JP5400435B2 - Operation method of dilution refrigerator and dilution refrigerator - Google Patents

Operation method of dilution refrigerator and dilution refrigerator Download PDF

Info

Publication number
JP5400435B2
JP5400435B2 JP2009058940A JP2009058940A JP5400435B2 JP 5400435 B2 JP5400435 B2 JP 5400435B2 JP 2009058940 A JP2009058940 A JP 2009058940A JP 2009058940 A JP2009058940 A JP 2009058940A JP 5400435 B2 JP5400435 B2 JP 5400435B2
Authority
JP
Japan
Prior art keywords
cooling
path
heat exchanger
sub
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009058940A
Other languages
Japanese (ja)
Other versions
JP2010210195A (en
Inventor
茂 吉田
良浩 山中
琢司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009058940A priority Critical patent/JP5400435B2/en
Publication of JP2010210195A publication Critical patent/JP2010210195A/en
Application granted granted Critical
Publication of JP5400435B2 publication Critical patent/JP5400435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、液体ヘリウム(He、He)を用いて1〜10−3Kの超低温を連続的に得るための希釈冷凍装置の運転方法、及び希釈冷凍装置に関するものである。尚、該希釈冷凍装置の主要部を構成する希釈冷凍機は4ヘリウム(He)の同位体である3ヘリウム(He)が液体4Heに溶け込む(希釈する)ときの溶解熱を冷凍能力として使用し100mk以下の低温を得ることが可能な冷凍機である。本明細書及び特許請求の範囲において、Heを3Heと、Heを4Heと記載する。 The present invention relates to a method for operating a dilution refrigeration apparatus and a dilution refrigeration apparatus for continuously obtaining ultra-low temperatures of 1 to 10 −3 K using liquid helium ( 3 He, 4 He). The dilution refrigerator constituting the main part of the dilution refrigeration apparatus uses the heat of dissolution when 3 helium ( 3 He), which is an isotope of 4 helium ( 4 He), is dissolved (diluted) in the liquid 4He as refrigeration capacity. It is a refrigerator that can be used and can obtain a low temperature of 100 mk or less. In the present specification and claims, 3 He is described as 3He and 4 He is described as 4He.

極低温技術に携わる者には良く知られているように、3He液相と4He液相の混合液は、0.8K(800mK)以下の極低温において、相対的に3Heが少ない3He希薄相と、相対的に3Heを多く含む3He濃厚相とに分離する。ここで、3He希薄相と3He濃厚相のそれぞれにおける3Heの含有率は、温度によって決定されるが、0.1K以下の温度では、3Heを6.4%含み残部が4Heからなる3He希薄相と、100%の3Heからなる3He濃厚相とに分離される。またここで、3He液相よりも4He液相の方が密度が大きいため、上述のように3He−4He混合液が3He希薄相と3He濃厚相とに2相分離した状態では、密度の大きい3He希薄相が下側に、密度の小さい3He濃厚相が上側に位置することになる。したがって例えば0.1K程度以下の極低温の室内(従来の一般的な希釈冷凍機における混合室内)では、6.4%3He−残部4Heの3He希薄相が下部に、100%3Heからなる3He濃厚相が上部に位置するように2相分離した平衡状態となる。そしてまたこのような平衡状態にある混合室内において、なんらかの手段により3He希薄相から3He分子を抜き去って、3He希薄相における3He濃度を低下させれば、両相は平衡状態に戻ろうとするため、3He濃厚相中の3Heが3He希薄相中へ溶け込む(3Heが4Heに希釈される)ことになる。   As is well known to those who are involved in cryogenic technology, the 3He liquid phase and 4He liquid phase mixture is a 3He dilute phase with relatively little 3He at a cryogenic temperature of 0.8K (800mK) or less. And 3He rich phase containing a relatively large amount of 3He. Here, the content of 3He in each of the 3He dilute phase and the 3He rich phase is determined by the temperature. However, at a temperature of 0.1 K or less, the 3He dilute phase comprising 6.4% of 3He and the balance being 4He To a 3He rich phase consisting of 100% 3He. In addition, since the density of the 4He liquid phase is larger than that of the 3He liquid phase, the 3He-4He mixed liquid has a high density in the state where the 3He-4He mixed liquid is separated into the 3He dilute phase and the 3He rich phase as described above. The lean phase is located on the lower side, and the 3He rich phase having a lower density is located on the upper side. Therefore, for example, in an extremely low temperature room of about 0.1 K or less (mixing room in a conventional general dilution refrigerator), a 3He dilute phase of 6.4% 3He-remainder 4He is at the bottom, and 3He rich consisting of 100% 3He. The equilibrium state is obtained by separating the two phases so that the phase is located at the top. Further, in the mixing chamber in such an equilibrium state, if 3He molecules are extracted from the 3He diluted phase by any means and the 3He concentration in the 3He diluted phase is decreased, both phases attempt to return to the equilibrium state. 3He in the 3He rich phase will dissolve into the 3He dilute phase (3He is diluted to 4He).

ここで、同一温度での各相中の3He分子のエントロピーを比較すれば、濃厚相中の3He分子のエントロピーは希薄相中の3He分子のエントロピーより小さいため、断熱状態であれば前述のように2相分離した混合室内において3Heが濃厚相中から希薄相中へ希釈されることにより吸熱が生じることになる。このような吸熱を利用した冷凍機が希釈冷凍機と称されるものであり、1〜10−3K程度の超低温を得ることが可能となる。 Here, if the entropy of 3He molecules in each phase at the same temperature is compared, the entropy of 3He molecules in the dense phase is smaller than the entropy of 3He molecules in the dilute phase. In the mixing chamber where the two phases are separated, 3He is diluted from the rich phase to the dilute phase, thereby generating endotherm. A refrigerator using such endotherm is called a dilution refrigerator, and an ultra-low temperature of about 1 to 10 −3 K can be obtained.

希釈冷凍機の原理ついては、非特許文献1、非特許文献2などにおいて説明されているが、その原理的な構成を図3に示す。
図3において、第1の真空ポンプ101Aは3Heと4Heの混合ガスを強制循環させるためのものであり、この第1の真空ポンプ101Aから送り出された300K程度の温度の3Heと4Heの混合ガスは、第2の真空ポンプ101Bにより液体4Heを排気減圧して1.3K程度に保った1Kポット102に熱的に接触する凝縮器(コンデンサ)103において液化し、さらにインピーダンス104を介して分留器105内の熱交換器106に送られる。この分留器105は、後述するように3Heと4Heとの飽和蒸気圧の差を利用して4He−3Heの混合液中から3Heを選択的に排出させるためのものであるが、凝縮器103から送られて来た3Heと4Heの混合ガスはこの分留器105に熱接触する熱交換器106において熱交換されて、0.5〜0.7K程度まで冷却される。さらにその3Heと4Heの混合ガスは、インピーダンス107を経て熱交換器108において100mK程度まで冷却され、混合室109に送り込まれる。混合室109では、前述のような100%3Heの濃厚相と、3Heが4Heに溶け込んだ4He−6.4%3Heの希薄相とに2相分離しており、密度差により下層が希薄相(4He−6.4%3He)、上層が濃厚相(3He相)となる。そして濃厚相に送り込まれた3Heが希薄相に溶け込む際に、既に述べたように熱吸収が生じ、50mK以下の超低温に冷却される。すなわちこの混合室109が冷凍機としてのコールドヘッドとなるから、この部分に冷却対象物(試料)を保持しておけば、その試料を50mK以下に冷却することができる。
The principle of the dilution refrigerator is described in Non-Patent Document 1, Non-Patent Document 2, and the like, and its basic configuration is shown in FIG.
In FIG. 3, a first vacuum pump 101A is for forcibly circulating a mixed gas of 3He and 4He, and a mixed gas of 3He and 4He having a temperature of about 300 K sent from the first vacuum pump 101A is The liquid 4He is evacuated and decompressed by the second vacuum pump 101B and liquefied in the condenser (condenser) 103 that is in thermal contact with the 1K pot 102 maintained at about 1.3K, and further, the fractionator through the impedance 104 It is sent to the heat exchanger 106 in 105. The fractionator 105 is of the order to selectively discharge the 3He from a mixture of 4He-3He by utilizing the difference in the saturated vapor pressure of 3He and 4He As described later, the condenser The mixed gas of 3He and 4He sent from 103 is heat-exchanged in the heat exchanger 106 in thermal contact with the fractionator 105 and cooled to about 0.5 to 0.7K. Further, the mixed gas of 3He and 4He is cooled to about 100 mK in the heat exchanger 108 through the impedance 107 and sent into the mixing chamber 109. In the mixing chamber 109, the two-phase separation is performed into a rich phase of 100% 3He as described above and a diluted phase of 4He-6.4% 3He in which 3He is dissolved in 4He. 4He-6.4% 3He), and the upper layer is a thick phase (3He phase). And when 3He sent into the rich phase melts into the dilute phase, heat absorption occurs as described above, and it is cooled to an ultra-low temperature of 50 mK or less. That is, since the mixing chamber 109 serves as a cold head as a refrigerator, if the object to be cooled (sample) is held in this portion, the sample can be cooled to 50 mK or less.

混合室109の希薄相における3He濃度は6.4%を保ち、一方前記分留器105内の4He−3He混合液中からは4Heと3Heとの飽和蒸気圧の差によって3Heのみがガス化して排出されて行くから、分留器105内の3He濃度は0.5〜0.7Kで1%程度となり、そのため混合室109の希薄相と分留器105内の混合液とで3Heの濃度差が生じ、そのため両者間の濃度勾配によって混合室109内の希薄相中から3Heが分留器105側へ引込まれ、それに伴なって混合室109においては100%3Heの濃厚相から希薄相への3Heの溶け込みが連続的に生じることになる。そして混合室109から3Heと4Heの混合液が分留器105へ引込まれる間においてその3Heと4Heの混合液は熱交換器108を通過し、インピーダンス107を経て混合室109に送られる前述の3Heと4Heの混合ガスを冷却する。 The 3He concentration in the dilute phase of the mixing chamber 109 is maintained at 6.4%, while only 3He is gasified from the 4He-3He mixed solution in the fractionator 105 due to the difference in saturated vapor pressure between 4He and 3He. Since it is discharged, the concentration of 3He in the fractionator 105 is about 1% at 0.5 to 0.7K. Therefore, the difference in concentration of 3He between the diluted phase in the mixing chamber 109 and the mixture in the fractionator 105 Therefore, 3He is drawn into the fractionator 105 side from the dilute phase in the mixing chamber 109 due to the concentration gradient between the two, and in the mixing chamber 109, the rich phase of 100% 3He changes from the dilute phase to the dilute phase. The penetration of 3He occurs continuously. While the mixed liquid of 3He and 4He is drawn into the fractionator 105 from the mixing chamber 109, the mixed liquid of 3He and 4He passes through the heat exchanger 108 and is sent to the mixing chamber 109 through the impedance 107. The mixed gas of 3He and 4He is cooled.

分留器105においては、既に述べたように飽和蒸気圧の差によって4He−3He混合液中から3Heのみが気化し、前述の第1の真空ポンプ101Aによって排気される。第1の真空ポンプ101Aに吸引された3Heは、再び凝縮器103へ送られて同様な過程を繰返す。
以上のようにして、希釈冷凍機では、50mK以下の超低温を得ることができる。
In the fractionator 105, as described above, only 3He is vaporized from the 4He-3He mixed solution due to the difference in saturated vapor pressure, and is exhausted by the first vacuum pump 101A. The 3He sucked by the first vacuum pump 101A is sent again to the condenser 103 and the same process is repeated.
As described above, in the dilution refrigerator, an ultra-low temperature of 50 mK or less can be obtained.

ところで図3に原理的に示した希釈冷凍機では、1Kポット102内の液体ヘリウムは徐々に消費されてその量が減ることになり随時液体ヘリウムの補給を行なう必要があるので、長時間連続して運転することが困難であった。   By the way, in the dilution refrigerator shown in principle in FIG. 3, the liquid helium in the 1K pot 102 is gradually consumed and the amount thereof decreases, and it is necessary to replenish liquid helium as needed. It was difficult to drive.

そこで、例えば特許文献1に示しているように前述のような液体ヘリウムを用いた1Kポットに代え、GM冷凍機(ギフォード−マクマホン冷凍機)で代表される小型機械式極低温冷凍機を用いて凝縮器を冷却するように構成した希釈冷凍機を本発明者が提案している。   Therefore, for example, as shown in Patent Document 1, a small mechanical cryogenic refrigerator represented by a GM refrigerator (Gifford-McMahon refrigerator) is used instead of the 1K pot using liquid helium as described above. The inventor has proposed a dilution refrigerator configured to cool the condenser.

具体的には、小型機械式冷凍機の冷却ヘッドから延長された良熱伝導材料からなる伝熱ブロックに熱的に接触した主熱交換器において、真空ポンプから送り出された3Heガスが所定の低温に冷却され、さらにJT膨張器を通過して凝縮液化され、その液化された液体3Heが熱交換器を通って混合室に送り込まれるように構成したものである。   Specifically, in a main heat exchanger that is in thermal contact with a heat transfer block made of a good heat conductive material extended from a cooling head of a small mechanical refrigerator, 3He gas sent from a vacuum pump is at a predetermined low temperature. The liquid 3He is condensed and liquefied by passing through a JT expander, and the liquefied liquid 3He is sent to the mixing chamber through the heat exchanger.

このような特許文献1において提案している希釈冷凍機では、GM冷凍機などの小型機械式冷凍機を用いて数K程度まで3Heガスを冷却し、さらに断熱膨張により凝縮温度以下まで冷却して液化させており、3Heの凝縮のための予冷用冷媒として液体ヘリウムを用いる必要がないので、長時間の連続運転が可能となった。しかしながら、機械的冷凍機を備えている為、小型化には制約があった。   In the dilution refrigerator proposed in Patent Document 1, 3He gas is cooled to about several K using a small mechanical refrigerator such as a GM refrigerator, and further cooled to below the condensation temperature by adiabatic expansion. Since it is liquefied and it is not necessary to use liquid helium as a precooling refrigerant for 3He condensation, continuous operation for a long time is possible. However, since the mechanical refrigerator is provided, there is a restriction on downsizing.

さらに特許文献1に示される希釈冷凍機の場合、機械式冷凍機による振動の問題を逃れ得ないという、根本的な問題があった。すなわちGM冷凍機で代表される機械式冷凍機は、機械的に圧縮−膨張させる行程を周期的に繰返すところから、必然的に振動が発生し、この振動が希釈冷凍機本体の全体に伝達されるため、希釈冷凍機を用いた各種分析機器において分析精度が損なわれてしまうおそれがあった。又、騒音源である機械式冷凍機、真空ポンプなどを防音措置の施された別室に設置するなどの騒音対策が要求されていた。   Furthermore, in the case of the dilution refrigerator shown in Patent Document 1, there has been a fundamental problem that the problem of vibration caused by the mechanical refrigerator cannot be avoided. In other words, mechanical refrigerators represented by GM refrigerators inevitably generate vibrations because the mechanical compression-expansion process is periodically repeated, and this vibrations are transmitted to the entire dilution refrigerator main body. For this reason, there is a possibility that analysis accuracy may be impaired in various analytical instruments using a dilution refrigerator. In addition, noise countermeasures such as installing a mechanical refrigerator, a vacuum pump, etc., which are noise sources, in a separate room where soundproofing measures have been taken have been required.

そこで、本発明者は特許文献2に示すように、小型機械式冷凍機を使用して希釈冷凍機の本体部分から構造的に分離した希釈冷凍機を提案した。すなわち、機械式冷凍機の振動が希釈冷凍機本体に直接伝達されないようにするとともに、希釈冷凍機の本体部分の小型化を図って、希釈冷凍機の取扱い性と運搬性を向上させ、更に機械式冷凍機で発生した冷熱を希釈冷凍機の本体部分へ伝えるための予冷用冷媒を圧送循環させるようにした。   Therefore, as shown in Patent Document 2, the present inventor has proposed a dilution refrigerator that is structurally separated from the main body of the dilution refrigerator using a small mechanical refrigerator. That is, the vibration of the mechanical refrigerator is not directly transmitted to the main body of the dilution refrigerator, the main body of the dilution refrigerator is reduced in size, and the handling and transportability of the dilution refrigerator are improved. The precooling refrigerant for transmitting the cold heat generated in the refrigerator to the main body of the dilution refrigerator is pumped and circulated.

