JP5404489B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5404489B2
JP5404489B2 JP2010070202A JP2010070202A JP5404489B2 JP 5404489 B2 JP5404489 B2 JP 5404489B2 JP 2010070202 A JP2010070202 A JP 2010070202A JP 2010070202 A JP2010070202 A JP 2010070202A JP 5404489 B2 JP5404489 B2 JP 5404489B2
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
outdoor
air conditioner
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010070202A
Other languages
Japanese (ja)
Other versions
JP2011202875A (en
Inventor
瑞樹 津田
福治 塚田
貴則 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010070202A priority Critical patent/JP5404489B2/en
Publication of JP2011202875A publication Critical patent/JP2011202875A/en
Application granted granted Critical
Publication of JP5404489B2 publication Critical patent/JP5404489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、暖房運転可能な空気調和機に係り、特に除霜運転機能を備えた空気調和機に関する。   The present invention relates to an air conditioner capable of heating operation, and more particularly to an air conditioner having a defrosting operation function.

空気調和機の暖房運転では、外気温度の低下に伴い、室外熱交換器の温度も低下するため、外気中の水分が霜となり室外熱交換器に付着する。この状態で暖房運転を続けた場合、熱交換器に着霜した霜が徐々に成長して室外熱交換器の熱交換性能を阻害し、暖房能力が低下する。   In the heating operation of the air conditioner, the temperature of the outdoor heat exchanger decreases as the outside air temperature decreases, so that moisture in the outside air becomes frost and adheres to the outdoor heat exchanger. When the heating operation is continued in this state, frost formed on the heat exchanger gradually grows to hinder the heat exchange performance of the outdoor heat exchanger, and the heating capacity is reduced.

暖房能力低下を防止するため、室外熱交換器の着霜を検出し、霜を融かすための運転(以下、除霜運転と呼ぶ)を実施することが一般的である。この除霜運転は、四方弁を切換えることで冷凍サイクルを暖房サイクルから冷房サイクルに切換え、室内機及び室外機の送風機を停止し、圧縮機から吐出される高温高圧のガス冷媒を室外熱交換器に流すことで室外熱交換器に付着した霜を融かすものである。   In order to prevent a reduction in heating capacity, it is common to detect the frost formation of the outdoor heat exchanger and perform an operation for melting the frost (hereinafter referred to as a defrosting operation). This defrosting operation switches the refrigeration cycle from the heating cycle to the cooling cycle by switching the four-way valve, stops the blower of the indoor unit and the outdoor unit, and converts the high-temperature and high-pressure gas refrigerant discharged from the compressor into the outdoor heat exchanger The frost attached to the outdoor heat exchanger is melted by flowing through

しかし、除霜運転中は、暖房能力を発揮できないことに加え、室内熱交換器が蒸発器となりその温度が低下するため、除霜運転後の暖房運転において温風が吹き出すまでに時間を要し、室内空間の快適性を低下させ、ユーザーにとって空気調和機に対する不満の一つとなっている。   However, during the defrosting operation, in addition to not being able to demonstrate the heating capacity, the indoor heat exchanger becomes an evaporator and its temperature decreases, so it takes time for warm air to blow out in the heating operation after the defrosting operation. This reduces the comfort of the indoor space and is one of the complaints about the air conditioner for users.

そこで、例えば特開平11−182994号公報(特許文献1)に示された空気調和機に示すものがある。この空気調和機は、圧縮機、四方弁、室内熱交換器、電動膨張弁及び室外熱交換器を冷媒回路で連結してなるヒートポンプ式冷凍サイクルを備え、暖房運転を実施しながら、圧縮機吐出部からの高温冷媒の一部を室外熱交換器へバイパスさせ、前記室外熱交換器に付着した霜を融かすようにしている。   Therefore, for example, there is an air conditioner disclosed in Japanese Patent Application Laid-Open No. 11-182994 (Patent Document 1). This air conditioner has a heat pump type refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, an electric expansion valve, and an outdoor heat exchanger are connected by a refrigerant circuit. A part of the high-temperature refrigerant from the section is bypassed to the outdoor heat exchanger, and the frost attached to the outdoor heat exchanger is melted.

特開平11−182994号公報JP-A-11-182994

上記特許文献1に記載の空気調和機のものでは、室外熱交換器のパスが1つであるため、高温冷媒が流入する側に対しては除霜効果が高いが、下流側ほど除霜しにくく、熱交換器全体を効率良く均一に除霜することは困難であった。   In the air conditioner described in Patent Document 1, since there is one outdoor heat exchanger path, the defrosting effect is high for the side where the high-temperature refrigerant flows, but the downstream side defrosts. It is difficult to efficiently and uniformly defrost the entire heat exchanger.

また、室外熱交換器を複数に分岐された配管(パス)によって熱交換する室外熱交換器を備えた空気調和機も知られており、このような空気調和機においても、圧縮機吐出側の高温冷媒の一部をバイパスさせて前記室外熱交換器の各パスに流すようにして除霜することも考えられている。しかし、複数のパスを有しているため、パス毎に着霜状態が異なり、また圧縮機吐出側からバイパスさせて室内熱交換器に流入される高温ガス(高温冷媒)の流入量も各パス毎にばらつきが生じてしまうため、特定のパスの霜が融けない等の問題が生じる。また、全てのパスの霜を融かすためには、多量の高温ガスを除霜のためにバイパスさせる必要があり、このため暖房能力も低下し快適性を低下させる課題がある。   There is also known an air conditioner including an outdoor heat exchanger for exchanging heat by a pipe (path) branched into a plurality of branches, and in such an air conditioner, the compressor on the discharge side of the compressor is also known. It is also considered to defrost by bypassing a part of the high-temperature refrigerant so as to flow through each path of the outdoor heat exchanger. However, because it has multiple paths, the frosting state is different for each path, and the amount of inflow of high-temperature gas (high-temperature refrigerant) that is bypassed from the compressor discharge side and flows into the indoor heat exchanger is also different for each path. Since variations occur every time, there arises a problem that frost on a specific path does not melt. Moreover, in order to melt the frost of all the paths, it is necessary to bypass a large amount of high-temperature gas for defrosting. For this reason, there is a problem that the heating capacity is lowered and the comfort is lowered.

本発明の目的は、室外熱交換器の除霜運転を、除霜のための高温ガスのバイパス流量を低減して暖房能力の低下を抑制しつつ、熱交換器全体を効率良く除霜できる空気調和機を得ることにある。   It is an object of the present invention to perform defrosting operation of an outdoor heat exchanger, air that can efficiently defrost the entire heat exchanger while reducing a bypass flow rate of a high-temperature gas for defrosting and suppressing a decrease in heating capacity. It is to obtain a harmony machine.

