JP5403593B2 - Automatic solution injection device - Google Patents

Automatic solution injection device Download PDF

Info

Publication number
JP5403593B2
JP5403593B2 JP2009079027A JP2009079027A JP5403593B2 JP 5403593 B2 JP5403593 B2 JP 5403593B2 JP 2009079027 A JP2009079027 A JP 2009079027A JP 2009079027 A JP2009079027 A JP 2009079027A JP 5403593 B2 JP5403593 B2 JP 5403593B2
Authority
JP
Japan
Prior art keywords
solution
solution injection
hydrogen peroxide
liquid
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009079027A
Other languages
Japanese (ja)
Other versions
JP2010230529A (en
Inventor
博章 鈴木
篤司 高島
理伸 三枝
与志郎 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009079027A priority Critical patent/JP5403593B2/en
Publication of JP2010230529A publication Critical patent/JP2010230529A/en
Application granted granted Critical
Publication of JP5403593B2 publication Critical patent/JP5403593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微小なチップ上で化学分析を行う微小化学分析システムにおいて、自動的に溶液注入を行うデバイスに関する。   The present invention relates to a device that automatically injects a solution in a microchemical analysis system that performs chemical analysis on a microchip.

次世代の微小化学分析システム(μTAS)に求められる重要な機能の一つは自律的動作である。自律的動作を実現するに際し、送液制御は最も重要な課題である。あらかじめ微小なチップ上にプログラムが書きこまれ、外部から何も電気信号を与えなくても自発的に決められた手順にしたがって送液制御を行うことができれば、駆動装置側の負担が軽くなる。   One of the important functions required for the next generation microchemical analysis system (μTAS) is autonomous operation. In realizing autonomous operation, liquid feeding control is the most important issue. If a program is written in advance on a small chip and liquid feeding control can be performed in accordance with a procedure determined voluntarily without applying any electrical signal from the outside, the burden on the drive device side is reduced.

微小なチップにおいて、送液制御を実現する技術としては、μTASにおいて外部からの電気信号により駆動する圧電素子を用いたマイクロポンプにより送液制御を行う機構がある(例えば、特許文献1参照)。また、圧電素子を用いない手段としては、マイクロ流体デバイスにおいて、光応答性ガス発生樹脂に光を照射することにより発生するガスの圧力により駆動するマイクロポンプがある(例えば、特許文献2参照)。   As a technique for realizing liquid feeding control in a minute chip, there is a mechanism for performing liquid feeding control by a micro pump using a piezoelectric element driven by an external electric signal in μTAS (for example, see Patent Document 1). As a means not using a piezoelectric element, there is a micropump that is driven by the pressure of gas generated by irradiating light to a photoresponsive gas generating resin in a microfluidic device (see, for example, Patent Document 2).

特開2008−238168号公報JP 2008-238168 A 特開2008−216192号公報JP 2008-216192 A

しかしながら、特許文献1の技術においては、圧電素子を駆動するための電気信号をプログラムにしたがって与える必要がある。特許文献2の技術においても、光応答性ガス発生樹脂に光を照射する必要があるため、やはり、光源を駆動するための電気信号をプログラムにしたがって与える必要がある。したがって、特許文献1及び特許文献2の技術を用いてμTASの自律的動作を実現することはできない。   However, in the technique of Patent Document 1, it is necessary to supply an electric signal for driving the piezoelectric element according to a program. Also in the technique of Patent Document 2, since it is necessary to irradiate light to the photoresponsive gas generating resin, it is also necessary to provide an electric signal for driving the light source according to the program. Therefore, the autonomous operation of μTAS cannot be realized using the techniques of Patent Document 1 and Patent Document 2.

本発明は以上のような課題に鑑みてなされたものであり、その目的は、μTASの自律的動作を実現することにより、駆動装置側の負担を軽くすることを可能とした自動溶液注入デバイスを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an automatic solution injection device that can reduce the burden on the drive device side by realizing autonomous operation of μTAS. It is to provide.

本発明の自動溶液注入デバイスは、被送液溶液を収容する被送液溶液注入区画と、被送液溶液注入区画との境界に位置するダイヤフラムと、ダイヤフラムにほぼ接する位置に固定された触媒物質とを有し、ガス発生溶液が外部から導入されるガス発生溶液注入区画とを有するマイクロポンプ部を備え、マイクロポンプ部は、ガス発生溶液注入区画に導入されたガス発生溶液が触媒物質に接触することにより生ずる気体が、ダイヤフラムを押圧して被送液溶液注入区画の容積を圧縮し、被送液溶液を押し出し送液を行い、ガス発生溶液注入区画は、ガス発生溶液送液用微小流路を介してガス発生溶液が導入されることを特徴とする。 The automatic solution injection device of the present invention includes a liquid solution injection section for storing a liquid supply solution, a diaphragm located at a boundary between the liquid supply solution injection section, and a catalyst substance fixed at a position substantially in contact with the diaphragm. And a micropump part having a gas generation solution injection section into which the gas generation solution is introduced from the outside. The micropump part is in contact with the catalyst substance by the gas generation solution introduced into the gas generation solution injection section. gas produced by the, presses the diaphragm to compress the volume of the liquid feed solution injection section, have rows feeding and extruding to be liquid feed solution, the gas generating solution injection compartment, gas generating solution feeding for small The gas generating solution is introduced through the flow path .

本発明の自動溶液注入デバイスによれば、微小流路内を進行する過酸化水素溶液の到着のタイミングにより自動的にポンプが作動するため、外部に回路やプログラムを用意する必要がない。   According to the automatic solution injection device of the present invention, the pump is automatically operated according to the arrival timing of the hydrogen peroxide solution traveling in the microchannel, so that it is not necessary to prepare a circuit or a program outside.

本発明の第1実施形態の自動溶液注入デバイスの全体構成を示す図である。It is a figure showing the whole automatic solution injection device composition of a 1st embodiment of the present invention. 本発明の第1実施形態の自動溶液注入デバイスの分解斜視図である。1 is an exploded perspective view of an automatic solution injection device according to a first embodiment of the present invention. 本発明の第1実施形態の自動溶液注入デバイスにおけるマイクロポンプ部を拡大した図である。It is the figure which expanded the micropump part in the automatic solution injection device of 1st Embodiment of this invention. 本発明の第2実施形態の自動溶液注入デバイスの全体構成を示す図である。It is a figure which shows the whole structure of the automatic solution injection | pouring device of 2nd Embodiment of this invention. 本発明の第2実施形態の自動溶液注入デバイスの実験結果を示す図である。It is a figure which shows the experimental result of the automatic solution injection | pouring device of 2nd Embodiment of this invention. 本発明の第3実施形態の自動溶液注入デバイスの全体構成を示す図である。It is a figure which shows the whole structure of the automatic solution injection | pouring device of 3rd Embodiment of this invention. 本発明の第3実施形態の自動溶液注入デバイスの第1のPDMS基板及び第2のPDMS基板の構成を示す図である。It is a figure which shows the structure of the 1st PDMS board | substrate and 2nd PDMS board | substrate of the automatic solution injection device of 3rd Embodiment of this invention. 本発明の第3実施形態の自動溶液注入デバイスの実験結果を示す図である。It is a figure which shows the experimental result of the automatic solution injection | pouring device of 3rd Embodiment of this invention.