特許文献2に開示された希釈冷凍機の具体例を図4に示す。図4において、本発明の希釈冷凍機と共通する要素については同一の符号を付し、その説明は省略する。
第1の真空ポンプ115により送り出された3Heを凝縮器114において冷却した後、インピーダンス18で凝縮させ、第1の熱交換器113において更に冷却して、混合室13の3He濃厚相中に導くようにした希釈冷凍機において、凝縮器114、インピーダンス18、第1の熱交換器113、混合室13及び分留器19を断熱容器112内に収容して、これらを全体として一体化された希釈冷凍機本体111とする。一方、第1の真空ポンプ115、オイルトラップ116及び液体窒素トラップ117を希釈冷凍機本体111の断熱容器112に対して離隔させて配設する。さらに第1の真空ポンプ115とは別の第2の真空ポンプ125と機械式小型極低温冷凍機123とを備えた予冷用冷却装置121を、希釈冷凍機本体111の断熱容器112から離隔させてその断熱容器とは別体に設ける。予冷用冷却装置121において、予冷用冷媒を機械式小型低温冷凍機123により冷却するとともに、その予冷用冷媒を第2の真空ポンプ125により循環圧送させて、希釈冷凍機本体111内の凝縮器114に導き、その凝縮器において予冷用冷媒の冷熱によって第1の真空ポンプ115により送り出された3Heを冷却するように構成し、かつ予冷用冷却装置121内から希釈冷凍機本体111内へ予冷用冷媒を導きかつ希釈冷凍機本体111内から予冷用冷却装置121内へ予冷用冷媒を戻すための管路を、可撓性を有する管体によって構成している。
A specific example of the dilution refrigerator disclosed in Patent Document 2 is shown in FIG. In FIG. 4, elements common to the dilution refrigerator of the present invention are denoted by the same reference numerals and description thereof is omitted.
The 3He sent out by the first vacuum pump 115 is cooled in the condenser 114 and then condensed at the impedance 18 and further cooled in the first heat exchanger 113 so as to be led into the 3He rich phase of the mixing chamber 13. In the diluted refrigerator, the condenser 114, the impedance 18, the first heat exchanger 113, the mixing chamber 13 and the fractionator 19 are accommodated in the heat insulating container 112, and these are integrated as a whole. The machine body 111 is assumed. On the other hand, the first vacuum pump 115, the oil trap 116 and the liquid nitrogen trap 117 are arranged separately from the heat insulating container 112 of the dilution refrigerator main body 111. Further, the precooling cooling device 121 including the second vacuum pump 125 different from the first vacuum pump 115 and the mechanical small cryogenic refrigerator 123 is separated from the heat insulating container 112 of the dilution refrigerator main body 111. Provided separately from the insulated container. In the precooling cooling device 121, the precooling refrigerant is cooled by the mechanical small-sized low-temperature refrigerator 123, and the precooling refrigerant is circulated and pumped by the second vacuum pump 125, so that the condenser 114 in the dilution refrigerator main body 111. In this condenser, 3He sent by the first vacuum pump 115 is cooled by the cold heat of the precooling refrigerant, and the precooling refrigerant is transferred from the precooling cooling device 121 into the dilution refrigerator main body 111. And the conduit for returning the precooling refrigerant from the dilution refrigerator main body 111 to the precooling cooling device 121 is constituted by a flexible tube.

特許文献2の希釈冷凍機において、いくつかの改良効果は認められるものの、スタート時において機械式冷凍機のみにより凝縮器114の予冷を行うとインピーダンス18を経て3Heの液化が始まる温度までに相当の長時間を要するという問題点があった。
又、機械式冷凍機で発生した振動や騒音が希釈冷凍機本体、特に冷却部(コールドヘッド)の混合室の部分に伝達されるのを防止するために、予冷用冷却装置と希釈冷凍機本体とを結ぶ予冷用の循環Heの流路が、真空断熱可撓性管体内に配設されているが、該可撓性管体内を真空断熱手段のみにより保冷する場合には該可撓性管体の長さをあまり長くすることはできず振動伝達や騒音が十分に防止できないので、更なる振動及び騒音の抑制対策が求められていた。
Although some improvement effects are recognized in the dilution refrigerator of Patent Document 2, if the condenser 114 is pre-cooled only by the mechanical refrigerator at the start, it is considerably equivalent to the temperature at which 3He liquefaction starts via the impedance 18. There was a problem that it took a long time.
In order to prevent vibration and noise generated in the mechanical refrigerator from being transmitted to the dilution refrigerator main body, particularly the mixing chamber portion of the cooling section (cold head), the precooling cooling device and the dilution refrigerator main body are prevented. The pre-cooling circulation He flow path is connected to the vacuum heat insulating flexible tube, but when the flexible tube is cooled only by the vacuum heat insulating means, the flexible tube Since the body length cannot be made too long and vibration transmission and noise cannot be sufficiently prevented, further measures for suppressing vibration and noise have been demanded.

尚、半導体表面検査や材料開発における微量元素分析には、X線分光分析計が頻繁に用いられており、このX線分光分析計のX線検出器には半導体検出器が搭載されているが、従来の半導体検出器では分光性能が理論的限界に近付いており、微量元素についてのこれ以上の高精度分析性能の向上は困難となりつつある。そこで近年、従来の半導体検出器よりも優れた分析性能を有する超伝導相転移端温度計(TES)型マイクロカロリーメーターを検出器とするX線分光分析計の開発が進められている。このTES型マイクロカロリーメーターが常に高性能で動作するためには、約100〜300mKの極低温で温度変動幅10μK程度の温度安定度を保持する必要があり、そこで冷却装置として希釈冷凍機が不可欠となる。
しかしながら、例えばTES型マイクロカロリーメーターを用いたX線分光分析計に、循環3Heの予冷に機械式冷凍機を配設した希釈冷凍機を用いた場合、実際には機械式冷凍機の発する振動のために、10μK程度の温度安定度が保持できないことや、電磁気的ノイズが発生すること等に起因して、高精度の分析が困難とならざるを得なかった。
又、TES型マイクロカロリーメーターと電子顕微鏡とを組み合わせたナノスケールでのX線分光分析では、振動とともに騒音が電子顕微鏡に悪影響を与えるため、機械式冷凍機本体の振動・騒音対策に加えて、他の振動及び騒音源である真空ポンプやコンプレッサーに対しても対策が要求されていた。
An X-ray spectrometer is frequently used for trace element analysis in semiconductor surface inspection and material development, and a semiconductor detector is mounted on the X-ray detector of the X-ray spectrometer. In the conventional semiconductor detector, the spectroscopic performance is approaching the theoretical limit, and it is becoming difficult to further improve the precision analysis performance of trace elements. Therefore, in recent years, the development of an X-ray spectroscopic analyzer using a superconducting phase transition thermometer (TES) type microcalorimeter having an analytical performance superior to that of a conventional semiconductor detector as a detector has been advanced. In order for this TES type microcalorimeter to always operate with high performance, it is necessary to maintain a temperature stability of about 10 μK with a temperature fluctuation range of about 100 to 300 mK, and a dilution refrigerator is indispensable as a cooling device. It becomes.
However, for example, when a dilution refrigerator in which a mechanical refrigerator is arranged for pre-cooling of circulation 3He is used in an X-ray spectrometer using a TES type micro calorimeter, the vibration of the mechanical refrigerator is actually generated. For this reason, high-accuracy analysis has been difficult due to the fact that the temperature stability of about 10 μK cannot be maintained and electromagnetic noise is generated.
In addition, in the nanoscale X-ray spectroscopic analysis that combines a TES type micro calorimeter and an electron microscope, since noise has an adverse effect on the electron microscope along with vibration, in addition to measures against vibration and noise in the mechanical refrigerator main body, Countermeasures were also required for vacuum pumps and compressors, which are other sources of vibration and noise.

特開2001−304709号公報JP 2001-304709 A 特開2007−333273号号公報JP 2007-333273 A

“3He−4He希釈冷凍機の原理と設計上の問題点I”、「日本物理学会誌」、第37巻第5号(1982)、p409−418“Principle and Design Problem I of 3He-4He Dilution Refrigerator I”, Journal of the Physical Society of Japan, Vol. 37, No. 5 (1982), p409-418 “3He−4He希釈冷凍機の原理と設計上の問題点II”、「日本物理学会誌」、第37巻第7号(1982)、p595−600"Principle of 3He-4He dilution refrigerator and design problems II", Journal of the Physical Society of Japan, Vol. 37, No. 7 (1982), p595-600

本発明は以上のような事情を背景としてなされたもので、基本的には長時間連続運転可能としながらも、希釈冷凍機の本体部分(極低温容器の部分)の小型化を図り、これにより取扱い性、運搬性の向上を図ると同時に、希釈冷凍装置のスタート時に要する時間を大幅に短縮し、又、冷却He循環ラインを真空断熱可撓性管体内に収納して、機械式冷凍機を用いた場合の振動及び騒音による問題を充分に回避し得るようにした、実用性にも優れる希釈冷凍装置を提供することを目的とする。   The present invention has been made in the background as described above. In principle, the main body part (cryogenic container part) of the dilution refrigerator can be miniaturized while enabling continuous operation for a long time. At the same time as improving handling and transportability, the time required for starting the dilution refrigeration system is greatly shortened. Also, the cooling He circulation line is housed in a vacuum insulated flexible tube, and a mechanical refrigerator is installed. An object of the present invention is to provide a dilution refrigeration apparatus excellent in practicality that can sufficiently avoid problems due to vibration and noise when used.

本発明は以上の事情を背景としてなされたもので、
希釈冷凍装置に3Heと4Heの混合ガス循環経路における往路の3Heと4Heの混合ガス、及び真空断熱管体内を冷却するための液体Heベッセル、並びに3Heと4Heの混合ガス循環経路における往路の3Heと4Heの混合ガス冷却用に2段式機械式冷凍機を使用することにより、
希釈冷凍装置の起動時に要する時間を大幅に短縮し、3Heと4Heの混合ガス循環圧送する第一コンプレッサー系と機械式冷凍機が配設された冷却He循環系を、希釈冷凍機系から隔離して配置し、且つ冷却He循環ラインを液体Heの補助冷却により従来よりも長くすることが可能な真空断熱可撓性管体内に収納することにより、振動源と騒音源である機械式冷凍機、真空ポンプ及びコンプレッサーを防音措置の施された別室に設置できたので、混合室近傍の振動や騒音を顕著に減少させることが可能となり上記課題が解決されることを見出し、本発明を完成させた。
すなわち、本発明は、下記[1]ないし[7]に記載の発明を要旨とする。
尚、下記[1]ないし[3]に記載の発明(それぞれ請求項1〜請求項3に相当する)では、希釈冷凍装置の運転方法を規定し、又、下記[4]ないし[7]に記載の発明(それぞれ請求項4〜請求項7に相当する)では、希釈冷凍装置について規定している。
The present invention was made against the background of the above circumstances,
In the dilution refrigeration apparatus, the 3He and 4He mixed gas in the mixed gas circulation path of 3He and 4He, the liquid He vessel for cooling the vacuum heat insulation pipe, and the 3He and 4He mixed gas circulation path in the forward path of 3He and 3He By using a two-stage mechanical refrigerator for cooling 4He mixed gas ,
The time required to start up the dilution refrigeration system is greatly shortened, and the cooling compressor circulation system in which the mechanical compressor and the first compressor system that circulates and pumps the mixed gas of 3He and 4He is isolated from the dilution refrigerator system. And a mechanical refrigerator that is a vibration source and a noise source by housing the cooling He circulation line in a vacuum heat insulating flexible tube that can be made longer than the conventional one by auxiliary cooling of the liquid He, Since the vacuum pump and the compressor could be installed in a separate room with soundproofing measures, it was found that vibrations and noise near the mixing chamber could be significantly reduced and the above problems were solved, and the present invention was completed. .
That is, the gist of the present invention is the invention described in [1] to [7] below.
In the inventions described in the following [1] to [3] (corresponding to claims 1 to 3 respectively), the operation method of the dilution refrigeration apparatus is defined, and the following [4] to [7] In the described invention (corresponding to claims 4 to 7 respectively), a dilution refrigeration apparatus is defined.

[1](i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、3Heと4Heの混合ガスが第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相(上相)と3He希薄相(下相)とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路と復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路1の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路1Aにより下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、又は下記補助冷却He(sub)経路1Bにより下記真空断熱可撓性管体内を補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第熱交換器、第熱交換器、第一流量調節弁(V1a)をこの順に経由して放出する分岐経路1a(以下、補助冷却He(sub)経路1と分岐経路1aを併せて「補助冷却He(sub)経路1A」という)、
及び、該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第二流量調節弁(V1b)を経由して放出する分岐経路1b(以下、補助冷却He(sub)経路1と分岐経路1bを併せて「補助冷却He(sub)経路1B」という)、が形成可能な補助冷却He(sub)経路からなる、補助冷却系(C1)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路1の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E1)の運転方法であって、
少なくとも下記(1)〜(5)の操作で希釈冷凍装置を起動し、その後の運転を継続することを特徴とする希釈冷凍装置(E1)の運転方法(以下、第1の態様ということがある)。
(1)2段式機械式冷凍機を起動すると共に、液体Heベッセルから補助冷却用He(sub)を補助冷却He(sub)経路1Aに流通させて、該補助冷却用He(sub)により真空断熱可撓性管体内、第熱交換器、及び第熱交換器を補助冷却し、その後第一流量調節弁(V1a)から放出させながら、2段式機械式冷凍機の第1段冷却部と第2段冷却部の温度が100K以下になるように冷却する。
(2)前記補助冷却He(sub)経路1Aによる冷却を継続するとともに、第二コンプレッサー系を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器の冷却用He(cool)温度が20K以下になるように冷却する。
(3)補助冷却He(sub)経路1Aの第一流量調節弁(V1a)を閉とし、補助冷却He(sub)経路1Bの第二流量調節弁(V1b)を開として、前記真空断熱可撓性管体出口の補助冷却用He(sub)温度が80K以下になるように該第二流量調節弁(V1b)により補助冷却He(sub)経路1Bにおける補助冷却用He(sub)の流量を調節する。
(4)第一コンプレッサー系を起動して、混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行う。
(5)前記(1)〜(4)の操作により混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)、その状態で運転を継続する。
[2](i)3Heガスと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相と3He希薄相とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路及び復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、
第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路2の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路2により下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセル、真空断熱可撓性管体内、第熱交換器、第熱交換器、真空断熱可撓性管体内、第三流量調節弁(V2)をこの順に経由して放出される補助冷却He(sub)経路2からなる、補助冷却系(C2)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路2の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E2)の運転方法であって、
少なくとも下記(1)〜(4)の操作手順で希釈冷凍装置を起動し、その後の運転を継続することを特徴とする希釈冷凍装置(E2)の運転方法(以下、第2の態様ということがある)。
(1)2段式機械式冷凍機を起動すると共に、液体Heベッセルから補助冷却用He(sub)を補助冷却He(sub)経路2に流通させて、該補助冷却用He(sub)により真空断熱可撓性管体内、第熱交換器、及び第熱交換器を補助冷却後、更に前記真空断熱可撓性管体内を補助冷却して第三流量調節弁(V2)から放出させながら、
2段式機械式冷凍機の第1段冷却部と第2段冷却部の温度が100K以下になるように冷却する。
(2)前記補助冷却用He(sub)による冷却を継続するとともに、第二コンプレッサー系を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器の冷却用He(cool)温度が20K以下になるように冷却する。
(3)第一コンプレッサー系を起動して、混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行うと共に、第二熱交換器の補助冷却用He(sub)温度が5K以下になるように第三流量調節弁(V2)により補助冷却He(sub)経路2における補助冷却用He(sub)の流量を調節する。
(4)前記(1)〜(3)の操作により混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)、その状態で運転を継続する。
[3]前記冷却He循環系(B)において、第二コンプレッサー系の出口側と2段式機械式冷凍機の第1段冷却部との間の冷却He循環経路に配設された入側熱交換器で該第二コンプレッサー系出口側の冷却用He(cool)が第二コンプレッサー系入口側の冷却用He(cool)との間で熱交換により冷却され、
2段式機械式冷凍機の第1段冷却部と第2段冷却部との間の該冷却He循環経路に配設された出側熱交換器で2段式機械式冷凍機の第1段冷却部で冷却され真空断熱可撓性管体、第熱交換器、真空断熱可撓性管体をこの順で経由した冷却用He(cool)が、2段式機械式冷凍機の第2段冷却部で冷却された後真空断熱可撓性管体、第二熱交換器、真空断熱可撓性管体をこの順で経由して入側熱交換器流入前の冷却用He(cool)と熱交換により冷却されることを特徴とする、前記[1]に記載の希釈冷凍装置(E1)又は前記[2]に記載の希釈冷凍装置(E2)の運転方法。
[1] (i) A mixed gas of 3He and 4He is supplied to the first heat exchanger from the outlet side of the first compressor system including a vacuum pump and a compressor on the discharge side for circulating and feeding a mixed gas of 3He and 4He . and of the second heat exchanger mixture sequentially with liquefied in impedance after being cooled in the mixed gas exchanges heat with the following backward 3He and 4He the 3He and 4He is, fractionator, and the third heat exchanger The inlet of the mixing chamber which is cooled by heat exchange with the 3He and 4He mixed liquid in the following return path in order and accommodated in a state separated into two phases of a 3He rich phase (upper phase) and a 3He dilute phase (lower phase) The route up to
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He through the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber.
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system composed of a compressor, and cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, the vacuum heat insulating flexible pipe body, the first heat exchanger, And the vacuum heat insulating flexible tube in this order, and further cooled by the second stage cooling section of the two-stage mechanical refrigerator or the first stage cooling section and then the second stage cooling section, and the vacuum A cooling He (cool) circulation path that passes through the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order to the inlet side of the second compressor system,
Cooling He circulation in which the cooling part of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 1 are arranged in the second vacuum heat insulating container System (B),
(Iii) The following auxiliary cooling He (sub) path 1A is used for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger, or the following auxiliary cooling He (sub) path. A liquid He vessel in which auxiliary cooling He (sub) is stored for auxiliary cooling of the following vacuum heat insulating flexible tube by 1B;
The auxiliary cooling He (sub) is divided into an auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum heat insulating flexible tube outlet side, and then branched to form a second heat exchanger and a first heat exchanger. The branch path 1a that discharges the first flow rate control valve (V1a) in this order (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1a are collectively referred to as “auxiliary cooling He (sub) path 1A”). ,
And, the auxiliary cooling He (sub) is connected to the auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum insulation flexible tube outlet side, and then branched to provide the second flow control valve (V1b). Auxiliary cooling He (sub) path capable of forming a branch path 1b that discharges via (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1b are collectively referred to as "auxiliary cooling He (sub) path 1B"). An auxiliary cooling system (C1), and (iv) a cooling He (cool) circulation path and an auxiliary cooling He (sub) path 1 disposed between the first vacuum heat insulating container and the second vacuum heat insulating container. Vacuum insulated flexible tube (D) in which a part of
An operation method of a dilution refrigeration apparatus (E1) including:
An operation method of the dilution refrigeration apparatus (E1) characterized by starting up the dilution refrigeration apparatus by at least the following operations (1) to (5) and continuing the subsequent operation (hereinafter sometimes referred to as a first aspect). ).
(1) The two-stage mechanical refrigerator is started, and auxiliary cooling He (sub) is circulated from the liquid He vessel to the auxiliary cooling He (sub) path 1A, and vacuum is generated by the auxiliary cooling He (sub). The first stage cooling of the two-stage mechanical refrigerator while auxiliary cooling the heat insulating flexible tube, the second heat exchanger, and the first heat exchanger, and then releasing from the first flow rate control valve (V1a). And cool so that the temperature of the second stage cooling unit is 100K or less.
(2) The cooling by the auxiliary cooling He (sub) path 1A is continued, the second compressor system is started, and the circulation of the cooling He (cool) to the cooling He (cool) circulation path is started. The heat exchanger is cooled so that the cooling He (cool) temperature is 20K or less.
(3) The first heat regulation valve (V1a) of the auxiliary cooling He (sub) path 1A is closed, and the second flow control valve (V1b) of the auxiliary cooling He (sub) path 1B is opened, so that the vacuum heat insulation flexibility The flow rate of the auxiliary cooling He (sub) in the auxiliary cooling He (sub) path 1B is adjusted by the second flow rate adjusting valve (V1b) so that the temperature of the auxiliary cooling He (sub) at the outlet of the sex tube becomes 80K or less. To do.
(4) Start the first compressor system and circulate 3He and 4He in the mixed gas circulation path of 3He and 4He until the amount of liquefied 4He and liquefied 3He that can be stably operated in the mixing chamber and fractionator is accumulated. And replenish.
(5) The amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber and the fractionator by the operations of (1) to (4), and a 3He concentrated phase and a 3He diluted phase are collected in the mixing chamber. When the two phases are separated (steady operation state), the operation is continued in that state.
[2] (i) A first heat exchanger and a second heat exchanger from the outlet side of the first compressor system comprising a vacuum pump and a compressor on the discharge side for circulatingly feeding a mixed gas of 3He gas and 4He . 3He the mixture sequentially with liquefied in impedance after being cooled in the mixed gas exchanges heat with the following backward 3He and 4He the 3He and 4He is, fractionator, and forward the following backward of the third heat exchanger The path to the entrance of the mixing chamber that is cooled by heat exchange with the 4He mixture and is separated into a 3He rich phase and a 3He dilute phase is separated into the forward path,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He by the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber,
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system comprising a compressor, and
It is cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, and the vacuum heat insulation flexible pipe body, the first heat exchanger, and the vacuum heat insulation flexible pipe body are The second stage cooling unit of the two-stage mechanical refrigerator or the first stage cooling unit and then the second stage cooling unit are further cooled in the order, and the second heat A cooling He (cool) circulation path that passes through the exchanger and the vacuum heat insulating flexible tube in this order and reaches the inlet side of the second compressor system,
Cooling He circulation in which the cooling unit of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 2 are arranged in the second vacuum heat insulating container System (B),
(Iii) Auxiliary cooling He (sub) for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger is stored by the following auxiliary cooling He (sub) path 2. Liquid He vessel,
The auxiliary cooling He (sub) is used as a liquid He vessel, a vacuum heat insulating flexible tube, a second heat exchanger, a first heat exchanger, a vacuum heat insulating flexible tube, a third flow rate adjusting valve (V2). Auxiliary cooling system (C2) consisting of auxiliary cooling He (sub) path 2 discharged in this order, and (iv) disposed between the first vacuum insulation container and the second vacuum insulation container, A vacuum heat insulating flexible tube (D) in which a part of the cooling He (cool) circulation path and the auxiliary cooling He (sub) path 2 are accommodated;
An operation method of a dilution refrigeration apparatus (E2) including:
An operation method of the dilution refrigeration apparatus (E2) characterized by starting the dilution refrigeration apparatus by at least the following operating procedures (1) to (4) and continuing the subsequent operation (hereinafter referred to as the second aspect). is there).
(1) The two-stage mechanical refrigerator is started, and auxiliary cooling He (sub) is circulated from the liquid He vessel to the auxiliary cooling He (sub) path 2, and vacuum is generated by the auxiliary cooling He (sub). After auxiliary cooling of the heat insulating flexible pipe, the second heat exchanger, and the first heat exchanger, the vacuum heat insulating flexible pipe is further auxiliary cooled and released from the third flow rate control valve (V2). ,
Cooling is performed so that the temperature of the first stage cooling unit and the second stage cooling unit of the two-stage mechanical refrigerator is 100K or less.
(2) Continue cooling with the auxiliary cooling He (sub), start the second compressor system, start circulation of the cooling He (cool) in the cooling He (cool) circulation path, and The exchanger is cooled so that the cooling He (cool) temperature is 20K or less.
(3) Start the first compressor system, and circulate 3He and 4He in the mixed gas circulation path of 3He and 4He until the amount of liquefied 4He and liquefied 3He that can be stably operated in the mixing chamber and fractionator is accumulated. And the auxiliary cooling He (sub) path 2 in the auxiliary cooling He (sub) path 2 by the third flow rate control valve (V2) so that the auxiliary cooling He (sub) temperature of the second heat exchanger becomes 5K or less. Adjust the flow rate of sub).
(4) The amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber and fractionator by the operations of (1) to (3), and a 3He concentrated phase and a 3He diluted phase are mixed in the mixing chamber. When the two phases are separated (steady operation state), the operation is continued in that state.
[3] In the cooling He circulation system (B), the input side heat disposed in the cooling He circulation path between the outlet side of the second compressor system and the first stage cooling section of the two-stage mechanical refrigerator. In the exchanger, the cooling He (cool) on the outlet side of the second compressor system is cooled by heat exchange with the cooling He (cool) on the inlet side of the second compressor system,
The first stage of the two-stage mechanical refrigerator is an outlet side heat exchanger disposed in the cooling He circulation path between the first-stage cooling section and the second-stage cooling section of the two-stage mechanical refrigerator. The cooling He (cool) cooled in the cooling section and passed through the vacuum heat insulating flexible tube, the first heat exchanger, and the vacuum heat insulating flexible tube in this order is the second stage of the two-stage mechanical refrigerator. After cooling in the stage cooling section, the vacuum heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube are passed in this order to cool He (cool) before flowing into the inlet heat exchanger The method of operating the dilution refrigeration apparatus (E1) according to [1] or the dilution refrigeration apparatus (E2) according to [2], wherein the dilution refrigeration apparatus (E1) according to [1] is cooled.

[4](i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相と3He希薄相とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路と復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路1の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路1Aにより下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、又は下記補助冷却He(sub)経路1Bにより下記真空断熱可撓性管体内を補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第熱交換器、第熱交換器、第一流量調節弁(V1a)をこの順に経由して放出する分岐経路1a(以下、補助冷却He(sub)経路1と分岐経路1aを併せて「補助冷却He(sub)経路1A」という)、
及び、該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第二流量調節弁(V1b)を経由して放出する分岐経路1b(以下、補助冷却He(sub)経路1と分岐経路1bを併せて「補助冷却He(sub)経路1B」という)、が形成可能な補助冷却He(sub)経路からなる、補助冷却系(C1)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路1の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E1)(以下、第3の態様ということがある)。
[5](i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相と3He希薄相とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路及び復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路2の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路2により下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセル、真空断熱可撓性管体内、第熱交換器、第熱交換器、真空断熱可撓性管体内、第三流量調節弁(V2)をこの順に経由して放出される補助冷却He(sub)経路2からなる、補助冷却系(C2)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路2の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E2)(以下、第4の態様ということがある)。
[6]前記冷却He循環系(B)において、第二コンプレッサー系の出口側と2段式機械式冷凍機の第1段冷却部との間の冷却He循環経路に、該第二コンプレッサー系出口側の冷却用He(cool)が第二コンプレッサー系入口側の冷却用He(cool)との間で熱交換により冷却される、入側熱交換器が配設され、
2段式機械式冷凍機の第1段冷却部と第2段冷却部との間の該冷却He循環経路に、2段式機械式冷凍機の第1段冷却部で冷却され真空断熱可撓性管体、第熱交換器、真空断熱可撓性管体をこの順で経由した冷却用He(cool)が、2段式機械式冷凍機の第2段冷却部で冷却された後真空断熱可撓性管体、第二熱交換器、真空断熱可撓性管体をこの順で経由して入側熱交換器流入前の冷却用He(cool)と熱交換により冷却される、出側熱交換器が配設されている、ことを特徴とする、前記[4]に記載の希釈冷凍装置(E1)又は前記[5]に記載の希釈冷凍装置(E2)。
[7]前記2段式機械式冷凍機がGM冷凍機あるいはパルス管式冷凍機であることを特徴とする、前記[4]に記載の希釈冷凍装置(E1)又は前記[5]に記載の希釈冷凍装置(E2)。
[4] (i) From the outlet side of the first compressor system comprising a vacuum pump and a compressor on the discharge side for circulatingly feeding a mixed gas of 3He and 4He , the first heat exchanger and the second heat exchanger mixture of 3He and 4He that is liquefied by the impedance after being cooled in the mixed gas exchanges heat with the following backward 3He and 4He in order of, fractionator, and following the return of the 3He in the order of the third heat exchanger The path to the entrance of the mixing chamber that is cooled by heat exchange with the 4He mixed liquid and accommodated in a two-phase separated state into a 3He rich phase and a 3He dilute phase is defined as the forward path,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He through the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber.
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system composed of a compressor, and cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, the vacuum heat insulating flexible pipe body, the first heat exchanger, And the vacuum heat insulating flexible tube in this order, and further cooled by the second stage cooling section of the two-stage mechanical refrigerator or the first stage cooling section and then the second stage cooling section, and the vacuum A cooling He (cool) circulation path that passes through the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order to the inlet side of the second compressor system,
Cooling He circulation in which the cooling part of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 1 are arranged in the second vacuum heat insulating container System (B),
(Iii) The following auxiliary cooling He (sub) path 1A is used for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger, or the following auxiliary cooling He (sub) path. A liquid He vessel in which auxiliary cooling He (sub) is stored for auxiliary cooling of the following vacuum heat insulating flexible tube by 1B;
The auxiliary cooling He (sub) is divided into an auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum heat insulating flexible tube outlet side, and then branched to form a second heat exchanger and a first heat exchanger. The branch path 1a that discharges the first flow rate control valve (V1a) in this order (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1a are collectively referred to as “auxiliary cooling He (sub) path 1A”). ,
And, the auxiliary cooling He (sub) is connected to the auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum insulation flexible tube outlet side, and then branched to provide the second flow control valve (V1b). Auxiliary cooling He (sub) path capable of forming a branch path 1b that discharges via (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1b are collectively referred to as "auxiliary cooling He (sub) path 1B"). An auxiliary cooling system (C1), and (iv) a cooling He (cool) circulation path and an auxiliary cooling He (sub) path 1 disposed between the first vacuum heat insulating container and the second vacuum heat insulating container. Vacuum insulated flexible tube (D) in which a part of
A dilution refrigeration apparatus (E1) including the following (hereinafter also referred to as a third aspect).
[5] (i) From the outlet side of the first compressor system consisting of a vacuum pump and a compressor on the discharge side for circulating and feeding a mixed gas of 3He and 4He , the first heat exchanger and the second heat exchanger mixture of 3He and 4He that is liquefied by the impedance after being cooled in the mixed gas exchanges heat with the following backward 3He and 4He in order of, fractionator, and following the return of the 3He in the order of the third heat exchanger The path to the entrance of the mixing chamber that is cooled by heat exchange with the 4He mixed liquid and accommodated in a two-phase separated state into a 3He rich phase and a 3He dilute phase is defined as the forward path,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He by the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber,
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system composed of a compressor, and cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, the vacuum heat insulating flexible pipe body, the first heat exchanger, And the vacuum heat insulating flexible tube in this order, and further cooled by the second stage cooling section of the two-stage mechanical refrigerator or the first stage cooling section and then the second stage cooling section, and the vacuum A cooling He (cool) circulation path that passes through the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order to the inlet side of the second compressor system,
Cooling He circulation in which the cooling unit of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 2 are arranged in the second vacuum heat insulating container System (B),
(Iii) Auxiliary cooling He (sub) for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger is stored by the following auxiliary cooling He (sub) path 2. Liquid He vessel,
The auxiliary cooling He (sub) is used as a liquid He vessel, a vacuum heat insulating flexible tube, a second heat exchanger, a first heat exchanger, a vacuum heat insulating flexible tube, a third flow rate adjusting valve (V2). Auxiliary cooling system (C2) consisting of auxiliary cooling He (sub) path 2 discharged in this order, and (iv) disposed between the first vacuum insulation container and the second vacuum insulation container, A vacuum heat insulating flexible tube (D) in which a part of the cooling He (cool) circulation path and the auxiliary cooling He (sub) path 2 are accommodated;
A dilution refrigeration apparatus (E2) including the following (hereinafter also referred to as a fourth aspect).
[6] In the cooling He circulation system (B), in the cooling He circulation path between the outlet side of the second compressor system and the first stage cooling unit of the two-stage mechanical refrigerator, the second compressor system outlet An inlet heat exchanger is provided in which the cooling He (cool) on the side is cooled by heat exchange with the cooling He (cool) on the inlet side of the second compressor system,
The cooling He circulation path between the first stage cooling unit and the second stage cooling unit of the two-stage mechanical refrigerator is cooled by the first stage cooling unit of the two-stage mechanical refrigerator and vacuum insulated and flexible After cooling He (cool) for cooling that goes through the porous tube, the first heat exchanger, and the vacuum heat insulation flexible tube in this order, the second stage cooling unit of the two-stage mechanical refrigerator cools the vacuum. It is cooled by heat exchange with the cooling He (cool) before entering the inlet heat exchanger via the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order. A dilution refrigeration apparatus (E1) according to [4] or a dilution refrigeration apparatus (E2) according to [5], wherein a side heat exchanger is provided.
[7] The dilution refrigeration apparatus (E1) according to [4] or [5], wherein the two-stage mechanical refrigerator is a GM refrigerator or a pulse tube refrigerator. Dilution refrigeration equipment (E2).

上記[1]及び[2]に記載する「希釈冷凍装置(E1)、及び希釈冷凍装置(E2)の運転方法」の発明において、液体Heベッセルと2段式機械式冷凍機の使用により、希釈冷凍機の第一熱交換器、第二熱交換器及び3Heと4Heの混合ガス循環経路における往路の冷却を迅速に行なうことが可能になったので希釈冷凍装置の起動時間が大幅に短縮された。更に、[1]に記載の希釈冷凍装置の定常運転において、2段式機械式冷凍機を使用することにより、液体Heベッセル中の補助冷却He(sub)は主に真空断熱管体内の冷却に使用されるので液体Heの消費量を大幅に削減できて長期間の連続運転が可能になった。
又、[2]に記載の希釈冷凍装置の定常運転において、液体Heベッセルからの液体Heを3Heと4Heの混合ガス循環経路の冷却の用いることにより、冷却負荷変動への対応が可能となる。
In the invention of “Operation of Dilution Refrigeration Equipment (E1) and Dilution Refrigeration Equipment (E2)” described in [1] and [2] above, dilution is achieved by using a liquid He vessel and a two-stage mechanical refrigerator. Since the cooling of the forward path in the first heat exchanger, the second heat exchanger of the refrigerator, and the mixed gas circulation path of 3He and 4He can be performed quickly, the start-up time of the dilution refrigeration apparatus has been greatly shortened . Further, in the steady operation of the dilution refrigeration apparatus described in [1], the auxiliary cooling He (sub) in the liquid He vessel is mainly used for cooling the vacuum heat insulation tube by using a two-stage mechanical refrigerator. Since it is used, the amount of liquid He consumed can be greatly reduced, and long-term continuous operation becomes possible.
Further, in the steady operation of the dilution refrigeration apparatus described in [2], the liquid He from the liquid He vessel can be used for cooling the mixed gas circulation path of 3He and 4He to cope with the cooling load fluctuation.

上記[4]及び[5]に記載の希釈冷凍装置においては、振動の発生源となる2段式機械式冷凍機と3Heと4Heの混合ガスを循環圧送する第一コンプレッサー系が、その希釈冷凍機本体が収納されている断熱容器とは離隔されて配置し別体に設けられており、かつ2段式機械式冷凍機と希釈冷凍機間の冷却He(cool)循環経路の一部が収納される真空断熱管体の長さが補助冷却He(sub)経路による冷却でより延長することが可能になったので、振動源と騒音源である機械式冷凍機、真空ポンプ及びコンプレッサーを防音措置の施された別室に設置でき、混合室近傍の振動と騒音を大幅に減少することが可能となった。
その結果、機械式小型極低温冷凍機で発生した振動が希釈冷凍機本体、特にコールドヘッドに相当する混合室の部分に伝達されることが有効に防止され、そのため各種分析を高精度で行うことが可能になった。補助冷却He(sub)の使用量は従来よりも削減され、且つ液体Heベッセルは第一真空断熱容器とは隔離して配設されるので、希釈冷凍機本体の断熱容器を従来よりも格段に小型化することができ、そのため取扱い性、運搬性に優れ、電子顕微鏡などの種々の装置への取り付けが容易となるとともに、実験室での卓上冷却実験にも適している。
In the dilution refrigeration apparatus according to the above [4] and [5], the two-stage mechanical refrigerator serving as a vibration generation source and the first compressor system for circulating and feeding the mixed gas of 3He and 4He are used for the dilution refrigeration. It is placed separately from the heat insulating container in which the machine body is stored, and is provided separately, and a part of the cooling He (cool) circulation path between the two-stage mechanical refrigerator and the dilution refrigerator is stored. The length of the vacuum insulation tube to be extended can be further extended by cooling with the auxiliary cooling He (sub) path, so that the vibration source and noise source mechanical refrigerator, vacuum pump and compressor are soundproofed It can be installed in a separate room, and the vibration and noise near the mixing chamber can be greatly reduced.
As a result, it is possible to effectively prevent the vibration generated in the mechanical small cryogenic refrigerator from being transmitted to the main part of the dilution refrigerator, especially the mixing chamber corresponding to the cold head, so that various analyzes can be performed with high accuracy. Became possible. The amount of auxiliary cooling He (sub) used is reduced than before, and the liquid He vessel is arranged separately from the first vacuum insulation container, so that the insulation container of the dilution refrigerator body is much more than before. It can be downsized, so it is excellent in handleability and transportability, can be easily attached to various devices such as an electron microscope, and is suitable for a desktop cooling experiment in a laboratory.

第1、3の態様に対応する希釈冷凍装置を概略的に示すブロック図である。It is a block diagram which shows roughly the dilution refrigeration apparatus corresponding to the 1st, 3rd aspect. 第2、4の態様に対応する希釈冷凍装置を概略的に示すブロック図である。It is a block diagram which shows roughly the dilution refrigeration apparatus corresponding to the 2nd, 4th aspect. 従来の希釈冷凍機の一例を概略的に示すブロック図である。It is a block diagram which shows roughly an example of the conventional dilution refrigerator. 特許文献2の発明に示された希釈冷凍機を概略的に示すブロック図である。It is a block diagram which shows roughly the dilution refrigerator shown by invention of patent document 2. FIG.

以下に、〔1〕「希釈冷凍装置(E1)」(第3の態様)、〔2〕「希釈冷凍装置(E1)の運転方法」(第1の態様)、〔3〕「希釈冷凍装置(E2)」(第4の態様)、及び〔4〕「希釈冷凍装置(E2)の運転方法」(第2の態様)について説明する。
〔1〕「希釈冷凍装置(E1)」(第3の態様)について
図1は、第3の態様における「希釈冷凍装置(E1)」を説明するための概略的なブロック図である。希釈冷凍装置(E1)は、少なくとも希釈冷凍機系(A)、冷却He循環系(B)、補助冷却系(C1)、及び真空断熱可撓性管体(D)から構成される。
図1に示すように、希釈冷凍機系(A)11の3Heと4Heの混合ガス循環経路を構成する主要機器は第一真空断熱容器12内に配設され、稼働時に振動の発生源となる第一コンプレッサー系14と冷却He循環系(B)31は、第一真空断熱容器12から隔離されて配設される。
[1] “Dilution refrigeration apparatus (E1)” (third aspect), [2] “Operation method of dilution refrigeration apparatus (E1)” (first aspect), [3] “Dilution refrigeration apparatus ( E2) "(fourth aspect) and [4]" Operation method of dilution refrigeration apparatus (E2) "(second aspect) will be described.
[1] “Dilution Refrigeration Apparatus (E1)” (Third Aspect) FIG. 1 is a schematic block diagram for explaining the “dilution refrigeration apparatus (E1)” in the third aspect. The dilution refrigeration apparatus (E1) includes at least a dilution refrigerator system (A), a cooling He circulation system (B), an auxiliary cooling system (C1), and a vacuum heat insulating flexible tube (D).
As shown in FIG. 1, the main equipment constituting the 3He and 4He mixed gas circulation path of the dilution refrigerator system (A) 11 is disposed in the first vacuum heat insulating container 12 and becomes a source of vibration during operation. The first compressor system 14 and the cooling He circulation system (B) 31 are disposed separately from the first vacuum heat insulating container 12.

(1)希釈冷凍機系(A)
(i)希釈冷凍機系(A)の構成
希釈冷凍機系(A)11は、3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系14の出口側から、第一熱交換器15及び第二熱交換器16の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンス18で液化された3Heと4Heの混合液が、分留器19、及び第三熱交換器17の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相(上相)と3He希薄相(下相)とに2相分離した状態で収容される混合室13の入口までの経路を往路とし、
該混合室13の出口から3He希薄相(下相)の液体が第三熱交換器12を経由して分留器19で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器16、及び第一熱交換器15の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系14の入口側に至る経路を復路として、これらの往路と復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室13と共に、第一真空断熱容器12内に配設された系である。
混合室13は、超伝導相転移端温度計(TES)等の超低温に冷却が必要な低温検出器などの種々の装置が取り付可能で、所望の温度レベルへの冷却が可能な構造とすることができる。
(1) Dilution refrigerator system (A)
(I) Configuration of Dilution Refrigerator System (A) The dilution refrigeration system (A) 11 is a first compressor system 14 comprising a vacuum pump and a compressor on the discharge side for circulating and feeding a mixed gas of 3He and 4He. 3He and 4He mixed liquid liquefied with impedance 18 after cooling by heat exchange with the mixed gas of 3He and 4He in the following return path in the order of the first heat exchanger 15 and the second heat exchanger 16 from the outlet side of the Are cooled by heat exchange with a mixture of 3He and 4He in the following return path in the order of the fractionator 19 and the third heat exchanger 17, and a 3He rich phase (upper phase) and a 3He dilute phase (lower phase) And the path to the entrance of the mixing chamber 13 accommodated in a two-phase separated state as the forward path,
From the outlet of the mixing chamber 13, a 3He diluted phase (lower phase) liquid is vaporized by the fractionator 19 via the third heat exchanger 12, and the vaporized mixed gas of 3He and 4He is converted into the second heat exchange. The path to the inlet side of the first compressor system 14 after heat exchange with the mixed gas of 3He and 4He in the forward path in the order of the condenser 16 and the first heat exchanger 15 is taken as a return path, and 3He and mixed gas circulation path of 3He and 4He for circulating the mixed gas of 4He together with the mixing chamber 13 is disposed a system in the first vacuum insulation container 12.
The mixing chamber 13 can be mounted with various devices such as a low-temperature detector that needs to be cooled to an ultra-low temperature such as a superconducting phase transition temperature thermometer (TES), and can be cooled to a desired temperature level. be able to.

(ii)3Heと4Heの混合ガス循環経路
第一熱交換器15及び第二熱交換器16における熱交換器の構造は特に制限されるものではないが、例えば、3Heと4Heの混合ガスの循環経路の往路を内管側、復路を外管側とするチューブインチューブ型熱交換器とすることができる。又、例えば、2段式機械式冷凍機の第1段冷却部で冷却された冷却用He(cool)を熱伝導性の高い配管内に流通させて、該配管を第一熱交換器15において外管の該表面をスパイラル上に沿わせて該表面側から往路の3Heと4Heの混合ガスを冷却することができる。
同様に、例えば、2段式機械式冷凍機の第2段冷却部で冷却された冷却用He(cool)を熱伝導性の高い配管内に流通させて、該配管を第二熱交換器16において外管の該表面をスパイラル上に沿わせて該表面側から往路の3Heと4Heの混合ガスを冷却することが可能である。
(Ii) 3He and 4He mixed gas circulation path The structure of the heat exchanger in the first heat exchanger 15 and the second heat exchanger 16 is not particularly limited, but for example, circulation of a mixed gas of 3He and 4He A tube-in-tube heat exchanger can be provided in which the forward path is the inner pipe side and the return path is the outer pipe side. In addition, for example, cooling He (cool) cooled in the first stage cooling unit of a two-stage mechanical refrigerator is circulated in a pipe having high thermal conductivity, and the pipe is passed through the first heat exchanger 15. The mixed gas of 3He and 4He in the forward path can be cooled from the surface side along the surface of the outer tube along the spiral.
Similarly, for example, the cooling He (cool) cooled by the second stage cooling unit of the two-stage mechanical refrigerator is circulated in a pipe having high thermal conductivity, and the pipe is connected to the second heat exchanger 16. In this case, it is possible to cool the mixed gas of 3He and 4He in the outward path from the surface side along the surface of the outer tube along the spiral.

第二熱交換器16で冷却された往路の3Heと4Heの混合ガスは、インピーダンス18におけるJT効果(ジュール・トムソン効果)で液化される。この場合の圧力降下(△P)は500kPa未満程度となる条件を選択することが望ましい。
インピーダンス18で液化された3Heと4Heの混合液は第三熱交換器17で復路の3Heと4Heの混合液と熱交換により冷却されて、100mK以下の所望の温度に冷却されて混合室13内に流入する。第三熱交換器17の型式も特に制限されるものではないが、3Heと4Heの混合液の循環経路の往路を内管側、復路を外管側とするチューブインチューブ型熱交換器とすることができる。
混合室13においては、前述したように、0.1K以下の温度で3Heを6.4%含み残部が4Heからなる3He希薄相が下層を形成し、100%の3Heからなる3He濃厚相が上層を形成して、2相分離した状態で平衡状態が存在する。
The forward 3He and 4He mixed gas cooled by the second heat exchanger 16 is liquefied by the JT effect (Joule Thomson effect) in the impedance 18. In this case, it is desirable to select a condition in which the pressure drop (ΔP) is less than about 500 kPa.
The mixed liquid of 3He and 4He liquefied at the impedance 18 is cooled by the third heat exchanger 17 by heat exchange with the mixed liquid of 3He and 4He in the return path, and is cooled to a desired temperature of 100 mK or less and is mixed in the mixing chamber 13. Flow into. The type of the third heat exchanger 17 is not particularly limited, but is a tube-in-tube heat exchanger in which the forward path of the circulation path of the mixed liquid of 3He and 4He is the inner pipe side and the return path is the outer pipe side. be able to.
In the mixing chamber 13, as described above, a 3He dilute phase comprising 6.4% of 3He and the balance of 4He at the temperature of 0.1K or less forms the lower layer, and a 3He rich phase of 100% 3He is the upper layer. And an equilibrium state exists with two phases separated.

混合室13で下層を形成している3He希薄相は前記第三熱交換器17で熱交換されて、分留器19に流入する。該分留器19の気相から第一熱交換器15に至る系は第一コンプレッサーを構成する真空ポンプにより減圧状態に維持されているので、前述した通り3Heと4Heの混合液が気化して、第一コンプレッサー系経由で往路の3Heと4Heの混合ガス循環経路にいたる。
尚、分留器19における液相組成は、1%程度の3Heを含む4He溶液である。
(iii)第一コンプレッサー系
第一コンプレッサー系は、真空ポンプとその下流側のコンプレッサーからなり、該コンプレッサーの吸入側にはオイルトラップと液体窒素トラップが設けられることが望ましい。
(iv)第一真空断熱容器
図1に示すとおり、第一真空断熱容器12内には第一熱交換器15、第二熱交換器16、インピーダンス18、分留器19、混合室13、補助冷却He(sub)経路の一部、及び冷却He(cool)循環経路の一部が収納されている。第一真空断熱容器12は、その全体が周囲を真空断熱した極低温容器(通常クライオスタットと称されるもの)である。
The 3He dilute phase forming the lower layer in the mixing chamber 13 is heat-exchanged by the third heat exchanger 17 and flows into the fractionator 19. Since the system from the gas phase of the fractionator 19 to the first heat exchanger 15 is maintained in a reduced pressure state by the vacuum pump constituting the first compressor, the mixed liquid of 3He and 4He is vaporized as described above. Then, it goes to the mixed gas circulation path of the forward 3He and 4He via the first compressor system.
The liquid phase composition in the fractionator 19 is a 4He solution containing about 1% of 3He.
(Iii) First Compressor System The first compressor system is composed of a vacuum pump and a downstream compressor, and it is desirable that an oil trap and a liquid nitrogen trap are provided on the suction side of the compressor.
(Iv) First vacuum heat insulating container As shown in FIG. 1, a first heat exchanger 15, a second heat exchanger 16, an impedance 18, a fractionator 19, a mixing chamber 13, an auxiliary are provided in the first vacuum heat insulating container 12. A part of the cooling He (sub) path and a part of the cooling He (cool) circulation path are accommodated. The first vacuum heat insulating container 12 is a cryogenic container (usually called a cryostat) whose whole is vacuum insulated.

(2)冷却He循環系(B)
(i)冷却He循環系(B)の構成
冷却He循環系(B)31は、前記第一熱交換器15と第二熱交換器16を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機33、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系34、及び、第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部(33B1)で冷却され、真空断熱可撓性管体51内、第一熱交換器15、及び真空断熱可撓性管体51内をこの順で経由し、更に2段式機械式冷凍機の該第1段冷却部(33B1)と次に第2段冷却部(33B2)とで冷却、又は2段式機械式冷凍機の第1段冷却部をバイパスして(破線37で示す)第2段冷却部(33B2)で冷却され、真空断熱可撓性管体51内、第二熱交換器16、及び真空断熱可撓性管体51内をこの順で経由して、第二コンプレッサー系34の入口側に至る冷却He(cool)循環経路、が備えられ、
2段式機械式冷凍機33の1段及び2段冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路の一部が、第二真空断熱容器に配設された系である。
(2) Cooling He circulation system (B)
(I) Configuration of Cooling He Circulation System (B) The cooling He circulation system (B) 31 is for cooling the cooling He (cool) for cooling the first heat exchanger 15 and the second heat exchanger 16. A two-stage mechanical refrigerator 33, a second compressor system 34 composed of a compressor for circulating and feeding the cooling He (cool), and a two-stage mechanical refrigerator from the outlet side of the second compressor system It is cooled by the first stage cooling section (33B1), passes through the vacuum heat insulating flexible tube 51, the first heat exchanger 15 and the vacuum heat insulating flexible tube 51 in this order, and further has a two-stage type. Cooling by the first stage cooling section (33B1) and then the second stage cooling section (33B2) of the mechanical refrigerator, or bypassing the first stage cooling section of the two stage mechanical refrigerator (dashed line 37) The second heat exchanger 1 is cooled by the second stage cooling section (33B2) and is in the vacuum heat insulating flexible tube 51. 6 and a cooling He (cool) circulation path that passes through the vacuum heat insulating flexible tube 51 in this order and reaches the inlet side of the second compressor system 34,
The first and second stage cooling units of the two-stage mechanical refrigerator 33, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path are arranged in the second vacuum heat insulating container. System.

(ii)2段式機械式冷凍機、第二コンプレッサー系
2段式機械式冷凍機33は、冷却部(冷却ヘッドともいわれる)33Bが第1段冷却部(33B1)(相対的に高温側)と第2段冷却部(33B2)(相対的に低温側)からなる。
冷却He循環系(B)31で使用可能な2段式機械式冷凍機33として、GM冷凍機、及びパルス管式冷凍機が挙げられる。2段式を採用する理由は、現在市販されている小型冷凍機で4.2K以下に冷却可能で必要な冷凍能力を持つものが2段式のみであることと、機械式冷凍機の第1段冷却部と第2段冷却部の到達温度が希釈冷凍機の第一熱交換器15と第二熱交換器16を必要な温度まで冷却するのに適しているためである。
該GM冷凍機は、現在MRIの装置など広く使用されており、冷却温度及び冷凍能力は、例えば第1段冷却部において50Kで40W、第2段冷却部において4.2Kで1.5W程度である。
該パルス管式冷凍機は、GM冷凍機に比較し、駆動部が無く低振動であり、冷却温度及び冷凍能力はGM冷凍機とほぼ同じである。
第二コンプレッサー系で使用可能なコンプレッサーとしては、4Heガスが使用でき、所定の圧力(0.3〜2MPa)と循環量(20SLM(Standard Liter per Minute))を確保できることと、4He以外の不純物の混入がないように組み立てられた密閉型のコンプレッサーであれば特に制限はない。
(Ii) Two-stage mechanical refrigerator, second compressor system In the two-stage mechanical refrigerator 33, the cooling section (also referred to as a cooling head) 33B is the first stage cooling section (33B1) (relatively high temperature side). And a second stage cooling section (33B2) (relatively low temperature side).
Examples of the two-stage mechanical refrigerator 33 that can be used in the cooling He circulation system (B) 31 include a GM refrigerator and a pulse tube refrigerator. The reason for adopting the two-stage type is that only the two-stage type is a commercially available small-sized refrigerator that can be cooled to 4.2K or less and has the necessary refrigeration capacity. This is because the ultimate temperatures of the stage cooling section and the second stage cooling section are suitable for cooling the first heat exchanger 15 and the second heat exchanger 16 of the dilution refrigerator to the required temperatures.
The GM refrigerator is widely used at present, such as an MRI apparatus, and the cooling temperature and the refrigeration capacity are, for example, about 40 W at 50 K in the first stage cooling section and about 1.5 W at 4.2 K in the second stage cooling section. is there.
The pulse tube refrigerator has no drive unit and low vibration compared to the GM refrigerator, and the cooling temperature and the refrigerating capacity are substantially the same as those of the GM refrigerator.
As the compressor that can be used in the second compressor system, 4He gas can be used, a predetermined pressure (0.3-2 MPa) and a circulation amount (20 SLM (Standard Liter per Minute)) can be secured, and impurities other than 4He can be secured. There is no particular limitation as long as it is a hermetic compressor assembled so as not to be mixed.

(iii)冷却He(cool)循環経路
冷却He(cool)循環経路は、第二コンプレッサー系34の出口側から、2段式機械式冷凍機33の第1段冷却部(33B1)で冷却され、真空断熱可撓性管体51内、第一熱交換器15、及び真空断熱可撓性管体51内をこの順で経由し、更に2段式機械式冷凍機の該第1段冷却部(33B1)と次に第2段冷却部(33B2)とで冷却、又は2段式機械式冷凍機の第1段冷却部をバイパスして(破線37で示す)第2段冷却部(33B2)で冷却され、真空断熱可撓性管体51内、第二熱交換器16、及び真空断熱可撓性管体51内をこの順で経由して、第二コンプレッサー系34の入口側に至る冷却He(cool)の循環経路である。
(iv)第二真空断熱容器
図1に示す通り、第二真空断熱容器32内には2段式機械式冷凍機33の冷却部、冷却He(cool)循環経路の一部、及び補助冷却He(sub)経路1(22)の一部が収納されている。
又、冷却He(cool)循環経路に後述する入側熱交換器35、及び出側熱交換器36が配設される場合にはこれらの機器も同様に収納することができる。第二真空断熱容器32は、第一真空断熱容器12と同様に、その全体が周囲を真空断熱した極低温容器(クライオスタット)である。
(v)入側熱交換器、及び出側熱交換器
前記冷却He循環系(B)31において、第二コンプレッサー系34の出口側と2段式機械式冷凍機33の第1段冷却部(33B1)との間の冷却He循環経路に配設された入側熱交換器35で該第二コンプレッサー系出口側の冷却用He(cool)が第二コンプレッサー系入口側の冷却用He(cool)との間で熱交換により冷却され、
2段式機械式冷凍機33の第1段冷却部(33B1)と第2段冷却部(33B2)との間の該冷却He循環経路に配設された出側熱交換器36で2段式機械式冷凍機の第1段冷却部(33B1)で冷却され真空断熱可撓性管体、第二熱交換器、真空断熱可撓性管体をこの順で経由した冷却用He(cool)が、2段式機械式冷凍機の第2段冷却部(33B2)で冷却された後真空断熱可撓性管体51内、第二熱交換器16、真空断熱可撓性管体51内をこの順で経由して入側熱交換器35流入前の冷却用He(cool)と熱交換により冷却されることが好ましい。
(Iii) Cooling He (cool) circulation path The cooling He (cool) circulation path is cooled by the first stage cooling section (33B1) of the two-stage mechanical refrigerator 33 from the outlet side of the second compressor system 34, It passes through the vacuum heat insulating flexible tube 51, the first heat exchanger 15, and the vacuum heat insulating flexible tube 51 in this order, and further, the first stage cooling unit ( 33B1) and then the second stage cooling section (33B2), or by bypassing the first stage cooling section of the two-stage mechanical refrigerator (shown by broken line 37) at the second stage cooling section (33B2) Cooling He which is cooled and reaches the inlet side of the second compressor system 34 through the vacuum heat insulating flexible tube 51, the second heat exchanger 16, and the vacuum heat insulating flexible tube 51 in this order. (cool) circulation path.
(Iv) Second Vacuum Insulated Container As shown in FIG. 1, the second vacuum insulated container 32 includes a cooling unit of a two-stage mechanical refrigerator 33, a part of a cooling He (cool) circulation path, and an auxiliary cooling He. A part of (sub) path 1 (22) is stored.
Further, when an inlet side heat exchanger 35 and an outlet side heat exchanger 36, which will be described later, are disposed in the cooling He (cool) circulation path, these devices can be accommodated in the same manner. The second vacuum heat insulation container 32 is a cryogenic container (cryostat) whose entire periphery is vacuum insulated like the first vacuum heat insulation container 12.
(V) Entry-side heat exchanger and exit-side heat exchanger In the cooling He circulation system (B) 31, the outlet side of the second compressor system 34 and the first stage cooling section of the two-stage mechanical refrigerator 33 ( 33B1), the cooling heat He (cool) on the outlet side of the second compressor system is changed to the cooling He (cool) on the inlet side of the second compressor system by the inlet side heat exchanger 35 disposed in the cooling He circulation path And is cooled by heat exchange with
A two-stage type heat exchanger 36 disposed in the cooling He circulation path between the first-stage cooling section (33B1) and the second-stage cooling section (33B2) of the two-stage mechanical refrigerator 33. The cooling He (cool) cooled in the first stage cooling section (33B1) of the mechanical refrigerator passes through the vacuum heat insulation flexible tube, the second heat exchanger, and the vacuum heat insulation flexible tube in this order. After being cooled by the second stage cooling unit (33B2) of the two-stage mechanical refrigerator, the inside of the vacuum heat insulating flexible tube 51, the second heat exchanger 16, and the vacuum heat insulating flexible tube 51 are It is preferable that the cooling is performed by heat exchange with the cooling He (cool) before flowing into the inlet heat exchanger 35 via the order.

(3)補助冷却系(C1)
補助冷却系(C1)は、下記真空断熱可撓性管体51内、及び第一熱交換器15と第二熱交換器16とを補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセル41と、
該補助冷却用He(sub)を、液体Heベッセル41から真空断熱可撓性管体51出口側までの補助冷却He(sub)経路1 22と、その後分岐して第熱交換器16におけるHEX2 21、第熱交換器15におけるHEX1 20、第一流量調節弁(V1a)23aをこの順に経由して放出する分岐経路1a 22a(以下、補助冷却He(sub)経路1と分岐経路1aを併せて「補助冷却He(sub)経路1A」ということがある)、
及び、該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1 22と、その後分岐して第二流量調節弁(V1b)23bを経由して放出する分岐経路1b 22b(以下、補助冷却He(sub)経路1と分岐経路1bを併せて「補助冷却He(sub)経路1B」ということがある)、からなる。
(3) Auxiliary cooling system (C1)
The auxiliary cooling system (C1) stores the auxiliary cooling He (sub) for auxiliary cooling of the following vacuum heat insulating flexible tube 51 and the first heat exchanger 15 and the second heat exchanger 16. Liquid He vessel 41,
The auxiliary cooling He (sub) is branched into the auxiliary cooling He (sub) path 122 from the liquid He vessel 41 to the outlet side of the vacuum heat insulating flexible tube 51, and then branched to HEX in the second heat exchanger 16 . 2 21 , branch path 1a 22a (hereinafter referred to as auxiliary cooling He (sub) path 1 and branch path 1a) that discharges HEX 1 20 in the first heat exchanger 15 and the first flow rate control valve (V1a) 23a in this order. May also be referred to as “auxiliary cooling He (sub) path 1A”),
And, the auxiliary cooling He (sub) is divided into an auxiliary cooling He (sub) path 122 from the liquid He vessel to the vacuum heat insulating flexible tube outlet side, and then branched to the second flow control valve (V1b). Branch path 1b 22b that discharges through 23b (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1b may be collectively referred to as “auxiliary cooling He (sub) path 1B”).

(4)真空断熱可撓性管体(D)
真空断熱可撓性管体(D)51は、第一真空断熱容器12と第二真空断熱容器32との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路1の一部が収納される、外側部材及び内側部材が可撓性を有する管体(いわゆる、フレキシブル配管)により構成され、その内層側には、輻射シールド、保冷材等が使用されている。
第3の態様においては、真空断熱可撓性管体(D)内を補助冷却He(sub)により冷却しているために、該真空断熱可撓性管体(D)内を従来と比較してより低温を維持することが可能になったことに伴い、真空断熱可撓性管体(D)51を従来より延長してより長くできるのが特徴である。
(4) Vacuum insulation flexible tube (D)
The vacuum heat insulating flexible tube (D) 51 is disposed between the first vacuum heat insulating container 12 and the second vacuum heat insulating container 32, and has a cooling He (cool) circulation path and an auxiliary cooling He (sub) path. The outer member and the inner member in which a part of 1 is accommodated are constituted by flexible tubular bodies (so-called flexible piping), and a radiation shield, a cold insulating material, and the like are used on the inner layer side.
In the third aspect, since the inside of the vacuum heat insulating flexible tube (D) is cooled by the auxiliary cooling He (sub), the inside of the vacuum heat insulating flexible tube (D) is compared with the conventional case. As the temperature can be maintained at a lower temperature, the vacuum heat insulating flexible tube (D) 51 is longer than the conventional one.

〔2〕「希釈冷凍装置(E1)の運転方法」(第1の態様)について
第1の態様における「希釈冷凍装置(E1)の運転方法」は、前記希釈冷凍装置(E1)の運転方法であって、少なくとも下記(1)〜(5)の操作で希釈冷凍装置を起動し、定常状態に至ったらその状態で運転を継続することを特徴とする。
(1)2段式機械式冷凍機33を起動すると共に、液体Heベッセル41から補助冷却用He(sub)を補助冷却He(sub)経路1Aに流通させて、該補助冷却用He(sub)により真空断熱可撓性管体51内、第熱交換器16、及び第熱交換器15を補助冷却し、その後第一流量調節弁(V1a)から放出させながら、2段式機械式冷凍機の第1段冷却部(33B1)及び第2段冷却部(33B2)の温度が100K以下になるように冷却する。
この場合、「2段式機械式冷凍機の起動」と、「液体Heベッセルから補助冷却用He(sub)を補助冷却He(sub)経路1Aに流通」させる操作は、その操作手順を前後させてもよい。
(2)前記補助冷却He(sub)経路1Aによる冷却を継続するとともに、第二コンプレッサー系34を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器16の冷却用He(cool)出口温度が20K以下、好ましくは10K以下になるように冷却する。
(3)補助冷却He(sub)経路1Aの第一流量調節弁(V1a)を閉とし、補助冷却He(sub)経路1Bの第二流量調節弁(V1b)を開として、前記真空断熱可撓性管体51出口の補助冷却用He(sub)温度が80K以下、好ましくは70K以下になるように該第二流量調節弁(V1b)により、補助冷却He(sub)経路1Bにおける補助冷却用He(sub)の流量を調節する。
(4)第一コンプレッサー系14を起動して、混合室13及び分留器19内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行う。
この操作により、3Heと4Heの混合ガス循環経路に3Heと4Heの混合ガスの循環が開始されて、混合室13内の3Heと4Heは徐々に冷却されていく。
(5)前記(1)〜(4)の操作により混合室13及び分留器19内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室13内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)、その状態で運転を継続する。尚、該2相分離は、混合室13内の温度により確認することが可能である。
[2] “Operation method of the dilution refrigeration apparatus (E1)” (first aspect) “Operation method of the dilution refrigeration apparatus (E1)” in the first aspect is an operation method of the dilution refrigeration apparatus (E1). Then, the dilution refrigeration apparatus is started by at least the following operations (1) to (5), and when the steady state is reached, the operation is continued in that state.
(1) The two-stage mechanical refrigerator 33 is started, and the auxiliary cooling He (sub) is circulated from the liquid He vessel 41 to the auxiliary cooling He (sub) path 1A, and the auxiliary cooling He (sub) Is used for auxiliary cooling of the vacuum heat insulating flexible tube 51, the second heat exchanger 16 and the first heat exchanger 15 , and then discharged from the first flow rate control valve (V1a). It cools so that the temperature of the 1st stage cooling part (33B1) and 2nd stage cooling part (33B2) of a machine may become 100K or less.
In this case, the operations of “starting the two-stage mechanical refrigerator” and “distributing the auxiliary cooling He (sub) from the liquid He vessel to the auxiliary cooling He (sub) path 1A” are performed in the same way. May be.
(2) The cooling by the auxiliary cooling He (sub) path 1A is continued, the second compressor system 34 is started, and the circulation of the cooling He (cool) to the cooling He (cool) circulation path is started. Cooling is performed so that the cooling He (cool) outlet temperature of the two heat exchanger 16 is 20K or lower, preferably 10K or lower.
(3) The first heat regulation valve (V1a) of the auxiliary cooling He (sub) path 1A is closed, and the second flow control valve (V1b) of the auxiliary cooling He (sub) path 1B is opened, so that the vacuum heat insulation flexibility The auxiliary cooling He (sub) path 1B in the auxiliary cooling He (sub) path 1B is controlled by the second flow rate control valve (V1b) so that the auxiliary cooling He (sub) temperature at the outlet of the sex tube 51 is 80K or lower, preferably 70K or lower. Adjust the flow rate of (sub).
(4) The first compressor system 14 is started, and 3He and 4He are mixed in the mixed gas circulation path of 3He and 4He until the amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber 13 and the fractionator 19. Perform 4He circulation and replenishment.
By this operation, circulation of the mixed gas of 3He and 4He is started in the mixed gas circulation path of 3He and 4He, and 3He and 4He in the mixing chamber 13 are gradually cooled.
(5) The amount of liquefied 4He and liquefied 3He that enable stable operation is accumulated in the mixing chamber 13 and the fractionator 19 by the operations of (1) to (4), and the 3He concentrated phase and 3He are accumulated in the mixing chamber 13. When the dilute phase separates into two phases (steady operation state), the operation is continued in that state. The two-phase separation can be confirmed by the temperature in the mixing chamber 13.

上記定常運転状態で、3Heと4Heの混合ガス循環経路における3Heと4Heの混合ガスは第一熱交換器15と第二熱交換器16で5K程度まで冷却され、インピーダンスで液化された後に、分留器19と第三熱交換器17の往路側で更に100mK程度に冷却され、最終的に混合室13内において、3He濃厚相中の3Heが3He希薄相中へ溶け込む(3Heが4Heに希釈される)ことにより、50mK以下の極低温を得ることができる。
一方、冷却He循環系(B)においては、2段式機械式冷凍機第1段冷却部(33B1)で冷却された温度40K程度の冷却He(cool)により、第一熱交換器15で往路3Heと4Heの混合ガスを冷却し、更に2段式機械式冷凍機の該第1段冷却部(33B1)と次に第2段冷却部(33B2)とで冷却、又は2段式機械式冷凍機の第1段冷却部をバイパスして(破線37で示す)第2段冷却部(33B2)で冷却された温度4〜5K程度の冷却He(cool)により、第二熱交換器で往路3Heと4Heの混合ガスを冷却する。
In the steady operation state, the 3He and 4He mixed gas in the mixed gas circulation path of 3He and 4He is cooled to about 5K by the first heat exchanger 15 and the second heat exchanger 16, and is liquefied by impedance. Cooling is further performed to about 100 mK on the outward path side of the distillation apparatus 19 and the third heat exchanger 17, and finally 3He in the 3He rich phase dissolves into the 3He dilute phase in the mixing chamber 13 (3He is diluted to 4He). Therefore, an extremely low temperature of 50 mK or less can be obtained.
On the other hand, in the cooling He circulation system (B), the first heat exchanger 15 passes through the cooling He (cool) at a temperature of about 40 K cooled by the first stage cooling unit (33B1) of the two-stage mechanical refrigerator. The mixed gas of 3He and 4He is cooled, and further cooled by the first stage cooling part (33B1) and then the second stage cooling part (33B2) of the two-stage mechanical refrigerator, or two-stage mechanical refrigeration By the cooling He (cool) at a temperature of about 4 to 5 K, which is cooled by the second-stage cooling section (33B2), bypassing the first-stage cooling section of the machine (indicated by a broken line 37), the forward path 3He in the second heat exchanger And a mixed gas of 4He is cooled.

第1の態様において、実用的な見地からは、下記(イ)ないし(ニ)の条件での運転を行なうことがより好ましい。
(イ)2段式機械式冷凍機33を起動すると共に、液体Heベッセル41から補助冷却用He(sub)を補助冷却He(sub)経路1Aに流通させて、該補助冷却用He(sub)により真空断熱可撓性管体51内、第熱交換器16、及び第熱交換器15を補助冷却し、その後第一流量調節弁(V1a)から放出させながら、2段式機械式冷凍機の第1段冷却部(33B1)と第2段冷却部(3B2)の温度が100K以下になるように冷却する。
(ロ)前記補助冷却He(sub)経路1Aによる冷却を継続するとともに、第二コンプレッサー系34を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器の冷却用He(cool)出口温度が10K以下になるように冷却する。
(ハ)補助冷却He(sub)経路1Aの第一流量調節弁(V1a)を閉とし、補助冷却He(sub)経路1Bの第二流量調節弁(V1b)を開として、前記真空断熱可撓性管体51出口の補助冷却用He(sub)温度が70K以下になるように該第二流量調節弁(V1b)により、補助冷却He(sub)経路1Bにおける補助冷却用He(sub)の流量を調節する。
(ニ)第一コンプレッサー系14を稼働して、混合室13及び分留器19内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行う。
(ホ)前記(イ)〜(ニ)の操作により混合室13及び分留器19内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室13内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)その状態で運転を継続する。
In the first aspect, from a practical viewpoint, it is more preferable to perform the operation under the following conditions (A) to (D).
(A) The two-stage mechanical refrigerator 33 is started, and the auxiliary cooling He (sub) is circulated from the liquid He vessel 41 to the auxiliary cooling He (sub) path 1A, and the auxiliary cooling He (sub) Is used for auxiliary cooling of the vacuum heat insulating flexible tube 51, the second heat exchanger 16 and the first heat exchanger 15 , and then discharged from the first flow rate control valve (V1a). It cools so that the temperature of the 1st stage cooling part (33B1) and 2nd stage cooling part (3B2) of a machine may be 100K or less.
(B) The cooling by the auxiliary cooling He (sub) path 1A is continued, the second compressor system 34 is started, and the circulation of the cooling He (cool) to the cooling He (cool) circulation path is started. Cooling is performed so that the cooling He (cool) outlet temperature of the two heat exchangers is 10K or less.
(C) The first heat flow control valve (V1a) of the auxiliary cooling He (sub) path 1A is closed, and the second flow control valve (V1b) of the auxiliary cooling He (sub) path 1B is opened, so that the vacuum heat insulation flexible The flow rate of the auxiliary cooling He (sub) in the auxiliary cooling He (sub) path 1B is set by the second flow rate control valve (V1b) so that the auxiliary cooling He (sub) temperature at the outlet of the conductive tube 51 becomes 70K or less. Adjust.
(D) The first compressor system 14 is operated, and 3He and 4He are mixed into the mixed gas circulation path until the amount of liquefied 4He and liquefied 3He that can be stably operated in the mixing chamber 13 and the fractionator 19 is accumulated. Perform 4He circulation and replenishment.
(E) The amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber 13 and the fractionator 19 by the operations (a) to (d), and the 3He concentrated phase and 3He are accumulated in the mixing chamber 13. When the dilute phase separates into two phases (steady operation state), the operation is continued in that state.

第1の態様において、2段式機械式冷凍機33として好ましいGM冷凍機を使用する場合にはかなりの振動を発生するのが通常であるが、前述のように2段式機械式冷凍機33を含む冷却He循環系(B)31は、第一真空断熱容器12から離隔して設けられていて、その間を結ぶ冷却He(cool)循環経路は真空断熱可撓性管体51内を補助冷却He(sub)により冷却しているので従来と比較して十分に長く配設することができるため、振動源と騒音源である機械式冷凍機、真空ポンプ及びコンプレッサーを防音措置の施された別室に設置でき、2段式機械式冷凍機33の振動及び騒音が混合室13を含む希釈冷凍基系(A)11の第一真空断熱容器12に伝達されるのが防止され、その結果高精度での分析等が可能となる。   In the first embodiment, when a preferred GM refrigerator is used as the two-stage mechanical refrigerator 33, it is normal that considerable vibration is generated. However, as described above, the two-stage mechanical refrigerator 33 is used. The cooling He circulation system (B) 31 including the cooling He is provided separately from the first vacuum heat insulating container 12, and the cooling He (cool) circulation path connecting between the cooling He circulation system (B) 31 is auxiliary cooling in the vacuum heat insulating flexible tube 51. Because it is cooled by He (sub), it can be installed long enough compared to conventional ones, so the mechanical refrigerator, vacuum pump, and compressor, which are the vibration source and noise source, are provided with soundproofing. The vibration and noise of the two-stage mechanical refrigerator 33 can be prevented from being transmitted to the first vacuum heat insulating container 12 of the dilution refrigeration base system (A) 11 including the mixing chamber 13, and as a result, high accuracy Analysis and the like can be performed.

〔3〕「希釈冷凍装置(E2)」(第4の態様)について
図2は、第4の態様における「希釈冷凍装置(E2)」を説明するための概略的なブロック図である。希釈冷凍装置(E2)は、少なくとも希釈冷凍機系(A)、冷却He循環系(B)、補助冷却系(C2)、及び真空断熱可撓性管体(D)から構成される。
図2に示すように、希釈冷凍機系(A)の3Heと4Heの混合ガス循環経路を構成する主要機器は第一真空断熱容器内に配設され、稼働時に振動及び騒音の発生源となる第一コンプレッサー系と冷却He循環系(B)は、第一真空断熱容器から隔離されて配置される。
(1)希釈冷凍機系(A)
3Heと4Heの混合ガス循環経路において、第一熱交換器15及び第二熱交換器16の構造は特に制限されるものではないが、例えば、3Heと4Heの混合ガスの循環経路の往路を内管側、復路を外管側とするチューブインチューブ型熱交換器とすることができ、2段式機械式冷凍機の第1段冷却部で冷却された冷却用He(cool)、及び、補助冷却He(sub)経路の冷却He(sub)をそれぞれ熱伝導性の高い配管内に流通させて、該配管を第一熱交換器15において外管の該表面をスパイラル上に沿わせて該表面側から往路の3Heと4Heの混合ガスを冷却することができる点と、2段式機械式冷凍機の第2段冷却部で冷却された冷却用He(cool)、及び、補助冷却He(sub)経路の冷却He(sub)をそれぞれ熱伝導性の高い配管内に流通させて、該配管を第二熱交換器16において外管の該表面をスパイラル上に沿わせて該表面側から往路の3Heと4Heの混合ガスを冷却することが可能である点を除いて、第3の態様における希釈冷凍機系(A)と同様である。
(2)冷却He循環系(B)
補助冷却He(sub)経路1の一部の代わりに、補助冷却He(sub)経路2(24)の一部が、第二真空断熱容器に配設されている点を除いて、第3の態様における冷却He循環系(B)と同様である。
[3] “Dilution Refrigeration Apparatus (E2)” (Fourth Aspect) FIG. 2 is a schematic block diagram for explaining the “dilution refrigeration apparatus (E2)” in the fourth aspect. The dilution refrigeration apparatus (E2) includes at least a dilution refrigerator system (A), a cooling He circulation system (B), an auxiliary cooling system (C2), and a vacuum heat insulating flexible tube (D).
As shown in FIG. 2, the main equipment constituting the 3He and 4He mixed gas circulation path of the dilution refrigerator system (A) is disposed in the first vacuum heat insulating container and becomes a source of vibration and noise during operation. The first compressor system and the cooling He circulation system (B) are arranged separately from the first vacuum heat insulating container.
(1) Dilution refrigerator system (A)
In the mixed gas circulation path of 3He and 4He, the structure of the first heat exchanger 15 and the second heat exchanger 16 is not particularly limited. For example, the forward path of the circulation path of the mixed gas of 3He and 4He A tube-in-tube heat exchanger with the return side on the tube side and the return path can be made, and the cooling He (cool) cooled in the first stage cooling section of the two-stage mechanical refrigerator and auxiliary The cooling He (sub) path cooling He (sub) is circulated in the pipes having high thermal conductivity, and the pipes are arranged in the first heat exchanger 15 so that the surface of the outer pipe is along the spiral. That the mixed gas of 3He and 4He in the forward path can be cooled from the side, the cooling He (cool) cooled by the second stage cooling unit of the two-stage mechanical refrigerator, and the auxiliary cooling He (sub ) The cooling He (sub) of the path is circulated in each pipe having high thermal conductivity, Except in the second heat exchanger 16 tubes can be the surface of the outer tube along a on the spiral cooling the mixed gas for the outward 3He and 4He from the surface side, a third aspect This is the same as the dilution refrigerator system (A).
(2) Cooling He circulation system (B)
Instead of a part of the auxiliary cooling He (sub) path 1, a third part of the auxiliary cooling He (sub) path 2 (24) is provided except that a part of the auxiliary cooling He (sub) path 2 (24) is disposed in the second vacuum heat insulating container . This is the same as the cooling He circulation system (B) in the embodiment.

(3)補助冷却系(C2)
補助冷却系(C2)は、補助冷却He(sub)経路2により真空断熱可撓性管体51内と第一熱交換器15と第二熱交換器16とを補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセル41と、該補助冷却用He(sub)を、液体Heベッセル41、真空断熱可撓性管体51内、第熱交換器16、第熱交換器15、真空断熱可撓性管体51内、第三流量調節弁(V2)25をこの順に経由して放出される補助冷却He(sub)経路2からなる。
補助冷却用He(sub)熱交換器16と第熱交換器15を冷却後、更に真空断熱可撓性管体51内を冷却して、補助冷却用He(sub)の冷熱を有効に利用しているので、真空断熱可撓性管体51内をより有効に冷却できる。
尚、補助冷却用He(sub)は、第二熱交換器16を冷却後にはガス化された状態で真空断熱可撓性管体51内を通過するので、補助冷却用He(sub)を移送する配管径が液状の場合と比較して広径とする必要がある。
(3) Auxiliary cooling system (C2)
The auxiliary cooling system (C2) is an auxiliary cooling for auxiliary cooling of the inside of the vacuum heat insulating flexible tube 51, the first heat exchanger 15 and the second heat exchanger 16 by the auxiliary cooling He (sub) path 2. The liquid He vessel 41 in which He (sub) is stored, and the auxiliary cooling He (sub) are mixed into the liquid He vessel 41, the vacuum heat insulating flexible tube 51, the second heat exchanger 16 , the first heat The exchanger 15 includes an auxiliary cooling He (sub) path 2 that is discharged through the vacuum flow insulating flexible tube 51 and the third flow rate control valve (V2) 25 in this order.
After cooling the second heat exchanger 16 in the auxiliary cooling the He (sub) a first heat exchanger 15, and further cool the inside of vacuum insulation flexible tubular member 51, the cold heat of the auxiliary cooling the He (sub) Since it uses effectively, the inside of the vacuum heat insulation flexible tubular body 51 can be cooled more effectively.
The auxiliary cooling He (sub) passes through the vacuum heat insulating flexible tube 51 in a gasified state after the second heat exchanger 16 is cooled, so the auxiliary cooling He (sub) is transferred. It is necessary to make the diameter of the pipe to be wide as compared with the case of a liquid.

(4)真空断熱可撓性管体(D)
補助冷却He(sub)経路2が第二熱交換器と第一熱交換器を冷却後、真空断熱可撓性管体51内を経由して第三流量調節弁(V2)から補助冷却He(sub)が放出されている点を除いて第3の態様における真空断熱可撓性管体(D)と同様である。
(5)その他
第4の態様である「希釈冷凍装置(E2)」の特徴は、第3の態様である「希釈冷凍装置(E1)」と大部分が共通しているので、第4の態様である「希釈冷凍装置(E2)」で得られる効果も第3の態様である「希釈冷凍装置(E1)」と同様である。
(4) Vacuum insulation flexible tube (D)
After the auxiliary cooling He (sub) path 2 cools the second heat exchanger and the first heat exchanger, it passes through the vacuum heat insulating flexible tube 51 from the third flow control valve (V2) to the auxiliary cooling He ( It is the same as the vacuum heat insulating flexible tube (D) in the third embodiment except that sub) is released.
(5) Other features of the “dilution refrigeration apparatus (E2)” that is the fourth aspect are mostly in common with the “dilution refrigeration apparatus (E1)” that is the third aspect, so the fourth aspect The effect obtained by the “dilution refrigeration apparatus (E2)” is the same as that of the “dilution refrigeration apparatus (E1)” which is the third aspect.

〔4〕「希釈冷凍機(E2)の運転方法」(第2の態様)について
第2の態様における「希釈冷凍装置(E2)の運転方法」は、前記「希釈冷凍装置(E2)」の運転方法であって、少なくとも下記(イ)〜(ニ)の操作手順で希釈冷凍装置を起動し、定常状態に至ったらその状態で運転を継続することを特徴とする。
(イ)2段式機械式冷凍機を起動すると共に、液体Heベッセルから補助冷却用He(sub)を補助冷却He(sub)経路2に流通させて、該補助冷却用He(sub)により真空断熱可撓性管体内、第熱交換器、及び第熱交換器を補助冷却後、更に前記真空断熱可撓性管体内を補助冷却して第三流量調節弁(V2)から放出させながら、
2段式機械式冷凍機の第1段及び第2段の冷却部の温度が100K以下になるように冷却する。
(ロ)前記補助冷却用He(sub)による冷却を継続するとともに、第二コンプレッサー系34を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器の冷却用He(cool)温度が20K以下、好ましくは10K以下になるように冷却する。
(ハ)第一コンプレッサー系14を起動して、混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行うと共に、第二熱交換器の補助冷却用He(sub)温度が5K以下になるように第三流量調節弁(V2)により補助冷却He(sub)経路2における補助冷却用He(sub)の流量を調節する。
(ニ)前記(イ)〜(ハ)の操作により混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)、その状態で運転を継続する。
(ホ)その他
第2の態様である「希釈冷凍装置(E2)の運転方法」の特徴は、第1の態様である「希釈冷凍装置(E1)の運転方法」と大部分が共通しているので、第2の態様である「希釈冷凍装置(E2)の運転方法」で得られる効果も第1の態様である「希釈冷凍装置(E1)の運転方法」と同様である。
[4] “Operation method of dilution refrigerator (E2)” (second embodiment) “Operation method of dilution refrigerator (E2)” in the second embodiment is the operation of “dilution refrigerator (E2)”. The method is characterized in that the dilution refrigeration apparatus is activated by at least the following operating procedures (a) to (d) and the operation is continued in that state when the steady state is reached.
(A) The two-stage mechanical refrigerator is started, and the auxiliary cooling He (sub) is circulated from the liquid He vessel to the auxiliary cooling He (sub) path 2 and is vacuumed by the auxiliary cooling He (sub). After auxiliary cooling of the heat insulating flexible pipe, the second heat exchanger, and the first heat exchanger, the vacuum heat insulating flexible pipe is further auxiliary cooled and released from the third flow rate control valve (V2). ,
Cooling is performed so that the temperature of the cooling section of the first stage and the second stage of the two-stage mechanical refrigerator becomes 100K or less.
(B) Continue cooling with the auxiliary cooling He (sub) and start the second compressor system 34 to start circulation of the cooling He (cool) in the cooling He (cool) circulation path; The heat exchanger is cooled so that the cooling He (cool) temperature is 20K or lower, preferably 10K or lower.
(C) The first compressor system 14 is started, and 3He and 4He are mixed into the 3He and 4He mixed gas circulation path until the amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber and the fractionator. The auxiliary cooling He in the auxiliary cooling He (sub) path 2 is performed by the third flow rate control valve (V2) so that the auxiliary cooling He (sub) temperature of the second heat exchanger becomes 5K or less while performing circulation and replenishment. Adjust the flow rate of (sub).
(D) The amount of liquefied 4He and liquefied 3He that can be stably operated in the mixing chamber and fractionator by the operations of (a) to (c) above is accumulated, and the 3He rich phase and the 3He dilute phase are mixed in the mixing chamber. When the two phases are separated (steady operation state), the operation is continued in that state.
(E) The characteristics of the “operation method of the dilution refrigeration apparatus (E2)”, which is the second aspect, are mostly the same as the “operation method of the dilution refrigeration apparatus (E1)”, which is the first aspect. Therefore, the effect obtained by the “operation method of the dilution refrigeration apparatus (E2)” that is the second aspect is the same as the “operation method of the dilution refrigeration apparatus (E1)” that is the first aspect.

11 希釈冷凍機系(A)
12 第一真空断熱容器
13 混合室
14 第一コンプレッサー系
15 第一熱交換器
16 第二熱交換器
17 第三熱交換器
18 インピーダンス
19 分留器
20 HEX1
21 HEX2
22 補助冷却He(sub)経路1
22a 分岐経路1a
22b 分岐経路1b
23a 第一流量調節弁(V1a)
23b 第二流量調節弁(V1b)
24 補助冷却He(sub)経路2
25 第三流量調節弁(V2)
31 冷却He循環系(B)
32 第二真空断熱容器
33 2段式機械式冷凍機
33B 冷却部
33B1 第1段冷却部
33B2 第2段冷却部
34 第二コンプレッサー系
35 入側熱交換器
36 出側熱交換器
37 第1段冷却部のバイパス経路
41 液体Heベッセル
51 真空断熱可撓性管体
101A 第1の真空ポンプ
101B 第2の真空ポンプ
102 1Kポット
103 凝縮器
104 インピーダンス
105 分留器
106 熱交換器
107 インピーダンス
108 熱交換器
109 混合室
111 希釈冷凍機本体
112 断熱容器
113 第1の熱交換器
114 凝縮器
115 第1の真空ポンプ
116 オイルトラップ
117 液体窒素トラップ
121 予冷用冷却装置
122 断熱容器
123 機械式小型極低温冷凍機
124 JT膨張弁
125 第2の真空ポンプ
126 オイルトラップ
127 液体窒素トラップ
11 Dilution refrigerator system (A)
12 First vacuum heat insulation container 13 Mixing chamber 14 First compressor system 15 First heat exchanger 16 Second heat exchanger 17 Third heat exchanger 18 Impedance 19 Fractionator 20 HEX1
21 HEX2
22 Auxiliary cooling He (sub) path 1
22a Branch path 1a
22b Branch path 1b
23a First flow control valve (V1a)
23b Second flow control valve (V1b)
24 Auxiliary cooling He (sub) path 2
25 Third flow control valve (V2)
31 Cooling He circulation system (B)
32 Second vacuum heat insulating container 33 Two-stage mechanical refrigerator 33B Cooling section 33B1 First stage cooling section 33B2 Second stage cooling section 34 Second compressor system 35 Input side heat exchanger 36 Outlet side heat exchanger 37 First stage Bypass path 41 of the cooling unit Liquid He vessel 51 Vacuum insulation flexible tube 101A First vacuum pump 101B Second vacuum pump 102 1K pot 103 Condenser 104 Impedance 105 Fractionator 106 Heat exchanger 107 Impedance 108 Heat exchange Unit 109 Mixing chamber 111 Dilution refrigerator main body 112 Heat insulation container 113 First heat exchanger 114 Condenser 115 First vacuum pump 116 Oil trap 117 Liquid nitrogen trap 121 Precooling cooling device 122 Heat insulation container 123 Mechanical small cryogenic freezing Machine 124 JT expansion valve 125 Second vacuum pump 126 Oil trap 12 7 Liquid nitrogen trap

Claims (7)

(i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、3Heと4Heの混合ガスが第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相(上相)と3He希薄相(下相)とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路と復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、
第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路1の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路1Aにより下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、又は下記補助冷却He(sub)経路1Bにより下記真空断熱可撓性管体内を補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第熱交換器、第熱交換器、第一流量調節弁(V1a)をこの順に経由して放出する分岐経路1a(以下、補助冷却He(sub)経路1と分岐経路1aを併せて「補助冷却He(sub)経路1A」という)、
及び、該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第二流量調節弁(V1b)を経由して放出する分岐経路1b(以下、補助冷却He(sub)経路1と分岐経路1bを併せて「補助冷却He(sub)経路1B」という)、が形成可能な補助冷却He(sub)経路からなる、補助冷却系(C1)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路1の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E1)の運転方法であって、
少なくとも下記(1)〜(5)の操作で希釈冷凍装置を起動し、その後の運転を継続することを特徴とする希釈冷凍装置(E1)の運転方法。
(1)2段式機械式冷凍機を起動すると共に、液体Heベッセルから補助冷却用He(sub)を補助冷却He(sub)経路1Aに流通させて、該補助冷却用He(sub)により真空断熱可撓性管体内、第熱交換器、及び第熱交換器を補助冷却し、その後第一流量調節弁(V1a)から放出させながら、2段式機械式冷凍機の第1段冷却部と第2段冷却部の温度が100K以下になるように冷却する。
(2)前記補助冷却He(sub)経路1Aによる冷却を継続するとともに、第二コンプレッサー系を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器の冷却用He(cool)温度が20K以下になるように冷却する。
(3)補助冷却He(sub)経路1Aの第一流量調節弁(V1a)を閉とし、補助冷却He(sub)経路1Bの第二流量調節弁(V1b)を開として、前記真空断熱可撓性管体出口の補助冷却用He(sub)温度が80K以下になるように該第二流量調節弁(V1b)により補助冷却He(sub)経路1Bにおける補助冷却用He(sub)の流量を調節する。
(4)第一コンプレッサー系を起動して、混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行う。
(5)前記(1)〜(4)の操作により混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)、その状態で運転を継続する。
(I) The 3He and 4He mixed gas is supplied from the outlet side of the first compressor system including the vacuum pump and the compressor on the discharge side for circulating and feeding the mixed gas of 3He and 4He . the following mixture of 3He and 4He that is liquefied by the impedance after being cooled in the order of the heat exchanger by the following backward 3He mixed gas exchanges heat 4He is, fractionator, and in the order of the third heat exchanger A path to the entrance of the mixing chamber that is cooled by heat exchange with the mixed solution of 3He and 4He in the return path and is accommodated in a state in which the 3He rich phase (upper phase) and the 3He diluted phase (lower phase) are separated into two phases Is the outbound route,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He through the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber.
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system comprising a compressor, and
It is cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, and the vacuum heat insulation flexible pipe body, the first heat exchanger, and the vacuum heat insulation flexible pipe body are The second stage cooling unit of the two-stage mechanical refrigerator or the first stage cooling unit and then the second stage cooling unit are further cooled in the order, and the second heat A cooling He (cool) circulation path that passes through the exchanger and the vacuum heat insulating flexible tube in this order and reaches the inlet side of the second compressor system,
Cooling He circulation in which the cooling part of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 1 are arranged in the second vacuum heat insulating container System (B),
(Iii) The following auxiliary cooling He (sub) path 1A is used for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger, or the following auxiliary cooling He (sub) path. A liquid He vessel in which auxiliary cooling He (sub) is stored for auxiliary cooling of the following vacuum heat insulating flexible tube by 1B;
The auxiliary cooling He (sub) is divided into an auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum heat insulating flexible tube outlet side, and then branched to form a second heat exchanger and a first heat exchanger. The branch path 1a that discharges the first flow rate control valve (V1a) in this order (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1a are collectively referred to as “auxiliary cooling He (sub) path 1A”). ,
And, the auxiliary cooling He (sub) is connected to the auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum insulation flexible tube outlet side, and then branched to provide the second flow control valve (V1b). Auxiliary cooling He (sub) path capable of forming a branch path 1b that discharges via (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1b are collectively referred to as "auxiliary cooling He (sub) path 1B"). An auxiliary cooling system (C1), and (iv) a cooling He (cool) circulation path and an auxiliary cooling He (sub) path 1 disposed between the first vacuum heat insulating container and the second vacuum heat insulating container. Vacuum insulated flexible tube (D) in which a part of
An operation method of a dilution refrigeration apparatus (E1) including:
A method for operating the dilution refrigeration apparatus (E1), wherein the dilution refrigeration apparatus is started by at least the following operations (1) to (5) and the subsequent operation is continued.
(1) The two-stage mechanical refrigerator is started, and auxiliary cooling He (sub) is circulated from the liquid He vessel to the auxiliary cooling He (sub) path 1A, and vacuum is generated by the auxiliary cooling He (sub). The first stage cooling of the two-stage mechanical refrigerator while auxiliary cooling the heat insulating flexible tube, the second heat exchanger, and the first heat exchanger, and then releasing from the first flow rate control valve (V1a). And cool so that the temperature of the second stage cooling unit is 100K or less.
(2) The cooling by the auxiliary cooling He (sub) path 1A is continued, the second compressor system is started, and the circulation of the cooling He (cool) to the cooling He (cool) circulation path is started. The heat exchanger is cooled so that the cooling He (cool) temperature is 20K or less.
(3) The first heat regulation valve (V1a) of the auxiliary cooling He (sub) path 1A is closed, and the second flow control valve (V1b) of the auxiliary cooling He (sub) path 1B is opened, so that the vacuum heat insulation flexibility The flow rate of the auxiliary cooling He (sub) in the auxiliary cooling He (sub) path 1B is adjusted by the second flow rate adjusting valve (V1b) so that the temperature of the auxiliary cooling He (sub) at the outlet of the sex tube becomes 80K or less. To do.
(4) Start the first compressor system and circulate 3He and 4He in the mixed gas circulation path of 3He and 4He until the amount of liquefied 4He and liquefied 3He that can be stably operated in the mixing chamber and fractionator is accumulated. And replenish.
(5) The amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber and the fractionator by the operations of (1) to (4), and a 3He concentrated phase and a 3He diluted phase are collected in the mixing chamber. When the two phases are separated (steady operation state), the operation is continued in that state.
(i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相と3He希薄相とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路及び復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路2の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路2により下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセル、真空断熱可撓性管体内、第熱交換器、第熱交換器、真空断熱可撓性管体内、第三流量調節弁(V2)をこの順に経由して放出される補助冷却He(sub)経路2からなる、補助冷却系(C2)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路2の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E2)の運転方法であって、
少なくとも下記(1)〜(4)の操作手順で希釈冷凍装置を起動し、その後の運転を継続することを特徴とする希釈冷凍装置(E2)の運転方法。
(1)2段式機械式冷凍機を起動すると共に、液体Heベッセルから補助冷却用He(sub)を補助冷却He(sub)経路2に流通させて、該補助冷却用He(sub)により真空断熱可撓性管体内、第熱交換器、及び第熱交換器を補助冷却後、更に前記真空断熱可撓性管体内を補助冷却して第三流量調節弁(V2)から放出させながら、
2段式機械式冷凍機の第1段冷却部と第2段冷却部の温度が100K以下になるように冷却する。
(2)前記補助冷却用He(sub)による冷却を継続するとともに、第二コンプレッサー系を起動して、冷却He(cool)循環経路に冷却用He(cool)の循環を開始し、第二熱交換器の冷却用He(cool)温度が20K以下になるように冷却する。
(3)第一コンプレッサー系を起動して、混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まるまで3Heと4Heの混合ガス循環経路に3He及び4Heの循環と補充を行うと共に、第二熱交換器の補助冷却用He(sub)温度が5K以下になるように第三流量調節弁(V2)により補助冷却He(sub)経路2における補助冷却用He(sub)の流量を調節する。
(4)前記(1)〜(3)の操作により混合室及び分留器内に安定運転が可能となる量の液化4Heと液化3Heが溜まり、混合室内で3He濃厚相と3He希薄相とが2相分離したら(定常運転状態)、その状態で運転を継続する。
(I) From the outlet side of the first compressor system consisting of a vacuum pump and a compressor on the discharge side for circulating and feeding a mixed gas of 3He and 4He, in order of the first heat exchanger and the second heat exchanger, mixture of 3He and 4He that is liquefied by the impedance after being cooled in the mixed gas exchanges heat with the return of 3He and 4He is mixed fractionator, and the third in the order of the heat exchanger below the return path of 3He and 4He The path to the entrance of the mixing chamber which is cooled by heat exchange with the liquid and accommodated in a two-phase separated state into a 3He rich phase and a 3He dilute phase is defined as the forward path,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He by the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber,
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system composed of a compressor, and cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, the vacuum heat insulating flexible pipe body, the first heat exchanger, And the vacuum heat insulating flexible tube in this order, and further cooled by the second stage cooling section of the two-stage mechanical refrigerator or the first stage cooling section and then the second stage cooling section, and the vacuum A cooling He (cool) circulation path that passes through the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order to the inlet side of the second compressor system,
Cooling He circulation in which the cooling unit of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 2 are arranged in the second vacuum heat insulating container System (B),
(Iii) Auxiliary cooling He (sub) for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger is stored by the following auxiliary cooling He (sub) path 2. Liquid He vessel,
The auxiliary cooling He (sub) is used as a liquid He vessel, a vacuum heat insulating flexible tube, a second heat exchanger, a first heat exchanger, a vacuum heat insulating flexible tube, a third flow rate adjusting valve (V2). Auxiliary cooling system (C2) consisting of auxiliary cooling He (sub) path 2 discharged in this order, and (iv) disposed between the first vacuum insulation container and the second vacuum insulation container, A vacuum heat insulating flexible tube (D) in which a part of the cooling He (cool) circulation path and the auxiliary cooling He (sub) path 2 are accommodated;
An operation method of a dilution refrigeration apparatus (E2) including:
A method for operating the dilution refrigeration apparatus (E2), wherein the dilution refrigeration apparatus is started at least by the following operating procedures (1) to (4) and the subsequent operation is continued.
(1) The two-stage mechanical refrigerator is started, and auxiliary cooling He (sub) is circulated from the liquid He vessel to the auxiliary cooling He (sub) path 2, and vacuum is generated by the auxiliary cooling He (sub). After auxiliary cooling of the heat insulating flexible pipe, the second heat exchanger, and the first heat exchanger, the vacuum heat insulating flexible pipe is further auxiliary cooled and released from the third flow rate control valve (V2). ,
Cooling is performed so that the temperature of the first stage cooling unit and the second stage cooling unit of the two-stage mechanical refrigerator is 100K or less.
(2) Continue cooling with the auxiliary cooling He (sub), start the second compressor system, start circulation of the cooling He (cool) in the cooling He (cool) circulation path, and The exchanger is cooled so that the cooling He (cool) temperature is 20K or less.
(3) Start the first compressor system, and circulate 3He and 4He in the mixed gas circulation path of 3He and 4He until the amount of liquefied 4He and liquefied 3He that can be stably operated in the mixing chamber and fractionator is accumulated. And the auxiliary cooling He (sub) path 2 in the auxiliary cooling He (sub) path 2 by the third flow rate control valve (V2) so that the auxiliary cooling He (sub) temperature of the second heat exchanger becomes 5K or less. Adjust the flow rate of sub).
(4) The amount of liquefied 4He and liquefied 3He that can be stably operated is accumulated in the mixing chamber and fractionator by the operations of (1) to (3), and a 3He concentrated phase and a 3He diluted phase are mixed in the mixing chamber. When the two phases are separated (steady operation state), the operation is continued in that state.
前記冷却He循環系(B)において、第二コンプレッサー系の出口側と2段式機械式冷凍機の第1段冷却部との間の冷却He循環経路に配設された入側熱交換器で該第二コンプレッサー系出口側の冷却用He(cool)が第二コンプレッサー系入口側の冷却用He(cool)との間で熱交換により冷却され、
2段式機械式冷凍機の第1段冷却部と第2段冷却部との間の該冷却He循環経路に配設された出側熱交換器で2段式機械式冷凍機の第1段冷却部で冷却され真空断熱可撓性管体、第熱交換器、真空断熱可撓性管体をこの順で経由した冷却用He(cool)が、2段式機械式冷凍機の第2段冷却部で冷却された後真空断熱可撓性管体、第二熱交換器、真空断熱可撓性管体をこの順で経由して入側熱交換器流入前の冷却用He(cool)と熱交換により冷却されることを特徴とする、請求項1に記載の希釈冷凍装置(E1)又は請求項2に記載の希釈冷凍装置(E2)の運転方法。
In the cooling He circulation system (B), an inlet-side heat exchanger disposed in a cooling He circulation path between the outlet side of the second compressor system and the first stage cooling unit of the two-stage mechanical refrigerator. The cooling He (cool) on the outlet side of the second compressor system is cooled by heat exchange with the cooling He (cool) on the inlet side of the second compressor system,
The first stage of the two-stage mechanical refrigerator is an outlet side heat exchanger disposed in the cooling He circulation path between the first-stage cooling section and the second-stage cooling section of the two-stage mechanical refrigerator. The cooling He (cool) cooled in the cooling section and passed through the vacuum heat insulating flexible tube, the first heat exchanger, and the vacuum heat insulating flexible tube in this order is the second stage of the two-stage mechanical refrigerator. After cooling in the stage cooling section, the vacuum heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube are passed in this order to cool He (cool) before flowing into the inlet heat exchanger The method of operating the dilution refrigeration apparatus (E1) according to claim 1 or the dilution refrigeration apparatus (E2) according to claim 2, wherein the dilution refrigeration apparatus (E1) according to claim 1 or the dilution refrigeration apparatus (E2) according to claim 2 is cooled by heat exchange.
(i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相と3He希薄相とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路と復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、
第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路1の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路1Aにより下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、又は下記補助冷却He(sub)経路1Bにより下記真空断熱可撓性管体内を補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第熱交換器、第熱交換器、第一流量調節弁(V1a)をこの順に経由して放出する分岐経路1a(以下、補助冷却He(sub)経路1と分岐経路1aを併せて「補助冷却He(sub)経路1A」という)、
及び、該補助冷却用He(sub)を、液体Heベッセルから真空断熱可撓性管体出口側までの補助冷却He(sub)経路1と、その後分岐して第二流量調節弁(V1b)を経由して放出する分岐経路1b(以下、補助冷却He(sub)経路1と分岐経路1bを併せて「補助冷却He(sub)経路1B」という)、が形成可能な補助冷却He(sub)経路からなる、補助冷却系(C1)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路1の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E1)。
(I) From the outlet side of the first compressor system consisting of a vacuum pump and a compressor on the discharge side for circulating and feeding a mixed gas of 3He and 4He, in order of the first heat exchanger and the second heat exchanger, mixture of 3He and 4He that is liquefied by the impedance after being cooled in the mixed gas exchanges heat with the return of 3He and 4He is mixed fractionator, and the third in the order of the heat exchanger below the return path of 3He and 4He The path to the entrance of the mixing chamber which is cooled by heat exchange with the liquid and accommodated in a two-phase separated state into a 3He rich phase and a 3He dilute phase is defined as the forward path,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He through the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber.
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system comprising a compressor, and
It is cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, and the vacuum heat insulation flexible pipe body, the first heat exchanger, and the vacuum heat insulation flexible pipe body are The second stage cooling unit of the two-stage mechanical refrigerator or the first stage cooling unit and then the second stage cooling unit are further cooled in the order, and the second heat A cooling He (cool) circulation path that passes through the exchanger and the vacuum heat insulating flexible tube in this order and reaches the inlet side of the second compressor system,
Cooling He circulation in which the cooling part of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 1 are arranged in the second vacuum heat insulating container System (B),
(Iii) The following auxiliary cooling He (sub) path 1A is used for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger, or the following auxiliary cooling He (sub) path. A liquid He vessel in which auxiliary cooling He (sub) is stored for auxiliary cooling of the following vacuum heat insulating flexible tube by 1B;
The auxiliary cooling He (sub) is divided into an auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum heat insulating flexible tube outlet side, and then branched to form a second heat exchanger and a first heat exchanger. The branch path 1a that discharges the first flow rate control valve (V1a) in this order (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1a are collectively referred to as “auxiliary cooling He (sub) path 1A”). ,
And, the auxiliary cooling He (sub) is connected to the auxiliary cooling He (sub) path 1 from the liquid He vessel to the vacuum insulation flexible tube outlet side, and then branched to provide the second flow control valve (V1b). Auxiliary cooling He (sub) path capable of forming a branch path 1b that discharges via (hereinafter, the auxiliary cooling He (sub) path 1 and the branch path 1b are collectively referred to as "auxiliary cooling He (sub) path 1B"). An auxiliary cooling system (C1), and (iv) a cooling He (cool) circulation path and an auxiliary cooling He (sub) path 1 disposed between the first vacuum heat insulating container and the second vacuum heat insulating container. Vacuum insulated flexible tube (D) in which a part of
A dilution refrigeration apparatus (E1).
(i)3Heと4Heの混合ガスを循環圧送するための、真空ポンプとその吐出側のコンプレッサーからなる第一コンプレッサー系の出口側から、第一熱交換器及び第二熱交換器の順で下記復路の3Heと4Heの混合ガスと熱交換で冷却された後にインピーダンスで液化された3Heと4Heの混合液が、分留器、及び第三熱交換器の順で下記復路の3Heと4Heの混合液との熱交換により冷却されて、3He濃厚相と3He希薄相とに2相分離した状態で収容される混合室の入口までの経路を往路とし、
該混合室の出口から3He希薄相(下相)の液体が第三熱交換器を経由して分留器で気化し、該気化した3Heと4Heの混合ガスが、第二熱交換器、及び第一熱交換器の順で上記往路の3Heと4Heの混合ガスと熱交換されて第一コンプレッサー系の入口側に至る経路を復路として、
これらの往路及び復路によって3Heと4Heの混合ガスを循環させるための3Heと4Heの混合ガス循環経路が混合室と共に、第一真空断熱容器内に配設された希釈冷凍機系(A)、
(ii)前記第一熱交換器と第二熱交換器を冷却する冷却用He(cool)を冷却するための2段式機械式冷凍機、該冷却用He(cool)を循環圧送するためのコンプレッサーからなる第二コンプレッサー系、及び、第二コンプレッサー系の出口側から、2段式機械式冷凍機の第1段冷却部で冷却され、真空断熱可撓性管体内、第一熱交換器、及び真空断熱可撓性管体内をこの順で経由し、更に2段式機械式冷凍機の第2段冷却部、又は第1段冷却部と次に第2段冷却部とで冷却され、真空断熱可撓性管体内、第二熱交換器、及び真空断熱可撓性管体内をこの順で経由して、第二コンプレッサー系の入口側に至る冷却He(cool)循環経路、を備え、
2段式機械式冷凍機の冷却部、冷却He(cool)循環経路の一部、及び下記補助冷却He(sub)経路2の一部が、第二真空断熱容器に配設された冷却He循環系(B)、
(iii)下記補助冷却He(sub)経路2により下記真空断熱可撓性管体内と第一熱交換器と第二熱交換器とを補助冷却するための、補助冷却用He(sub)が貯蔵された液体Heベッセルと、
該補助冷却用He(sub)を、液体Heベッセル、真空断熱可撓性管体内、第熱交換器、第熱交換器、真空断熱可撓性管体内、第三流量調節弁(V2)をこの順に経由して放出される補助冷却He(sub)経路2からなる、補助冷却系(C2)、並びに
(iv)第一真空断熱容器と第二真空断熱容器との間に配設され、冷却He(cool)循環経路、及び補助冷却He(sub)経路2の一部が収納される真空断熱可撓性管体(D)、
を含む希釈冷凍装置(E2)。
(I) From the outlet side of the first compressor system consisting of a vacuum pump and a compressor on the discharge side for circulating and feeding a mixed gas of 3He and 4He, in order of the first heat exchanger and the second heat exchanger, mixture of 3He and 4He that is liquefied by the impedance after being cooled in the mixed gas exchanges heat with the return of 3He and 4He is mixed fractionator, and the third in the order of the heat exchanger below the return path of 3He and 4He The path to the entrance of the mixing chamber which is cooled by heat exchange with the liquid and accommodated in a two-phase separated state into a 3He rich phase and a 3He dilute phase is defined as the forward path,
From the outlet of the mixing chamber, a 3He dilute phase (lower phase) liquid is vaporized by a fractionator via a third heat exchanger, and the vaporized mixed gas of 3He and 4He is converted into a second heat exchanger, and In the order of the first heat exchanger, the path that is heat-exchanged with the mixed gas of 3He and 4He in the forward path and reaches the inlet side of the first compressor system is the return path,
A dilution refrigerator system (A) in which a mixed gas circulation path of 3He and 4He for circulating a mixed gas of 3He and 4He by the forward path and the return path is disposed in the first vacuum heat insulating container together with the mixing chamber,
(Ii) a two-stage mechanical refrigerator for cooling the cooling He (cool) for cooling the first heat exchanger and the second heat exchanger, for circulating and feeding the cooling He (cool) A second compressor system composed of a compressor, and cooled from the outlet side of the second compressor system by the first stage cooling unit of the two-stage mechanical refrigerator, the vacuum heat insulating flexible pipe body, the first heat exchanger, And the vacuum heat insulating flexible tube in this order, and further cooled by the second stage cooling section of the two-stage mechanical refrigerator or the first stage cooling section and then the second stage cooling section, and the vacuum A cooling He (cool) circulation path that passes through the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order to the inlet side of the second compressor system,
Cooling He circulation in which the cooling unit of the two-stage mechanical refrigerator, a part of the cooling He (cool) circulation path, and a part of the following auxiliary cooling He (sub) path 2 are arranged in the second vacuum heat insulating container System (B),
(Iii) Auxiliary cooling He (sub) for auxiliary cooling of the following vacuum heat insulating flexible tube, the first heat exchanger, and the second heat exchanger is stored by the following auxiliary cooling He (sub) path 2. Liquid He vessel,
The auxiliary cooling He (sub) is used as a liquid He vessel, a vacuum heat insulating flexible tube, a second heat exchanger, a first heat exchanger, a vacuum heat insulating flexible tube, a third flow rate adjusting valve (V2). Auxiliary cooling system (C2) consisting of auxiliary cooling He (sub) path 2 discharged in this order, and (iv) disposed between the first vacuum insulation container and the second vacuum insulation container, A vacuum heat insulating flexible tube (D) in which a part of the cooling He (cool) circulation path and the auxiliary cooling He (sub) path 2 are accommodated;
A dilution refrigeration apparatus (E2).
前記冷却He循環系(B)において、第二コンプレッサー系の出口側と2段式機械式冷凍機の第1段冷却部との間の冷却He循環経路に、該第二コンプレッサー系出口側の冷却用He(cool)が第二コンプレッサー系入口側の冷却用He(cool)との間で熱交換により冷却される、入側熱交換器が配設され、
2段式機械式冷凍機の第1段冷却部と第2段冷却部との間の該冷却He循環経路に、2段式機械式冷凍機の第1段冷却部で冷却され真空断熱可撓性管体、第熱交換器、真空断熱可撓性管体をこの順で経由した冷却用He(cool)が、2段式機械式冷凍機の第2段冷却部で冷却された後真空断熱可撓性管体、第二熱交換器、真空断熱可撓性管体をこの順で経由して入側熱交換器流入前の冷却用He(cool)と熱交換により冷却される、出側熱交換器が配設されている、ことを特徴とする、請求項4に記載の希釈冷凍装置(E1)又は請求項5に記載の希釈冷凍装置(E2)。
In the cooling He circulation system (B), in the cooling He circulation path between the outlet side of the second compressor system and the first stage cooling part of the two-stage mechanical refrigerator, the cooling on the outlet side of the second compressor system An inlet heat exchanger is provided in which the heat (cool) is cooled by heat exchange with the cooling He (cool) on the inlet side of the second compressor system,
The cooling He circulation path between the first stage cooling unit and the second stage cooling unit of the two-stage mechanical refrigerator is cooled by the first stage cooling unit of the two-stage mechanical refrigerator and vacuum insulated and flexible After cooling He (cool) for cooling that goes through the porous tube, the first heat exchanger, and the vacuum heat insulation flexible tube in this order, the second stage cooling unit of the two-stage mechanical refrigerator cools the vacuum. It is cooled by heat exchange with the cooling He (cool) before entering the inlet heat exchanger via the heat insulating flexible tube, the second heat exchanger, and the vacuum heat insulating flexible tube in this order. The dilution refrigeration apparatus (E1) according to claim 4 or the dilution refrigeration apparatus (E2) according to claim 5, wherein a side heat exchanger is provided.
前記2段式機械式冷凍機がGM冷凍機あるいはパルス管式冷凍機であることを特徴とする、請求項4に記載の希釈冷凍装置(E1)又は請求項5に記載の希釈冷凍装置(E2)。 The dilution refrigeration apparatus (E1) according to claim 4 or the dilution refrigeration apparatus (E2) according to claim 5, wherein the two-stage mechanical refrigerator is a GM refrigerator or a pulse tube refrigerator. ).
JP2009058940A 2009-03-12 2009-03-12 Operation method of dilution refrigerator and dilution refrigerator Active JP5400435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058940A JP5400435B2 (en) 2009-03-12 2009-03-12 Operation method of dilution refrigerator and dilution refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058940A JP5400435B2 (en) 2009-03-12 2009-03-12 Operation method of dilution refrigerator and dilution refrigerator

Publications (2)

Publication Number Publication Date
JP2010210195A JP2010210195A (en) 2010-09-24
JP5400435B2 true JP5400435B2 (en) 2014-01-29

Family

ID=42970558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058940A Active JP5400435B2 (en) 2009-03-12 2009-03-12 Operation method of dilution refrigerator and dilution refrigerator

Country Status (1)

Country Link
JP (1) JP5400435B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493553B (en) * 2011-08-11 2017-09-13 Oxford Instr Nanotechnology Tools Ltd Cryogenic cooling apparatus and method
JP2016142468A (en) * 2015-02-03 2016-08-08 大陽日酸株式会社 Dilution refrigeration device
JP2020076519A (en) * 2018-11-06 2020-05-21 大陽日酸株式会社 Dilution
JP2021127885A (en) * 2020-02-17 2021-09-02 住友重機械工業株式会社 Cryogenic system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580531B2 (en) * 2000-04-20 2004-10-27 大陽東洋酸素株式会社 Dilution refrigerator
JP4791894B2 (en) * 2006-06-14 2011-10-12 大陽日酸株式会社 Dilution refrigerator

Also Published As

Publication number Publication date
JP2010210195A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US9234691B2 (en) Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
CN110617650B (en) Cryogenic cooling system
US20140202174A1 (en) Closed Cycle 1 K Refrigeration System
JP6502422B2 (en) System and method for improving liquefaction rate in cryogenic gas liquefier of low temperature refrigerator
JP5400435B2 (en) Operation method of dilution refrigerator and dilution refrigerator
KR101319198B1 (en) Thermal converter for condensation and refrigeration system using the same
Lee et al. Design of high efficiency mixed refrigerant Joule–Thomson refrigerator for cooling HTS cable
JP4791894B2 (en) Dilution refrigerator
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
EP1785680A1 (en) Cooling apparatus
JP2001304709A (en) Dilution refrigerating machine
JP2008538856A (en) Cryostat assembly
JP5028117B2 (en) Dilution refrigerator
Uhlig Cryogen-free dilution refrigerators
JPH10246524A (en) Freezing device
JP2005090928A (en) Dilution refrigerating machine
JP4150825B2 (en) NMR probe
JP4570546B2 (en) Helium condenser
US6484516B1 (en) Method and system for cryogenic refrigeration
WO2002077543A1 (en) Freezing system using non-azeotropic type mixed refrigerant
CN112325498A (en) Dilution refrigeration system and method
Jahromi et al. Modeling, development, and experimental validation of a Joule–Thompson superfluid refrigerator using a pulse tube cryocooler
Wang et al. High capacity closed-cycle 1 K cryocooler
JPH1047803A (en) Improvement of cryogenic system
JP2003086418A (en) Cryogenic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250