上記目的を達成するため、本発明は、圧縮機、室外熱交換器、室外膨張弁を備え、少なくとも暖房運転が可能な空気調和機において、前記室外熱交換器は複数のパスで構成されており、前記圧縮機の吐出側と前記室外熱交換器の暖房運転時入口側とを接続するバイパス回路を設け、前記バイパス回路はバイパス電磁弁を備えると共に、前記室外熱交換器と接続される側にはキャピラリチューブを有する複数の分配管を備え、この複数の分配管は前記室外熱交換器の複数のパスにそれぞれ接続され、前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なることを特徴とする。 In order to achieve the above object, the present invention comprises a compressor, an outdoor heat exchanger, an outdoor expansion valve, and at least an air conditioner capable of heating operation, wherein the outdoor heat exchanger is composed of a plurality of passes. A bypass circuit is provided for connecting the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation, and the bypass circuit includes a bypass electromagnetic valve and is connected to the side connected to the outdoor heat exchanger. Includes a plurality of distribution pipes having capillary tubes, and the plurality of distribution pipes are respectively connected to a plurality of paths of the outdoor heat exchanger, and at least one of the capillary tubes respectively provided in the plurality of distribution pipes is The size is different from other capillary tubes .

本発明の他の特徴は、圧縮機、四方弁、室内熱交換器、室外膨張弁、室外熱交換器を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、前記室外熱交換器は複数のパスを備えており、前記室内熱交換器からの液冷媒を前記室外膨張弁を通過後複数の分岐管に分岐させて前記室外熱交換器の前記複数のパスにそれぞれ流す構成とし、前記圧縮機から吐出される高温冷媒の一部を分岐させて前記室外熱交換器の暖房運転時入口側に流すためのバイパス回路を設け、このバイパス回路にはバイパス電磁弁を備えると共に、前記室外熱交換器に接続される側はキャピラリチューブを有する複数の分配管で構成し、この複数の分配管を前記室外熱交換器の各パスにそれぞれ接続し、前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なる構成としたことにある。 Another feature of the present invention is an air conditioner in which a refrigeration cycle is configured by connecting a compressor, a four-way valve, an indoor heat exchanger, an outdoor expansion valve, and an outdoor heat exchanger with a refrigerant pipe. The apparatus includes a plurality of paths, and the liquid refrigerant from the indoor heat exchanger is branched to a plurality of branch pipes after passing through the outdoor expansion valve, and flows into the plurality of paths of the outdoor heat exchanger, respectively. A bypass circuit for branching a part of the high-temperature refrigerant discharged from the compressor and flowing to the inlet side during heating operation of the outdoor heat exchanger, the bypass circuit includes a bypass solenoid valve, and The side connected to the outdoor heat exchanger is composed of a plurality of distribution pipes having capillary tubes, and each of the plurality of distribution pipes is connected to each path of the outdoor heat exchanger, and is provided in each of the plurality of distribution pipes. Capillary Chu At least one or more of the probe is to have a different configuration other capillary tube and size.

本発明の更に他の特徴は、圧縮機、四方弁、室外熱交換器及び室外膨張弁を有する室外機と、室内熱交換器及び室内膨張弁を有する室内機とをガス接続配管及び液接続配管で接続して構成された空気調和機において、前記室外熱交換器は複数のパスを備えており、暖房運転時、前記室内機からの液冷媒を室外膨張弁通過後、複数の分岐管に分岐させて前記室外熱交換器の前記複数のパスにそれぞれ流す構成とし、前記圧縮機から吐出される高温冷媒を一部分岐させて前記室外熱交換器の暖房運転時入口側に流すためのバイパス回路を設け、このバイパス回路にはバイパス電磁弁を備えると共に、前記室外熱交換器に接続される側はキャピラリチューブを有する複数の分配管で構成して、前記室外熱交換器の各パスにそれぞれ接続し、前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なる構成としたことにある。
本発明の更に他の特徴は、圧縮機、室外熱交換器、室外膨張弁を備え、少なくとも暖房運転が可能な空気調和機において、前記室外熱交換器は複数のパスで構成されており、前記圧縮機の吐出側と前記室外熱交換器の暖房運転時入口側とを接続するバイパス回路を設け、前記バイパス回路はバイパス電磁弁を備えると共に、前記室外熱交換器と接続される側にはキャピラリチューブを有する複数の分配管を備え、この複数の分配管は前記室外熱交換器の複数のパスにそれぞれ接続され、更に、室外の温度を検出するための温度検出手段と、前記室外熱交換器の温度を検出するための温度検出手段とを備え、これらの温度検出手段で検出された温度に基づいて前記室外熱交換器に着霜のおそれがあるか否かを判断する制御装置を備えていることにある。
Still another feature of the present invention is that a gas connection pipe and a liquid connection pipe connect an outdoor unit having a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve, and an indoor unit having an indoor heat exchanger and an indoor expansion valve. In the air conditioner configured to be connected with the outdoor heat exchanger, the outdoor heat exchanger has a plurality of paths, and during heating operation, the liquid refrigerant from the indoor unit is branched into a plurality of branch pipes after passing through the outdoor expansion valve. A bypass circuit for causing the high-temperature refrigerant discharged from the compressor to partially branch and flow to the inlet side during heating operation of the outdoor heat exchanger. The bypass circuit is provided with a bypass solenoid valve, and the side connected to the outdoor heat exchanger is constituted by a plurality of distribution pipes having capillary tubes, and is connected to each path of the outdoor heat exchanger. The plurality At least one of each provided with a capillary tube dispensing tube is to have a different configuration other capillary tube and size.
Still another feature of the present invention includes a compressor, an outdoor heat exchanger, an outdoor expansion valve, and at least an air conditioner capable of heating operation, wherein the outdoor heat exchanger includes a plurality of passes, Provided is a bypass circuit that connects the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation. The bypass circuit includes a bypass solenoid valve, and a capillary is provided on the side connected to the outdoor heat exchanger. A plurality of distribution pipes having tubes, the plurality of distribution pipes connected to a plurality of paths of the outdoor heat exchanger, respectively, and temperature detection means for detecting an outdoor temperature; and the outdoor heat exchanger A temperature detecting means for detecting the temperature of the outdoor heat exchanger, and a controller for judging whether or not the outdoor heat exchanger has a possibility of frost formation based on the temperature detected by the temperature detecting means. Being A.

本発明によれば、室内熱交換器の除霜運転を、除霜のための高温ガスのバイパス流量を低減して暖房能力の低下を抑制しつつ、熱交換器全体を効率良く除霜できる空気調和機を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the air which can defrost the whole heat exchanger efficiently, reducing the defrosting operation | movement of an indoor heat exchanger, reducing the bypass flow volume of the high temperature gas for defrosting, and suppressing the fall of heating capability. A harmony machine can be obtained.

本発明の空気調和機の実施例1を示す冷凍サイクル構成図で、主に室外機側を示す図。The refrigeration cycle block diagram which shows Example 1 of the air conditioner of this invention, The figure which mainly shows the outdoor unit side. 本発明の実施例1における除霜運転制御を説明するフローチャート。The flowchart explaining the defrost operation control in Example 1 of this invention.

以下、本発明の空気調和機の実施例を、図面を用いて説明する。   Hereinafter, embodiments of the air conditioner of the present invention will be described with reference to the drawings.