(第1実施形態)
図1は、本発明の第1実施形態の自動溶液注入デバイスの全体構成を示す図である。図1(a)は、本実施形態の自動溶液注入デバイスの正面図であり、図1(b)は、本実施形態の自動溶液注入デバイスの側面図である。図1に示すように、本実施形態の自動溶液注入デバイス1は、PDMS基板2枚とガラス基板を積層して作製される。
(First embodiment)
FIG. 1 is a diagram showing an overall configuration of an automatic solution injection device according to a first embodiment of the present invention. FIG. 1A is a front view of the automatic solution injection device of the present embodiment, and FIG. 1B is a side view of the automatic solution injection device of the present embodiment. As shown in FIG. 1, the automatic solution injection device 1 of this embodiment is manufactured by laminating two PDMS substrates and a glass substrate.

図に示すように、本実施形態の自動溶液注入デバイス1は、ガラス基板100と、第1のPoly(Dimethylsiloxane)(PDMS)基板200と、ダイヤフラム300と、第2のPDMS基板400と、アクリル板500とがこの順番に積層して構成される。本実施形態の自動溶液注入デバイス1の概略の外形サイズは、10mm×14mm程度である。   As shown in the figure, the automatic solution injection device 1 of this embodiment includes a glass substrate 100, a first poly (dimethylsiloxane) (PDMS) substrate 200, a diaphragm 300, a second PDMS substrate 400, and an acrylic plate. 500 are stacked in this order. The approximate external size of the automatic solution injection device 1 of this embodiment is about 10 mm × 14 mm.

図2は、本実施形態の自動溶液注入デバイスの分解斜視図である。図3は、本実施形態の微小参照電極デバイス1における図1中のマイクロポンプ部Aを拡大した図及びその概略断面図である。   FIG. 2 is an exploded perspective view of the automatic solution injection device of the present embodiment. FIG. 3 is an enlarged view of the micropump portion A in FIG. 1 in the micro reference electrode device 1 of the present embodiment and a schematic cross-sectional view thereof.

図2及び図3に示すように、本実施形態の自動溶液注入デバイスは、2枚のPDMS基板のうち、上段には各種試薬溶液、下段には過酸化水素溶液を送液するための流路が形成される。それぞれの基板の流路にマイクロポンプ部が接続する。マイクロポンプ部は被送液溶液と二酸化マンガンを固定したゲルをダイヤフラムを介して配置することで構成される。   As shown in FIGS. 2 and 3, the automatic solution injection device of the present embodiment has a flow path for feeding various reagent solutions on the upper stage and a hydrogen peroxide solution on the lower stage among the two PDMS substrates. Is formed. A micropump unit is connected to the flow path of each substrate. The micropump unit is configured by arranging a gel to which a solution to be fed and manganese dioxide are fixed via a diaphragm.

本実施形態のガラス基板100は平板状の部材であり、自動溶液注入デバイス1の底部の部材となる。   The glass substrate 100 of the present embodiment is a flat plate member and serves as a bottom member of the automatic solution injection device 1.

本実施形態の第1のPDMS基板200は、過酸化水素溶液注入区画201と、触媒固定ゲル202と、二酸化マンガン(触媒)粒子203と、過酸化水素溶液送液用微小流路204と、過酸化水素溶液供給区画205と、過酸化水素溶液送液用微小液絡路206と、空気抜き用流路207とを含んで構成される。   The first PDMS substrate 200 of this embodiment includes a hydrogen peroxide solution injection section 201, a catalyst fixing gel 202, manganese dioxide (catalyst) particles 203, a hydrogen peroxide solution feeding microchannel 204, It is configured to include a hydrogen oxide solution supply section 205, a hydrogen peroxide solution feeding micro liquid junction 206, and an air vent channel 207.

過酸化水素溶液注入区画201は、第1のPDMS基板200を貫通する円形断面の穴である。過酸化水素溶液注入区画201内のダイヤフラム300側には、二酸化マンガン粒子203が触媒固定ゲル202により固定されている。また、過酸化水素溶液注入区画201内のガラス基板100側に過酸化水素溶液が流入可能な所定の空間が確保できるように、触媒固定ゲル202が配置される。触媒固定ゲル202には、例えば、光硬化性のPVA-SbQゲルを用いることができる。   The hydrogen peroxide solution injection section 201 is a hole having a circular cross section that penetrates the first PDMS substrate 200. Manganese dioxide particles 203 are fixed by a catalyst fixing gel 202 on the diaphragm 300 side in the hydrogen peroxide solution injection section 201. Further, the catalyst fixing gel 202 is arranged so that a predetermined space into which the hydrogen peroxide solution can flow is secured on the glass substrate 100 side in the hydrogen peroxide solution injection section 201. As the catalyst fixing gel 202, for example, a photocurable PVA-SbQ gel can be used.

過酸化水素溶液送液用微小流路204は、過酸化水素溶液供給区画205と、過酸化水素溶液注入区画201とを接続する微小流路である。また、過酸化水素溶液送液用微小流路204は、過酸化水素溶液送液用微小液絡路206を介して過酸化水素溶液注入区画201に接続する。   The hydrogen peroxide solution feeding microchannel 204 is a microchannel that connects the hydrogen peroxide solution supply section 205 and the hydrogen peroxide solution injection section 201. The hydrogen peroxide solution feeding microchannel 204 is connected to the hydrogen peroxide solution injection section 201 via the hydrogen peroxide solution feeding microfluidic channel 206.

過酸化水素溶液送液用微小流路204の幅は、毛細管現象が発現する程度の幅であり、本実施形態では約500μmである。また、過酸化水素溶液送液用微小液絡路206の幅は、毛細管現象が発現する程度の幅であればよく、本実施形態では約300μmである   The width of the micro-channel 204 for feeding a hydrogen peroxide solution is such a width that a capillary phenomenon appears, and is about 500 μm in this embodiment. Further, the width of the micro liquid junction 206 for feeding the hydrogen peroxide solution may be a width that allows the capillary phenomenon to appear, and is about 300 μm in this embodiment.

過酸化水素溶液供給区画205は、第1のPDMS基板200を貫通する円形断面の穴である。   The hydrogen peroxide solution supply section 205 is a hole having a circular cross section that penetrates the first PDMS substrate 200.

空気抜き用流路207は、過酸化水素溶液注入区画201から外部へ連絡する空気抜き穴である。過酸化水素溶液注入区画201内部の空気が空気抜き用流路207から排出されることにより、過酸化水素溶液は過酸化水素溶液注入区画201内に滑らかに導入される。   The air vent channel 207 is an air vent hole communicating from the hydrogen peroxide solution injection section 201 to the outside. By discharging the air inside the hydrogen peroxide solution injection section 201 from the air vent channel 207, the hydrogen peroxide solution is smoothly introduced into the hydrogen peroxide solution injection section 201.

本実施形態のダイヤフラム300は、第1のPDMS基板200と第2のPDMS基板400の間に配置され、特に、第1のPDMS基板200の過酸化水素溶液注入区画201と、後述する第2のPDMS基板400の被送液溶液注入区画401との間に配置され、両区画を区分する。   The diaphragm 300 of the present embodiment is disposed between the first PDMS substrate 200 and the second PDMS substrate 400, and in particular, the hydrogen peroxide solution injection section 201 of the first PDMS substrate 200 and a second PD described later. It arrange | positions between the to-be-delivered solution injection | pouring sections 401 of PDMS substrate 400, and divides both sections.

本実施形態のダイヤフラム300には、例えば、シリコーンフィルムを用いることができる。   For the diaphragm 300 of the present embodiment, for example, a silicone film can be used.

本実施形態の第2のPDMS基板400は、被送液溶液注入区画401と、被送液溶液用微小流路402と、注入口403と、被送液溶液用微小液絡路404とを含んで構成される。   The second PDMS substrate 400 of the present embodiment includes a liquid delivery solution injection section 401, a liquid feed solution microchannel 402, an inlet 403, and a liquid feed microfluidic channel 404. Consists of.

被送液溶液注入区画401は、第2のPDMS基板400を半貫通する円形断面の穴である。被送液溶液注入区画401は、ダイヤフラム300に積層する側が開口となっており、アクリル板500に接する側には注入口403が設けられる。   The liquid solution injection section 401 is a hole having a circular cross section that half-penetrates the second PDMS substrate 400. The liquid solution injection section 401 has an opening on the side laminated on the diaphragm 300, and an injection port 403 provided on the side in contact with the acrylic plate 500.

被送液溶液用微小流路402は、被送液溶液用微小液絡路404を介して被送液溶液注入区画401に接続し、また、図1に示すように、被送液溶液の吐出口402aが自動溶液注入デバイス1の側面に形成される。   The liquid-sending solution micro-channel 402 is connected to the liquid-sending solution injection section 401 via the micro-liquid junction 404 for the liquid-sending solution, and, as shown in FIG. An outlet 402 a is formed on the side of the automatic solution injection device 1.

被送液溶液用微小流路402の幅は、約500μmである。また、被送液溶液用微小液絡路404の幅は、約300μmである。   The width of the microfluidic channel 402 for liquid to be delivered is about 500 μm. Further, the width of the micro liquid junction 404 for the solution to be delivered is about 300 μm.

本実施形態のアクリル板500は、第2のPDMS基板400上に配置され、特に、第2のPDMS基板400の注入口403上部に配置される。   The acrylic plate 500 of the present embodiment is disposed on the second PDMS substrate 400, and in particular, is disposed on the inlet 403 of the second PDMS substrate 400.

ここで、図1のA部に示す、被送液溶液注入区画401、ダイヤフラム300、過酸化水素溶液注入区画201、二酸化マンガン粒子203、及び、触媒固定ゲル202からなる箇所を、マイクロポンプ部Aとする。   Here, the part consisting of the liquid solution injection section 401, the diaphragm 300, the hydrogen peroxide solution injection section 201, the manganese dioxide particles 203, and the catalyst fixing gel 202 shown in part A of FIG. And

次に、本実施形態のマイクロポンプ部の動作について説明をする。本実施形態のマイクロポンプ部の動作原理は非常にシンプルである。本実施形態の自動溶液注入デバイスは、過酸化水素から酸素気泡を生じる触媒反応を利用し、このとき過酸化水素溶液注入区画201に生じる体積変化をポンプ駆動力とするものである。   Next, the operation of the micropump unit of this embodiment will be described. The operating principle of the micropump unit of this embodiment is very simple. The automatic solution injection device of the present embodiment uses a catalytic reaction that generates oxygen bubbles from hydrogen peroxide, and the volume change generated in the hydrogen peroxide solution injection section 201 at this time is used as a pump driving force.

まず、被送液溶液注入区画401に被送液溶液を満たし、図3(b)に示すようにアクリル板500で封をする。次に、過酸化水素溶液供給区画205から過酸化水素溶液送液用微小流路204に過酸化水素溶液を導入すると、毛細管現象により溶液は流路中を自発的に送液され、過酸化水素溶液注入区画201内に浸入する。   First, the liquid-sending solution injection section 401 is filled with the liquid-sending solution and sealed with an acrylic plate 500 as shown in FIG. Next, when the hydrogen peroxide solution is introduced from the hydrogen peroxide solution supply section 205 into the hydrogen peroxide solution feeding micro-channel 204, the solution is spontaneously fed through the channel by capillary action, Enter the solution injection section 201.

図3(d)に示すように、過酸化水素溶液が図中のB方向に送液され、過酸化水素溶液注入区画201内に過酸化水素溶液が供給されると、触媒固定ゲル202に固定された二酸化マンガン粒子203と過酸化水素溶液が接触し酸素が発生する。発生した酸素は泡(Bubbles)となり、ダイヤフラム300を押し上げる。   As shown in FIG. 3D, when the hydrogen peroxide solution is fed in the direction B in the figure and the hydrogen peroxide solution is supplied into the hydrogen peroxide solution injection section 201, the hydrogen peroxide solution is fixed to the catalyst fixing gel 202. Oxygen is generated by contact between the manganese dioxide particles 203 and the hydrogen peroxide solution. The generated oxygen becomes bubbles and pushes up the diaphragm 300.

ダイヤフラム300が押し上げられることにより、被送液溶液注入区画401の体積が減少し、被送液溶液注入区画401に注入された被送液溶液(Solution)は、図中のA方向に押し出され、被送液溶液用微小流路402に押し出される。   When the diaphragm 300 is pushed up, the volume of the liquid solution injection section 401 decreases, and the liquid solution (Solution) injected into the liquid solution injection section 401 is pushed out in the direction A in the figure, It is pushed out into the microfluidic channel 402 for the solution to be delivered.

(第2実施形態)
図4は、本発明の第2実施形態の自動溶液注入デバイスの全体構成を示す図である。図に示すように、本実施形態の自動溶液注入デバイスは、マイクロポンプを複数備える点で、第1実施形態の自動溶液注入デバイスとは相違がある。以下、第1実施形態の自動溶液注入デバイスと相違する構造部分について主に説明する。
(Second Embodiment)
FIG. 4 is a diagram showing the overall configuration of the automatic solution injection device according to the second embodiment of the present invention. As shown in the figure, the automatic solution injection device of this embodiment is different from the automatic solution injection device of the first embodiment in that it includes a plurality of micropumps. Hereinafter, the structure part different from the automatic solution injection device of the first embodiment will be mainly described.

図に示すように、複数のマイクロポンプA〜Aは過酸化水素溶液送液用微小流路204に各々結合している。図では、過酸化水素溶液供給区画205とマイクロポンプAとの距離をl1とし、過酸化水素溶液供給区画205とマイクロポンプA2との距離をl2とし、過酸化水素溶液供給区画205とマイクロポンプA3との距離をl3とする。 As shown in the drawing, the plurality of micropumps A 1 to A 3 are respectively coupled to the micro flow channel 204 for feeding a hydrogen peroxide solution. In the figure, the distance between the hydrogen peroxide solution feed compartment 205 and the micro pump A 1 and l 1, the distance between the hydrogen peroxide solution feed compartment 205 and the micro pump A 2 and l 2, the hydrogen peroxide solution feed compartment 205 And the distance between the micropump A 3 and l 3 .

そして、過酸化水素溶液供給区画205からの距離が短い順に各マイクロポンプA〜Aは動作し、各マイクロポンプA〜A内の被送液溶液は、過酸化水素溶液の到達した順に、順次マイクロポンプA〜Aから排出される。 Then, the micro pump A 1 to A 3 distance to ascending order from the hydrogen peroxide solution supply section 205 operates, the liquid feed solution within the micro pump A 1 to A 3 has reached the hydrogen peroxide solution In order, the micro pumps A 1 to A 3 are sequentially discharged.

過酸化水素溶液送液用微小流路204とマイクロポンプA〜Aを適当な位置に配置することで、それぞれのマイクロポンプから被送液溶液が排出されるタイミングを自由にプログラムし制御できる。 By disposing the hydrogen peroxide solution feeding microchannel 204 and the micropumps A 1 to A 3 at appropriate positions, the timing at which the liquid feeding solution is discharged from each micropump can be freely programmed and controlled. .

また、マイクロポンプの駆動のタイミングは流路形状、ぬれ性や、流路の材質や、断面寸法により適宜制御することが可能である。   Further, the driving timing of the micropump can be appropriately controlled by the flow channel shape, wettability, flow channel material, and cross-sectional dimensions.

また、過酸化水素溶液送液用微小流路204および過酸化水素溶液注入区画201内への過酸化水素溶液の送液速度を調節するため、過酸化水素溶液には界面活性剤(Triton X-100)を添加してもよい。界面活性剤(Triton X-100)を添加することにより高速なスイッチングを行うことができる。   Further, in order to adjust the feeding speed of the hydrogen peroxide solution into the hydrogen peroxide solution feeding microchannel 204 and the hydrogen peroxide solution injecting section 201, a surfactant (Triton X- 100) may be added. High speed switching can be performed by adding a surfactant (Triton X-100).

このような方法により、マイクロポンプ駆動のタイミングはあらかじめプログラミング情報として自動溶液注入デバイス構造上に書き込むことが可能である。   By such a method, the timing of driving the micropump can be written in advance on the automatic solution injection device structure as programming information.

なお、本実施形態では複数のマイクロポンプA〜Aを直線状に配列したが、これに限られるものではなく、必要に応じて円弧状に配列してもよい。また、図4と同様の自動溶液注入デバイスを並列的に複数配置すれば、より複雑な溶液操作を行うこともできる。 In the present embodiment, the plurality of micropumps A 1 to A 3 are arranged in a straight line. However, the present invention is not limited to this, and may be arranged in an arc as necessary. If a plurality of automatic solution injection devices similar to those in FIG. 4 are arranged in parallel, a more complicated solution operation can be performed.

図5は、本発明の第2実施形態の自動溶液注入デバイスの実験結果を示す図である。   FIG. 5 is a diagram showing experimental results of the automatic solution injection device according to the second embodiment of the present invention.

プログラミング用流路に過酸化水素溶液を導入すると、溶液は自発的に流路中を進行し、各マイクロポンプ部の区画を満たした。そして、図5(a)に示すようにマイクロポンプ部では、ダイヤフラムの膨張と液溜め中の溶液の排出が認められた。プログラミング用流路の過酸化水素溶液は、一定時間後に次のポンプの区画を満たし、図5(b)に示すように、同様の変化が認められた。   When the hydrogen peroxide solution was introduced into the programming channel, the solution spontaneously proceeded in the channel and filled each micropump section. And as shown to Fig.5 (a), expansion | swelling of the diaphragm and discharge | emission of the solution in a liquid reservoir were recognized in the micropump part. The hydrogen peroxide solution in the programming channel filled the next pump section after a certain time, and the same change was recognized as shown in FIG. 5 (b).

図5(c)は、3つのポンプを並列的に並べ、それぞれのポンプから流路に順次溶液が排出される様子を示す。図5(d)に示すように、溶液排出量が図中左側ほど大きいのは、過酸化水素溶液のポンプ部への到達時間の差を反映しており、位置関係で送液のタイミングをプログラミングできることが示された。なお、変化を起こすタイミングは流路の材質や断面寸法により調節できる。また、過酸化水素溶液中に界面活性剤を添加すると、送液速度が増大し、より高速なスイッチングを行うことができる。   FIG.5 (c) shows a mode that three pumps are arranged in parallel and a solution is discharged | emitted one by one to a flow path from each pump. As shown in FIG. 5 (d), the solution discharge amount is larger on the left side in the figure, reflecting the difference in the arrival time of the hydrogen peroxide solution to the pump unit, and the timing of liquid delivery is programmed according to the positional relationship. It was shown that it can be done. The timing at which the change occurs can be adjusted by the material of the flow path and the cross-sectional dimensions. In addition, when a surfactant is added to the hydrogen peroxide solution, the liquid feeding speed is increased, and higher speed switching can be performed.

(第3実施形態)
上記実施形態では、マイクロポンプで被送液溶液を押し出すことを行ったが、被送液溶液注入区画に被送液溶液を満たさず空気のみを満たしておき、他の流路内の溶液に圧力を及ぼすこともできる。図6はそのようなポンプを含むデバイスの例である。
(Third embodiment)
In the above embodiment, the liquid delivery solution is pushed out by the micropump, but the liquid delivery solution injection section is not filled with the liquid delivery solution but is filled only with air, and pressure is applied to the solution in the other channel. Can also be exerted. FIG. 6 is an example of a device including such a pump.

図6は、本発明の第3実施形態の自動溶液注入デバイスの全体構成を示す図である。図に示すように、本実施形態の自動溶液注入デバイスは、外側に空気を満たした補助マイクロポンプB、Bを備えるとともに、内側に被送液溶液を満たしたマイクロポンプA、Aを備える点で、他の実施形態の自動溶液注入デバイスとは相違がある。以下、他の実施形態の自動溶液注入デバイスと相違する構造部分について主に説明する。 FIG. 6 is a diagram showing an overall configuration of an automatic solution injection device according to a third embodiment of the present invention. As shown in the figure, the automatic solution injection device of the present embodiment includes auxiliary micro pumps B 1 and B 2 filled with air on the outside, and micro pumps A 1 and A 2 filled with a solution to be delivered on the inside. Is different from the automatic solution injection device of other embodiments. Hereinafter, the structure part different from the automatic solution injection device of other embodiment is mainly demonstrated.

図6(a)は、本実施形態の自動溶液注入デバイスの正面図であり、図6(b)は、本実施形態の自動溶液注入デバイスの側面図である。   FIG. 6A is a front view of the automatic solution injection device of the present embodiment, and FIG. 6B is a side view of the automatic solution injection device of the present embodiment.

図に示すように、本実施形態の自動溶液注入デバイス1は、ガラス基板100と、第1のPDMS基板200と、ダイヤフラム300と、第2のPDMS基板400と、アクリル板500とがこの順番に積層して構成される。   As shown in the figure, in the automatic solution injection device 1 of this embodiment, the glass substrate 100, the first PDMS substrate 200, the diaphragm 300, the second PDMS substrate 400, and the acrylic plate 500 are arranged in this order. It is constructed by stacking.

図7(a)は、本実施形態の第2のPDMS基板400の正面図である。   FIG. 7A is a front view of the second PDMS substrate 400 of the present embodiment.

本実施形態の第2のPDMS基板400は、第1の被送液溶液注入区画401aと、第2の被送液溶液注入区画401bと、被送液溶液合流用微小流路402と、第1の注入口403aと、第2の注入口403bと、第1の被送液溶液用微小液絡路404aと、第2の被送液溶液用微小液絡路404bと、第1の気室区画405aと、第2の気室区画405bと、被送液溶液用微小流路406と、を含んで構成される。   The second PDMS substrate 400 of the present embodiment includes a first liquid delivery solution injection section 401a, a second liquid delivery solution injection section 401b, a liquid feed solution confluence microchannel 402, and a first liquid delivery solution injection section 401b. Injection port 403a, second injection port 403b, first liquid-feeding solution microfluidic channel 404a, second liquid-feeding solution microfluidic channel 404b, and first air chamber compartment 405a, a second air chamber section 405b, and a microfluidic channel 406 for liquid solution to be delivered.

第1の被送液溶液注入区画401a及び第2の被送液溶液注入区画401bは、第2のPDMS基板400を半貫通する円形断面の穴である。第1の被送液溶液注入区画401a及び第2の被送液溶液注入区画401bは、ダイヤフラム300に積層する側が開口となっており、アクリル板500に接する側には第1の注入口403a及び第2の注入口403bがそれぞれ設けられる。   The first liquid-feeding solution injection section 401 a and the second liquid-feeding solution injection section 401 b are circular cross-sectional holes that half-penetrate the second PDMS substrate 400. The first liquid delivery solution injection section 401 a and the second liquid delivery solution injection section 401 b have an opening on the side laminated on the diaphragm 300, and the first injection port 403 a and the side in contact with the acrylic plate 500. A second inlet 403b is provided.

被送液溶液合流用微小流路402は、第1の被送液溶液用微小液絡路404a及び第2の被送液溶液用微小液絡路404bを介して、各々第1の被送液溶液注入区画401a及び第2の被送液溶液注入区画401bに接続する。   Each of the microfluidic channels 402 for confluence of the liquid to be fed is provided with the first liquid to be fed via the first microfluidic channel 404a for the liquid to be fed and second microfluidic channel 404b for the liquid to be fed. It connects to the solution injection section 401a and the second liquid solution injection section 401b.

第1の気室区画405a及び第2の気室区画405bは、第2のPDMS基板400を半貫通する円形断面の穴であり、ダイヤフラム300に積層する側が開口となっている。第1の気室区画405a及び第2の気室区画405bは、被送液溶液合流用微小流路402の両端部にそれぞれ接続する。   The first air chamber section 405a and the second air chamber section 405b are holes having a circular cross section that half-penetrates the second PDMS substrate 400, and the side stacked on the diaphragm 300 is an opening. The first air chamber compartment 405a and the second air chamber compartment 405b are respectively connected to both end portions of the microfluidic channel 402 for liquid solution merge.

被送液溶液用微小流路406の一端は、被送液溶液合流用微小流路402の、第1の被送液溶液用微小液絡路404a及び第2の被送液溶液用微小液絡路404bの接続箇所の中間に接続し、他端は自動溶液注入デバイス3の側面で終端をなす。   One end of the microfluidic channel 406 for the liquid solution to be fed is connected to the first microfluidic channel 404a for the liquid solution to be fed and the second microfluidic channel for the liquid solution to be fed. It connects to the middle of the connection part of the path 404b, and the other end terminates on the side surface of the automatic solution injection device 3.

図7(b)は、本実施形態の第1のPDMS基板200の正面図である。   FIG. 7B is a front view of the first PDMS substrate 200 of the present embodiment.

本実施形態の第1のPDMS基板200は、第1の過酸化水素溶液注入区画201aと、第2の過酸化水素溶液注入区画201bと、過酸化水素溶液送液用微小流路204と、過酸化水素溶液供給区画205と、第1の過酸化水素溶液送液用微小液絡路206aと、第2の過酸化水素溶液送液用微小液絡路206bと、過酸化水素溶液用微小液絡路206cと、空気抜き用流路207a、207bと、第3の過酸化水素溶液注入区画208aと、第4の過酸化水素溶液注入区画208bと、空気抜き用流路209a、209bとを含んで構成される。   The first PDMS substrate 200 of the present embodiment includes a first hydrogen peroxide solution injection section 201a, a second hydrogen peroxide solution injection section 201b, a hydrogen peroxide solution feeding microchannel 204, and an excess amount. Hydrogen oxide solution supply section 205, first hydrogen peroxide solution feeding microfluid 206a, second hydrogen peroxide solution feeding microfluid 206b, and hydrogen peroxide solution feeding microfluid It includes a passage 206c, air vent channels 207a and 207b, a third hydrogen peroxide solution injection section 208a, a fourth hydrogen peroxide solution injection section 208b, and air vent channels 209a and 209b. The

第1の過酸化水素溶液注入区画201a及び第2の過酸化水素溶液注入区画201bは、第1のPDMS基板200を貫通する円形断面の穴である。第1の過酸化水素溶液注入区画201aと、第2の過酸化水素溶液注入区画201b内のダイヤフラム300側には、他の実施形態と同様に二酸化マンガン粒子が触媒固定ゲル(不図示)により固定されている。   The first hydrogen peroxide solution injection section 201 a and the second hydrogen peroxide solution injection section 201 b are circular cross-sectional holes that penetrate the first PDMS substrate 200. Similar to the other embodiments, manganese dioxide particles are fixed by a catalyst fixing gel (not shown) on the diaphragm 300 side in the first hydrogen peroxide solution injection section 201a and the second hydrogen peroxide solution injection section 201b. Has been.

