharge conditions: Discharge was performed at a constant current of 0.5 mA / cm 2 until the voltage reached 1.2V.
Moreover, resistivity was measured using Mitsubishi Chemical Loresta-GP MCP-T600.
The results are shown in Table 1 below.

(気孔分布の測定)
Thermo Electron Corporation製 Pascal 440を用い、水銀圧入法により、気孔分布及び気孔率を測定した。この結果を図1〜3及び下記表1に示す。
(Measurement of pore distribution)
Using Pascal 440 manufactured by Thermo Electron Corporation, pore distribution and porosity were measured by mercury porosimetry. The results are shown in FIGS.

上記表1から、負極前駆体を焼成して作製した実施例1、実施例2にかかる負極活物質シートは、充電容量が342mAh/g,164mAh/g、放電容量が101mAh/g,36mAh/gと、焼成を行っていない比較例1の充電容量40mAh/g、放電容量13mAh/gよりも優れていることがわかる。   From Table 1 above, the negative electrode active material sheets according to Example 1 and Example 2 prepared by firing the negative electrode precursor had a charge capacity of 342 mAh / g, 164 mAh / g, a discharge capacity of 101 mAh / g, 36 mAh / g. And it turns out that it is superior to the charge capacity of 40 mAh / g and the discharge capacity of 13 mAh / g of the comparative example 1 which has not baked.

このことは、次のように考えられる。有機結着剤を含む負極合剤を用いた負極活物質前駆体を焼成すると、有機結着剤に含まれる炭素以外の成分が除去され、空隙が生じる。このため、表1に示すように、実施例1、2にかかる負極活物質シートは、比較例1よりも気孔率が大きい。また、この焼成による空隙は、マクロ孔と呼ばれる気孔径(直径)0.05〜100μmの範囲に現れ(実施例1:0.104cc/g、実施例2:0.072cc/g、比較例1:0.064cc/g、図1〜3参照)、このマクロ孔は電解液の浸透性が極めて大きく、リチウムイオンの伝導性が高い。このため、負極活物質周囲に十分な量の電解液が供給され、リチウムイオンの吸蔵・脱離がスムースに進行する。よって、充電容量及び放電容量が大きくなる。充放電容量の観点から、0.05〜100μmの範囲の気孔の気孔体積が質量当たり0.07cc/g以上であることが好ましく、0.08cc/g以上であることがより好ましい。   This is considered as follows. When a negative electrode active material precursor using a negative electrode mixture containing an organic binder is baked, components other than carbon contained in the organic binder are removed, and voids are generated. For this reason, as shown in Table 1, the negative electrode active material sheets according to Examples 1 and 2 have a larger porosity than Comparative Example 1. In addition, voids due to this firing appear in the range of pore diameter (diameter) 0.05 to 100 μm called macropores (Example 1: 0.104 cc / g, Example 2: 0.072 cc / g, Comparative Example 1). : 0.064 cc / g, see FIGS. 1 to 3), the macropores have extremely high electrolyte permeability and high lithium ion conductivity. For this reason, a sufficient amount of electrolyte solution is supplied around the negative electrode active material, and the insertion / extraction of lithium ions proceeds smoothly. Therefore, the charge capacity and the discharge capacity are increased. From the viewpoint of charge / discharge capacity, the pore volume of the pores in the range of 0.05 to 100 μm is preferably 0.07 cc / g or more, more preferably 0.08 cc / g or more per mass.

また、実施例1、2の抵抗率は1.8mΩ・cm、1.3mΩ・cmと、十分に低いことがわかる。   Moreover, it turns out that the resistivity of Example 1, 2 is low enough with 1.8 mohm * cm and 1.3 mohm * cm.

また、実施例1の方が、実施例2よりも放電容量、充電容量ともに大きいことがわかる。これは、実施例1では有機気孔形成剤を含む負極合剤を用いており、有機気孔形成剤に含まれる炭素以外の成分が除去され、空隙が生じる。このため、表1に示すように、実施例1にかかる負極活物質シートは、実施例2よりも気孔率が大きい。また、この焼成による空隙は、メソ孔領域に含まれる気孔径(直径)0.01〜0.05μmの範囲に現れ(実施例1:0.073cc/g、実施例2:0.016cc/g、図1,2参照)、このメソ孔においてリチウムイオンや電子が良好に伝導しているためと推察される。このため、0.01〜0.05μmの範囲の気孔の気孔体積が質量当たり0.016cc/gよりも大きいことが好ましく、0.05cc/g以上であることがより好ましい。   Further, it can be seen that the discharge capacity and the charge capacity of Example 1 are larger than those of Example 2. In Example 1, a negative electrode mixture containing an organic pore forming agent is used, and components other than carbon contained in the organic pore forming agent are removed, resulting in voids. For this reason, as shown in Table 1, the negative electrode active material sheet according to Example 1 has a porosity higher than that of Example 2. In addition, voids due to this firing appear in a pore diameter (diameter) 0.01 to 0.05 μm included in the mesopore region (Example 1: 0.073 cc / g, Example 2: 0.016 cc / g). 1 and 2), it is assumed that lithium ions and electrons are conducted well in the mesopores. For this reason, the pore volume of pores in the range of 0.01 to 0.05 μm is preferably larger than 0.016 cc / g, more preferably 0.05 cc / g or more per mass.

また、炭素質粒子の周囲には、有機結着剤や有機気孔形成剤による多孔質炭素質が焼結添着されている。これも放電特性の向上に関与していると考えられる。   Further, around the carbonaceous particles, a porous carbonaceous material by an organic binder or an organic pore forming agent is sintered and attached. This is also considered to be involved in improving the discharge characteristics.

好ましくは、黒鉛粉末(炭素質粒子)を60〜85質量%、有機結着剤を10〜30重量%、導電剤を3〜15重量%、有機気孔形成剤を2〜10重量%とする。   Preferably, the graphite powder (carbonaceous particles) is 60 to 85% by mass, the organic binder is 10 to 30% by weight, the conductive agent is 3 to 15% by weight, and the organic pore forming agent is 2 to 10% by weight.

以上に説明したように、本発明によれば、銅からなる集電体を用いずに高性能な負極を得ることが可能であり、負極のコストを飛躍的に低下させることができる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, a high-performance negative electrode can be obtained without using a current collector made of copper, and the cost of the negative electrode can be drastically reduced. Therefore, industrial applicability is great.

図1は、実施例1にかかる負極の気孔分布を示すグラフである。1 is a graph showing the pore distribution of the negative electrode according to Example 1. FIG. 図2は、実施例2にかかる負極の気孔分布を示すグラフである。FIG. 2 is a graph showing the pore distribution of the negative electrode according to Example 2. 図3は、比較例1にかかる負極の気孔分布を示すグラフである。FIG. 3 is a graph showing the pore distribution of the negative electrode according to Comparative Example 1. 図4は、本発明にかかる負極活物質を用いた負極を示す図である。FIG. 4 is a view showing a negative electrode using the negative electrode active material according to the present invention. 図5は、本発明にかかる負極活物質を用いた負極を有する電池の基本構造を示す図である。FIG. 5 is a diagram showing a basic structure of a battery having a negative electrode using the negative electrode active material according to the present invention. 図6は、従来技術にかかる負極活物質を用いた負極を示す図である。FIG. 6 is a diagram illustrating a negative electrode using a negative electrode active material according to a conventional technique.

Claims (7)

リチウムイオンを吸蔵脱離する炭素質粒子と、有機結着剤と、を含む負極合剤を加圧し、負極前駆体を作製する負極前駆体作製工程と、
前記負極前駆体を不活性ガス雰囲気で600〜2000℃で焼成する焼成工程と、を備え
前記有機結着剤が、熱硬化性樹脂であり、
前記負極前駆体作製工程は、前記負極合剤を前記熱硬化性樹脂の硬化温度以上に加熱しつつ加圧する工程である、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
A negative electrode precursor preparation step of pressurizing a negative electrode mixture containing carbonaceous particles that occlude and desorb lithium ions and an organic binder, and prepare a negative electrode precursor;
A firing step of firing the negative electrode precursor at 600 to 2000 ° C. in an inert gas atmosphere ,
The organic binder is a thermosetting resin;
The negative electrode precursor preparation step is a step of applying pressure while heating the negative electrode mixture to a temperature equal to or higher than the curing temperature of the thermosetting resin.
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
請求項に記載のリチウムイオン二次電池用負極活物質シートの製造方法において、
前記負極合剤は、さらに有機気孔形成剤を含む、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
In the manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries of Claim 1 ,
The negative electrode mixture further contains an organic pore forming agent,
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
請求項1又は2に記載のリチウムイオン二次電池用負極活物質シートの製造方法において、
前記負極合剤は、さらに繊維状炭素質物を含む、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
In the manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries of Claim 1 or 2 ,
The negative electrode mixture further includes a fibrous carbonaceous material,
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
請求項1、2又は3に記載のリチウムイオン二次電池用負極活物質シートの製造方法において、
前記熱硬化性樹脂が、フェノール樹脂及び/又はエポキシ樹脂である、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
In the manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries of Claim 1, 2, or 3 ,
The thermosetting resin is a phenol resin and / or an epoxy resin.
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
請求項1ないし4いずれかに記載のリチウムイオン二次電池用負極活物質シートの製造方法において、
前記負極合剤全質量に占める前記有機結着剤の質量割合が、5〜50質量%である、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
In the manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries in any one of Claims 1 thru | or 4 ,
The mass ratio of the organic binder to the total mass of the negative electrode mixture is 5 to 50 mass%.
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
請求項に記載のリチウムイオン二次電池用負極活物質シートの製造方法において、
前記有機気孔形成剤が、セルロース類、木綿、絹、レーヨン、植物繊維、木粉、砂糖、ポリビニルアルコール、ポリビニルクロライドよりからなる群より選択された1以上の物質である、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
In the manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries of Claim 2 ,
The organic pore forming agent is one or more substances selected from the group consisting of celluloses, cotton, silk, rayon, vegetable fibers, wood flour, sugar, polyvinyl alcohol, polyvinyl chloride,
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
請求項に記載のリチウムイオン二次電池用負極活物質シートの製造方法において、
前記負極合剤全質量に占める前記有機気孔形成剤の質量割合が、1〜20質量%である、
ことを特徴とするリチウムイオン二次電池用負極活物質シートの製造方法。
In the manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries of Claim 6 ,
The mass ratio of the organic pore forming agent in the total mass of the negative electrode mixture is 1 to 20 mass%.
The manufacturing method of the negative electrode active material sheet for lithium ion secondary batteries characterized by the above-mentioned.
JP2007319465A 2007-12-11 2007-12-11 Method for producing negative electrode active material sheet for lithium ion secondary battery Active JP5406447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319465A JP5406447B2 (en) 2007-12-11 2007-12-11 Method for producing negative electrode active material sheet for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319465A JP5406447B2 (en) 2007-12-11 2007-12-11 Method for producing negative electrode active material sheet for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009146580A JP2009146580A (en) 2009-07-02
JP5406447B2 true JP5406447B2 (en) 2014-02-05

Family

ID=40916973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319465A Active JP5406447B2 (en) 2007-12-11 2007-12-11 Method for producing negative electrode active material sheet for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5406447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200055652A (en) * 2018-11-13 2020-05-21 폭스바겐 악티엔 게젤샤프트 Method for manufacturing an electrode precursor and electrode precursor and method for manufacturing an electrode paste

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823672B1 (en) * 2010-01-18 2018-03-14 에네베이트 코포레이션 Composite materials for electrochemical storage
CN104781896B (en) * 2012-11-09 2018-03-13 松下知识产权经营株式会社 Capacitor electrode and use its capacitor
EP3086387B1 (en) 2013-12-20 2019-05-08 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same
WO2016158823A1 (en) * 2015-03-27 2016-10-06 株式会社クレハ Carbonaceous molding for cell electrode, and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628822B2 (en) * 1996-10-25 2005-03-16 パイロットプレシジョン株式会社 Film electrode and method for producing the same
EP0896374B1 (en) * 1996-12-24 2011-12-07 Kao Corporation Nonaqueous electrolyte secondary battery
JP3698516B2 (en) * 1997-03-18 2005-09-21 パイロットプレシジョン株式会社 Film electrode and manufacturing method thereof
JP3540629B2 (en) * 1998-10-02 2004-07-07 Tdk株式会社 Method for producing electrode for electrochemical device and electrochemical device
JP4776190B2 (en) * 2004-08-20 2011-09-21 株式会社東芝 Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200055652A (en) * 2018-11-13 2020-05-21 폭스바겐 악티엔 게젤샤프트 Method for manufacturing an electrode precursor and electrode precursor and method for manufacturing an electrode paste
KR102434617B1 (en) * 2018-11-13 2022-08-19 폭스바겐 악티엔게젤샤프트 Method for manufacturing an electrode precursor and electrode precursor and method for manufacturing an electrode paste

Also Published As

Publication number Publication date
JP2009146580A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4244041B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4868556B2 (en) Lithium secondary battery
JP4945182B2 (en) Lithium secondary battery and manufacturing method thereof
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102419885B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
WO1998028804A1 (en) Nonaqueous electrolyte secondary battery
JP2008177346A (en) Energy storage device
JP2013527628A (en) High energy density electrochemical capacitor
JP6581981B2 (en) Non-aqueous electrolyte secondary battery and assembled battery formed by connecting a plurality thereof
KR20130129819A (en) Lithium ion secondary battery
JP5406447B2 (en) Method for producing negative electrode active material sheet for lithium ion secondary battery
JPWO2015080253A1 (en) Lithium ion capacitor
JP2014096238A (en) Process of manufacturing positive electrode for power storage device and positive electrode
JP2017147054A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5395350B2 (en) Sheet-like negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
KR101666872B1 (en) Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
JP2016170945A (en) Nonaqueous secondary battery
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery
JP2012033438A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2015002091A (en) Positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery positive electrode arranged by use thereof, lithium ion secondary battery, lithium ion secondary battery module, and method for manufacturing positive electrode active material for lithium ion secondary batteries
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP6643174B2 (en) Manufacturing method of lithium ion secondary battery
WO2017094526A1 (en) Electrode for electrochemical elements and lithium ion secondary battery
JP6601951B2 (en) Non-aqueous secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250