図1は本発明の空気調和機の実施例1を示す冷凍サイクル構成図で、空気調和機50の主に室外機51側を示している。図において、1は圧縮機、2は四方弁、3は室外熱交換器、4は室外膨張弁、11はガス阻止弁、12は液阻止弁、53は室内機(図示せず)側と接続されるガス接続配管、54は同じく液接続配管である。   FIG. 1 is a refrigeration cycle configuration diagram showing Embodiment 1 of an air conditioner of the present invention, and shows an air conditioner 50 mainly on the outdoor unit 51 side. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is an outdoor expansion valve, 11 is a gas blocking valve, 12 is a liquid blocking valve, and 53 is connected to the indoor unit (not shown) side. Similarly, the gas connection pipe 54 is a liquid connection pipe.

暖房運転時には、圧縮機1から吐出された高温高圧のガス冷媒は、実線矢印で示すように、四方弁2、ガス阻止弁11、ガス接続配管53を通り、室内機に至り、凝縮されて液冷媒となる。この液冷媒は、通常全開状態の室内膨張弁(図示せず)を通過後、液接続配管54及び液阻止弁12を通って室外膨張弁4に至り、この室外膨張弁4により減圧されて低温低圧のガス液混合冷媒となる。この減圧された冷媒は、室外熱交換器3により蒸発され、ガス冷媒となり再び四方弁2を経由して圧縮機1に戻される。   During the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2, the gas blocking valve 11, and the gas connection pipe 53 as shown by the solid line arrow, reaches the indoor unit, is condensed, and is liquid Becomes a refrigerant. This liquid refrigerant passes through a normally open indoor expansion valve (not shown), then reaches the outdoor expansion valve 4 through the liquid connection pipe 54 and the liquid blocking valve 12, and is decompressed by the outdoor expansion valve 4 to a low temperature. It becomes a low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant is evaporated by the outdoor heat exchanger 3, becomes a gas refrigerant, and returns to the compressor 1 through the four-way valve 2 again.

前記室外熱交換器3は、本実施例では5つのパスで構成され、室外膨張弁4通過後の冷媒は、分配器20で5本の分岐管21に分配されて室外熱交換器3の5つのパスにそれぞれ流入する。冷媒は室外熱交換器3で蒸発され、ヘッダ22で各パスからの冷媒が集合して四方弁2側に流れる。   The outdoor heat exchanger 3 is constituted by five passes in this embodiment, and the refrigerant after passing through the outdoor expansion valve 4 is distributed by the distributor 20 to the five branch pipes 21 to be 5 of the outdoor heat exchanger 3. Each flows into one path. The refrigerant is evaporated in the outdoor heat exchanger 3, and the refrigerant from each path is collected in the header 22 and flows to the four-way valve 2 side.

17は圧縮機の吐出側と四方弁2との間の冷媒配管から分岐され、室外熱交換器3と室外膨張弁4との間の冷媒配管に接続されるバイパス回路で、このバイパス回路17にはバイパス電磁弁6が設けられている。暖房運転時に、室外熱交換器3の除霜が必要になった場合や、着霜し易い状態となった場合、前記パイパス電磁弁6が開かれ、圧縮機から吐出された高温高圧のガス冷媒(高温冷媒)の一部はバイパス回路17に流入し、バイパス電磁弁6を通過後、キャピラリチューブ19を有する5本の分配管10に分岐されて前記5本の分岐管21にそれぞれ接続され、室外熱交換器3のそれぞれのパスに流入する構成となっている。キャピラリチューブ19は高温高圧のガス冷媒を減圧すると共に、室外熱交換器3の各パスへ流入するガス流量を適正な流量に調整するためのものである。   17 is a bypass circuit branched from the refrigerant piping between the discharge side of the compressor and the four-way valve 2 and connected to the refrigerant piping between the outdoor heat exchanger 3 and the outdoor expansion valve 4. A bypass solenoid valve 6 is provided. When the outdoor heat exchanger 3 needs to be defrosted during heating operation, or when it becomes easy to form frost, the bypass solenoid valve 6 is opened and the high-temperature and high-pressure gas refrigerant discharged from the compressor is used. Part of the (high temperature refrigerant) flows into the bypass circuit 17, passes through the bypass solenoid valve 6, is branched into five distribution pipes 10 having capillary tubes 19, and is connected to the five branch pipes 21, respectively. It is configured to flow into each path of the outdoor heat exchanger 3. The capillary tube 19 is used to depressurize the high-temperature and high-pressure gas refrigerant and adjust the flow rate of gas flowing into each path of the outdoor heat exchanger 3 to an appropriate flow rate.

前記室外熱交換器3は、狭い間隔で並置された多数枚のプレート状フィンと、これらのフィンを貫通する蛇行状の冷媒パイプとで構成されているプレートフィン型熱交換器を用いており、前記冷媒パイプ内を流れる冷媒と室外ファン23により通風される外気(室外空気)とが熱交換される。   The outdoor heat exchanger 3 uses a plate fin type heat exchanger configured by a large number of plate-like fins juxtaposed at a narrow interval and a meandering refrigerant pipe passing through these fins. Heat exchange is performed between the refrigerant flowing in the refrigerant pipe and the outside air (outdoor air) ventilated by the outdoor fan 23.

前記室外膨張弁4は、冷凍サイクルの主回路を流れる冷媒の減圧を行うもので、電子式膨張弁で構成され、前記液阻止弁12と前記分配器20との間に設置されている。   The outdoor expansion valve 4 depressurizes the refrigerant flowing through the main circuit of the refrigeration cycle, is constituted by an electronic expansion valve, and is installed between the liquid blocking valve 12 and the distributor 20.

前記圧縮機1は、その運転周波数がインバータで可変して制御される容量可変式圧縮機で構成されている。前記四方弁2は、この圧縮機1から吐出された冷媒の流れ方向及び圧縮機1へ吸い込まれる冷媒の流れ方向を切換える弁で、この四方弁2は、制御装置16により、暖房運転時に実線に示す流路を形成し、冷房運転時に点線で示す流路を形成するように制御される。   The compressor 1 is composed of a variable capacity compressor whose operating frequency is controlled by an inverter. The four-way valve 2 is a valve for switching the flow direction of the refrigerant discharged from the compressor 1 and the flow direction of the refrigerant sucked into the compressor 1. The four-way valve 2 is changed to a solid line by the control device 16 during heating operation. The flow path shown is formed, and control is performed so as to form the flow path shown by the dotted line during the cooling operation.

前記制御装置16は、室外操作スイッチ等と共に室外機の制御基板上に搭載され、空気調和機50を構成する各機器の制御を行うものである。   The control device 16 is mounted on the control board of the outdoor unit together with an outdoor operation switch and the like, and controls each device constituting the air conditioner 50.

なお、24は室外の温度を検出するためのサーミスタ(温度検出手段)で、前記室外熱交換器3の上流側に設置されている。25は暖房時に室外熱交換器3の冷媒入口側となる部分の温度を検出するサーミスタ(温度検出手段)で、前記冷媒パイプやプレート状のフィンなどに設置されている。   Reference numeral 24 denotes a thermistor (temperature detection means) for detecting the outdoor temperature, and is installed upstream of the outdoor heat exchanger 3. Reference numeral 25 denotes a thermistor (temperature detection means) that detects the temperature of the portion on the refrigerant inlet side of the outdoor heat exchanger 3 during heating, and is installed on the refrigerant pipe, plate-like fins, or the like.

次に、空気調和機50の冷凍サイクルの基本動作について説明する。
暖房運転には、前述したように、圧縮機1からの高温高圧ガス冷媒は、実線矢印に示すように、四方弁2、ガス阻止弁11、ガス接続配管53を経由して室内機に入り、凝縮されて液冷媒となる。この液冷媒は、開状態の室内膨張弁8、液接続配管54及び液阻止弁12を経由し、室外膨張弁4で減圧されて低温低圧のガス液混合冷媒となり、この減圧された冷媒は、室外熱交換器3で蒸発してガス冷媒となり圧縮機1に戻る。
Next, the basic operation of the refrigeration cycle of the air conditioner 50 will be described.
In the heating operation, as described above, the high-temperature and high-pressure gas refrigerant from the compressor 1 enters the indoor unit via the four-way valve 2, the gas blocking valve 11, and the gas connection pipe 53, as indicated by the solid line arrow, It is condensed to become a liquid refrigerant. This liquid refrigerant passes through the open indoor expansion valve 8, the liquid connection pipe 54, and the liquid blocking valve 12, and is decompressed by the outdoor expansion valve 4 to become a low-temperature and low-pressure gas-liquid mixed refrigerant. It evaporates in the outdoor heat exchanger 3 to become a gas refrigerant and returns to the compressor 1.

この暖房運転中に、バイパス回路17のバイパス電磁弁6を開とすることにより、圧縮機1から吐出されたガス冷媒の一部は、前記四方弁2への流れと分岐し、前記バイパス電磁弁6を通過後、キャピラリチューブ19を有する前記複数の分配管10に分配されて流入する。各分配管10を通過した冷媒は、その後、室外膨張弁4を通過して減圧され分配器で複数の分岐管21に分配されて室外熱交換器3に流入する主流側の冷媒と合流され、室外熱交換器3に流入される。これにより、吐出ガス冷媒の一部をバイパスさせない場合(バイパス電磁弁6を閉とした場合)と比較し、室外熱交換器3の温度を上昇させることができ、着霜するのを防止できるか、着霜している場合にはそれを除霜できる。   During this heating operation, by opening the bypass solenoid valve 6 of the bypass circuit 17, a part of the gas refrigerant discharged from the compressor 1 branches off from the flow to the four-way valve 2, and the bypass solenoid valve After passing through 6, it is distributed and flows into the plurality of distribution pipes 10 having capillary tubes 19. The refrigerant that has passed through the distribution pipes 10 is then decompressed through the outdoor expansion valve 4 and is distributed to the plurality of branch pipes 21 by the distributor and merged with the main-stream side refrigerant flowing into the outdoor heat exchanger 3. It flows into the outdoor heat exchanger 3. Thereby, compared with the case where a part of the discharge gas refrigerant is not bypassed (when the bypass solenoid valve 6 is closed), the temperature of the outdoor heat exchanger 3 can be increased and frost formation can be prevented. If it is frosted, it can be defrosted.

本実施例のように、バイパス回路17からの冷媒を、キャピラリチューブを有する複数の分配管10に分配することにより、室外熱交換器3のそれぞれのパスに均一に冷媒を分配することが可能となり、室外熱交換器3全体を均一に除霜したり、均一な温度分布にして着想するのを防止することができる。   As in this embodiment, the refrigerant from the bypass circuit 17 is distributed to the plurality of distribution pipes 10 each having a capillary tube, so that the refrigerant can be uniformly distributed to each path of the outdoor heat exchanger 3. It is possible to prevent the entire outdoor heat exchanger 3 from being defrosted uniformly or conceived with a uniform temperature distribution.

空気調和機の冷房運転時には、圧縮機1から吐出されたガス冷媒は、点線矢印に示すように、四方弁2を経由して室外熱交換器3に流れ、該室外熱交換器3により凝縮されて液冷媒となる。この液冷媒は、全開状態の室外膨張弁4、液阻止弁12及び液接続配管54を通って室内機に流れ、室内機の室内膨張弁で減圧されて低圧のガス液混合冷媒となる。この減圧された冷媒は、室内機の室内熱交換器で蒸発され、ガス冷媒となって圧縮機1に戻される。
なお、冷房運転中は、バイパス電磁弁6は常に閉じられ、バイパス回路17は使用されない。
During the cooling operation of the air conditioner, the gas refrigerant discharged from the compressor 1 flows to the outdoor heat exchanger 3 via the four-way valve 2 and is condensed by the outdoor heat exchanger 3 as indicated by a dotted arrow. It becomes a liquid refrigerant. This liquid refrigerant flows to the indoor unit through the fully expanded outdoor expansion valve 4, the liquid blocking valve 12, and the liquid connection pipe 54, and is decompressed by the indoor expansion valve of the indoor unit to become a low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant is evaporated in the indoor heat exchanger of the indoor unit, converted into a gas refrigerant, and returned to the compressor 1.
During the cooling operation, the bypass solenoid valve 6 is always closed and the bypass circuit 17 is not used.

本実施例は、圧縮機1の吐出側から室外熱交換器3と室外膨張弁4との間に連結するバイパス回路17を備え、このバイパス回路を、キャピラリチューブ19を有する複数の分配管10に分配して室外熱交換器3に流すように構成しているので、室外熱交換器3の温度が低下し、室外熱交換器3に着霜のおそれがある場合には、バイパス回路17を開として圧縮機1からの高温高圧の冷媒を、前記複数の分配管10を介して室外熱交換器3の各パスに適正量に分配して供給できる。即ち、本実施例では、前記各分配管10にキャピラリチューブ19を備えているので、このキャピラリチューブのサイズ(キャピラリチューブの配管径や長さ)を調整することで、室外熱交換器の各パスに最適なバイパス流量を流すことが可能になる。即ち、複数のパスを有する熱交換器では、冷媒が流れやすいパスや流れにくいパスが生じてしまい、各パスに均一に冷媒を流すことは困難である。パス毎に冷媒配管のサイズを変えることで各パスにできるだけ均一に冷媒を流すようにすることも考えられるが、配管サイズの調整では大まかな調整ができるだけであり、各パスに均一に冷媒を流すことはやはり困難である。このため着霜し易いパスや、着霜し難いパスができてしまうことは回避困難であった。   The present embodiment includes a bypass circuit 17 connected between the outdoor heat exchanger 3 and the outdoor expansion valve 4 from the discharge side of the compressor 1, and this bypass circuit is connected to a plurality of distribution pipes 10 having capillary tubes 19. Since it is configured to distribute and flow to the outdoor heat exchanger 3, the bypass circuit 17 is opened when the temperature of the outdoor heat exchanger 3 decreases and the outdoor heat exchanger 3 may be frosted. As described above, the high-temperature and high-pressure refrigerant from the compressor 1 can be distributed and supplied to each path of the outdoor heat exchanger 3 through the plurality of distribution pipes 10. That is, in the present embodiment, each of the distribution pipes 10 is provided with a capillary tube 19, so that each path of the outdoor heat exchanger can be adjusted by adjusting the size of the capillary tube (the diameter and length of the capillary tube). It is possible to flow an optimum bypass flow rate. That is, in a heat exchanger having a plurality of paths, there are paths where the refrigerant easily flows or difficult to flow, and it is difficult to uniformly flow the refrigerant through each path. It is conceivable to change the refrigerant pipe size for each pass so that the refrigerant flows as uniformly as possible in each pass. However, the adjustment of the pipe size allows rough adjustment and allows the refrigerant to flow uniformly in each pass. That is still difficult. For this reason, it is difficult to avoid the formation of a path that easily forms frost or a path that hardly forms frost.

本実施例では、パイパス回路17の各分配管10にキャピラリチューブ19を備える構成とし、このキャピラリチューブのサイズを調整することで、室外熱交換器の着霜し易いパス、着霜し難いパスに対し、その着霜し易さに応じてキャピラリチューブのサイズを調整し、着霜し易いパスにはより多くの流量を流し、着霜し難いパスにはバイパス流量が少なくなるように、各パスに最適なバイパス流量を流すことを可能にしたものである。キャピラリチューブのサイズは非常に木目細かく多数のサイズが市販されていること、また減圧しながら流量を調整することで、各パスへのバイパス流量を木目細かく調整することが容易に可能になる。従って、より少ない或いは必要最小限のバイパス流量で室外熱交換器全体を均一に除霜でき、或いは着霜を回避できる均一な温度にする(室外熱交換器3の温度の低下を防止して着霜を回避する)ことができる。   In the present embodiment, each distribution pipe 10 of the bypass circuit 17 is provided with a capillary tube 19, and by adjusting the size of this capillary tube, the outdoor heat exchanger can be easily frosted or difficult to frost. On the other hand, the size of the capillary tube is adjusted according to the ease of frost formation. It is possible to flow an optimum bypass flow rate. Many sizes of capillary tubes are available on the market, and by adjusting the flow rate while reducing the pressure, the bypass flow rate to each path can be easily adjusted finely. Accordingly, the entire outdoor heat exchanger can be uniformly defrosted with a smaller or the minimum necessary bypass flow rate, or the temperature can be made uniform so as to avoid the frost formation (the temperature of the outdoor heat exchanger 3 is prevented from being lowered). Frost can be avoided).

なお、室外熱交換器3は設計製造されると、複数のパスを有する熱交換器では、冷媒が流れやすいパスや流れにくいパスが決まるので、予め実験により、各パス毎の流量(或いは流路抵抗)を求めておく。同じ設計で製造された室外熱交換器であれば、各パス毎の流量は同じ傾向となるから、バイパス回路17の各分配管10に設置するキャピラリチューブ19のサイズを決定することができる。   In addition, when the outdoor heat exchanger 3 is designed and manufactured, in a heat exchanger having a plurality of paths, a path through which the refrigerant easily flows or a path through which the refrigerant flows is determined. (Resistance). In the case of an outdoor heat exchanger manufactured with the same design, the flow rate for each path has the same tendency, so the size of the capillary tube 19 installed in each distribution pipe 10 of the bypass circuit 17 can be determined.

また、室外熱交換器における着霜のし易さは、パス毎の流量の他に、パスの位置によっても異なる。即ち、室外熱交換器3における空気流れに対し上流側(空気吸込側)にはより湿度の高い外気が流入し、下流側になるほど除湿されて湿度が低下するので、上流側に配置されたパスには着霜し易く、下流側に配置されたパスには着霜し難いという傾向がある。従って、上流側のパスにはより多くのバイパス流量を流し、下流側には少なめのバイパス流量となるように前記キャピラリチューブ19のサイズを選択すると良い。   Further, the ease of frost formation in the outdoor heat exchanger varies depending on the position of the path in addition to the flow rate for each path. That is, since the higher-humidity outside air flows into the upstream side (the air suction side) with respect to the air flow in the outdoor heat exchanger 3 and dehumidifies and the humidity decreases toward the downstream side, the path disposed on the upstream side Tends to form frost, and the path arranged on the downstream side has a tendency to hardly form frost. Therefore, the size of the capillary tube 19 may be selected so that a larger bypass flow rate flows in the upstream path and a smaller bypass flow rate in the downstream side.

次に、図1に示す実施例の制御装置16における除霜運転制御を図2に示すフローチャートで説明する。
まず、前記サーミスタ25で室外熱交換器温度を検出し、前記サーミスタ24で外気温度を検出する(ステップS1)。次に、ステップS2では、前記ステップS1で検出した温度に基づいて室外熱交換器3に着霜のおそれがあるか否かを判断する。例えば、前記サーミスタ24で検出された外気温度が5℃以上で、且つ前記サーミスタ25で検出された室外熱交換器3の温度が0℃以下の場合であれば着霜のおそれがあると判断する。
Next, the defrosting operation control in the control device 16 of the embodiment shown in FIG. 1 will be described with reference to the flowchart shown in FIG.
First, the outdoor heat exchanger temperature is detected by the thermistor 25, and the outdoor air temperature is detected by the thermistor 24 (step S1). Next, in step S2, it is determined whether or not the outdoor heat exchanger 3 may be frosted based on the temperature detected in step S1. For example, if the outdoor temperature detected by the thermistor 24 is 5 ° C. or higher and the temperature of the outdoor heat exchanger 3 detected by the thermistor 25 is 0 ° C. or lower, it is determined that there is a risk of frost formation. .

着霜のおそれがあると判断された場合にはステップS3に移り、バイパス電磁弁6が開となっていなければ、バイパス電磁弁6を開き(ステップS4)、圧縮機吐出側の高温高圧冷媒の一部をバイパス回路17に導入して室外熱交換器3に流入させる。これにより、室外熱交換器3の温度を上昇させ、着霜していればそれを除霜し、着霜のおそれがある場合には着霜を回避することができる。ステップS4の処理後は、前記ステップS1に戻る。   If it is determined that there is a risk of frost formation, the process proceeds to step S3. If the bypass solenoid valve 6 is not open, the bypass solenoid valve 6 is opened (step S4), and the high-temperature and high-pressure refrigerant on the compressor discharge side is opened. A part is introduced into the bypass circuit 17 and flows into the outdoor heat exchanger 3. Thereby, the temperature of the outdoor heat exchanger 3 is raised, and if it is frosted, it can be defrosted, and when there is a possibility of frost formation, frost formation can be avoided. After step S4, the process returns to step S1.

ステップS1では再び室外熱交換器の温度と外気温度をサーミスタ24,25で検出し、ステップS2で依然として着霜のおそれありと判断された場合にはステップS3に移り、バイパス電磁弁6は開弁状態であるので、ステップS1に戻る。
前記ステップS2で着霜のおそれがないと判断された場合、ステップS5に移り、バイパス電磁弁6が閉じていればステップS1に戻り、バイパス電磁弁6が開いている場合にはステップS6に移る。ステップS6では室外熱交換器3が着霜しておらず、また着霜のおそれもない温度になっているかどうかを判断する。この例では、室外熱交換器3の温度が2℃以上になっていれば着霜のおそれがないと判断してバイパス電磁弁6を閉じ(ステップS7)、バイパス回路17から高温高圧冷媒を室外熱交換器3に導入することを停止し、空気調和機50は通常運転に戻る。
以下同様の動作を繰り返すように制御装置16は制御される。
In step S1, the temperature of the outdoor heat exchanger and the outside air temperature are detected again by the thermistors 24 and 25. If it is determined in step S2 that there is still a possibility of frost formation, the process proceeds to step S3, and the bypass solenoid valve 6 is opened. Since it is in a state, the process returns to step S1.
If it is determined in step S2 that there is no risk of frost formation, the process proceeds to step S5. If the bypass solenoid valve 6 is closed, the process returns to step S1, and if the bypass solenoid valve 6 is open, the process proceeds to step S6. . In step S6, it is determined whether or not the outdoor heat exchanger 3 is at a temperature at which frost is not formed and there is no fear of frost formation. In this example, if the temperature of the outdoor heat exchanger 3 is 2 ° C. or higher, it is determined that there is no risk of frost formation, the bypass solenoid valve 6 is closed (step S7), and the high-temperature and high-pressure refrigerant is removed from the bypass circuit 17 outdoors. The introduction into the heat exchanger 3 is stopped, and the air conditioner 50 returns to normal operation.
Thereafter, the control device 16 is controlled to repeat the same operation.

なお、本実施例における好ましい具体例を述べると以下の通りである。
(1)前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なる構成とすることで、室外熱交換器の各パスに除霜のため最小限の適切な量の高温ガスを供給できる。
(2)室外熱交換器の複数のパスのそれぞれの流路抵抗に応じて、前記各パスに接続される前記分配管のキャピラリチューブのサイズが決められ、流路抵抗の小さいパスほど、これに接続される分配管のキャピラリチューブのサイズを大きくして流入するバイパス流量が多くなるように構成する。即ち、流路抵抗の小さいパスには多くの冷媒が流れるため、着霜し易くなるから、より多くの高温ガスをバイパス回路から流入させることで、全体として均一な除霜が可能になる。
(3)前記室外熱交換器の空気流れに対し上流側に配置されているパスには下流側に配置されているパスよりも、前記バイパス流路から流入するバイパス流量が相対的に多くなるように、前記分配管のキャピラリチューブのサイズを決める。
(4)前記室外熱交換器に着霜している、或いは着霜のおそれがあると判断された場合に、前記バイパス回路のバイパス電磁弁が開かれ、圧縮機吐出側からの高温冷媒の一部が分岐されて前記バイパス回路を介して前記室外熱交換器に流入される構成とする。
(5)室外の温度を検出するための温度検出手段と、前記室外熱交換器の温度を検出するための温度検出手段とを備え、これらの温度検出手段で検出された温度に基づいて前記室外熱交換器に着霜のおそれがあるか否かを判断する制御装置を備えていること。
(6)前記室外熱交換器の温度を検出するための温度検出手段は、前記室外熱交換器の暖房時冷媒入口側となる部分の温度を検出するものであること。
(7)前記制御装置は、前記室外熱交換器に着霜のおそれがあると判定した場合、前記バイパス回路のバイパス電磁弁を開にする制御をし、前記圧縮機の吐出側からの冷媒を、前記パイパス回路を介して前記室外熱交換器に供給すること。
A preferred specific example in this embodiment will be described as follows.
(1) At least one or more of the capillary tubes provided in each of the plurality of distribution pipes is configured to have a size different from that of other capillary tubes, thereby minimizing defrosting in each path of the outdoor heat exchanger. Appropriate amount of hot gas can be supplied.
(2) The size of the capillary tube of the distribution pipe connected to each path is determined according to the flow path resistance of each of the plurality of paths of the outdoor heat exchanger. The size of the capillary tube of the distribution pipe to be connected is increased so as to increase the inflowing bypass flow rate. That is, since a large amount of refrigerant flows through the path having a small flow path resistance, frost formation is likely to occur. Therefore, a larger amount of high-temperature gas is allowed to flow from the bypass circuit, thereby enabling uniform defrosting as a whole.
(3) The bypass flow rate flowing from the bypass flow path is relatively larger in the path disposed on the upstream side with respect to the air flow of the outdoor heat exchanger than in the path disposed on the downstream side. Next, the size of the capillary tube of the distribution pipe is determined.
(4) When it is determined that the outdoor heat exchanger is frosted or frosted, the bypass solenoid valve of the bypass circuit is opened, and one of the high-temperature refrigerant from the compressor discharge side is opened. A portion is branched and flows into the outdoor heat exchanger via the bypass circuit.
(5) temperature detection means for detecting the outdoor temperature and temperature detection means for detecting the temperature of the outdoor heat exchanger, and based on the temperatures detected by these temperature detection means The heat exchanger has a control device that determines whether or not there is a risk of frost formation.
(6) The temperature detection means for detecting the temperature of the outdoor heat exchanger is to detect the temperature of the portion of the outdoor heat exchanger that is on the refrigerant inlet side during heating.
(7) When the control device determines that the outdoor heat exchanger may be frosted, the control device performs control to open the bypass electromagnetic valve of the bypass circuit, and removes the refrigerant from the discharge side of the compressor. And supplying the outdoor heat exchanger via the bypass circuit.

以上説明した本実施例によれば、バイパス回路にキャピラリチューブを有する複数の分配管を有しているので、室外熱交換器の各パスへのバイパス量を適正に調整でき、室外熱交換器に付着した霜を均一に融かして除霜性能を向上させることができる。また、本実施例によれば、除霜運転を入れながら継続的な暖房運転が可能となり、室内空間の快適性を確保できる空気調和機が得られる。更に、前記各パスへの高温ガスのバイパス量をキャピラリチューブで最適に調整できるので、高温ガスのバイパス量を必要最小限にでき、バイパス電磁弁が開の除霜運転状態のときでも暖房能力低下を抑制することができる。   According to this embodiment described above, since the bypass circuit has a plurality of distribution pipes having capillary tubes, the amount of bypass to each path of the outdoor heat exchanger can be adjusted appropriately, and the outdoor heat exchanger The defrosting performance can be improved by uniformly melting the attached frost. Moreover, according to the present Example, the continuous heating operation is possible while performing the defrosting operation, and the air conditioner that can ensure the comfort of the indoor space is obtained. Furthermore, since the bypass amount of hot gas to each pass can be adjusted optimally with a capillary tube, the amount of bypass of hot gas can be minimized and the heating capacity is reduced even when the bypass solenoid valve is open. Can be suppressed.

1…圧縮機
2…四方弁
3…室外熱交換器
4…室外膨張弁
6…バイパス電磁弁
10…分配管
11…ガス阻止弁
12…液阻止弁
16…制御装置
17…バイパス回路
19…キャピラリチューブ
20…分配器
21…分岐管
22…ヘッダ
23…室外ファン
24,25…サーミスタ(温度検出手段)
50…空気調和機
51…室外機
53…ガス接続配管
54…液接続配管。
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Four-way valve 3 ... Outdoor heat exchanger 4 ... Outdoor expansion valve 6 ... Bypass solenoid valve 10 ... Distribution pipe 11 ... Gas prevention valve 12 ... Liquid prevention valve 16 ... Controller 17 ... Bypass circuit 19 ... Capillary tube 20 ... distributor 21 ... branch pipe 22 ... header 23 ... outdoor fans 24, 25 ... thermistor (temperature detecting means)
50 ... Air conditioner 51 ... Outdoor unit 53 ... Gas connection pipe 54 ... Liquid connection pipe

Claims (9)

圧縮機、室外熱交換器、室外膨張弁を備え、少なくとも暖房運転が可能な空気調和機において、
前記室外熱交換器は複数のパスで構成されており、
前記圧縮機の吐出側と前記室外熱交換器の暖房運転時入口側とを接続するバイパス回路を設け、
前記バイパス回路はバイパス電磁弁を備えると共に、前記室外熱交換器と接続される側にはキャピラリチューブを有する複数の分配管を備え、この複数の分配管は前記室外熱交換器の複数のパスにそれぞれ接続され
前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なる
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, an outdoor expansion valve, and at least an air conditioner capable of heating operation,
The outdoor heat exchanger is composed of a plurality of passes,
Providing a bypass circuit for connecting the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation;
The bypass circuit includes a bypass solenoid valve and a plurality of distribution pipes having capillary tubes on a side connected to the outdoor heat exchanger, and the plurality of distribution pipes are connected to a plurality of paths of the outdoor heat exchanger. Each connected ,
An air conditioner characterized in that at least one of the capillary tubes provided in each of the plurality of distribution pipes is different in size from other capillary tubes .
圧縮機、四方弁、室内熱交換器、室外膨張弁、室外熱交換器を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、
前記室外熱交換器は複数のパスを備えており、前記室内熱交換器からの液冷媒を前記室外膨張弁を通過後複数の分岐管に分岐させて前記室外熱交換器の前記複数のパスにそれぞれ流す構成とし、
前記圧縮機から吐出される高温冷媒の一部を分岐させて前記室外熱交換器の暖房運転時
入口側に流すためのバイパス回路を設け、
このバイパス回路にはバイパス電磁弁を備えると共に、前記室外熱交換器に接続される
側はキャピラリチューブを有する複数の分配管で構成し、この複数の分配管を前記室外熱交換器の各パスにそれぞれ接続し、
前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なる
ことを特徴とする空気調和機。
In an air conditioner that configures a refrigeration cycle by connecting a compressor, a four-way valve, an indoor heat exchanger, an outdoor expansion valve, an outdoor heat exchanger with a refrigerant pipe,
The outdoor heat exchanger includes a plurality of paths, and the liquid refrigerant from the indoor heat exchanger passes through the outdoor expansion valve and then branches to a plurality of branch pipes to be used as the plurality of paths of the outdoor heat exchanger. It is configured to flow each,
Providing a bypass circuit for branching a part of the high-temperature refrigerant discharged from the compressor and flowing it to the inlet side during heating operation of the outdoor heat exchanger;
The bypass circuit is provided with a bypass solenoid valve, and the side connected to the outdoor heat exchanger is configured with a plurality of distribution pipes having capillary tubes, and the plurality of distribution pipes are connected to each path of the outdoor heat exchanger. each connected,
An air conditioner characterized in that at least one of the capillary tubes provided in each of the plurality of distribution pipes is different in size from other capillary tubes .
圧縮機、四方弁、室外熱交換器及び室外膨張弁を有する室外機と、室内熱交換器及び室内膨張弁を有する室内機とをガス接続配管及び液接続配管で接続して構成された空気調和機において、
前記室外熱交換器は複数のパスを備えており、暖房運転時、前記室内機からの液冷媒を室外膨張弁通過後、複数の分岐管に分岐させて前記室外熱交換器の前記複数のパスにそれぞれ流す構成とし、
前記圧縮機から吐出される高温冷媒を一部分岐させて前記室外熱交換器の暖房運転時入口側に流すためのバイパス回路を設け、
このバイパス回路にはバイパス電磁弁を備えると共に、前記室外熱交換器に接続される側はキャピラリチューブを有する複数の分配管で構成して、前記室外熱交換器の各パスにそれぞれ接続し、
前記複数の分配管に各々設けられたキャピラリチューブの少なくとも1つ以上は他のキャピラリチューブとサイズが異なる
ことを特徴とする空気調和機。
An air conditioner configured by connecting an outdoor unit having a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve, and an indoor unit having an indoor heat exchanger and an indoor expansion valve with a gas connection pipe and a liquid connection pipe In the machine
The outdoor heat exchanger has a plurality of paths, and during heating operation, the refrigerant from the indoor unit passes through an outdoor expansion valve and then branches to a plurality of branch pipes, and the plurality of paths of the outdoor heat exchanger. To each flow in,
Providing a bypass circuit for partially branching the high-temperature refrigerant discharged from the compressor and flowing it to the inlet side during heating operation of the outdoor heat exchanger;
The bypass circuit includes a bypass solenoid valve, and the side connected to the outdoor heat exchanger is configured by a plurality of distribution pipes having capillary tubes, and is connected to each path of the outdoor heat exchanger ,
An air conditioner characterized in that at least one of the capillary tubes provided in each of the plurality of distribution pipes is different in size from other capillary tubes .
請求項1〜3の何れかにおいて、室外熱交換器の複数のパスのそれぞれの流路抵抗に応じて、前記各パスに接続される前記分配管のキャピラリチューブのサイズが決められ、流路抵抗の小さいパスほど、これに接続される分配管のキャピラリチューブのサイズを大きくして流入するバイパス流量が多くなるように構成したことを特徴とする空気調和機。 In any one of Claims 1-3 , according to each flow path resistance of the several path | pass of an outdoor heat exchanger, the size of the capillary tube of the said distribution pipe connected to each said path | pass is determined, and flow path resistance An air conditioner characterized in that the smaller the path, the larger the size of the capillary tube of the distribution pipe connected thereto, and the larger the bypass flow rate that flows in . 請求項1〜4の何れかにおいて、前記室外熱交換器の空気流れに対し上流側に配置されているパスには下流側に配置されているパスよりも、前記バイパス流路から流入するバイパス流量が相対的に多くなるように、前記分配管のキャピラリチューブのサイズが決められていることを特徴とする空気調和機。 In any one of Claims 1-4, the bypass flow volume which flows in into the path | pass arrange | positioned upstream with respect to the air flow of the said outdoor heat exchanger from the said bypass flow path rather than the path | pass arrange | positioned downstream. The air conditioner is characterized in that the size of the capillary tube of the distribution pipe is determined so as to be relatively large . 請求項1〜5の何れかにおいて、前記室外熱交換器に着霜している、或いは着霜のおそれがあると判断された場合に、前記バイパス回路のバイパス電磁弁が開かれ、圧縮機吐出側からの高温冷媒の一部が分岐されて前記バイパス回路を介して前記室外熱交換器に流入される構成としていることを特徴とする空気調和機。 In any one of Claims 1-5, when it is judged that the said outdoor heat exchanger is frosting or there exists a possibility of frost formation, the bypass solenoid valve of the said bypass circuit is opened, and compressor discharge An air conditioner characterized in that a part of the high-temperature refrigerant from the side is branched and flows into the outdoor heat exchanger via the bypass circuit . 圧縮機、室外熱交換器、室外膨張弁を備え、少なくとも暖房運転が可能な空気調和機において、
前記室外熱交換器は複数のパスで構成されており、
前記圧縮機の吐出側と前記室外熱交換器の暖房運転時入口側とを接続するバイパス回路を設け、
前記バイパス回路はバイパス電磁弁を備えると共に、前記室外熱交換器と接続される側にはキャピラリチューブを有する複数の分配管を備え、この複数の分配管は前記室外熱交換器の複数のパスにそれぞれ接続され、
更に、室外の温度を検出するための温度検出手段と、前記室外熱交換器の温度を検出するための温度検出手段とを備え、これらの温度検出手段で検出された温度に基づいて前記室外熱交換器に着霜のおそれがあるか否かを判断する制御装置を備えている
ことを特徴とする空気調和機。
A compressor, an outdoor heat exchanger, an outdoor expansion valve, and at least an air conditioner capable of heating operation,
The outdoor heat exchanger is composed of a plurality of passes,
Providing a bypass circuit for connecting the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation;
The bypass circuit includes a bypass solenoid valve and a plurality of distribution pipes having capillary tubes on a side connected to the outdoor heat exchanger, and the plurality of distribution pipes are connected to a plurality of paths of the outdoor heat exchanger. Each connected,
Furthermore, a temperature detection means for detecting the outdoor temperature and a temperature detection means for detecting the temperature of the outdoor heat exchanger are provided, and the outdoor heat is based on the temperature detected by these temperature detection means. An air conditioner comprising a control device that determines whether or not the exchanger has a risk of frost formation .
請求項において、前記室外熱交換器の温度を検出するための温度検出手段は、前記室外熱交換器の暖房時冷媒入口側となる部分の温度を検出するものであることを特徴とする空気調和機。 8. The air according to claim 7 , wherein the temperature detecting means for detecting the temperature of the outdoor heat exchanger detects a temperature of a portion of the outdoor heat exchanger that becomes a refrigerant inlet side during heating. Harmony machine. 請求項7または8において、前記制御装置は、前記室外熱交換器に着霜のおそれがあると判定した場合、前記バイパス回路のバイパス電磁弁を開にする制御をし、前記圧縮機の吐出側からの冷媒を、前記バイパス回路を介して前記室外熱交換器に供給することを特徴とする空気調和機。 9. The control device according to claim 7 , wherein when the control device determines that the outdoor heat exchanger may be frosted, the control device performs control to open a bypass solenoid valve of the bypass circuit, and discharges the compressor The air conditioner is characterized in that the refrigerant from is supplied to the outdoor heat exchanger via the bypass circuit .
JP2010070202A 2010-03-25 2010-03-25 Air conditioner Active JP5404489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070202A JP5404489B2 (en) 2010-03-25 2010-03-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070202A JP5404489B2 (en) 2010-03-25 2010-03-25 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011202875A JP2011202875A (en) 2011-10-13
JP5404489B2 true JP5404489B2 (en) 2014-01-29

Family

ID=44879715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070202A Active JP5404489B2 (en) 2010-03-25 2010-03-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP5404489B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550550B1 (en) 2014-08-14 2015-09-04 엘지전자 주식회사 An air conditioner
KR101615445B1 (en) 2014-08-14 2016-04-25 엘지전자 주식회사 An air conditioner
CN110500740A (en) * 2019-08-22 2019-11-26 Tcl空调器(中山)有限公司 Air-conditioner with fixed frequency and its control method, control device and storage medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976576B2 (en) * 2013-03-21 2016-08-23 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP6342282B2 (en) * 2014-09-29 2018-06-13 リンナイ株式会社 Heat pump heat source equipment
CN105066501B (en) * 2015-07-22 2017-05-03 广东美的暖通设备有限公司 Outdoor unit of multi-split air conditioner and multi-split air conditioner comprising same
JP6338565B2 (en) * 2015-12-01 2018-06-06 三菱電機株式会社 Refrigeration equipment
CN108224602A (en) * 2018-01-31 2018-06-29 青岛海尔空调器有限总公司 For the branch pipe and air conditioner of outdoor heat exchanger of air conditioner
KR102447943B1 (en) * 2018-02-05 2022-09-28 엘지전자 주식회사 Air conditioner
CN109442808A (en) * 2018-11-16 2019-03-08 无锡同方人工环境有限公司 Heat exchanger
CN111854056A (en) * 2019-04-26 2020-10-30 珠海格力电器股份有限公司 Control method of heat pump system
CN111854057B (en) * 2019-04-29 2022-02-22 青岛海尔空调电子有限公司 Control method and device for defrosting of air conditioner and air conditioner
CN112611074A (en) * 2020-11-30 2021-04-06 青岛海尔空调电子有限公司 Air conditioning system and defrosting control method, storage medium and control device thereof
CN115307348A (en) * 2022-08-04 2022-11-08 国网陕西省电力有限公司电力科学研究院 Reverse-cycle defrosting air source heat pump system and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48110742U (en) * 1972-03-23 1973-12-19
JPS62127467U (en) * 1986-02-04 1987-08-12
JPH0238060U (en) * 1988-08-31 1990-03-13
JP2002031435A (en) * 2000-07-19 2002-01-31 Fujitsu General Ltd Air conditioner
JP2002243311A (en) * 2001-02-20 2002-08-28 Fujitsu General Ltd Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550550B1 (en) 2014-08-14 2015-09-04 엘지전자 주식회사 An air conditioner
KR101615445B1 (en) 2014-08-14 2016-04-25 엘지전자 주식회사 An air conditioner
US10161656B2 (en) 2014-08-14 2018-12-25 Lg Electronics Inc. Air conditioner having a bending tube which alters the flow of the refrigerant prior to entering the distributor
CN110500740A (en) * 2019-08-22 2019-11-26 Tcl空调器(中山)有限公司 Air-conditioner with fixed frequency and its control method, control device and storage medium

Also Published As

Publication number Publication date
JP2011202875A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5404489B2 (en) Air conditioner
US10006647B2 (en) Air conditioning system with distributor for a plurality of indoor units
CN109328287B (en) Refrigeration cycle device
EP2128535B1 (en) Air conditioner
JP5213817B2 (en) Air conditioner
US11268743B2 (en) Air-conditioning apparatus having heating-defrosting operation mode
US9377225B2 (en) Outdoor heat exchanger and air conditioner comprising the same
JP2007263443A (en) Air conditioner
JP5976576B2 (en) Air conditioner
JP4752541B2 (en) Air conditioner
JP2009036503A (en) Refrigerating cycle device and air conditioner having this refrigerating cycle device
JP4622901B2 (en) Air conditioner
JP6045204B2 (en) Heat exchange system
JP2012063033A (en) Air conditioner
JP4201724B2 (en) Air conditioner
CN113167486B (en) Air conditioner
KR100767857B1 (en) Air conditioner and controlling method therefor
JP2010230288A (en) Branch unit
JP6602476B2 (en) Refrigeration equipment
JP4774858B2 (en) Air conditioner
JP5673290B2 (en) Air conditioner
JP6727296B2 (en) Air conditioner
JP2008157531A (en) Air conditioner
CN117355721A (en) Heat exchanger, outdoor unit of air conditioner provided with heat exchanger, and air conditioner provided with outdoor unit of air conditioner
JPWO2022172410A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250