過酸化水素溶液送液用微小流路204は、第1の過酸化水素溶液送液用微小液絡路206aと、第2の過酸化水素溶液送液用微小液絡路206bをそれぞれ介して、第1の過酸化水素溶液注入区画201a及び第2の過酸化水素溶液注入区画201bに接続する。   The hydrogen peroxide solution feeding microfluidic channel 204 passes through the first hydrogen peroxide solution feeding microfluidic channel 206a and the second hydrogen peroxide solution feeding microfluidic channel 206b, respectively. The first hydrogen peroxide solution injection section 201a and the second hydrogen peroxide solution injection section 201b are connected.

過酸化水素溶液供給区画205は、第1のPDMS基板200を貫通する円形断面の穴である。過酸化水素溶液供給区画205は、過酸化水素溶液用微小液絡路206cを介して、過酸化水素溶液送液用微小流路204の、第1の過酸化水素溶液送液用微小液絡路206a及び第2の過酸化水素溶液送液用微小液絡路206bの接続箇所の中間に接続する。   The hydrogen peroxide solution supply section 205 is a hole having a circular cross section that penetrates the first PDMS substrate 200. The hydrogen peroxide solution supply section 205 is connected to the first hydrogen peroxide solution feeding microfluidic channel 204 of the hydrogen peroxide solution feeding microfluidic channel 204 via the hydrogen peroxide solution feeding microfluidic channel 206c. It connects in the middle of the connection location of 206a and the 2nd minute liquid junction 206b for hydrogen peroxide solution liquid feeding.

第3の過酸化水素溶液注入区画208a及び第4の過酸化水素溶液注入区画208bは、第1のPDMS基板200を貫通する円形断面の穴である。第3の過酸化水素溶液注入区画208a及び第4の過酸化水素溶液注入区画208b内のダイヤフラム300側には、第1の過酸化水素溶液注入区画201a及び第2の過酸化水素溶液注入区画201bと同様に二酸化マンガン粒子が触媒固定ゲル(不図示)により固定されている。   The third hydrogen peroxide solution injection section 208 a and the fourth hydrogen peroxide solution injection section 208 b are circular cross-sectional holes that penetrate the first PDMS substrate 200. In the third hydrogen peroxide solution injection section 208a and the fourth hydrogen peroxide solution injection section 208b, on the diaphragm 300 side, the first hydrogen peroxide solution injection section 201a and the second hydrogen peroxide solution injection section 201b are provided. Similarly, manganese dioxide particles are fixed by a catalyst fixing gel (not shown).

また、第3の過酸化水素溶液注入区画208a及び第4の過酸化水素溶液注入区画208bは、過酸化水素溶液送液用微小流路204の両端部にそれぞれ接続する。   Further, the third hydrogen peroxide solution injection section 208a and the fourth hydrogen peroxide solution injection section 208b are connected to both ends of the hydrogen peroxide solution feeding microchannel 204, respectively.

空気抜き用流路207a、207b、209a、209bは、各過酸化水素溶液注入区画から外部へ連絡する空気抜き穴である。   The air vent flow paths 207a, 207b, 209a, and 209b are air vent holes communicating from the respective hydrogen peroxide solution injection sections to the outside.

本実施形態のダイヤフラム300は、第1のPDMS基板200と第2のPDMS基板400の間に配置され、特に、第1の被送液溶液注入区画401a及び第1の過酸化水素溶液注入区画201aとの間、第2の被送液溶液注入区画401b及び第2の過酸化水素溶液注入区画201bとの間、第1の気室区画405a及び第3の過酸化水素溶液注入区画208aとの間、および、第2の気室区画405b及び第4の過酸化水素溶液注入区画208bとの間に配置され、両区画を区分する。   The diaphragm 300 of this embodiment is disposed between the first PDMS substrate 200 and the second PDMS substrate 400, and in particular, the first liquid solution injection section 401a and the first hydrogen peroxide solution injection section 201a. Between the second liquid solution injection section 401b and the second hydrogen peroxide solution injection section 201b, between the first air chamber section 405a and the third hydrogen peroxide solution injection section 208a. , And between the second air chamber compartment 405b and the fourth hydrogen peroxide solution injection compartment 208b, and separates both compartments.

ここで、図6のA部に示す箇所をマイクロポンプ部Aとし、A部に示す箇所をマイクロポンプ部Aとし、B部に示す箇所を補助マイクロポンプ部Bとし、B部に示す箇所を補助マイクロポンプ部Bとする。 Here, the micropump unit A 1 the portions indicated in A part of FIG. 6, the portions indicated in 2 parts A and micropump unit A 2, the portions shown in part B and the auxiliary micropump unit B 1, B The part shown in part 2 is referred to as auxiliary micropump part B2.

次に、本実施形態のマイクロポンプ部の動作について説明をする。図8は、本発明の第3実施形態の自動溶液注入デバイスの実験結果を示す図である。   Next, the operation of the micropump unit of this embodiment will be described. FIG. 8 is a diagram showing experimental results of the automatic solution injection device according to the third embodiment of the present invention.

まず、過酸化水素溶液を過酸化水素溶液供給区画205に注入する。すると、過酸化水素溶液は、過酸化水素溶液送液用微小流路204を介して、第1の過酸化水素溶液注入区画201a及び第2の過酸化水素溶液注入区画201bに流入する(図8(a))。   First, the hydrogen peroxide solution is injected into the hydrogen peroxide solution supply section 205. Then, the hydrogen peroxide solution flows into the first hydrogen peroxide solution injection section 201a and the second hydrogen peroxide solution injection section 201b via the hydrogen peroxide solution feeding microchannel 204 (FIG. 8). (A)).

マイクロポンプA及びAが動作し、各マイクロポンプ内の被送液溶液が被送液溶液合流用微小流路402へ押し出される(図8(b))。 Micropump A 1 and A 2 are operated, the liquid feed solution in each micropump is pushed into the liquid feed solution for confluence fine channel 402 (Figure 8 (b)).

次に、過酸化水素溶液は、過酸化水素溶液送液用微小流路204を介して、第3の過酸化水素溶液注入区画208a及び第4の過酸化水素溶液注入区画208bに流入する。すると、補助マイクロポンプB及びBが動作し、被送液溶液合流用微小流路402へ補助マイクロポンプB及びB内の空気を押し出す(図8(c))。 Next, the hydrogen peroxide solution flows into the third hydrogen peroxide solution injection section 208a and the fourth hydrogen peroxide solution injection section 208b via the hydrogen peroxide solution feeding microchannel 204. Then, the auxiliary micropumps B 1 and B 2 operate to push out the air in the auxiliary micro pumps B 1 and B 2 to the microfluidic channel 402 for liquid solution merger (FIG. 8C).

被送液溶液合流用微小流路402へ押し出された被送液溶液は、補助マイクロポンプB及びB内から押し出された空気により、両端から加圧され、被送液溶液合流用微小流路402の中央部で2液の混合が促進され、混合液は、被送液溶液用微小流路406を介してデバイスの外部に吐出される(図8(d))。 The liquid delivery solution pushed out to the liquid feed solution confluence microchannel 402 is pressurized from both ends by the air pushed out from the auxiliary micropumps B 1 and B 2 , and the liquid feed solution confluence microflow The mixing of the two liquids is promoted at the central portion of the path 402, and the mixed liquid is discharged to the outside of the device through the microfluidic channel 406 for liquid to be fed (FIG. 8D).

なお、上記各実施形態では、ガスを発生させる手段として、過酸化水素と二酸化マンガンを例としてあげたが、これに限られず、他の液体及び触媒の組み合わせも可能である。   In each of the above embodiments, hydrogen peroxide and manganese dioxide are taken as examples of means for generating gas, but the present invention is not limited to this, and other liquids and catalyst combinations are possible.

例えば、カタラーゼによる酵素反応では過酸化水素が基質となって酸素が発生する。したがって、二酸化マンガンの代わりにこれをゲル中に固定すれば、同様の動作が実現できる。また、炭酸水素イオンを含む溶液からは、低pHで二酸化炭素が発生する。したがって、ゲル201中に二酸化マンガン粒子203を固定せず、ここに塩酸等の酸をしみ込ませておき、過酸化水素の代わりに炭酸水素ナトリウム溶液を流し込み、過酸化水素と二酸化マンガンを用いた時と同様の変化を起こすことができる。同様の変化はアンモニウムイオンを含む溶液のpHを塩基溶液により上昇させることにより起こすこともできる。   For example, in an enzymatic reaction using catalase, oxygen is generated using hydrogen peroxide as a substrate. Therefore, if this is fixed in the gel instead of manganese dioxide, the same operation can be realized. In addition, carbon dioxide is generated at a low pH from a solution containing hydrogen carbonate ions. Therefore, when the manganese dioxide particles 203 are not fixed in the gel 201, an acid such as hydrochloric acid is soaked therein, a sodium hydrogen carbonate solution is poured instead of hydrogen peroxide, and hydrogen peroxide and manganese dioxide are used. Can cause similar changes. A similar change can be caused by raising the pH of a solution containing ammonium ions with a base solution.

さらに、酸化還元酵素による酵素反応では、過酸化水素が生成する。例えば、グルコースは酵素グルコースオキシダーゼにより酸化され、この際過酸化水素が生成する。この化学反応式は次の通りである。   Further, hydrogen peroxide is generated in the enzyme reaction by oxidoreductase. For example, glucose is oxidized by the enzyme glucose oxidase, producing hydrogen peroxide. This chemical reaction formula is as follows.

グルコース + 酸素 → グルコノラクトン + 過酸化水素   Glucose + oxygen → gluconolactone + hydrogen peroxide

したがって、ゲル201中に二酸化マンガン粒子203の代わりに酵素を固定し、過酸化水素の代わりにグルコース溶液を流せば、過酸化水素と二酸化マンガンを用いた時と同様の変化を起こすことができる。   Therefore, if an enzyme is immobilized in the gel 201 instead of the manganese dioxide particles 203 and a glucose solution is allowed to flow instead of hydrogen peroxide, the same change as when hydrogen peroxide and manganese dioxide are used can be caused.

以上説明したように、本発明の各実施形態による自動溶液注入デバイスによれば、微小流路内を進行する過酸化水素溶液の到着のタイミングにより順次自動的にポンプが作動するため、外部に回路やプログラムを用意する必要がない。   As described above, according to the automatic solution injection device according to each embodiment of the present invention, the pump automatically operates in sequence according to the arrival timing of the hydrogen peroxide solution that travels in the micro flow path. There is no need to prepare programs.

1:自動溶液注入デバイス
100:ガラス基板
200:第1のPoly(dimethylsiloxane)(PDMS)基板
201:過酸化水素溶液注入区画
202:触媒固定ゲル
203:二酸化マンガン(触媒)粒子
204:過酸化水素溶液送液用微小流路
205:過酸化水素溶液供給区画
206:過酸化水素溶液送液用微小液絡路
207:空気抜き用流路
300:ダイヤフラム
400:第2のPDMS基板
401:被送液溶液注入区画
402:被送液溶液用微小流路
403:注入口
404:被送液溶液用微小液絡路
500:アクリル板
1: Automatic solution injection device 100: Glass substrate 200: First Poly (dimethylsiloxane) (PDMS) substrate 201: Hydrogen peroxide solution injection section 202: Catalyst fixing gel 203: Manganese dioxide (catalyst) particles 204: Hydrogen peroxide solution Liquid flow microchannel 205: Hydrogen peroxide solution supply section 206: Hydrogen peroxide solution liquid microfluid 207: Air vent channel 300: Diaphragm 400: Second PDMS substrate 401: Liquid solution injection Section 402: Micro flow channel for liquid solution 403: Injection port 404: Micro liquid interface 500 for liquid solution 500: Acrylic plate

Claims (6)

被送液溶液を収容する被送液溶液注入区画と、
前記被送液溶液注入区画の一面に備わるダイヤフラムと、
前記ダイヤフラムにほぼ接する位置に触媒物質が固定され、ガス発生溶液が導入されるガス発生溶液注入区画と、
を備えるマイクロポンプ部を少なくとも1つ有し、
前記マイクロポンプ部は、
前記ガス発生溶液注入区画に導入された前記ガス発生溶液が前記触媒物質に接触することにより生ずる気体が、前記ダイヤフラムを介して前記被送液溶液注入区画内の前記被送液溶液を押し出し送液を行い、
前記ガス発生溶液注入区画は、ガス発生溶液送液用微小流路を介して前記ガス発生溶液が導入されることを特徴とする自動溶液注入デバイス。
A liquid feeding solution injection section for containing the liquid feeding solution;
A diaphragm provided on one surface of the liquid solution injection section;
A gas generating solution injection section in which a catalytic material is fixed at a position substantially in contact with the diaphragm and a gas generating solution is introduced;
Having at least one micropump unit comprising:
The micropump part is
The gas generated when the gas generating solution introduced into the gas generating solution injection section comes into contact with the catalyst material pushes out the liquid supply solution in the liquid supply solution injection section through the diaphragm. the stomach line,
The automatic solution injection device, wherein the gas generation solution injection section is introduced with the gas generation solution via a gas generation solution feeding microchannel .
空気を収容する気室区画と、
前記気室区画の一面に備わるダイヤフラムと、
前記ダイヤフラムにほぼ接する位置に触媒物質が固定され、ガス発生溶液が導入されるガス発生溶液注入区画と、
を備える補助マイクロポンプ部を少なくとも1つさらに有し、
前記補助マイクロポンプ部は、
前記ガス発生溶液注入区画に導入された前記ガス発生溶液が前記触媒物質に接触することにより生ずる気体が、前記ダイヤフラムを介して前記気室区画内の前記空気を押し出すことにより、前記被送液溶液に圧力を与えることを特徴とする請求項1に記載の自動溶液注入デバイス。
An air compartment containing air;
A diaphragm provided on one side of the air compartment;
A gas generating solution injection section in which a catalytic material is fixed at a position substantially in contact with the diaphragm and a gas generating solution is introduced;
Further comprising at least one auxiliary micropump unit comprising:
The auxiliary micropump part is
The liquid generated by the gas generated when the gas generating solution introduced into the gas generating solution injection section comes into contact with the catalyst material pushes out the air in the air chamber section through the diaphragm. The automatic solution injection device according to claim 1, wherein pressure is applied to the device.
前記マイクロポンプ部の動作タイミングは、前記ガス発生溶液送液用微小流路の、長さ、流路形状、ぬれ性、材質、又は、断面寸法のうちの少なくとも1つに従って設定されることを特徴とする請求項に記載の自動溶液注入デバイス。 The operation timing of the micropump unit is set according to at least one of a length, a channel shape, wettability, a material, or a cross-sectional dimension of the microchannel for feeding a gas generating solution. The automatic solution injection device according to claim 1 . 前記触媒物質と前記ガス発生溶液とは、
二酸化マンガン及び過酸化水素溶液、酵素カタラーゼ及び過酸化水素溶液、酸及び炭酸水素イオンを含む溶液、塩基溶液及びアンモニウムイオンを含む溶液、酸化還元酵素及びその基質を含む溶液から選ばれた1つの組み合わせであることを特徴とする請求項1からのいずれかに記載の自動溶液注入デバイス。
The catalyst material and the gas generating solution are:
One combination selected from manganese dioxide and hydrogen peroxide solution, enzyme catalase and hydrogen peroxide solution, solution containing acid and bicarbonate ions, solution containing base solution and ammonium ion, solution containing oxidoreductase and its substrate automatic solution injection device according to any of claims 1 to 3, characterized in that.
前記触媒物質は、触媒固定ゲルにより前記ガス発生溶液注入区画内に固定されることを特徴とする請求項1からのいずれかに記載の自動溶液注入デバイス。 The catalytic material, automatic solution injection device according to any one of claims 1 to 4, characterized in that the fixed catalyst gel is fixed to the gas generator solution injection compartment. 請求項1からに記載の自動溶液注入デバイスの制御方法であって、
前記ガス発生溶液に界面活性剤を添加することにより送液速度を変化させて、送液のタイミングを調整することを特徴とする自動溶液注入デバイスの制御方法。
A control method for an automatic solution injection device according to claims 1 to 5,
A method for controlling an automatic solution injection device, wherein a liquid feeding speed is changed by adding a surfactant to the gas generating solution to adjust a liquid feeding timing.
JP2009079027A 2009-03-27 2009-03-27 Automatic solution injection device Expired - Fee Related JP5403593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079027A JP5403593B2 (en) 2009-03-27 2009-03-27 Automatic solution injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079027A JP5403593B2 (en) 2009-03-27 2009-03-27 Automatic solution injection device

Publications (2)

Publication Number Publication Date
JP2010230529A JP2010230529A (en) 2010-10-14
JP5403593B2 true JP5403593B2 (en) 2014-01-29

Family

ID=43046505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079027A Expired - Fee Related JP5403593B2 (en) 2009-03-27 2009-03-27 Automatic solution injection device

Country Status (1)

Country Link
JP (1) JP5403593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506907B2 (en) * 2014-02-10 2019-04-24 株式会社エンプラス Liquid handling device
CN115350735A (en) * 2022-08-17 2022-11-18 中国农业大学 Micropump, microfluidic chip, detection system and detection method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0858897A (en) * 1994-08-12 1996-03-05 Japan Storage Battery Co Ltd Fluid supply device
JP2001165939A (en) * 1999-12-10 2001-06-22 Asahi Kasei Corp Capillary analyzer
JP2004212326A (en) * 2003-01-08 2004-07-29 Matsushita Electric Ind Co Ltd Micropump and sample treatment chip, and sheet connector
JP4387123B2 (en) * 2003-05-27 2009-12-16 国立大学法人 東京医科歯科大学 Sensing pump and sensor system using the same.
JP2005261758A (en) * 2004-03-19 2005-09-29 Sekisui Chem Co Ltd Transfusion method and micro-total analysis system using the same
JP2005283173A (en) * 2004-03-26 2005-10-13 Mitsuteru Kimura Analyzing chip for micro-tas and analyzer using it
JP4351572B2 (en) * 2004-04-08 2009-10-28 積水化学工業株式会社 Micro total analysis system
JP2006023121A (en) * 2004-07-06 2006-01-26 Asahi Kasei Corp Liquid feeder
JP2006046605A (en) * 2004-08-06 2006-02-16 Canon Inc Fluid control device
JP4942135B2 (en) * 2005-06-20 2012-05-30 国立大学法人 筑波大学 Liquid feeding device
JP4843786B2 (en) * 2006-05-03 2011-12-21 国立大学法人横浜国立大学 Fluid transport mechanism and fluid transport method
JP4909130B2 (en) * 2007-03-07 2012-04-04 積水化学工業株式会社 Micropump device and microfluidic device
KR20080084049A (en) * 2007-03-14 2008-09-19 삼성전자주식회사 Pump unit and centrifugal force based microfluidic system with the same
JP4683066B2 (en) * 2008-04-14 2011-05-11 コニカミノルタホールディングス株式会社 Liquid mixing mechanism

Also Published As

Publication number Publication date
JP2010230529A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US7976286B2 (en) Method and apparatus for pumping liquids using directional growth and elimination bubbles
JP5027070B2 (en) Micro chamber
US8124026B2 (en) Lateral flow diagnostic devices with instrument controlled fluidics
CA2740222C (en) Electroosmotic pump with improved gas management
JP4593507B2 (en) Electroosmotic pump and liquid supply device
JPH0526170A (en) Fluid control device
JP2019528137A (en) Electroosmotic pump
CN101641157B (en) Capillary
JPWO2009008236A1 (en) Micro inspection chip liquid mixing method and inspection apparatus
JP5403593B2 (en) Automatic solution injection device
JP5150328B2 (en) Liquid supply cartridge for microfluidic devices
JP2020531267A (en) A device for mixing fluids in capillary driven fluid systems
JP6133298B2 (en) Fluid handling apparatus and fluid handling method
JP6665226B2 (en) Spacers for side-loaded EWOD devices
KR20040041767A (en) Device of Controlling Fluid using Surface Tension
JP2006348906A (en) Liquid feeder
US11583857B2 (en) Microfluidic device for processing a liquid
JP2006026791A (en) Micro-fluid chip
JP5973350B2 (en) Microchip
JP2006004785A (en) Liquid transportation method, liquid blending method, liquid transportation device, liquid blending device, and fuel cell device
JP2010025621A (en) Micro inspection chip, and liquid mixing sending method of micro inspection chip
JP5610258B2 (en) Liquid feeding device
Kojima et al. Programmed autonomous microfluidics using microvalves and micropumps
TWI327130B (en) Bubble-type micro-pump and indirect bubble-generating device thereof
JP2020054248A (en) Droplets generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees