JP5398838B2 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP5398838B2
JP5398838B2 JP2011527499A JP2011527499A JP5398838B2 JP 5398838 B2 JP5398838 B2 JP 5398838B2 JP 2011527499 A JP2011527499 A JP 2011527499A JP 2011527499 A JP2011527499 A JP 2011527499A JP 5398838 B2 JP5398838 B2 JP 5398838B2
Authority
JP
Japan
Prior art keywords
unit
transmission
doppler
frequency
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011527499A
Other languages
English (en)
Other versions
JPWO2011021262A1 (ja
Inventor
俊夫 若山
洋 酒巻
論季 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2011021262A1 publication Critical patent/JPWO2011021262A1/ja
Application granted granted Critical
Publication of JP5398838B2 publication Critical patent/JP5398838B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements

Description

この発明は、電磁波を送受信して目標物までの距離等を計測するレーダ装置に関する。
従来から、遠隔点の風を計測する装置として、コヒーレントライダ等の装置が知られている。コヒーレントライダは、送信パルス幅毎に受信IF(中間周波数:Intermediate Frequency)信号を切り出し、フーリエ変換等の周波数解析によってドップラ周波数を算出している(例えば、非特許文献1参照)。
ここで、非特許文献1に示されたように、送信波長1.5μm程度のレーザ光を用いて、−37〜37m/sの視線方向の風速を計測する場合、そのドップラ周波数は、−50〜50MHzとなる。すなわち、100MHzの帯域幅のドップラ周波数を計測する必要があるので、標本化定理に基づいて、200MSample/s以上のAD変換により受信信号を収集して周波数解析を実行する。
また、距離計測は、送信レーザ光にパルス変調を施し、送受信の時間差を計測することによって実行される。したがって、距離分解能は、パルス幅によって決定される。例えば、上記非特許文献1のコヒーレントライダにおいて、送信パルス幅を200nsとすると、距離分解能は30mとなる。
一方、速度分解能は、ドップラ周波数の分解能によって決定される。ここで、ドップラ周波数の分解能は、受信信号の観測時間の逆数となるので、観測時間が長くなるほどドップラ周波数の分解能は高くなる。しかしながら、受信信号の観測時間は、最大でも送信パルス幅となる。
そのため、上記非特許文献1のコヒーレントライダにおいて、送信パルス幅が200nsの場合には、ドップラ周波数の分解能は5MHzとなり、送信波長が1.5μmのときの速度分解能は3.75m/sとなる。このことから、距離分解能と速度分解能とは、ともに送信パルス幅によって決定される。また、送信パルス幅が短い方が距離分解能は高くなるが、逆に速度分解能は低くなるという関係がある。
浅香公雄、外6名、"風速計測用光波レーダの開発"、2000年7月、電子情報通信学会、信学技報SANE2000−39、p.15−20
しかしながら、従来技術には、以下のような課題がある。
上記非特許文献1のコヒーレントライダでは、送信パルス幅を200nsとしたときの距離分解能が30mとなるが、例えば航空機の後方に生じる後方乱気流の1つの渦の直径が数10m程度であることから、渦の構造を正確に捉えるには、必ずしも十分な距離分解能であるとは言えない。また、このとき、速度分解能を3.75m/sよりも落とすことは現実的ではないので、結局のところ、十分な距離分解能を得ることができない。
なお、コヒーレントライダでは、ビームが近距離ではほとんど広がらないので、電波を送受信するレーダと比較して、極めて高い角度分解能を得ることができるものの、上述したように、距離分解能は不十分である。
以上のように、従来のコヒーレントライダでは、距離分解能と速度分解能とが互いにトレードオフの関係にあるので、両者を同時に向上させることができないという問題がある。
この発明は、上記のような課題を解決するためになされたものであり、距離分解能および速度分解能の両方を同時に向上させることができるレーダ装置を得ることを目的とする。
