JP5398442B2 - Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element - Google Patents

Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element Download PDF

Info

Publication number
JP5398442B2
JP5398442B2 JP2009210811A JP2009210811A JP5398442B2 JP 5398442 B2 JP5398442 B2 JP 5398442B2 JP 2009210811 A JP2009210811 A JP 2009210811A JP 2009210811 A JP2009210811 A JP 2009210811A JP 5398442 B2 JP5398442 B2 JP 5398442B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
base material
dye
conversion element
sensitized photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009210811A
Other languages
Japanese (ja)
Other versions
JP2011060664A (en
Inventor
剛志 木嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009210811A priority Critical patent/JP5398442B2/en
Publication of JP2011060664A publication Critical patent/JP2011060664A/en
Application granted granted Critical
Publication of JP5398442B2 publication Critical patent/JP5398442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、接触抵抗が低減された集電部の色素増感型光電変換素子の製造方法、および集電部の接触抵抗が低減された色素増感型光電変換素子に関する。   The present invention relates to a method for producing a dye-sensitized photoelectric conversion element of a current collector with reduced contact resistance, and a dye-sensitized photoelectric conversion element with reduced contact resistance of a current collector.

色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、高い変換効率を得られる光電変換素子として着目されている(例えば、非特許文献1を参照)。
色素増感型太陽電池は、シリコン系の従来型の太陽電池と比較して大幅な低価格化が可能とされているが、発電部に使用される導電性基板の価格が低価格化の障害となっている。従来構造の色素増感型太陽電池においては、特に光が入射する側の電極(窓電極)には、可視光の透過性と高い伝導性が要求されるため、ガラス基板やプラスチック基板上にスズドープ酸化インジウムやフッ素ドープ酸化スズといった透明導電性金属酸化物を塗布した基板が用いられてきた。したがって、このような透明導電性基板を用いていない、全く新しい構造の色素増感型太陽電池が実現するならば、太陽電池の大幅な低価格化が可能であるとして研究開発が進められている。
The dye-sensitized solar cell has been proposed by a group such as Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high conversion efficiency (see, for example, Non-Patent Document 1).
Dye-sensitized solar cells can be significantly reduced in price compared to silicon-based conventional solar cells, but the price of conductive substrates used in power generation units is an obstacle to lower prices It has become. In a dye-sensitized solar cell having a conventional structure, the electrode (window electrode) on which light enters is particularly required to have visible light transmission and high conductivity. A substrate coated with a transparent conductive metal oxide such as indium oxide or fluorine-doped tin oxide has been used. Therefore, if a dye-sensitized solar cell having a completely new structure that does not use such a transparent conductive substrate is realized, research and development are being carried out on the assumption that the cost of solar cells can be greatly reduced. .

これらの解決手段として、金属線を発電部の作用極に用いる新規な素子構造(特許文献1、2、3、4参照)が提案されている。しかし、これらの構造においては、作用極に金属線を採用したがゆえに、大面積の太陽電池モジュールの構成が困難となり、本来、色素増感型光電変換素子が有する、大面積化が容易であるという利点を損なう結果となった。そのため、上記の利点を損なうことのない素子構造の開発が必要とされている。
さらに、大面積素子を可能とする構造として、特許文献5、特許文献6に記載されたように、金属線をメッシュ状に編みこむ構造も提案されている。
As a solution to these problems, a novel element structure (see Patent Documents 1, 2, 3, and 4) using a metal wire as a working electrode of a power generation unit has been proposed. However, in these structures, since a metal wire is used for the working electrode, it is difficult to configure a large-area solar cell module, and it is easy to increase the area that a dye-sensitized photoelectric conversion element originally has. As a result, the advantage was lost. Therefore, it is necessary to develop an element structure that does not impair the above advantages.
Furthermore, as described in Patent Document 5 and Patent Document 6, a structure in which metal wires are knitted in a mesh shape has been proposed as a structure that enables a large-area element.

特開2008−181690号公報JP 2008-181690 A 特開2008−181691号公報JP 2008-181691 A 特開2005−196982号公報JP 2005-196982 A 特表2005−516370号公報JP 2005-516370 gazette 特開2001−283941号公報JP 2001-283941 A 特開2001−283944号公報JP 2001-283944 A

O'Regan B., Graetzel M., Alow cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991年, 353号, 737-739ページO'Regan B., Graetzel M., Alow cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-739

ところで、上述したような金属細線を用いた色素増感型太陽電池の場合、使用される金属細線には電解質に対する耐食性が必要とされるため、TiやWなどの限られた金属しか使用することができなかった。しかし、これらの線材は概して導電率が低く、また、線材の価格が高いといった問題があった。この問題に対しては、Cu線をTiで被覆した金属線(以下、Ti被覆Cu線)を作製することで、導電性に関する問題、および価格の問題は克服できる。しかし、Ti被覆Cu線を使用する場合においては、Tiは、はんだ付けが難しい材料である上、接触抵抗も高いため、集電が困難であるという問題があった。   By the way, in the case of the dye-sensitized solar cell using the metal thin wire as described above, the metal thin wire to be used needs to have corrosion resistance to the electrolyte, so that only limited metals such as Ti and W are used. I could not. However, these wires have a problem that their electrical conductivity is generally low and the price of the wires is high. With respect to this problem, by producing a metal wire in which a Cu wire is coated with Ti (hereinafter referred to as a Ti-coated Cu wire), the problem regarding conductivity and the problem of cost can be overcome. However, when using a Ti-coated Cu wire, Ti is a material that is difficult to solder and has a high contact resistance, which makes it difficult to collect current.

この発明は、このような事情を考慮してなされたもので、その目的は、複数の金属線を網目状に編まれてなる布状構造の作用極を有する色素増感型光電変換素子において、確実な集電構造を提供し、ひいては光電変換効率が向上した色素増感型光電変換素子を提供することにある。   This invention was made in consideration of such circumstances, and the object thereof is a dye-sensitized photoelectric conversion element having a working electrode having a cloth-like structure formed by knitting a plurality of metal wires in a mesh shape. An object of the present invention is to provide a dye-sensitized photoelectric conversion element that provides a reliable current collecting structure and thus has improved photoelectric conversion efficiency.

本発明の色素増感型光電変換素子の製造方法は、導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域からなる作用極と、前記領域から前記第1基材および/または前記第2基材が、その長手方向に延在された部位から構成される集電用配線と、該集電用配線の端部近傍をまとめて電気的に接続する集電部とを有し、導電性を有するとともに線状をなす複数の外周基材と前記集電用配線とが網目状に編まれてなる他の領域を有する色素増感型光電変換素子の製造方法であって、前記第1基材、前記第2基材、および前記外周基材として、Cu導線をTiで被覆したものを用い、前記他の領域にCu箔を重ね、さらに前記他の領域と前記Cu箔を挟むように2つのTi箔を重ねた後、各々のTi箔と垂直をなす方向より抵抗溶接用電極を当接させ、抵抗溶接法を用いて圧着し、前記集電部の内部に溶融部を形成することを特徴とする。
本発明の色素増感型光電変換素子の製造方法は、前記圧着がスポット状になされてもよい。
本発明の色素増感型光電変換素子の製造方法は、前記圧着がライン状になされてもよい。
The method for producing a dye-sensitized photoelectric conversion element of the present invention includes a working electrode comprising a region in which a plurality of first and second base materials that are conductive and linear are knitted in a mesh shape, The first base material and / or the second base material from the region is connected to the current collecting wiring composed of the portions extending in the longitudinal direction, and the vicinity of the ends of the current collecting wiring is electrically connected together. A dye-sensitized type having a plurality of outer peripheral base materials that are electrically conductive and linear, and other regions in which the current-collecting wiring is knitted in a mesh shape In the method for manufacturing a photoelectric conversion element, as the first base material, the second base material, and the outer peripheral base material, a Cu conductive wire coated with Ti is used, and a Cu foil is stacked on the other region. Furthermore, after two Ti foils are stacked so as to sandwich the other region and the Cu foil, It is brought into contact with from the resistance welding electrode direction forming a resistance welding process crimped with, and forming a molten portion into the interior of the current collector.
In the method for producing a dye-sensitized photoelectric conversion element of the present invention, the pressure bonding may be performed in a spot shape.
In the method for producing a dye-sensitized photoelectric conversion element of the present invention, the pressure bonding may be performed in a line shape.

本発明の色素増感型光電変換素子は、導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域からなる作用極と、前記第1基材または前記第2基材の一方の一端側が、前記領域からその長手方向に延在された部位から構成される集電用配線と、該集電用配線の端部近傍をまとめて電気的に接続する集電部とを有し、導電性を有するとともに線状をなす複数の外周基材と前記集電用配線とが網目状に編まれてなる他の領域を有する色素増感型光電変換素子であって、前記第1基材、前記第2基材、および前記外周基材は、Cu導線をTiで被覆したものであり、前記集電部は、前記他の領域とCu箔とからなる溶融部が、Ti箔で挟まれた構造を有することを特徴とする。
本発明の色素増感型光電変換素子は、前記集電部に前記構造がスポット状に点在してもよい。
本発明の色素増感型光電変換素子は、前記集電部に前記構造がライン状に延在してもよい。
The dye-sensitized photoelectric conversion element of the present invention includes a working electrode including a region in which a plurality of first and second base materials that are conductive and have a linear shape are knitted in a mesh shape, and the first electrode One end side of the base material or the second base material is electrically connected to the current collecting wiring composed of a portion extending in the longitudinal direction from the region and the vicinity of the end of the current collecting wiring. A dye-sensitized photoelectric device having a plurality of outer peripheral base materials that are conductive and have a linear shape and another region in which the current-collecting wiring is knitted in a mesh shape In the conversion element, the first base material, the second base material, and the outer peripheral base material are obtained by coating Cu conductive wires with Ti, and the current collecting unit includes the other region, Cu foil, The melting part is made of a structure sandwiched between Ti foils.
In the dye-sensitized photoelectric conversion element of the present invention, the structure may be spot-like scattered in the current collector.
In the dye-sensitized photoelectric conversion element of the present invention, the structure may extend in a line shape in the current collector.

色素増感型光電変換素子の製造方法において、集電部を、線状の基材が網目状に編まれてなる領域に対してCu箔を重ね、さらに領域とCu箔を挟むようにTi箔を重ねた後、抵抗溶接法を用いて圧着し溶融部を形成する製造方法としたため、Cu箔より簡単に集電することができ、さらに接触抵抗が低減されるという効果が得られる。
また、抵抗溶接するにあたって、ライン溶接を行うことによって、溶融部の面積が広がり、より接触抵抗が低減される。
さらに、本発明の集電構造を備えてなる色素増感型光電変換素子は、集電部における接触抵抗が低減されることにより、光電変換効率が向上するという効果が得られる。
In the method for producing a dye-sensitized photoelectric conversion element, the current collector is a Ti foil so that a Cu foil is stacked on a region in which a linear base material is knitted in a mesh shape, and the region and the Cu foil are further sandwiched. Since the manufacturing method is such that the molten portion is formed by pressure bonding using a resistance welding method, the current can be collected more easily than the Cu foil, and the effect of reducing the contact resistance can be obtained.
Moreover, in performing resistance welding, by performing line welding, the area of a fusion | melting part spreads and contact resistance is reduced more.
Furthermore, the dye-sensitized photoelectric conversion element provided with the current collection structure of the present invention has an effect that the photoelectric conversion efficiency is improved by reducing the contact resistance in the current collection part.

本発明の実施形態に係る光電変換素子の概略構成図である。It is a schematic block diagram of the photoelectric conversion element which concerns on embodiment of this invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 光電変換素子の集電部の断面図であって(a)は抵抗溶接前、(b)は抵抗溶接中、(c)は抵抗溶接後の断面図である。It is sectional drawing of the current collection part of a photoelectric conversion element, (a) is before resistance welding, (b) is during resistance welding, (c) is sectional drawing after resistance welding. 本発明の他の実施形態に係る光電変換素子の概略構成図である。It is a schematic block diagram of the photoelectric conversion element which concerns on other embodiment of this invention.

(第1の実施形態)
以下、図面を参照しながら、本発明の第1の実施形態について詳細に説明する。図1は本発明の第1の実施形態の集電部を備えた光電変換素子を示す概略構成図、図2は、図1のII−II線に沿う、光電変換素子の断面図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating a photoelectric conversion element including a current collector according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the photoelectric conversion element taken along line II-II in FIG.

図1、図2に示すように、本実施形態の光電変換素子1は、平面視矩形の発電部2と該発電部2の外部に設けられた集電部3とから構成されており、発電部2において発生した電子が、発電部2の一辺より延在する集電用配線4を介して集電部3において集電される構成である。
発電部2は、平面視矩形の布状構造の作用極5と、平面視矩形の板状の対極6とがセパレータ10を介して重ね合わされるように構成されている。布状構造の作用極5は、導電性を有する複数の第1基材8と複数の第2基材9と、該第1基材8と第2基材9の周囲に配され色素を担持した多孔質酸化物半導体層13とから構成されており、該多孔質酸化物半導体層13は、増感色素とともに電解質18をも含浸している。
第1基材8と第2基材9とはともに線状をなし、これら第1基材8と第2基材9とが網目状に編まれることで矩形の布状構造をなしている。
As shown in FIGS. 1 and 2, the photoelectric conversion element 1 according to the present embodiment includes a power generation unit 2 having a rectangular shape in plan view and a current collection unit 3 provided outside the power generation unit 2. In this configuration, electrons generated in the unit 2 are collected in the current collecting unit 3 via a current collecting wire 4 extending from one side of the power generating unit 2.
The power generation unit 2 is configured such that a working electrode 5 having a cloth-like structure having a rectangular shape in plan view and a plate-like counter electrode 6 having a rectangular shape in plan view are overlapped via a separator 10. The working electrode 5 having a cloth-like structure has a plurality of first base materials 8 and a plurality of second base materials 9 having conductivity, and is arranged around the first base material 8 and the second base material 9 to carry a dye. The porous oxide semiconductor layer 13 is impregnated with the electrolyte 18 together with the sensitizing dye.
Both the first base material 8 and the second base material 9 are linear, and the first base material 8 and the second base material 9 are knitted in a mesh shape to form a rectangular cloth-like structure. .

対極6は、板状の導電性基材であり、セパレータ10を介して作用極5と重ね合わされている。また対極6は、集電部3と対となる引出電極6aを有しており、この引出電極6aは、発電部2の外側に延出している。
作用極5と対極6、およびその間に挿入されているセパレータ10は、支持シート15とともに収納袋14内に収納されており、収納袋14内は電解質18で満たされている。
The counter electrode 6 is a plate-like conductive base material, and is overlapped with the working electrode 5 via the separator 10. The counter electrode 6 has an extraction electrode 6 a that is paired with the current collector 3, and the extraction electrode 6 a extends to the outside of the power generation unit 2.
The working electrode 5 and the counter electrode 6, and the separator 10 inserted between them are housed in the storage bag 14 together with the support sheet 15, and the storage bag 14 is filled with the electrolyte 18.

支持シート15は、絶縁体からなるシートであり、前記収納袋14と前記作用極5との間、及び/又は前記収納袋14と前記対極6との間に挿入されていてもよい。該支持シート15が挿入されていることにより、該収納袋14を平面的な形状に支持することがより容易となり、該収納袋14と該作用極5及び/又は該対極6とが機械的に擦れて該収納袋14が傷つくことを低減できる。
前記支持シート15としては、透光性を有し、電解質18に対して化学的に安定な材料であれば特に制限されず、例えばPET、PEN(ポリエチレンナフタレート)、PTFE(ポリテトラフルオロエチレン)等が挙げられる。該支持シート15の厚さは、例えば10μm以上100μm以下でよい。
The support sheet 15 is a sheet made of an insulator, and may be inserted between the storage bag 14 and the working electrode 5 and / or between the storage bag 14 and the counter electrode 6. By inserting the support sheet 15, it becomes easier to support the storage bag 14 in a planar shape, and the storage bag 14 and the working electrode 5 and / or the counter electrode 6 are mechanically connected. It can reduce that the storage bag 14 is damaged by rubbing.
The support sheet 15 is not particularly limited as long as it is light-transmitting and chemically stable with respect to the electrolyte 18. For example, PET, PEN (polyethylene naphthalate), PTFE (polytetrafluoroethylene) Etc. The thickness of the support sheet 15 may be, for example, 10 μm or more and 100 μm or less.

作用極5を構成する複数の第1基材8の全ては、作用極5より延長されることで外方へ引き出され集電用配線4となり、外部において集電領域19(他の領域)を有している。
集電領域19は、集電用配線4を構成する第1基材8と、導電性を有する複数の外周基材20とから構成されている。外周基材20は線状をなしており、集電用配線4と網目状に編まれてなる部位を構成する。
All of the plurality of first base members 8 constituting the working electrode 5 are extended outward from the working electrode 5 to be drawn out to become the current collecting wiring 4, and the current collecting region 19 (other region) is formed outside. Have.
The current collecting area 19 is composed of a first base material 8 constituting the current collecting wiring 4 and a plurality of outer peripheral base materials 20 having conductivity. The outer peripheral base material 20 has a linear shape, and constitutes a part formed by meshing with the current collector wiring 4.

集電領域19にはCu箔21が重ねられ、さらに集電領域19とCu箔21とは、2枚のTi箔22a、22bにより挟み込まれている。集電領域19とCu箔21とTi箔22a、22bとは、抵抗溶接法により圧着され、複数のスポット溶接部24において一体化されている。Cu箔21は、その一部が外部へ引き出されており、この部分より集電が可能となっている。   A Cu foil 21 is overlaid on the current collecting region 19, and the current collecting region 19 and the Cu foil 21 are sandwiched between two Ti foils 22a and 22b. The current collecting region 19, the Cu foil 21, and the Ti foils 22 a and 22 b are pressure-bonded by a resistance welding method and integrated in a plurality of spot welds 24. A part of the Cu foil 21 is drawn to the outside, and current can be collected from this part.

以下、各構成要素について、詳細に説明する。
第1基材8、第2基材9、および外周基材20は直径0.05mmのCu線をTiで被覆した金属線(以下、Ti被覆Cu線)である。以下、Ti被覆金属線としてTi被覆Cu線の製造方法の一例を記す。
まず、Tiを押出成型等によってパイプ状に形成すると共に、Cuを押出成型等によって線状に形成し、これらTiパイプとCu線を同時に走行させつつTi製パイプの内部にCuを挿入し、これらを絞って、両者間を密着させて、Ti被覆Cu線を得る。
Hereinafter, each component will be described in detail.
The 1st base material 8, the 2nd base material 9, and the outer periphery base material 20 are the metal wires (henceforth Ti covering Cu wire) which coat | covered the 0.05 mm diameter Cu wire with Ti. Hereinafter, an example of a method for producing a Ti-coated Cu wire as a Ti-coated metal wire will be described.
First, Ti is formed into a pipe shape by extrusion molding or the like, and Cu is formed into a linear shape by extrusion molding or the like, and Cu is inserted into the Ti pipe while running these Ti pipe and Cu wire at the same time. Squeezing and bringing them into close contact with each other to obtain a Ti-coated Cu wire.

作用極5は、所定本数の第1基材8および第2基材9が互いに網目状に編まれてなる構造を有している。第1基材8と第2基材9とは、重複部において互いが十分接触するように編まれ、矩形をなす布状構造を有している。
第1基材8、第2基材9、および外周基材20はTi被覆Cu線に限ることはなく、W被覆Cu線など、電解液に対し腐食性を有する線材も使用可能である。Ti被覆Al線など、導電率の高い線材も使用可能である。
このような基材の太さ(直径)は、例えば、10μm〜10mmとするのが好ましい。ただし、柔軟性を十分に発揮させるためには、基材の太さは細いほどよい。
The working electrode 5 has a structure in which a predetermined number of the first base material 8 and the second base material 9 are knitted in a mesh shape. The 1st base material 8 and the 2nd base material 9 are knitted so that it may mutually contact in an overlapping part, and have the cloth-like structure which makes a rectangle.
The 1st base material 8, the 2nd base material 9, and the outer periphery base material 20 are not restricted to Ti covering Cu wire, The wire which has corrosivity with respect to electrolyte solution, such as W covering Cu wire, can also be used. Wires with high conductivity such as Ti-coated Al wires can also be used.
The thickness (diameter) of such a substrate is preferably 10 μm to 10 mm, for example. However, in order to fully exhibit flexibility, the thinner the substrate, the better.

発電部2において、複数の第2基材9は、図1における上下方向に延在しているとともに、図1における左右方向に所定本数列設されている。
複数の第1基材8は、図1における上下方向に所定本数列設されているとともに、図1における左右方向に集電部3まで延在している。つまり、作用極5を構成する基材のうち第1基材8の全ては、矩形をなす発電部2の一辺より発電部2から延長されるように、外部に引き出されている。
延長された第1基材8は、所定位置で外周基材20と互いに交差するように網目状に編まれることで、布状構造を形成する。外周基材20は、布状構造の形成が可能となるように、3本以上からなることが好ましい。
In the power generation unit 2, the plurality of second base materials 9 extend in the vertical direction in FIG. 1 and are arranged in a predetermined number in the horizontal direction in FIG. 1.
The plurality of first base materials 8 are arranged in a predetermined number in the vertical direction in FIG. 1 and extend to the current collector 3 in the horizontal direction in FIG. That is, all of the first base materials 8 among the base materials constituting the working electrode 5 are drawn out so as to be extended from the power generation section 2 from one side of the power generation section 2 having a rectangular shape.
The extended first base material 8 is knitted in a mesh shape so as to intersect with the outer peripheral base material 20 at a predetermined position, thereby forming a cloth-like structure. It is preferable that the outer periphery base material 20 consists of three or more so that a cloth-like structure can be formed.

第1基材8および第2基材9のうち、作用極5の布状構造をなす部分には、その表面に多孔質酸化物半導体層13が配されており、その表面には少なくとも一部に増感色素及び電解質18が担持されている。第1基材8のうち、集電用配線部4には多孔質酸化物半導体層13が配されることはない
多孔質酸化物半導体層13を形成する半導体は、酸化チタン(TiO)である。この酸化チタンの膜厚は約5μmとしたが、特に限定されるものではなく、例えば、1μm〜50μmであってよい。
多孔質酸化物半導体層13を形成する半導体としては酸化チタンに限ることはなく、一般に色素増感型太陽電池に用いられるものであれば、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化タングステン(WO)など様々な半導体電極が制限なく使用可能である。
Of the first base material 8 and the second base material 9, the porous oxide semiconductor layer 13 is disposed on the surface of the portion that forms the cloth-like structure of the working electrode 5. A sensitizing dye and an electrolyte 18 are supported on the substrate. Of the first substrate 8, the porous oxide semiconductor layer 13 is not disposed on the current collecting wiring portion 4. The semiconductor forming the porous oxide semiconductor layer 13 is titanium oxide (TiO 2 ). is there. The thickness of the titanium oxide is about 5 μm, but is not particularly limited, and may be, for example, 1 μm to 50 μm.
The semiconductor that forms the porous oxide semiconductor layer 13 is not limited to titanium oxide, and is generally zinc oxide (ZnO), tin oxide (SnO 2 ), oxidation, as long as it is used for dye-sensitized solar cells. Various semiconductor electrodes such as zinc (ZnO), niobium oxide (Nb 2 O 5 ), and tungsten oxide (WO 3 ) can be used without limitation.

増感色素としては、例えば、N719、N3、ブラックダイなどのルテニウム錯体、ポルフィリン、フタロシアニン等の含金属錯体をはじめ、エオシン、ローダミン、メロシアニン等の有機色素などを適用することができ、これらの中から用途、使用半導体に適した励起挙動をとるものを適宜選択すれば良い。   Examples of the sensitizing dye include ruthenium complexes such as N719, N3, and black dye, metal-containing complexes such as porphyrin and phthalocyanine, and organic dyes such as eosin, rhodamine, and merocyanine. From the above, it is only necessary to appropriately select one having an excitation behavior suitable for the application and the semiconductor used.

多孔質酸化物半導体層13内には、電解液が含浸されており、この電解液も前記電解質18の一部を構成している。この場合、多孔質酸化物半導体層13内の電解質18は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン液体をベースとしたもの、さらには、酸化物半導体粒子及び導電性粒子を含むゲル状の電解質などが用いられる。   The porous oxide semiconductor layer 13 is impregnated with an electrolytic solution, and this electrolytic solution also constitutes a part of the electrolyte 18. In this case, the electrolyte 18 in the porous oxide semiconductor layer 13 is formed by impregnating the porous oxide semiconductor layer 13 with an electrolytic solution, or impregnating the porous oxide semiconductor layer 13 with an electrolytic solution. Then, the electrolyte solution is gelled (pseudo-solidified) using an appropriate gelling agent and formed integrally with the porous oxide semiconductor layer 13 or based on an ionic liquid Further, a gel electrolyte containing oxide semiconductor particles and conductive particles is used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒やイオン液体に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
また、揮発性電解質溶液に代えて、一般に色素増感型太陽電池に用いられるものであれば、溶媒がイオン液体であるものやゲル化したものだけではなく、p型無機半導体や有機ホール輸送層といった固体であっても制限なく使用可能である。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents and ionic liquids, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.
Moreover, if it replaces with a volatile electrolyte solution and is generally used for a dye-sensitized solar cell, not only what a solvent is an ionic liquid or the gelatinized thing but a p-type inorganic semiconductor and an organic hole transport layer Even solids such as these can be used without limitation.

上記イオン液体としては、特に限定されるものではないが、室温で液体であり、例えば、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF ,PF ,(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
Although it does not specifically limit as said ionic liquid, It is a liquid at room temperature, For example, the normal temperature molten salt which used the compound which has the quaternized nitrogen atom as a cation is mentioned.
Examples of the cation of the room temperature molten salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, and quaternized ammonium derivatives.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], and iodide ions.
Specific examples of the ionic liquid include salts composed of quaternized imidazolium-based cations and iodide ions or bistrifluoromethylsulfonylimide ions.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質18の半導電性を低下させることがなく、電解質18に含まれる他の共存成分に対する科学的安定性に優れることが必要である。特に、電解質18がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。   The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but are excellent in miscibility with an electrolyte mainly composed of an ionic liquid and gel the electrolyte. Is used. In addition, the oxide semiconductor particles are required to have excellent scientific stability against other coexisting components contained in the electrolyte 18 without reducing the semiconductivity of the electrolyte 18. In particular, even when the electrolyte 18 includes a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.

このような酸化物半導体粒子としては、TiO、SnO、SiO、ZnO、Nb、In、ZrO、Al、WO、SrTiO、Ta、La、Y、Ho、Bi、CeOからなる群から選択される1種または2種以上の混合物が好ましく、その平均粒径は2nm〜1000nm程度が好ましい。 Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , SiO 2 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Al 2 O 3 , WO 3 , SrTiO 3 , Ta 2 O 5 , One or a mixture of two or more selected from the group consisting of La 2 O 3 , Y 2 O 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 is preferable, and the average particle size is about 2 nm to 1000 nm. preferable.

上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。
また、導電性粒子の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質18に含まれる他の共存成分に対する化学的安定性に優れることが必要である。
特に、電解質18がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化反応による劣化を生じないものが好ましい。
As the conductive fine particles, conductive particles such as a conductor and a semiconductor are used.
Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. Furthermore, it is necessary to be excellent in chemical stability against other coexisting components contained in the electrolyte 18.
In particular, even when the electrolyte 18 contains an oxidation-reduction pair such as iodine / iodide ions or bromine / bromide ions, an electrolyte that does not deteriorate due to an oxidation reaction is preferable.

このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。   Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

対極6は、導電性を有する板状をなし、その表面が不導態となる厚み0.1mmのTi板から構成される。また、対極6は、表面にPtからなる触媒膜(不図示)を有している。なお、集電のため、端部に引出電極6aが設けられている。
作用極5と対極6との間には、作用極5と対極6との短絡を防止するために、非導電性の材料からなる、厚さ20μmのセパレータ10が挿入されている。
The counter electrode 6 is formed of a Ti plate having a thickness of 0.1 mm, which has a conductive plate shape and has a non-conductive surface. The counter electrode 6 has a catalyst film (not shown) made of Pt on the surface. Note that an extraction electrode 6a is provided at the end for current collection.
In order to prevent a short circuit between the working electrode 5 and the counter electrode 6, a separator 10 made of a nonconductive material and having a thickness of 20 μm is inserted between the working electrode 5 and the counter electrode 6.

さらに作用極5、対極6、およびセパレータ10は、PET、またはPEN(ポリエチレンナフタレート)からなる収納袋14内に収納されている。該収納袋14に用いられる材料としては、PET、PENに限ることはなく、透光性を有し、電解液に耐えられる材料であれば、適宜変更可能である。
収納袋14内には、電解質18が封入されており、作用極5の集電用配線4および対極6の引出電極6aを外部に出すようにして、接着剤で封止されている。接着剤の材料としては、電解質に耐え、収納袋14およびTiと良好な接着力が得られるものが好ましい。
Furthermore, the working electrode 5, the counter electrode 6, and the separator 10 are accommodated in a storage bag 14 made of PET or PEN (polyethylene naphthalate). The material used for the storage bag 14 is not limited to PET and PEN, and can be appropriately changed as long as the material has translucency and can withstand the electrolytic solution.
An electrolyte 18 is sealed in the storage bag 14 and sealed with an adhesive so that the current collection wiring 4 of the working electrode 5 and the extraction electrode 6a of the counter electrode 6 are exposed to the outside. As an adhesive material, an adhesive material that can withstand an electrolyte and can provide a good adhesive force with the storage bag 14 and Ti is preferable.

次に、本発明の光電変換素子の集電部3の構造および製造方法について説明する。図3は、集電部3の構造と製造方法を示す図である。
本発明の光電変換素子の集電部3は、発電部2と同様に布状電極を有している。集電を実施するために、Cu箔21が用いられており、Cu箔21と布状電極をなす集電領域19重ね合わされた上で、抵抗溶接法を用いて一体化されている。
Next, the structure and manufacturing method of the current collector 3 of the photoelectric conversion element of the present invention will be described. FIG. 3 is a diagram illustrating the structure and manufacturing method of the current collector 3.
The current collector 3 of the photoelectric conversion element of the present invention has a cloth-like electrode like the power generator 2. In order to carry out current collection, a Cu foil 21 is used. The Cu foil 21 and the current collecting region 19 forming a cloth-like electrode are overlapped with each other and then integrated using a resistance welding method.

ただし、Cu箔21と布状電極である集電領域19との間で直接抵抗溶接法を用いて圧着を行うと、CuはTiと比較して融点が低いため、抵抗溶接時にTiより先に溶融してしまう。この場合、溶融したCuが抵抗溶接法で使用される抵抗溶接用電極25に溶着してしまうため、集電領域19とCuとは接合しない。また、布状電極の集電領域19と抵抗溶接用電極25とを直接接触させて抵抗溶接を行うと、接触状態によって接合状態に差が生じるため、溶接が安定しない。   However, when direct pressure welding is performed between the Cu foil 21 and the current collecting region 19 which is a cloth-like electrode, Cu has a lower melting point than Ti, and therefore, prior to Ti during resistance welding. It will melt. In this case, since the molten Cu is deposited on the resistance welding electrode 25 used in the resistance welding method, the current collecting region 19 and Cu are not joined. In addition, if resistance welding is performed by directly bringing the current collecting region 19 of the cloth electrode and the resistance welding electrode 25 into contact, a difference occurs in the joining state depending on the contact state, so that welding is not stable.

そこで、本発明においては、図3(a)に示すように、集電領域19とCu箔21とを重ね合わせた上に、さらにこの集電領域19とCu箔21とを一対のTi箔22a、22bで挟み込んだ状態で抵抗溶接を行った。図2(b)は、集電領域19とCu箔21と一対のTi箔22a、22bとを、一対の抵抗溶接用電極25で加圧した上で電流を流し、抵抗溶接を実施している様子を示す図である。
その結果、図2(c)に示すように、抵抗溶接時に、内側の集電部3とCu箔21が溶融することで溶融部23を形成し、Cu箔21と集電部3とが完全に接合した。その一方で、抵抗溶接用電極25はTi箔22a、22bのみと接触するので、抵抗溶接用電極25にCuが溶着することはなかった。
溶接後は、接触抵抗の低いCu箔21の部分から集電するため、集電が容易となる。
Therefore, in the present invention, as shown in FIG. 3A, the current collecting region 19 and the Cu foil 21 are overlapped, and the current collecting region 19 and the Cu foil 21 are further paired with a pair of Ti foils 22a. , 22b was resistance welded. In FIG. 2B, the current collecting region 19, the Cu foil 21, and the pair of Ti foils 22 a and 22 b are pressed with a pair of resistance welding electrodes 25, and a current is passed to perform resistance welding. It is a figure which shows a mode.
As a result, as shown in FIG. 2 (c), during resistance welding, the inner current collector 3 and the Cu foil 21 are melted to form a melted portion 23, and the Cu foil 21 and the current collector 3 are completely formed. Joined. On the other hand, since the resistance welding electrode 25 is in contact with only the Ti foils 22a and 22b, Cu was not deposited on the resistance welding electrode 25.
After welding, current is collected from the portion of the Cu foil 21 having low contact resistance, so that current collection becomes easy.

上述したような構成の光電変換素子1は、集電部3を構成する布状の集電領域19とCu箔21とが抵抗溶接法を用いて圧着され、集電領域19とCu箔21とが溶融されることによって、集電領域19とCu箔21の間の接触抵抗が大幅に低減され、光電変換効率が著しく向上する。
また、Cu箔21に電気機器などを接続導体を介して接続した場合、太陽光などの光線を入射させると、発電部2において発生した電子のうち、第1基材8に発生した電子の全てを取り出すことが可能となるため、光電変換効率が向上する。
また、発電部2は、布状構造の作用極5、薄板状の対極6、およびPETからなる収納袋14の組合せであるため、フレキシブル性に優れた光電変換素子1の製造が可能となる。また、光電変換素子1の薄型化も可能となる。
また、第1基材8と第2基材9とからなる作用極5を互いに交差するように網目状に編む際、同時に集電部3を網目状に編むことによって、より短時間で作用極5と集電領域19を形成することが可能となる。
In the photoelectric conversion element 1 configured as described above, the cloth-shaped current collecting region 19 and the Cu foil 21 constituting the current collecting unit 3 are pressure-bonded using a resistance welding method, and the current collecting region 19 and the Cu foil 21 are Is melted, the contact resistance between the current collecting region 19 and the Cu foil 21 is greatly reduced, and the photoelectric conversion efficiency is remarkably improved.
In addition, when an electrical device or the like is connected to the Cu foil 21 via a connection conductor, all of the electrons generated in the first base material 8 among the electrons generated in the power generation unit 2 when a light beam such as sunlight is incident. Thus, photoelectric conversion efficiency is improved.
Moreover, since the electric power generation part 2 is the combination of the working electrode 5 of cloth-like structure, the thin plate-like counter electrode 6, and the storage bag 14 which consists of PET, manufacture of the photoelectric conversion element 1 excellent in flexibility is attained. In addition, the photoelectric conversion element 1 can be thinned.
Further, when the working electrode 5 composed of the first base material 8 and the second base material 9 is knitted in a mesh shape so as to cross each other, the current collector 3 is knitted in a mesh shape at the same time, so that the working electrode can be obtained in a shorter time. 5 and the current collecting region 19 can be formed.

(第2の実施形態)
本発明の第2の実施形態について詳細に説明する。図4は本発明の第2の実施形態の集電部を備えた光電変換素子を示す概略構成図である。
(Second Embodiment)
The second embodiment of the present invention will be described in detail. FIG. 4 is a schematic configuration diagram illustrating a photoelectric conversion element including a current collector according to the second embodiment of the present invention.

本実施形態は、溶接部がライン状であること以外は、第1の実施形態とほぼ同様である。すなわち、本実施形態の集電部3の製造の際は、第11の実施形態と同様に抵抗溶接法を用いて圧着を行うが、第1の実施形態がスポット溶接を実施していたことに対して、ライン溶接を実施しており、その結果、溶接部は、図4の符合24aに示すように、ライン状をなしている。   This embodiment is substantially the same as the first embodiment except that the welded portion is in a line shape. That is, when manufacturing the current collector 3 of the present embodiment, the pressure welding is performed using the resistance welding method similarly to the eleventh embodiment, but the first embodiment performs spot welding. On the other hand, line welding is performed, and as a result, the welded portion has a line shape as indicated by reference numeral 24a in FIG.

上述したような構成の、第2の実施形態の光電変換素子1は、抵抗溶接するに当たってライン溶接を行うことによって、溶融部の面積が広がり、より接触抵抗が低減される。   In the photoelectric conversion element 1 according to the second embodiment having the above-described configuration, the area of the melted portion is expanded and the contact resistance is further reduced by performing line welding in resistance welding.

(実施例)
図1に示す構造の光電変換素子を作製した。
まず、直径0.050mmまで伸線したTi被覆Cu線を、図1のように織機により密な平織り構造の布状電極に製織した。縦横のTi被覆Cu線が織り重ねられる矩形部分(発電部)のサイズは10cm×10cmとし、Ti被覆Cu線の本数は縦横それぞれ1500〜2000本とした。
集電部を構成するTi被覆Cu線の本数は1500〜2000本とし、集電部の幅は1cmとした。
(Example)
A photoelectric conversion element having the structure shown in FIG. 1 was produced.
First, a Ti-coated Cu wire drawn to a diameter of 0.050 mm was woven into a cloth electrode having a dense plain weave structure using a loom as shown in FIG. The size of the rectangular portion (power generation unit) on which the vertical and horizontal Ti-coated Cu wires are woven is 10 cm × 10 cm, and the number of Ti-coated Cu wires is 1500 to 2000 in the vertical and horizontal directions.
The number of Ti-coated Cu wires constituting the current collector was 1500 to 2000, and the width of the current collector was 1 cm.

この発電部をTiOペースト(触媒化成製、PST-21NR)中に浸漬した後に引き上げて仮乾燥(完全に乾燥させない状態)させた。その後、電気炉にて500℃、1時間焼結して多孔質TiO膜付きTi布状部を得た。TiOの膜厚はおよそ15μmであった。なお、作用極を構成する発電部(10cm×10cm)以外の部分は、ペーストへの浸漬の際には、テープなどによりマスキングを行うことによって、TiOが形成されるのは、発電部のみとなった。 This power generation part was immersed in TiO 2 paste (catalyst conversion, PST-21NR) and then pulled up and temporarily dried (in a state where it was not completely dried). Thereafter, 500 ° C. in an electric furnace to obtain a porous TiO 2 film with Ti cloth portion was sintered for 1 hour. The film thickness of TiO 2 was approximately 15 μm. In addition, when the portion other than the power generation unit (10 cm × 10 cm) constituting the working electrode is immersed in the paste, TiO 2 is formed only by the power generation unit by masking with a tape or the like. became.

次に、上記電極を、ルテニウム色素(Solaronix社製、RutheAlum535-bisTBA、一般には
N719と呼ばれる)の0.3mM、アセトニトリル/tert-ブタノール=1:1溶液に浸漬し、室温で24時間放置してTiO表面に色素を担持した。色素溶液から引き上げた後、上記混合溶媒で洗浄し、これを作用極とした。
Next, the electrode was immersed in a 0.3 mM, acetonitrile / tert-butanol = 1: 1 solution of a ruthenium dye (Solaronix, RutheAlum535-bisTBA, generally called N719) and left at room temperature for 24 hours. A dye was supported on the TiO 2 surface. After pulling up from the dye solution, it was washed with the above mixed solvent and used as a working electrode.

一方、三元RFスパッタ装置を用いて10cm×10cmの矩形Ti板上にPtを蒸着させたものを対極とした。作用極と対極とは、厚さ20μmのポリオレフィン(旭化成ケミカルズ、ハイポア)からなるセパレータを介して重ね合わせた。
PETからなる収納袋内に、作用極と対極を挿入し、接着剤で封止を行った。
On the other hand, a counter electrode was prepared by depositing Pt on a 10 cm × 10 cm rectangular Ti plate using a ternary RF sputtering apparatus. The working electrode and the counter electrode were overlapped via a separator made of polyolefin (Asahi Kasei Chemicals, Hypore) with a thickness of 20 μm.
A working electrode and a counter electrode were inserted into a storage bag made of PET and sealed with an adhesive.

集電部においては、集電領域に集電領域の長手方向の長さより所定寸法長く形成されたCu箔を重ね合わせ、さらにこれらをTi箔で挟んだ上で、所定のスポット溶接機を使用して抵抗溶接法を用いて圧着を行った。スポット溶接の間隔は、集電部3の長手方向に沿って約2mm間隔とした。   In the current collector, a Cu foil formed longer than the length in the longitudinal direction of the current collector region is superimposed on the current collector region, and these are sandwiched between Ti foils, and then a predetermined spot welder is used. Then, pressure bonding was performed using a resistance welding method. The spot welding interval was about 2 mm along the longitudinal direction of the current collector 3.

以上のようにして作製された光電変換素子の発電特性を測定したところ、変換効率は、3.2%(JSC=5.6mA/cm、VOC=730mV、ff=0.71)であった。 When the power generation characteristics of the photoelectric conversion element manufactured as described above were measured, the conversion efficiency was 3.2% (J SC = 5.6 mA / cm 2 , V OC = 730 mV, ff = 0.71). there were.

(比較例)
集電領域とAuメッキしたCu箔とをクリップで挟み込んで、Cu箔から集電を行う構造の光電変換素子を作製した。
この構造の光電変換素子においては、変換効率は、0.5%(JSC=1.5mA/cm、VOC=620mV、ff=0.51)となり、実施例と比較して、大きく性能が低下した。
(Comparative example)
A current collecting region and a Cu foil plated with Au were sandwiched between clips to produce a photoelectric conversion element having a structure for collecting current from the Cu foil.
In the photoelectric conversion element of this structure, the conversion efficiency is 0.5% (J SC = 1.5 mA / cm 2 , V OC = 620 mV, ff = 0.51), which is a large performance compared to the examples. Decreased.

なお、集電部3は四角形状の発電部2の一辺より延出した基材の端部近傍に形成するとしたが、これに限ることはなく、例えば四角形状の発電部2の四辺より四方に延出した基材のそれぞれの端部近傍に形成することも可能である。   The current collector 3 is formed in the vicinity of the end of the base material extending from one side of the quadrangular power generation unit 2. However, the present invention is not limited to this. For example, the current collector 3 is arranged in four directions from the four sides of the square power generation unit 2. It is also possible to form in the vicinity of each end of the extended base material.

本発明は、金属線を電極に用いた光電変換素子に広く適用可能である。   The present invention is widely applicable to photoelectric conversion elements using metal wires as electrodes.

1…光電変換素子、2…発電部、3…集電部、4…集電用配線、5…作用極、6…対極、8…第1基材、9…第2基材、10…セパレータ、13…多孔質酸化物半導体層、14…収納袋、18…電解質、19…集電領域、20…外周基材、21…Cu箔、22…Ti箔、23…溶融部、24…スポット溶接部、25…抵抗溶接用電極。 DESCRIPTION OF SYMBOLS 1 ... Photoelectric conversion element, 2 ... Power generation part, 3 ... Current collection part, 4 ... Current collection wiring, 5 ... Working electrode, 6 ... Counter electrode, 8 ... 1st base material, 9 ... 2nd base material, 10 ... Separator DESCRIPTION OF SYMBOLS 13 ... Porous oxide semiconductor layer, 14 ... Storage bag, 18 ... Electrolyte, 19 ... Current collection area | region, 20 ... Outer periphery base material, 21 ... Cu foil, 22 ... Ti foil, 23 ... Molten part, 24 ... Spot welding Part, 25 ... Electrode for resistance welding.

Claims (6)

導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域からなる作用極と、
前記領域から前記第1基材および/または前記第2基材が、その長手方向に延在された部位から構成される集電用配線と、
該集電用配線の端部近傍をまとめて電気的に接続する集電部とを有し、
導電性を有するとともに線状をなす複数の外周基材と前記集電用配線とが網目状に編まれてなる他の領域を有する色素増感型光電変換素子の製造方法であって、
前記第1基材、前記第2基材、および前記外周基材として、Cu導線をTiで被覆したものを用い、
前記他の領域にCu箔を重ね、さらに前記他の領域と前記Cu箔を挟むように2つのTi箔を重ねた後、各々のTi箔と垂直をなす方向より抵抗溶接用電極を当接させ、抵抗溶接法を用いて圧着し、前記集電部の内部に溶融部を形成することを特徴とする色素増感型光電変換素子の製造方法。
A working electrode comprising a region in which a plurality of first and second base materials having conductivity and a linear shape are knitted in a mesh;
The current collector wiring composed of the first base material and / or the second base material extending in the longitudinal direction from the region;
A current collecting portion that electrically connects the vicinity of the ends of the current collecting wiring together,
A method for producing a dye-sensitized photoelectric conversion element having other regions in which a plurality of outer peripheral base materials that are conductive and have a linear shape and the current collecting wiring are knitted in a mesh shape,
As the first base material, the second base material, and the outer peripheral base material, a Cu conductor coated with Ti is used,
After the Cu foil is overlaid on the other region, and two Ti foils are stacked so as to sandwich the other region and the Cu foil, the resistance welding electrodes are brought into contact with each other in the direction perpendicular to each Ti foil. A method for producing a dye-sensitized photoelectric conversion element, wherein pressure-bonding is performed using a resistance welding method, and a melted part is formed inside the current collecting part.
前記圧着は、スポット状になされることを特徴とする請求項1に記載の色素増感型光電変換素子の製造方法。   The method for producing a dye-sensitized photoelectric conversion element according to claim 1, wherein the pressure bonding is performed in a spot shape. 前記圧着は、ライン状になされることを特徴とする請求項1に記載の色素増感型光電変換素子の製造方法。   The method for producing a dye-sensitized photoelectric conversion element according to claim 1, wherein the pressure bonding is performed in a line shape. 導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域からなる作用極と、
前記第1基材または前記第2基材の一方の一端側が、前記領域からその長手方向に延在された部位から構成される集電用配線と、
該集電用配線の端部近傍をまとめて電気的に接続する集電部とを有し、
導電性を有するとともに線状をなす複数の外周基材と前記集電用配線とが網目状に編まれてなる他の領域を有する色素増感型光電変換素子であって、
前記第1基材、前記第2基材、および前記外周基材は、Cu導線をTiで被覆したものであり、
前記集電部は、前記他の領域とCu箔とからなる溶融部が、Ti箔で挟まれた構造を有することを特徴とする色素増感型光電変換素子。
A working electrode comprising a region in which a plurality of first and second base materials having conductivity and a linear shape are knitted in a mesh;
One end side of the first base material or the second base material is a current collector wiring composed of a portion extending in the longitudinal direction from the region;
A current collecting portion that electrically connects the vicinity of the ends of the current collecting wiring together,
A dye-sensitized photoelectric conversion element having other regions formed of a plurality of outer peripheral base materials that are conductive and have a linear shape and the wiring for current collection are knitted in a mesh shape,
The first base material, the second base material, and the outer peripheral base material are Cu conductor wires coated with Ti,
The dye-sensitized photoelectric conversion element, wherein the current collector has a structure in which a melted portion composed of the other region and a Cu foil is sandwiched between Ti foils.
前記集電部には、前記構造がスポット状に点在していることを特徴とする請求項4に記載の色素増感型光電変換素子。   The dye-sensitized photoelectric conversion element according to claim 4, wherein the structure is scattered in a spot shape in the current collector. 前記集電部には、前記構造がライン状に延在していることを特徴とする請求項4に記載の色素増感型光電変換素子。   The dye-sensitized photoelectric conversion element according to claim 4, wherein the structure extends in a line shape in the current collector.
JP2009210811A 2009-09-11 2009-09-11 Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element Expired - Fee Related JP5398442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210811A JP5398442B2 (en) 2009-09-11 2009-09-11 Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210811A JP5398442B2 (en) 2009-09-11 2009-09-11 Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2011060664A JP2011060664A (en) 2011-03-24
JP5398442B2 true JP5398442B2 (en) 2014-01-29

Family

ID=43948057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210811A Expired - Fee Related JP5398442B2 (en) 2009-09-11 2009-09-11 Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5398442B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628771B (en) * 2020-12-10 2023-07-07 北京好风光储能技术有限公司 Winding type battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231942A (en) * 1999-02-12 2000-08-22 Nikon Corp Pigment sensitization solar battery
JP4415448B2 (en) * 2000-03-29 2010-02-17 パナソニック電工株式会社 Photoelectric conversion element
JP4797324B2 (en) * 2004-01-09 2011-10-19 株式会社ブリヂストン Dye-sensitized solar cell electrode
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element

Also Published As

Publication number Publication date
JP2011060664A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP2012014849A (en) Photoelectric conversion element, method for manufacturing the same, photoelectric conversion element module and method for manufacturing the same
TW201008006A (en) Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
WO2012118050A1 (en) Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
AU2009219662A1 (en) Counter electrode and photoelectric conversion element including the counter electrode
JP5134867B2 (en) Photoelectric conversion element
JP5398441B2 (en) Dye-sensitized photoelectric conversion element
JP5398442B2 (en) Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element
JP5451106B2 (en) Photoelectric conversion element module
JP5197965B2 (en) Photoelectric conversion element
KR101188929B1 (en) Seal member for photoelectric conversion device, photoelectric conversion device comprising the same and method of preparing the same
JP5460159B2 (en) Dye-sensitized photoelectric conversion element
JP5398449B2 (en) Dye-sensitized photoelectric conversion element
JP2010015830A (en) Photoelectric conversion element
JP5687873B2 (en) Working electrode and dye-sensitized solar cell having the same
JP5604090B2 (en) Dye-sensitized photoelectric conversion element
JP5398498B2 (en) Dye-sensitized photoelectric conversion element
JP5485425B2 (en) Photoelectric conversion element
JP5460198B2 (en) Dye-sensitized photoelectric conversion element
JP5398504B2 (en) Dye-sensitized photoelectric conversion element
JP5680995B2 (en) Dye-sensitized solar cell module
JP2011070876A (en) Dye-sensitized photoelectric conversion element
JP4942919B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4696485B2 (en) Photoelectric conversion module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

LAPS Cancellation because of no payment of annual fees