この発明に係るレーダ装置は、送信部で生成された、複数のパルスを含む送信波を空間に放射し、空間に存在する目標物で反射して受信される受信波を、送信波を用いて周波数変換して受信信号を生成するとともに、送信波に対する受信信号の遅延時間に基づいて、目標物までの距離を計測するレーダ装置であって、受信信号から、送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成するフーリエ変換部と、フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出するピーク抽出部と、送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する乗算部と、乗算部で算出された複素共役積を複数回の観測について加算し、積分後複素共役積を算出する乗算値積分部と、積分後複素共役積の位相から、ドップラ速度を算出する速度算出部とを備えたものである。
この発明に係るレーダ装置によれば、送信波に対する受信信号の遅延時間に基づいて、目標物までの距離を計測するレーダ装置において、フーリエ変換部は、受信信号から、送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成する。ピーク抽出部は、フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出する。乗算部は、送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する。乗算値積分部は、乗算部で算出された複素共役積を複数回の観測について加算し、積分後複素共役積を算出する。速度算出部は、積分後複素共役積の位相から、ドップラ速度を算出する。これにより、距離分解能をパルスの幅で決定し、速度分解能をパルスの間隔で決定することができる。
そのため、距離分解能および速度分解能の両方を同時に向上させることができるレーダ装置を得ることができる。
この発明の実施の形態1に係るレーダ装置を示すブロック構成図である。(実施例1) この発明の実施の形態1に係るレーダ装置の送信波の振幅形状を示す模式図である。(実施例1) この発明の実施の形態1に係るレーダ装置における送信波の送信タイミングと受信信号の受信タイミングとの関係を示す模式図である。(実施例1) この発明の実施の形態1に係るレーダ装置の信号処理部を示すブロック構成図である。(実施例1) この発明の実施の形態1に係るレーダ装置において、受信信号に含まれる不要反射成分の発生状況を説明する説明図である。(実施例1) この発明の実施の形態1に係るレーダ装置における受信信号のドップラスペクトルを示す模式図である。(実施例1) この発明の実施の形態2に係るレーダ装置において、受信信号に含まれる不要反射成分の発生状況を説明する説明図である。(実施例2) この発明の実施の形態2に係るレーダ装置の信号処理部を示すブロック構成図である。(実施例2) この発明の実施の形態3に係るレーダ装置の送信波の振幅形状を示す模式図である。(実施例3)
以下、この発明のレーダ装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
図1は、この発明の実施の形態1に係るレーダ装置を示すブロック構成図である。
図1において、このレーダ装置は、送信部1、切り替え部2、放射部3、受信部4、AD(Analog to Digital)変換部5および信号処理部6を備えている。
以下、このレーダ装置の機能について説明する。
送信部1は、単一周波数の連続波を振幅変調して発生された送信パルスを複数含む送信波を生成して出力する。また、送信部1は、送信波を受信部4に出力する。
なお、この実施の形態1では、送信波がレーザ光である場合について説明するが、送信波はレーザ光に限定されるものではなく、光の周波数領域以外の一般の電磁波、または音波等であっても同様に適用することができる。
切り替え部2は、送信部1からの送信波を放射部3に出力するとともに、放射部3からの受信波を受信部4に出力する。
放射部3は、切り替え部2からの送信波を空間に放射するとともに、空間中に存在する目標物100で反射した送信波の一部を、受信波として受信する。
受信部4は、放射部3から切り替え部2を経由して入力された受信波を、送信部1からの送信波を用いて、中間周波数(IF:Intermediate Frequency)の受信信号に周波数変換する。受信部4で周波数変換された中間周波数の受信信号(IF受信信号)は、アナログ信号である。
AD変換部5は、信号処理をデジタル的に実行するために、受信部4からのIF受信信号をAD変換(アナログ−デジタル変換)し、デジタル化されたIF受信信号(以下、「受信信号」と略称する)を出力する。
信号処理部6は、AD変換部5からの受信信号に基づいて、信号処理を実行する。
ここで、送信部1が生成し、放射部3が空間に放射する送信波の振幅形状を、図2に模式的に示す。
図2において、送信波は、単一周波数の連続波を振幅変調して発生された送信パルスを2つ含んでいる。ここでは、パルス101aとパルス101bとからなる送信波形状をフレームと呼ぶことにする。
パルス101aのパルス幅102aとパルス101bのパルス幅102bとは、互いに等しい。また、1フレームの送信波は、時間間隔103だけ途切れた形状となっており、パルス間隔104aは、パルス101aの中心からパルス101bの中心までの間隔となる。そして、送信波のフレームは、時間間隔105の間隔で繰り返される。
パルス幅102aおよびパルス幅102bは、実現する距離分解能に応じて決定される。所望の距離分解能がΔrのとき、パルス幅τは、次式(1)で表される。式(1)において、cは光速を示している。
τ=2Δr/c (1)
また、時間間隔105をTと表したときに、Tは、次式(2)を満足するように設定される。式(2)において、Rmaxは最大観測距離を示している。
T>2Rmax/c (2)
式(2)は、最大観測距離に存在する目標物で反射した送信波が受信された後に、次のフレームを送信することを意味している。
続いて、送信波の送信タイミングと受信信号の受信タイミングとの関係を、図3に模式的に示す。
図3において、AD変換部5によるデータ収録は、タイミング116からタイミング117までの期間で実行される。ここで、タイミング116は、パルス101bの送信の終了以降となり、タイミング117は、時間間隔105によって決まる次の送信フレームの開始よりも前となるように設定されている。また、この期間に得られた受信信号を110とする。
なお、受信信号110は、サンプル間隔Δtでサンプルされるものとする。また、サンプル間隔Δtは、次式(3)を満足するように設定される。式(3)において、λは送信波長、Vaは計測するドップラ速度の範囲の幅を示している。
Δt<λ/Va (3)
例えば、ドップラ速度の計測範囲が−Vmaxから+Vmax(Vmax>0)の場合には、計測するドップラ速度の範囲の幅Vaは、次式(4)のようになる。
Va=2Vmax (4)
また、距離rの速度計測を実行する場合には、AD変換部5で得られたサンプルのうち、区間112aおよび区間112bのサンプルを用いる。区間112aおよび区間112bの幅は、それぞれパルス幅102aおよびパルス幅102bと等しいとする。また、時間間隔113も、パルス101aとパルス101bとの間の時間間隔103と等しいとする。
そのため、区間112aの中心から区間112bの中心までの時間間隔114aは、パルス101aの中心からパルス101bの中心までのパルス間隔104aと等しくなる。このとき、パルス101aとパルス111aとの時間差118をtrとすると、trは、次式(5)で表される。
tr=2r/c (5)
なお、上述した送信部1から信号処理部6までの処理の流れは、従来からある一般的なものである。この発明の実施の形態1に係るレーダ装置の特徴は、以降に説明する信号処理部6による信号処理にある。
図4は、この発明の実施の形態1に係るレーダ装置の信号処理部6を示すブロック構成図である。
図4において、信号処理部6は、フーリエ変換部11、スペクトル積分部12、ピーク検出部13、ピーク抽出部14、乗算部15、乗算値積分部16、速度算出部17および折り返し補正部18を有している。
以下、信号処理部6の機能について説明する。
フーリエ変換部11は、AD変換部5からの受信信号に対して、パルス112aおよびパルス112bのそれぞれについてフーリエ変換を実行する。これによって得られるフーリエ変換後の受信信号は、ドップラ周波数に対応する周波数点にピークを有するものとなる。
スペクトル積分部12は、フーリエ変換部11からのフーリエ変換後の受信信号の電力値を算出することにより、受信信号のパワースペクトルを得る。ここで、スペクトル積分部12は、得られたパワースペクトルからピーク検出を実行する際の検出性能を向上させるために、複数回の送信で得られるパワースペクトルを電力加算、すなわち積分する。
ピーク検出部13は、スペクトル積分部12からの積分されたパワースペクトルに対してピーク検出処理を実行し、パワースペクトルが最大となるピークを検出して、ピーク位置の周波数点をピーク抽出部14および折り返し補正部18に出力する。
ピーク抽出部14は、フーリエ変換部11で得られたフーリエ変換後の受信信号から、ピーク検出部13で検出された周波数点の信号成分を抽出する。ここで、抽出する信号の位相情報を用いて後段のドップラ速度の算出が実行されることから、位相情報を含んでいるフーリエ変換部11の出力から信号成分を抽出する。なお、スペクトル積分部12で積分されるパワースペクトルは、電力値となっているので、位相情報を含んでいない。そのため、パワースペクトルの情報は、ピーク位置の周波数点を取り出すことにのみ使用される。
具体的には、ピーク抽出部14は、パルス112aとパルス112bとの両方から信号成分を抽出する。抽出された信号成分をそれぞれa(i)、b(i)とする。ただし、iは、i番目の送信による観測で得られた信号であることを示している。
乗算部15は、2つの信号成分a(i)、b(i)の複素共役積を取ることにより、次式(6)で表されるように、2つの信号成分a(i)、b(i)の相互相関値R(i)を算出する。
Figure 0005398838
この相互相関値R(i)の位相は、図3に示した時間間隔114a(=パルス間隔104a)の間に、信号の位相がどれだけ進んだかを表している。したがって、相互相関値R(i)の位相から、ドップラ周波数を算出することができる。しかしながら、信号成分a(i)、b(i)には、不要成分が含まれている。
以下、図5を参照しながら、信号成分a(i)、b(i)に含まれる不要成分について説明する。図5において、水平方向は時間を示し、垂直方向は距離を示している。
送信部1で生成されて放射部3から空間に放射された送信波のパルス101aおよびパルス101bは、距離Bに存在する目標物で反射され、区間112aおよび区間112bでそれぞれ受信され、フーリエ変換後にピーク抽出部14で信号成分が抽出されて信号成分a(i)および信号成分b(i)となる。
ここで、信号成分a(i)は、パルス101bが距離Cで反射された不要反射成分を含み、信号成分b(i)は、パルス101aが距離Aで反射された不要反射成分を含む。そのため、相互相関値R(i)は、距離Aおよび距離Cからの不要反射成分の影響を含む。
乗算値積分部16は、上記不要反射成分の影響を取り除くために、次式(7)で表されるように、相互相関値R(i)を積分し、積分後相互相関値R(チルダ)を算出する。
Figure 0005398838
距離Cでの不要反射成分は信号成分a(i)にしか含まれないので、信号成分b(i)とは相関を持たず、また、距離Aでの不要反射成分は信号成分b(i)にしか含まれないので、信号成分a(i)とは相関を持たない。したがって、複数回の観測の平均を取ることにより、距離Aおよび距離Cでの不要反射成分は、距離Bからの反射成分と比較して、相対的に小さくなる。そこで、式(7)より、積分回数Nを十分に大きくすれば、距離Aおよび距離Cからの不要反射成分の、積分後相互相関値R(チルダ)への影響は十分に小さくなる。
速度算出部17は、不要反射成分の影響が低減された積分後相互相関値R(チルダ)の位相から、次式(8)を用いて、ドップラ速度vDを算出する。式(8)において、Tiは時間間隔114a(=パルス間隔104a)を示している。
Figure 0005398838
式(8)より、速度分解能がパルス間隔によって決定されることが分かる。また、式(8)で算出したドップラ速度vDは、時間間隔Tiでの位相差に基づいて算出した値である。したがって、時間間隔Tiの間に2πを超える位相回転が存在している場合には、算出したドップラ速度vDに曖昧さが含まれることとなる。すなわち、曖昧さを含まずに算出できるドップラ速度vDの間隔は、λ/(2Ti)となる。
一方、区間112aまたは区間112bのフーリエ変換では、上述したサンプル間隔Δtによって、速度算出の曖昧さが決定される。したがって、サンプル間隔Δtが十分に小さくなるようなサンプルをAD変換部5で実行すれば、ドップラ速度vDの曖昧さは生じない。そのため、ピーク検出部13での検出結果を用いることにより、速度算出部17で算出されたドップラ速度vDの曖昧さを解消することができる。
しかしながら、このフーリエ変換では、区間112aの時間長で決定されるドップラ周波数の分解能しか得ることができない。具体的には、区間112aの時間幅がパルス101aのパルス幅τと等しいので、ドップラ周波数の分解能は1/τとなり、ドップラ速度の分解能はλ/(2τ)となる。
ここで、時間間隔Tiがパルス幅τよりも大きくなると、フーリエ変換によるドップラ速度の分解能が、速度算出部17で算出されたドップラ速度vDに含まれる曖昧さよりも大きくなる。
このことは、速度算出部17の速度算出結果の曖昧さを完全に解消できるほどの精度が、フーリエ変換にないことを意味している。
そこで、フーリエ変換による速度推定において、速度分解能よりも細かい精度で推定値を得ることを考える。その一例として、例えばフーリエ変換部11に入力される受信信号の系列の後に、0の系列を付加(0詰め)することが挙げられる。これにより、実際の受信信号の長さを長くすることはできないが、みかけの信号長を長くすることはできる。
このような0詰め後の受信信号に対してフーリエ変換を実行したときの結果を、図6に模式的に示す。図6において、破線は真のドップラスペクトルを表している。
0詰めをしていない受信信号に対するフーリエ変換では、上述したように、ドップラ周波数の分解能は1/τとなり、図6中の黒丸のようにフーリエ変換の結果が得られる。
このとき、例えば元の受信信号と同じ長さの0を付加した後にフーリエ変換を実行すると、フーリエ変換の対象となる信号長が2倍になる。そのため、ドップラ周波数の分解能を半分にすることができる。したがって、この場合には、図6中の白丸の位置にもフーリエ変換の結果を得ることができる。その結果、ピーク周波数の抽出精度を向上させることができる。
このように、フーリエ変換による速度の算出において、従来の観測時間から決定される速度分解能よりも高い精度でドップラ速度vDを算出することができる。しかしながら、受信信号に雑音が含まれている場合には、上述した方法による速度分解能の向上にも限界がある。
そこで、より高い精度でドップラ速度vDを算出するために、より長い受信信号の観測時間によってドップラ速度vDを算出すること、すなわち、速度算出部17において、時間間隔114a(=パルス間隔104a)の観測時間によって算出されたドップラ速度vDを組み合わせることを考える。
具体的には、曖昧さを考慮すると、速度算出部17によるドップラ速度vDの算出結果は、次式(9)で表される。式(9)において、nは整数、vaは2πに相当するドップラ速度を示している。
Figure 0005398838
折り返し補正部18は、整数nを変えて得られるドップラ速度vDのうち、ピーク検出部13で検出されたパワースペクトルのピークで得られるドップラ速度に最も近い値が、真のドップラ速度vDであるとして、測定値を算出する。折り返し補正部18は、このような、曖昧さの解消、すなわち速度折り返し補正を実行する。
以上のように、実施の形態1によれば、送信波に対する受信信号の遅延時間に基づいて、目標物までの距離を計測するレーダ装置において、フーリエ変換部は、受信信号から、送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成する。ピーク抽出部は、フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出する。乗算部は、送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する。乗算値積分部は、乗算部で算出された複素共役積を複数回の観測について加算し、積分後複素共役積を算出する。速度算出部は、積分後複素共役積の位相から、ドップラ速度を算出する。これにより、距離分解能をパルスの幅で決定し、速度分解能をパルスの間隔で決定することができる。
そのため、距離分解能および速度分解能の両方を同時に向上させることができるレーダ装置を得ることができる。
また、折り返し補正部は、ピーク抽出部で最大電力周波数成分を抽出した周波数を入力し、その周波数から粗い精度のドップラ速度を得るとともに、粗い精度のドップラ速度と整合するように、速度算出部で算出されたドップラ速度の折り返し補正を実行する。また、フーリエ変換部は、フーリエ変換前の受信信号に0の系列を付加する。
そのため、ドップラ速度に含まれる曖昧さを解消して、ドップラ速度を高精度に算出することができる。
なお、上記実施の形態1において、折り返し補正部は、ピーク抽出部で最大電力周波数成分を抽出した周波数の近傍において、電力値分布の重心となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、粗い精度のドップラ速度と整合するように、速度算出部で算出されたドップラ速度の折り返し補正を実行してもよい。
また、上記実施の形態1において、折り返し補正部は、電力値分布に理論的な電力分布モデルを適用することによって、電力値が最大となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、粗い精度のドップラ速度と整合するように、速度算出部で算出されたドップラ速度の折り返し補正を実行してもよい。
さらに、このとき、送信部が、送信波に含まれるパルスの間隔が送信毎に所定の周期で変化するように送信波を生成し、折り返し補正部が、パルス間隔の互いに異なる送信波による観測において、速度算出部で算出された全てのドップラ速度と整合するように、ドップラ速度の折り返し補正を実行してもよい。
これらの場合も、上記実施の形態1と同様の効果を得ることができる。
実施の形態2.
上記実施の形態1では、送信波形内に2つの送信パルスを含む送信波を例に挙げて説明したが、これに限定されず、送信波には3つ以上の送信パルスが含まれていてもよい。
以下、3つの送信パルスを含む送信波を用いる場合について説明する。
図7は、この発明の実施の形態2に係るレーダ装置における送信および受信の状況を模式的に示す説明図である。図7では、図5と比較して、送信波のパルス101cが増え、また、受信信号の区間112cが増えている。
図7において、受信信号には、距離A、B、Cからの反射波の他に、距離D、E、Fからの反射波も含まれることとなる。しかしながら、受信信号の3つの区間112a、112b、112cのうち、複数の区間で受信されるのは、距離Bからの反射波のみである。そのため、例えば区間112aおよび区間112bの受信信号を用いて算出されるドップラ速度v1と、区間112bおよび区間112cの受信信号を用いて算出されるドップラ速度v2とは、速度の折り返しを除いてそれぞれ正しい値となる。
ここで、ドップラ速度v1とドップラ速度v2とは、用いる受信信号の時間間隔が互いに異なるために、速度の折り返し方が両者で異なることとなる。そこで、曖昧さを考慮して算出されるドップラ速度v1およびドップラ速度v2の候補のうち、両者で整合の取れる値を選択すれば、折り返しのない正しいドップラ速度を得ることができる。
図8は、この発明の実施の形態2に係るレーダ装置の信号処理部6Aを示すブロック構成図である。
図8において、信号処理部6Aは、フーリエ変換部11、切り替え部19、スペクトル積分部12a、12b、ピーク検出部13a、13b、ピーク抽出部14a、14b、乗算部15a、15b、乗算値積分部16a、16b、速度算出部17a、17bおよび速度修正部20を有している。
また、図8において、スペクトル積分部12a、12bから速度演算部17a、17bまでは、2重になっている。なお、符号にaを付けたものは、区間112aおよび区間112bの受信信号を処理する系であり、符号にbを付けたものは、区間112bおよび区間112cの受信信号を処理する系である。すなわち、切り替え部19は、フーリエ変換部11からのフーリエ変換後の受信信号のうち、区間112aおよび区間112bに対応する信号を、符号にaを付けた系に出力し、区間112bおよび区間112cに対応する信号を、符号にbを付けた系に出力する。
速度算出部17aで算出されるドップラ速度と、速度算出部17bで算出されるドップラ速度とは、速度の折り返しを除いて互いに等しい。そこで、速度修正部20は、速度算出部17aおよび速度算出部17bで算出されるドップラ速度について、それぞれ複数の折り返し数を想定してドップラ速度の候補を算出し、両者で一致する値を正しいドップラ速度として選択する。
以上のように、実施の形態2によれば、送信部は、3つ以上のパルスを含む送信波を生成し、乗算部は、異なる時間間隔の組み合わせで複素共役積を算出し、速度算出部は、異なる時間間隔の組み合わせについて算出された積分後複素共役積の全てと整合するようにドップラ速度を算出する。
そのため、距離分解能を向上させるためにパルス間隔を短くした場合であっても、ドップラ速度を高精度に算出することができる。また、送信波形内に3つ以上の送信パルスが含まれているので、折返し補正も可能となり、ドップラ速度を高精度に算出することができる。
実施の形態3.
上記実施の形態2では、送信波形内に3つ以上の送信パルスを含む送信波を例に挙げて説明したが、これに限定されず、送信波形内に含まれる送信パルスを2つとし、送信毎にパルス間隔を複数通りに変えてもよい。
以下、2つの送信パルスを含む送信波を用い、送信毎にパルス間隔を複数通りに変えて観測を実行する場合について説明する。
なお、この発明の実施の形態3に係るレーダ装置の信号処理部の構成は、上述した実施の形態2と同様なので、その説明を省略する。
図9は、この発明の実施の形態3に係るレーダ装置の送信波の振幅形状を示す模式図である。
図9において、送信波は、1番目の送信ではパルス間隔104aで、2番目の送信ではパルス間隔104bで、3番目の送信ではパルス間隔104cで、4番目の送信ではパルス間隔104dでそれぞれ送信され、以後継続して送信される。
ここで、パルス間隔104aおよびパルス間隔104cは、互いに同じ間隔とし、また、パルス間隔104bおよびパルス間隔104dも、互いに同じ間隔とする。なお、パルス間隔104b、104dは、パルス間隔104a、104cよりも長い間隔となっている。このとき、パルス間隔104a、104cの送信波に対応する受信信号を用いて算出されるドップラ速度と、パルス間隔104b、104dの送信波に対応する受信信号を用いて算出されるドップラ速度とは、速度の折り返しを除いてそれぞれ正しい値となる。
そこで、上述した実施の形態2と同様に、速度修正部20において、速度算出部17aで算出されるドップラ速度(パルス間隔104a、104cの送信波に対応)、および速度算出部17bで算出されるドップラ速度(パルス間隔104b、104dの送信波に対応)について、それぞれ複数の折り返し数を想定してドップラ速度の候補を算出し、両者で一致する値を正しいドップラ速度として選択する。
以上のように、実施の形態3によれば、送信部は、送信波に含まれるパルスの間隔が、送信毎に所定の周期で変化するように送信波を生成し、乗算部は、等しいパルス間隔の組み合わせで複素共役積を算出し、速度算出部は、等しいパルス間隔の組み合わせについて算出された積分後複素共役積の全てと整合するようにドップラ速度を算出する。
そのため、上述した実施の形態2と同様に、距離分解能を向上させるためにパルス間隔を短くした場合であっても、ドップラ速度を高精度に算出することができる。また、送信波形内に2つの送信パルスのみが含まれているので、不要反射成分の発生が少なく、かつ複数通りのパルス間隔でドップラ速度を算出することができるので、折返し補正も可能となり、ドップラ速度を高精度に算出することができる。

Claims (10)

  1. 送信部で生成された、複数のパルスを含む送信波を空間に放射し、空間に存在する目標物で反射して受信される受信波を、前記送信波を用いて周波数変換して受信信号を生成するとともに、前記送信波に対する前記受信信号の遅延時間に基づいて、前記目標物までの距離を計測するレーダ装置であって、
    前記受信信号から、前記送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成するフーリエ変換部と、
    前記フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出するピーク抽出部と、
    前記送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の前記最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する乗算部と、
    前記乗算部で算出された前記複素共役積を複数回の観測について加算し、積分後複素共役積を算出する乗算値積分部と、
    前記積分後複素共役積の位相から、ドップラ速度を算出する速度算出部と、
    を備えたレーダ装置。
  2. 前記送信部は、前記送信波に含まれるパルスの間隔が、パルスの幅と同じ、またはパルスの幅よりも広くなるように前記送信波を生成する請求項1に記載のレーダ装置。
  3. 前記送信部は、想定する最大観測距離に対応する前記受信信号の遅延時間よりも長い時間間隔で繰り返し前記送信波を生成する請求項1または請求項2に記載のレーダ装置。
  4. 前記送信部は、3つ以上のパルスを含む前記送信波を生成し、
    前記乗算部は、異なる時間間隔の組み合わせで前記複素共役積を算出し、
    前記速度算出部は、異なる時間間隔の組み合わせについて算出された前記積分後複素共役積の全てと整合するように前記ドップラ速度を算出する
    請求項1から請求項3までの何れか1項に記載のレーダ装置。
  5. 前記送信部は、前記送信波に含まれるパルスの間隔が、送信毎に所定の周期で変化するように前記送信波を生成し、
    前記乗算部は、等しいパルス間隔の組み合わせで前記複素共役積を算出し、
    前記速度算出部は、等しいパルス間隔の組み合わせについて算出された前記積分後複素共役積の全てと整合するように前記ドップラ速度を算出する
    請求項1から請求項3までの何れか1項に記載のレーダ装置。
  6. 前記ピーク抽出部で前記最大電力周波数成分を抽出した周波数を入力し、その周波数から粗い精度のドップラ速度を得るとともに、前記粗い精度のドップラ速度と整合するように、前記速度算出部で算出された前記ドップラ速度の折り返し補正を実行する折り返し補正部をさらに備えた
    請求項1から請求項3までの何れか1項に記載のレーダ装置。
  7. 前記フーリエ変換部は、フーリエ変換前の前記受信信号に0の系列を付加する請求項6に記載のレーダ装置。
  8. 前記ピーク抽出部で前記最大電力周波数成分を抽出した周波数の近傍において、電力値分布の重心となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、前記粗い精度のドップラ速度と整合するように、前記速度算出部で算出された前記ドップラ速度の折り返し補正を実行する折り返し補正部をさらに備えた
    請求項1から請求項3までの何れか1項に記載のレーダ装置。
  9. 前記ピーク抽出部で前記最大電力周波数成分を抽出した周波数の近傍において、電力値分布に理論的な電力分布モデルを適用することによって、電力値が最大となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、前記粗い精度のドップラ速度と整合するように、前記速度算出部で算出された前記ドップラ速度の折り返し補正を実行する折り返し補正部をさらに備えた
    請求項1から請求項3までの何れか1項に記載のレーダ装置。
  10. 前記送信部は、前記送信波に含まれるパルスの間隔が、送信毎に所定の周期で変化するように前記送信波を生成し、
    前記折り返し補正部は、パルス間隔の互いに異なる前記送信波による観測において、前記速度算出部で算出された全てのドップラ速度と整合するように、前記ドップラ速度の折り返し補正を実行する
    請求項6から請求項9までの何れか1項に記載のレーダ装置。
JP2011527499A 2009-08-17 2009-08-17 レーダ装置 Expired - Fee Related JP5398838B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064390 WO2011021262A1 (ja) 2009-08-17 2009-08-17 レーダ装置

Publications (2)

Publication Number Publication Date
JPWO2011021262A1 JPWO2011021262A1 (ja) 2013-01-17
JP5398838B2 true JP5398838B2 (ja) 2014-01-29

Family

ID=43606728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011527499A Expired - Fee Related JP5398838B2 (ja) 2009-08-17 2009-08-17 レーダ装置

Country Status (2)

Country Link
JP (1) JP5398838B2 (ja)
WO (1) WO2011021262A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134577A (ko) * 2014-05-22 2015-12-02 주식회사 만도 다중 fmcw 레이더 송수신 장치 및 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190349A (ja) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp レーダ装置
JP2017146273A (ja) * 2016-02-19 2017-08-24 パナソニック株式会社 レーダ装置
US10830878B2 (en) * 2016-12-30 2020-11-10 Panosense Inc. LIDAR system
WO2021170133A1 (zh) * 2020-02-28 2021-09-02 加特兰微电子科技(上海)有限公司 提升目标探测精度的方法、集成电路、无线电器件及电子设备
CN117111109A (zh) * 2023-08-28 2023-11-24 南京威翔科技有限公司 一种用于低空监视的时序控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281333A (ja) * 1992-03-31 1993-10-29 Mitsubishi Electric Corp レーダ信号処理装置
JPH11183616A (ja) * 1997-12-22 1999-07-09 Mitsubishi Electric Corp 気象レーダ装置
JP2001133544A (ja) * 1999-11-02 2001-05-18 Mitsubishi Electric Corp レーダ装置及びそのコヒーレント積分方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281333A (ja) * 1992-03-31 1993-10-29 Mitsubishi Electric Corp レーダ信号処理装置
JPH11183616A (ja) * 1997-12-22 1999-07-09 Mitsubishi Electric Corp 気象レーダ装置
JP2001133544A (ja) * 1999-11-02 2001-05-18 Mitsubishi Electric Corp レーダ装置及びそのコヒーレント積分方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134577A (ko) * 2014-05-22 2015-12-02 주식회사 만도 다중 fmcw 레이더 송수신 장치 및 방법
KR102064777B1 (ko) 2014-05-22 2020-01-13 주식회사 만도 다중 fmcw 레이더 송수신 장치 및 방법

Also Published As

Publication number Publication date
JPWO2011021262A1 (ja) 2013-01-17
WO2011021262A1 (ja) 2011-02-24

Similar Documents

Publication Publication Date Title
CN106405541B (zh) 全相参连续波多普勒雷达及其测距测速方法
JP5871559B2 (ja) レーダ装置
US7342651B1 (en) Time modulated doublet coherent laser radar
JP5398838B2 (ja) レーダ装置
JP5197138B2 (ja) マルチスタティックレーダ装置
JP5660973B2 (ja) レーダ装置
CN106932765A (zh) 具有相位噪声估计的雷达设备
JP5620216B2 (ja) パラメータ検出器、レーダ装置、誘導装置、及びパラメータ検出方法
CN101788671B (zh) 应用于外差探测啁啾调幅激光测距装置的多周期调制方法
JP2011149805A (ja) レーダ装置、飛翔体誘導装置及び目標検出方法
CN104919331A (zh) 雷达装置
JP6324327B2 (ja) パッシブレーダ装置
CN109613507B (zh) 一种针对高阶机动目标雷达回波的检测方法
JP6164918B2 (ja) レーダ装置
JP5235737B2 (ja) パルスドップラレーダ装置
JP5460290B2 (ja) レーダ装置
JP2012042214A (ja) レーダ装置
WO2019010259A1 (en) RADAR SYSTEMS AND METHODS USING COMPOSITE WAVEFORMS FOR CUSTOMIZING RESOLUTION REQUIREMENTS
JP6546109B2 (ja) レーダ装置
JP2010175457A (ja) レーダ装置
JP3799337B2 (ja) Fm−cwレーダ装置および該装置における妨害波除去方法
JP5464001B2 (ja) レーダ装置、レーダ信号処理方法及びレーダ信号処理プログラム
CN104111450A (zh) 一种利用双脉冲探测目标微多普勒特征的方法及系统
JP5553970B2 (ja) レーダ装置
KR102235571B1 (ko) 저가형 다중 레이다를 이용한 거리 해상도 향상 기법

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees