JP2011070876A - Dye-sensitized photoelectric conversion element - Google Patents

Dye-sensitized photoelectric conversion element Download PDF

Info

Publication number
JP2011070876A
JP2011070876A JP2009220071A JP2009220071A JP2011070876A JP 2011070876 A JP2011070876 A JP 2011070876A JP 2009220071 A JP2009220071 A JP 2009220071A JP 2009220071 A JP2009220071 A JP 2009220071A JP 2011070876 A JP2011070876 A JP 2011070876A
Authority
JP
Japan
Prior art keywords
dye
photoelectric conversion
particles
electrolyte
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009220071A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kizaki
剛志 木嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009220071A priority Critical patent/JP2011070876A/en
Publication of JP2011070876A publication Critical patent/JP2011070876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized photoelectric conversion element with improved efficiency of photoelectric conversion, in one made up by arranging a working electrode with conductivity and a counter electrode through electrolyte. <P>SOLUTION: Of the dye-sensitized photoelectric conversion element 1 made up by arranging a working electrode 5 with conductivity and a counter electrode 6 through electrolyte 18, the working electrode 5 and the counter electrode 6 are insulated from each other by particles 28 made of an insulator contained in the electrolyte 18, with a shape of the particles made of the insulator of a spherical shape with a maximum outer diameter of 40 μm or more and 120 μm or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池などに用いられる色素増感型光電変換素子に関する。より詳しくは、光電変換効率の向上した色素増感型光電変換素子に関する。   The present invention relates to a dye-sensitized photoelectric conversion element used for solar cells and the like. More specifically, the present invention relates to a dye-sensitized photoelectric conversion element with improved photoelectric conversion efficiency.

色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、高い変換効率を得られる光電変換素子として着目されている(例えば、非特許文献1を参照)。
色素増感型太陽電池は、シリコン系の従来型の太陽電池と比較して大幅な低価格化が可能とされているが、発電部に使用される導電性基板の価格が低価格化の障害となっている。従来構造の色素増感型太陽電池においては、特に光が入射する側の電極(窓電極)には、可視光の透過性と高い伝導性が要求されるため、ガラス基板やプラスチック基板上にスズドープ酸化インジウムやフッ素ドープ酸化スズといった透明導電性金属酸化物を塗布した基板が用いられてきた。したがって、このような透明導電性基板を用いていない、全く新しい構造の色素増感型太陽電池が実現するならば、太陽電池の大幅な低価格化が可能であるとして研究開発が進められている。
The dye-sensitized solar cell has been proposed by a group such as Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high conversion efficiency (see, for example, Non-Patent Document 1).
Dye-sensitized solar cells can be significantly reduced in price compared to silicon-based conventional solar cells, but the price of conductive substrates used in power generation units is an obstacle to lower prices It has become. In a dye-sensitized solar cell having a conventional structure, the electrode (window electrode) on which light enters is particularly required to have visible light transmission and high conductivity. A substrate coated with a transparent conductive metal oxide such as indium oxide or fluorine-doped tin oxide has been used. Therefore, if a dye-sensitized solar cell having a completely new structure that does not use such a transparent conductive substrate is realized, research and development are being carried out on the assumption that the cost of solar cells can be greatly reduced. .

これらの解決手段として、金属線を発電部の作用極に用いる新規な素子構造(特許文献1、2、3、4参照)が提案されている。しかし、これらの構造においては、作用極に金属線を採用したがゆえに、大面積の太陽電池モジュールの構成が困難となり、本来、色素増感型光電変換素子が有する、大面積化が容易であるという利点を損なう結果となった。そのため、上記の利点を損なうことのない素子構造の開発が必要とされている。
さらに、大面積素子を可能とする構造として、特許文献5、特許文献6に記載されたように、金属線をメッシュ状に編みこむ構造も提案されている。
As a solution to these problems, a novel element structure (see Patent Documents 1, 2, 3, and 4) using a metal wire as a working electrode of a power generation unit has been proposed. However, in these structures, since a metal wire is used for the working electrode, it is difficult to configure a large-area solar cell module, and it is easy to increase the area that a dye-sensitized photoelectric conversion element originally has. As a result, the advantage was lost. Therefore, it is necessary to develop an element structure that does not impair the above advantages.
Furthermore, as described in Patent Document 5 and Patent Document 6, a structure in which metal wires are knitted in a mesh shape has been proposed as a structure that enables a large-area element.

特開2008−181690号公報JP 2008-181690 A 特開2008−181691号公報JP 2008-181691 A 特開2005−196982号公報JP 2005-196982 A 特表2005−516370号公報JP 2005-516370 gazette 特開2001−283941号公報JP 2001-283941 A 特開2001−283944号公報JP 2001-283944 A

O'Regan B., Graetzel M., Alow cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991年, 353号, 737-739ページO'Regan B., Graetzel M., Alow cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-739

ところで、図6に示したような従来の金属細線を用いた色素増感型太陽電池100の場合、該金属細線からなる網目状電極及び色素が担持される多孔質酸化物半導体層113から構成される作用極105と導電性基板からなる対極106とは、通常絶縁性材料からなるセパレータ110によって電気的に絶縁されている。従来のセパレータ110は樹脂製の多孔質平膜(多孔質シート)が作用極105と対極106との間に挿入され、酸化還元対等を含む電解質118がその多孔質平膜を拡散透過することによって、対極106から多孔質酸化物半導体層113に担持された色素へ電子が供給されている。しかしながら、該酸化還元対が多孔質平膜を透過する効率が低いため、色素への電子の供給効率が悪く、当該色素増感型太陽電池100の光電変換効率が低く留まるという問題があった。また、該多孔質平膜と対極とが密着する箇所では該酸化還元対の酸化型成分への対極からの電子供給の効率が悪く、対極の実効面積が小さくなるため、当該色素増感型太陽電池100の光電変換効率が低く留まるという問題があった。   By the way, in the case of the dye-sensitized solar cell 100 using the conventional fine metal wires as shown in FIG. 6, it is composed of a mesh electrode made of the fine metal wires and a porous oxide semiconductor layer 113 on which the dye is supported. The working electrode 105 and the counter electrode 106 made of a conductive substrate are electrically insulated by a separator 110 usually made of an insulating material. In the conventional separator 110, a porous porous membrane (porous sheet) made of resin is inserted between the working electrode 105 and the counter electrode 106, and an electrolyte 118 including a redox pair etc. diffuses and permeates the porous flat membrane. Electrons are supplied from the counter electrode 106 to the dye supported on the porous oxide semiconductor layer 113. However, since the efficiency of the redox couple passing through the porous flat membrane is low, there is a problem that the efficiency of supplying electrons to the dye is poor and the photoelectric conversion efficiency of the dye-sensitized solar cell 100 remains low. Further, at the location where the porous flat membrane and the counter electrode are in close contact, the efficiency of electron supply from the counter electrode to the oxidized component of the redox pair is poor, and the effective area of the counter electrode is reduced. There was a problem that the photoelectric conversion efficiency of the battery 100 remained low.

本発明は、上記事情に鑑みてなされたものであり、導電性を有する作用極と対極とが、電解質を介して配されてなる色素増感型光電変換素子であって、光電変換効率が向上した色素増感型光電変換素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a dye-sensitized photoelectric conversion element in which a conductive working electrode and a counter electrode are arranged via an electrolyte, and the photoelectric conversion efficiency is improved. It is an object to provide a dye-sensitized photoelectric conversion element.

本発明の請求項1に記載の色素増感型光電変換素子は、導電性を有する作用極と対極とが、電解質を介して配されてなる色素増感型光電変換素子であって、前記作用極と前記対極とは、前記電解質に含まれる絶縁体からなる粒子により絶縁されており、該絶縁体からなる粒子は、最大外径が40μm以上120μm以下の球形状であることを特徴とする。
本発明の請求項2に記載の色素増感型光電変換素子は、請求項1において、前記作用極は、導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域から構成されてなることを特徴とする。
本発明の請求項3に記載の色素増感型光電変換素子は、請求項1又は2において、前記絶縁体からなる粒子は、球形状のガラス製粒子であり、前記電解質中に1.0質量%以上5.0質量%以下の割合で含まれることを特徴とする。
The dye-sensitized photoelectric conversion element according to claim 1 of the present invention is a dye-sensitized photoelectric conversion element in which a working electrode having conductivity and a counter electrode are arranged via an electrolyte, The electrode and the counter electrode are insulated by particles made of an insulator contained in the electrolyte, and the particles made of the insulator have a spherical shape with a maximum outer diameter of 40 μm to 120 μm.
A dye-sensitized photoelectric conversion element according to a second aspect of the present invention is the dye-sensitized photoelectric conversion element according to the first aspect, wherein the working electrode has a plurality of first and second base materials that are conductive and linear. It is characterized by comprising a region knitted into a shape.
The dye-sensitized photoelectric conversion element according to claim 3 of the present invention is the dye-sensitized photoelectric conversion element according to claim 1 or 2, wherein the particles made of the insulator are spherical glass particles, and 1.0 mass in the electrolyte. % To 5.0% by mass or less.

本発明の色素増感型光電変換素子によれば、前記作用極と前記対極とを電気的に絶縁するために前記電解質に含まれる絶縁体からなる粒子を用いることにより、前記電解質を介した前記電子移動効率を高めることができるので、光電変換効率を向上させることができる。
すなわち、前記絶縁体からなる粒子をセパレータとして用いることにより、従来の多孔質平膜からなるセパレータの場合よりも前記電解質の拡散透過が速やかに起こるため、該電解質によって行われる前記対極から前記作用極への電子移動効率を高めることができるので、本発明の色素増感型光電変換素子は従来のものよりも光電変換効率に優れる。
また、前記絶縁体からなる粒子は、最大外径が40μm以上120μm以下である球形状の絶縁体からなる粒子であることにより、前記作用極と前記対極との間に介在する複数の該絶縁体からなる粒子によって、前記作用極と前記対極との間に充分な距離を保った間隙を形成することができ、前記作用極と前記対極とを充分に絶縁することができる。
さらに、該絶縁体からなる粒子が球形状であることにより、前記作用極及び前記対極と該絶縁体からなる粒子との密着する面積が小さく、前記作用極及び前記対極のそれぞれの実効面積を小さくせずに、それらを絶縁することができる。また、該絶縁体からなる粒子が球形状であることにより、前記電解質に該絶縁体からなる粒子を分散させることが容易であり、該絶縁体からなる粒子どうしの接触による破損が起こりにくく、取り扱いも容易となる。
According to the dye-sensitized photoelectric conversion element of the present invention, by using particles made of an insulator contained in the electrolyte in order to electrically insulate the working electrode and the counter electrode, Since the electron transfer efficiency can be increased, the photoelectric conversion efficiency can be improved.
That is, by using the particles made of the insulator as a separator, the diffusion and permeation of the electrolyte occurs more quickly than in the case of a separator made of a conventional porous flat membrane, so that the working electrode is changed from the counter electrode performed by the electrolyte. Therefore, the dye-sensitized photoelectric conversion element of the present invention is more excellent in photoelectric conversion efficiency than the conventional one.
Further, the particles made of the insulator are particles made of a spherical insulator having a maximum outer diameter of 40 μm or more and 120 μm or less, whereby a plurality of the insulators interposed between the working electrode and the counter electrode A gap having a sufficient distance can be formed between the working electrode and the counter electrode, and the working electrode and the counter electrode can be sufficiently insulated.
Further, since the particles made of the insulator are spherical, the area where the working electrode and the counter electrode are in close contact with the particles made of the insulator is small, and the effective area of each of the working electrode and the counter electrode is small. You can insulate them without. In addition, since the particles made of the insulator are spherical, it is easy to disperse the particles made of the insulator in the electrolyte, and damage due to contact between the particles made of the insulator hardly occurs. Is also easier.

本発明の色素増感型光電変換素子において、前記作用極は、導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域から構成されてなるものであると、本発明の色素増感型光電変換素子がフレキシブル性に優れ、光電変換効率が向上するので好ましい。
また、本発明の色素増感型光電変換素子において、前記絶縁体からなる粒子は、球形状のガラス製粒子であり、前記電解質中に1.0質量%以上5.0質量%以下の割合で含まれた場合、前記作用極と前記対極との間に介在する該絶縁体からなる粒子が前記間隙を充分に形成しつつ効率的な光電変換をおこなうことができるので好ましい。
In the dye-sensitized photoelectric conversion element of the present invention, the working electrode is composed of a region in which a plurality of first and second base materials that are conductive and have a linear shape are knitted in a mesh shape. It is preferable that the dye-sensitized photoelectric conversion element of the present invention is excellent in flexibility and photoelectric conversion efficiency is improved.
In the dye-sensitized photoelectric conversion device of the present invention, the particles made of the insulator are spherical glass particles, and the electrolyte has a ratio of 1.0% by mass to 5.0% by mass. When it is included, it is preferable because the particles made of the insulator interposed between the working electrode and the counter electrode can perform efficient photoelectric conversion while sufficiently forming the gap.

本発明に係る第1の実施形態として、色素増感型光電変換素子の概略構成図である。1 is a schematic configuration diagram of a dye-sensitized photoelectric conversion element as a first embodiment according to the present invention. 本発明に係る第1の実施形態を示す概略構成図(図1)におけるA−A’線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the A-A 'line in the schematic block diagram (FIG. 1) which shows 1st Embodiment based on this invention. 本発明に係る第1の実施形態を示す概略構成図(図1)におけるB−B’線に沿う、集電部3の概略断面図であって(a)は抵抗溶接前、(b)は抵抗溶接中、(c)は抵抗溶接後の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing of the current collection part 3 in alignment with the BB 'line | wire in the schematic block diagram (FIG. 1) which shows 1st Embodiment based on this invention, (a) is before resistance welding, (b) is (C) is sectional drawing after resistance welding during resistance welding. 本発明に係る第2の実施形態として、色素増感型光電変換素子の概略構成図である。It is a schematic block diagram of a dye-sensitized photoelectric conversion element as 2nd Embodiment which concerns on this invention. 本発明に係る第2の実施形態を示す概略構成図(図4)におけるC−C’線に沿う概略断面図である。It is a schematic sectional drawing which follows the C-C 'line in the schematic block diagram (FIG. 4) which shows 2nd Embodiment based on this invention. 従来の色素増感型光電変換素子の一例の概略断面図である。It is a schematic sectional drawing of an example of the conventional dye-sensitized photoelectric conversion element.

<第一実施形態>
以下、図面を参照しながら、本発明に係る色素増感型光電変換素子の一例について詳細に説明する。
<First embodiment>
Hereinafter, an example of the dye-sensitized photoelectric conversion element according to the present invention will be described in detail with reference to the drawings.

図1、図2に示すように、本発明の第一実施形態の色素増感型光電変換素子1A(1)は、平面視矩形の発電部2と該発電部2の外部に設けられた集電部3とから構成されており、発電部2において発生した電子が、発電部2の一辺より延在する集電用配線4を介して集電部3において集電される構成である。
発電部2は、平面視矩形の網目状に編まれてなる網目状構造の作用極5と、平面視矩形の板状の対極6とが、電解質18に含まれる絶縁体からなる粒子28を介して重ね合わされるように構成されている。前記網目状構造の作用極5は、導電性を有する複数の第1基材8と複数の第2基材9と、該第1基材8と該第2基材9の周囲に配され増感色素を担持した多孔質酸化物半導体層13とから構成されており、該多孔質酸化物半導体層13は、増感色素とともに電解質18をも含浸している。
第1基材8と第2基材9とはともに線状をなし、これら第1基材8と第2基材9とが網目状に編まれることによって矩形の網目状構造からなる領域をなしている。
As shown in FIGS. 1 and 2, the dye-sensitized photoelectric conversion element 1 </ b> A (1) according to the first embodiment of the present invention is a power generation unit 2 having a rectangular shape in plan view and a collection provided outside the power generation unit 2. The power generation unit 2 is configured such that electrons generated in the power generation unit 2 are collected in the current collection unit 3 via a current collection wiring 4 extending from one side of the power generation unit 2.
The power generation unit 2 includes a working electrode 5 having a mesh structure knitted into a mesh having a rectangular shape in plan view and a plate-like counter electrode 6 having a rectangular shape in plan view through particles 28 made of an insulator contained in an electrolyte 18. Are configured to overlap each other. The working electrode 5 having a network structure is arranged around the plurality of first base materials 8 and the plurality of second base materials 9 having conductivity, and around the first base material 8 and the second base material 9. It is comprised from the porous oxide semiconductor layer 13 which carry | supported the sensitizing dye, This porous oxide semiconductor layer 13 is also impregnating the electrolyte 18 with the sensitizing dye.
The first base material 8 and the second base material 9 are both linear, and the first base material 8 and the second base material 9 are knitted in a mesh shape to form a region having a rectangular mesh structure. There is no.

対極6は、板状の導電性基材であり、電解質18に含まれる絶縁体からなる粒子28を介して作用極5と重ね合わされている。また対極6は、集電部3と対となる引出電極6aを有しており、この引出電極6aは、発電部2の外側に延出している。
作用極5、対極6、及びその間に介在する絶縁体からなる粒子28を含む電解質18は収納袋14内に収納されており、該収納袋14内は電解質18で満たされている。
The counter electrode 6 is a plate-like conductive base material, and is overlapped with the working electrode 5 via particles 28 made of an insulator contained in the electrolyte 18. The counter electrode 6 has an extraction electrode 6 a that is paired with the current collector 3, and the extraction electrode 6 a extends to the outside of the power generation unit 2.
The electrolyte 18 including the working electrode 5, the counter electrode 6, and the particles 28 made of an insulator interposed therebetween is stored in the storage bag 14, and the storage bag 14 is filled with the electrolyte 18.

絶縁体からなる粒子28は、作用極5と対極6との間に電解質18とともに介在して、該作用極5と該対極6とを電気的に絶縁するセパレータとして機能する。このとき、該絶縁体からなる粒子28は、電解質18に含まれた状態にある。電解質18に含まれる酸化還元対のうち、酸化型成分が対極6から電子を得て還元型成分となり、対極6から作用極5へ拡散移動して、その電子を作用極へ渡して酸化型成分となり、再び拡散移動によって対極6へ移動する。このようにして、該酸化還元対は対極6から作用極5へ電子を移動する役割を担う。   The particles 28 made of an insulator are interposed between the working electrode 5 and the counter electrode 6 together with the electrolyte 18 and function as a separator that electrically insulates the working electrode 5 and the counter electrode 6. At this time, the particles 28 made of the insulator are contained in the electrolyte 18. Of the redox couple contained in the electrolyte 18, the oxidized component obtains an electron from the counter electrode 6 to become a reduced component, diffuses and moves from the counter electrode 6 to the working electrode 5, and passes the electrons to the working electrode to give the oxidized component. Then, it again moves to the counter electrode 6 by diffusion movement. In this way, the redox pair plays a role of transferring electrons from the counter electrode 6 to the working electrode 5.

多孔質平膜をセパレータ110として用いている従来の色素増感型光電変換素子100(図6)では、前記酸化還元対が対極6と作用極5との間を拡散移動する際に、該多孔質平膜を透過する必要があるが、その拡散移動の効率は必ずしも良くない。
一方、本発明では絶縁体からなる粒子28をセパレータとして用いているので、該酸化還元対は絶縁体からなる粒子28の脇をすり抜けるだけでよく、拡散移動の効率が優れて高いものとなり、本発明の色素増感型光電変換素子1の光電変換効率が向上する。
In the conventional dye-sensitized photoelectric conversion element 100 (FIG. 6) using a porous flat membrane as the separator 110, when the oxidation-reduction pair diffuses and moves between the counter electrode 6 and the working electrode 5, the porous Although it is necessary to permeate through the flat membrane, the efficiency of the diffusion movement is not necessarily good.
On the other hand, since the particles 28 made of an insulator are used as a separator in the present invention, the redox couple only needs to pass through the side of the particles 28 made of an insulator, and the efficiency of diffusion transfer is excellent. The photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element 1 of the invention is improved.

作用極5を構成する複数の第1基材8の全ては、作用極5より延長されることで外方へ引き出され集電用配線4となり、外部において集電領域19を構成している。
集電領域19は、集電用配線4を構成する第1基材8と、導電性を有する複数の外周基材20とから構成されている。外周基材20は線状をなしており、集電用配線4と網目状に編まれてなる部位を構成する。
All of the plurality of first base materials 8 constituting the working electrode 5 are extended outward from the working electrode 5 to become the current collecting wiring 4 and constitute a current collecting region 19 outside.
The current collecting area 19 is composed of a first base material 8 constituting the current collecting wiring 4 and a plurality of outer peripheral base materials 20 having conductivity. The outer peripheral base material 20 has a linear shape, and constitutes a part formed by meshing with the current collector wiring 4.

集電領域19にはCu箔21が重ねられ、さらに集電領域19とCu箔21とは、2枚のTi箔22a、22bにより挟み込まれている。集電領域19とCu箔21とTi箔22a、22bとは、抵抗溶接法により圧着され、複数のスポット溶接部24において一体化されている。Cu箔21は、その一部が外部へ引き出されており、この部分より集電が可能となっている。   A Cu foil 21 is overlaid on the current collecting region 19, and the current collecting region 19 and the Cu foil 21 are sandwiched between two Ti foils 22a and 22b. The current collecting region 19, the Cu foil 21, and the Ti foils 22 a and 22 b are pressure-bonded by a resistance welding method and integrated in a plurality of spot welds 24. A part of the Cu foil 21 is drawn to the outside, and current can be collected from this part.

以下、各構成要素について、詳細に説明する。
図1、図2で例示した第一実施例の色素増感型光電変換素子1A(1)では、第1基材8、第2基材9、および外周基材20は直径0.05mmの銅(Cu)線をチタン(Ti)で被覆した金属線(以下、Ti被覆Cu線という)である。
前記Ti被覆Cu線の製造方法としては、公知の方法で行うことができる。例えば、Tiを押出成型等によってパイプ状に形成すると共に、Cuを押出成型等によって線状に形成し、これらTiパイプとCu線を同時に走行させつつTi製パイプの内部にCu線を挿入し、これらを絞って、両者間を密着させて、Ti被覆Cu線を得ることができる。
このような線引き加工法により作製されたTi被覆Cu線は、スパッタ法やめっき加工法等によって製造されたものよりも被覆層の密着性に優れ、その製造コストを低く抑えることができる。
Hereinafter, each component will be described in detail.
In the dye-sensitized photoelectric conversion element 1A (1) of the first embodiment illustrated in FIGS. 1 and 2, the first base material 8, the second base material 9, and the outer peripheral base material 20 are copper having a diameter of 0.05 mm. It is a metal wire (hereinafter referred to as Ti-coated Cu wire) in which a (Cu) wire is coated with titanium (Ti).
The Ti-coated Cu wire can be produced by a known method. For example, Ti is formed into a pipe shape by extrusion molding or the like, and Cu is formed into a linear shape by extrusion molding or the like, and the Cu wire is inserted into the Ti pipe while running these Ti pipe and Cu wire simultaneously, By squeezing them and bringing them into close contact, a Ti-coated Cu wire can be obtained.
A Ti-coated Cu wire produced by such a wire drawing method has better adhesion of the coating layer than that produced by a sputtering method, a plating method or the like, and the production cost can be kept low.

作用極5は、所定本数の第1基材8および第2基材9が互いに網目状に編まれてなる構造を有している。第1基材8と第2基材9とは、重複部において互いが十分接触するように編まれ、矩形をなす網目状構造を有している。
前記網目状構造の単位面積あたりの隙間面積(開口率)としては特に制限されず、例えば0%以上20%以下でよい。ただし、前記作用極5と前記対極6との間に充分な間隙を形成するために、前記開口部の大きさは、前記絶縁体からなる粒子28が通過できない大きさであることが好ましい。
The working electrode 5 has a structure in which a predetermined number of the first base material 8 and the second base material 9 are knitted in a mesh shape. The 1st base material 8 and the 2nd base material 9 are knitted so that it may mutually contact in an overlapping part, and have the mesh-like structure which makes a rectangle.
The gap area (aperture ratio) per unit area of the network structure is not particularly limited, and may be, for example, 0% or more and 20% or less. However, in order to form a sufficient gap between the working electrode 5 and the counter electrode 6, the size of the opening is preferably such that the particles 28 made of the insulator cannot pass through.

第1基材8、第2基材9、および外周基材20はTi被覆Cu線に限ることはなく、タングステン(W)被覆Cu線など、電解液に対し腐食性を有する線材も使用可能である。Ti被覆アルミニウム(Al)線など、導電率の高い線材も使用可能である。
このような基材の太さ(直径)は、例えば、10μm〜10mmとするのが好ましい。
ただし、柔軟性を十分に発揮させるためには、基材の太さは細いほどよい。
The 1st base material 8, the 2nd base material 9, and the outer periphery base material 20 are not restricted to Ti covering Cu wire, The wire which has corrosivity with respect to electrolyte solution, such as tungsten (W) covering Cu wire, can also be used. is there. A highly conductive wire such as a Ti-coated aluminum (Al) wire can also be used.
The thickness (diameter) of such a substrate is preferably 10 μm to 10 mm, for example.
However, in order to fully exhibit flexibility, the thinner the substrate, the better.

図1に示した発電部2において、周囲の4辺のうち側方に位置する辺をそれぞれ第1辺30、第2辺31とし、上下に位置する辺をそれぞれ第3辺32、第4辺33とすると、各第2基材9は、第3辺32から第4辺33まで延在しているとともに、複数の第2基材9が第1辺30から第2辺31まで、所定本数列設されている。
複数の第1基材8は、第3辺32から第4辺33まで所定本数列設されているとともに、第1辺30から集電部3まで延在している。つまり、作用極5を構成する基材のうち第1基材8の全ては、矩形をなす発電部2の一辺より発電部2から延長されるように、外部に引き出されている。
In the power generation unit 2 shown in FIG. 1, of the surrounding four sides, the sides located on the sides are the first side 30 and the second side 31, respectively, and the sides located above and below are the third side 32 and the fourth side, respectively. 33, each second base material 9 extends from the third side 32 to the fourth side 33, and a plurality of second base materials 9 are provided from the first side 30 to the second side 31. There are several lines.
The plurality of first base materials 8 are arranged in a predetermined number from the third side 32 to the fourth side 33 and extend from the first side 30 to the current collector 3. That is, all of the first base materials 8 among the base materials constituting the working electrode 5 are drawn out so as to be extended from the power generation section 2 from one side of the power generation section 2 having a rectangular shape.

延長された第1基材8は、所定位置で外周基材20と互いに交差するように網目状に編まれることで、網目状構造を形成する。外周基材20は、網目状構造の形成が可能となるように、3本以上からなることが好ましい。
第1基材8のうち、第2辺31と集電部3との間の部分は、集電用配線4となり、作用極5にて発生した電子は、この集電用配線4を介して集電部3に集められる。
The extended first base material 8 is knitted in a mesh shape so as to intersect with the outer peripheral base material 20 at a predetermined position, thereby forming a network structure. It is preferable that the outer peripheral base material 20 is composed of three or more so that a network structure can be formed.
Of the first base material 8, the portion between the second side 31 and the current collector 3 serves as the current collector wiring 4, and the electrons generated at the working electrode 5 pass through the current collector wiring 4. Collected in the current collector 3.

前記網目状に編まれてなる領域の製織方法としては、図1に例示した平織りに限定されず、綾織り、朱子織り等の一般的な布の製織方法と同様の方法を適用できる。その平織りは、織り機上で、第2基材9からなる複数の縦線が一本ずつ交互に上下に分けられ、その上下に分かれた複数の縦線の間に第1基材8からなる横糸が通され、筬で打ち込まれる工程が1サイクルとなる。次のサイクルでは、複数の縦線の上下を前回のサイクルと入れ換えて再び一本ずつ交互に上下に分けられて、その間に横線が通され、筬で打ち込まれる。
このようにして、第1基材8および第2基材9が網目状に編まれてなる網目状構造の領域からなる作用極5を得ることができる。
The weaving method of the region knitted in a mesh shape is not limited to the plain weave illustrated in FIG. 1, and a method similar to a general cloth weaving method such as twill weave or satin weave can be applied. In the plain weaving, a plurality of vertical lines made of the second base material 9 are alternately divided one above the other on the loom, and the first base material 8 is made between the plurality of vertical lines divided up and down. The process in which the weft is passed and driven with a scissors is one cycle. In the next cycle, the top and bottom of a plurality of vertical lines are replaced with the previous cycle, and the lines are alternately separated one by one again.
Thus, the working electrode 5 which consists of the area | region of the network structure formed by the 1st base material 8 and the 2nd base material 9 being knitted by mesh shape can be obtained.

第1基材8および第2基材9のうち、作用極5の網目状構造をなす部分には、その表面に多孔質酸化物半導体層13が配されており、その表面には少なくとも一部に増感色素が担持されている。第1基材8のうち、集電用配線4には多孔質酸化物半導体層13は配されなくてよい。
多孔質酸化物半導体層13を形成する半導体は、酸化チタン(TiO)が用いられている。この酸化チタンの膜厚は特に限定されず、例えば1μm〜50μmで行うことができる。
多孔質酸化物半導体層13を形成する半導体としては、酸化チタンに限ることはなく、一般に色素増感型太陽電池に用いられるものであれば、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化タングステン(WO)など様々な半導体電極が制限なく使用可能である。
Of the first base material 8 and the second base material 9, a portion of the working electrode 5 having a network structure is provided with a porous oxide semiconductor layer 13 on the surface thereof, and at least a part of the surface is provided on the surface. A sensitizing dye is supported on the surface. Of the first substrate 8, the porous oxide semiconductor layer 13 does not have to be disposed on the current collecting wiring 4.
Titanium oxide (TiO 2 ) is used as the semiconductor that forms the porous oxide semiconductor layer 13. The film thickness of this titanium oxide is not specifically limited, For example, it can carry out at 1 micrometer-50 micrometers.
The semiconductor that forms the porous oxide semiconductor layer 13 is not limited to titanium oxide, and is generally zinc oxide (ZnO), tin oxide (SnO 2 ), or the like as long as it is used in a dye-sensitized solar cell. Various semiconductor electrodes such as zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and tungsten oxide (WO 3 ) can be used without limitation.

増感色素としては、例えば、N719、N3、ブラックダイなどのルテニウム錯体、ポルフィリン、フタロシアニン等の含金属錯体をはじめ、エオシン、ローダミン、メロシアニン等の有機色素などを適用することができ、これらの中から用途、使用半導体に適した励起挙動をとるものを適宜選択すれば良い。   Examples of the sensitizing dye include ruthenium complexes such as N719, N3, and black dye, metal-containing complexes such as porphyrin and phthalocyanine, and organic dyes such as eosin, rhodamine, and merocyanine. From the above, it is only necessary to appropriately select one having an excitation behavior suitable for the application and the semiconductor used.

多孔質酸化物半導体層13内には、電解液が含浸されており、この電解液も前記電解質18の一部を構成している。この場合、多孔質酸化物半導体層13内の電解質18は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン液体をベースとしたもの、さらには、酸化物半導体粒子又は導電性粒子を含むゲル状の電解質などが用いられる。ただし、該酸化物半導体粒子又は該導電性粒子を用いた場合、前記作用極5と前記対極6との間を充分に絶縁するために、これらの粒子の最大外径は、前記絶縁体からなる粒子28の最大外径よりも小さいことが好ましい。   The porous oxide semiconductor layer 13 is impregnated with an electrolytic solution, and this electrolytic solution also constitutes a part of the electrolyte 18. In this case, the electrolyte 18 in the porous oxide semiconductor layer 13 is formed by impregnating the porous oxide semiconductor layer 13 with an electrolytic solution, or impregnating the porous oxide semiconductor layer 13 with an electrolytic solution. Then, the electrolyte solution is gelled (pseudo-solidified) using an appropriate gelling agent and formed integrally with the porous oxide semiconductor layer 13 or based on an ionic liquid Further, a gel electrolyte containing oxide semiconductor particles or conductive particles is used. However, when the oxide semiconductor particles or the conductive particles are used, in order to sufficiently insulate between the working electrode 5 and the counter electrode 6, the maximum outer diameter of these particles is made of the insulator. It is preferably smaller than the maximum outer diameter of the particles 28.

電解質18に含まれる絶縁体からなる粒子28は、その一部が前記多孔質酸化物半導体層13内に入っていても良いが、通常は多孔質の孔の大きさが絶縁体からなる粒子28よりも小さいので入らない。絶縁体からなる粒子28が作用極5と対極6との間に間隙を形成して充分に絶縁するためには、絶縁体からなる粒子28は前記多孔質酸化物半導体層13内に入っていない方が好ましい。   Part of the particles 28 made of an insulator contained in the electrolyte 18 may be contained in the porous oxide semiconductor layer 13, but usually the particles 28 made of an insulator having a porous pore size. Since it is smaller than that, it does not enter. In order for the insulating particles 28 to sufficiently insulate by forming a gap between the working electrode 5 and the counter electrode 6, the insulating particles 28 do not enter the porous oxide semiconductor layer 13. Is preferred.

前記絶縁体からなる粒子28の形状は、最大外径が40μm以上120μm以下の球形状である。この形状であると、作用極5と対極6との間に介在する複数の絶縁体からなる粒子28によって形成される作用極5と対極6との間隙をほぼ均一とすることができる。一方、不定形の形状をもつ絶縁体からなる粒子を用いることもできるが、作用極5と対極6との間隙の距離を制御することが困難になり、絶縁性に劣る。   The shape of the particles 28 made of the insulator is a spherical shape having a maximum outer diameter of 40 μm or more and 120 μm or less. With this shape, the gap between the working electrode 5 and the counter electrode 6 formed by the particles 28 made of a plurality of insulators interposed between the working electrode 5 and the counter electrode 6 can be made substantially uniform. On the other hand, particles made of an insulator having an irregular shape can be used, but it becomes difficult to control the distance of the gap between the working electrode 5 and the counter electrode 6, resulting in poor insulation.

ここで、本発明の特許請求の範囲及び明細書において、前記球形状とは、長径と短径の比が1.5以下である略球形を意味する。該長径と短径の比は、好ましくは1.2以下であり、最も好ましくは1.0である。該長径と短径の比が1.0のとき、該略球形は真球である。なお、該長径とは、該絶縁体からなる粒子の外径における最も長い径を意味し、該短径とは、該絶縁体からなる粒子の外径における最も短い径を意味する。該径とは、該絶縁体からなる粒子内の重心を通り、且つ該粒子の表面の2点を結ぶ直線の距離を意味する。   Here, in the claims and specification of the present invention, the spherical shape means a substantially spherical shape in which the ratio of the major axis to the minor axis is 1.5 or less. The ratio of the major axis to the minor axis is preferably 1.2 or less, and most preferably 1.0. When the ratio of the major axis to the minor axis is 1.0, the substantially spherical shape is a true sphere. The major axis means the longest diameter in the outer diameter of the particles made of the insulator, and the minor diameter means the shortest diameter in the outer diameter of the particles made of the insulator. The diameter means a distance of a straight line passing through the center of gravity in the particle made of the insulator and connecting two points on the surface of the particle.

このように、該絶縁体からなる粒子28が球形状であるため、前記作用極5及び前記対極6と該絶縁体からなる粒子28との密着する面積が小さく、前記作用極5及び前記対極6のそれぞれの実効面積を小さくせずに、それらを絶縁することができる。さらに、前記電解質18に分散させることが容易であり、該絶縁体からなる粒子28どうしの接触による破損が起こりにくく、取り扱いも容易となる。   Thus, since the particles 28 made of the insulator are spherical, the contact area between the working electrode 5 and the counter electrode 6 and the particles 28 made of the insulator is small, and the working electrode 5 and the counter electrode 6 are small. They can be insulated without reducing their effective area. Furthermore, it is easy to disperse in the electrolyte 18, damage due to contact between the particles 28 made of the insulator hardly occurs, and handling becomes easy.

前記絶縁体からなる粒子28の最大外径は、40μm以上120μm以下であり、40μm以上80μm以下が好ましく、40μm以上60μm以下が最も好ましい。
上記範囲の下限値以上であると、作用極5と対極6との間に介在する複数の絶縁体からなる粒子28によって形成される作用極5と対極6との間隙の距離を充分にとることができ、該作用極5と該対極6とを充分に絶縁することができる。
上記範囲の上限値以下であると、作用極5と対極6との間に介在する複数の絶縁体からなる粒子28によって形成される作用極5と対極6との間隙の距離が、前述の電子移動をより効率的に行うことができる距離となり、光電変換効率を向上させることができる。
一方、上記範囲の下限値以下であると、作用極5と対極6との距離が近くなり過ぎて、作用極5と対極6との絶縁性を保つことが困難になる。この場合、電解質18中に含まれる絶縁体からなる粒子28の割合を増やすことによって、作用極5と対極6とを絶縁することができることもある。しかしながら、該絶縁体からなる粒子28の最大外径が極端に小さい場合(例えば1μmよりも小さい場合)には、その電解質18中に含まれる割合を増やしたとしても、作用極5と対極6とを充分に絶縁することは極めて困難であり、そのような極端に小さい粒子を用いることは現実的でない。
The maximum outer diameter of the particles 28 made of the insulator is 40 μm or more and 120 μm or less, preferably 40 μm or more and 80 μm or less, and most preferably 40 μm or more and 60 μm or less.
When the value is equal to or greater than the lower limit of the above range, the distance between the working electrode 5 and the counter electrode 6 formed by the particles 28 made of a plurality of insulators interposed between the working electrode 5 and the counter electrode 6 is sufficiently secured. The working electrode 5 and the counter electrode 6 can be sufficiently insulated.
When the distance is not more than the upper limit of the above range, the distance between the working electrode 5 and the counter electrode 6 formed by the particles 28 made of a plurality of insulators interposed between the working electrode 5 and the counter electrode 6 is the above-mentioned electron. The distance can be moved more efficiently, and the photoelectric conversion efficiency can be improved.
On the other hand, if it is below the lower limit of the above range, the distance between the working electrode 5 and the counter electrode 6 becomes too short, and it becomes difficult to maintain the insulation between the working electrode 5 and the counter electrode 6. In this case, the working electrode 5 and the counter electrode 6 may be insulated by increasing the proportion of the particles 28 made of an insulator contained in the electrolyte 18. However, when the maximum outer diameter of the particles 28 made of the insulator is extremely small (for example, smaller than 1 μm), the working electrode 5 and the counter electrode 6 can be obtained even if the proportion contained in the electrolyte 18 is increased. It is extremely difficult to sufficiently insulate, and it is not practical to use such extremely small particles.

前記絶縁体からなる粒子28の材質としては、電解質18に対して耐食性を有する化学的に安定な絶縁物質であれば特に制限されず、例えば、ジルコニア、アルミナ、石英ガラス、ソーダ石灰ガラス、有機ガラス等が挙げられる。これらの中でも、粒状とすることが容易であることから、ソーダ石灰ガラスが好ましい。
前記絶縁体からなる粒子28がソーダ石灰ガラスを材料として用いた、最大外径が40μm以上120μm以下の球形状のガラス製粒子である場合、該絶縁体からなる粒子28は、電解質18中に1.5質量%以上5.5質量%以下の割合で含まれることが好ましく、電解質18中に2.0質量%以上5.0質量%以下の割合で含まれることがより好ましく、電解質18中に2.5質量%以上3.5質量%以下の割合で含まれることが好ましい。
また、前記絶縁体からなる粒子28がソーダ石灰ガラスを材料として用いた、最大外径が60μm以上120μm以下の球形状のガラス製粒子である場合、該絶縁体からなる粒子28は、電解質18中に0.8質量%以上5.5質量%以下の割合で含まれることが好ましく、電解質18中に0.9質量%以上5.0質量%以下の割合で含まれることがより好ましく、電解質18中に1.0質量%以上3.5質量%以下の割合で含まれることが好ましい。
上記割合の範囲の下限値以上であると、作用極5と対極6との間に介在する該絶縁体からなる粒子28が、該作用極5と該対極6との間隙を保って電気的に絶縁することをより確実に行うことができる。
上記割合の範囲の上限値以下であると、作用極5と対極6との間隙を保って電気的に絶縁しつつ、効率的な光電変換を行うことができる。
The material of the particles 28 made of the insulator is not particularly limited as long as it is a chemically stable insulating material having corrosion resistance with respect to the electrolyte 18. For example, zirconia, alumina, quartz glass, soda lime glass, organic glass Etc. Among these, soda-lime glass is preferable because it is easy to make it granular.
When the particles 28 made of the insulator are spherical glass particles having a maximum outer diameter of 40 μm or more and 120 μm or less using soda lime glass as a material, the particles 28 made of the insulator are 1 in the electrolyte 18. It is preferably contained in a proportion of not less than 5% by mass and not more than 5.5% by mass, more preferably in the electrolyte 18 in a proportion of not less than 2.0% by mass and not more than 5.0% by mass. It is preferably contained in a proportion of 2.5% by mass or more and 3.5% by mass or less.
Further, when the particles 28 made of the insulator are spherical glass particles having a maximum outer diameter of 60 μm or more and 120 μm or less using soda lime glass as a material, the particles 28 made of the insulator are contained in the electrolyte 18. Is preferably contained in a proportion of 0.8% by mass or more and 5.5% by mass or less, more preferably 0.9% by mass or more and 5.0% by mass or less in the electrolyte 18. It is preferably contained in a proportion of 1.0% by mass or more and 3.5% by mass or less.
When the ratio is not less than the lower limit of the above range, the particles 28 made of the insulator interposed between the working electrode 5 and the counter electrode 6 are electrically connected with the gap between the working electrode 5 and the counter electrode 6 maintained. Insulation can be performed more reliably.
When the ratio is not more than the upper limit of the above range, efficient photoelectric conversion can be performed while electrically insulating while maintaining a gap between the working electrode 5 and the counter electrode 6.

上述した絶縁体からなる粒子28の製造方法は公知の方法を用いることができ、前記ソーダ石灰ガラスを材料としたものは市販品を用いることができる。   The manufacturing method of the particle | grains 28 which consist of an insulator mentioned above can use a well-known method, and what used the said soda-lime glass as a material can use a commercial item.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒やイオン液体に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
また、揮発性電解質溶液に代えて、一般に色素増感型太陽電池に用いられるものであれば、溶媒がイオン液体であるものやゲル化したものだけではなく、p型無機半導体や有機ホール輸送層といった固体であっても制限なく使用可能である。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents and ionic liquids, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.
Moreover, if it replaces with a volatile electrolyte solution and is generally used for a dye-sensitized solar cell, not only what a solvent is an ionic liquid or the gelatinized thing but a p-type inorganic semiconductor and an organic hole transport layer Even solids such as these can be used without limitation.

上記イオン液体としては、特に限定されるものではないが、室温で液体であり、例えば、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF ,PF ,(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
Although it does not specifically limit as said ionic liquid, It is a liquid at room temperature, For example, the normal temperature molten salt which used the compound which has the quaternized nitrogen atom as a cation is mentioned.
Examples of the cation of the room temperature molten salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, and quaternized ammonium derivatives.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], and iodide ions.
Specific examples of the ionic liquid include salts composed of quaternized imidazolium-based cations and iodide ions or bistrifluoromethylsulfonylimide ions.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。ただし、該酸化物半導体粒子の最大外径は、前記絶縁体からなる粒子28の最大外径よりも小さいことが好ましい。また、酸化物半導体粒子は、電解質18の半導電性を低下させることがなく、電解質18に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質18がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。   The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but are excellent in miscibility with an electrolyte mainly composed of an ionic liquid and gel the electrolyte. Is used. However, the maximum outer diameter of the oxide semiconductor particles is preferably smaller than the maximum outer diameter of the particles 28 made of the insulator. In addition, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte 18 without reducing the semiconductivity of the electrolyte 18. In particular, even when the electrolyte 18 includes a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.

このような酸化物半導体粒子としては、TiO、SnO、SiO、ZnO、Nb、In、ZrO、Al、WO、SrTiO、Ta、La、Y、Ho、Bi、CeOからなる群から選択される1種または2種以上の混合物が好ましく、その平均粒径は2nm〜1000nm程度が好ましい。 Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , SiO 2 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Al 2 O 3 , WO 3 , SrTiO 3 , Ta 2 O 5 , One or a mixture of two or more selected from the group consisting of La 2 O 3 , Y 2 O 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 is preferable, and the average particle size is about 2 nm to 1000 nm. preferable.

上記導電性粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。
また、導電性粒子の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。ただし、該導電性粒子の最大外径は、前記絶縁体からなる粒子28の最大外径よりも小さいことが好ましい。さらに、電解質18に含まれる他の共存成分に対する化学的安定性に優れることが必要である。
特に、電解質18がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化反応による劣化を生じないものが好ましい。
As the conductive particles, conductive particles such as conductors and semiconductors are used.
Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. However, the maximum outer diameter of the conductive particles is preferably smaller than the maximum outer diameter of the particles 28 made of the insulator. Furthermore, it is necessary to be excellent in chemical stability against other coexisting components contained in the electrolyte 18.
In particular, even when the electrolyte 18 contains an oxidation-reduction pair such as iodine / iodide ions or bromine / bromide ions, an electrolyte that does not deteriorate due to an oxidation reaction is preferable.

このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。   Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

対極6は、導電性を有する板状をなし、その表面が不導態となる厚み0.1mmのTi板が用いられている。また、対極6は、表面にPtからなる触媒膜(不図示)を有している。なお、集電のため、端部に引出電極6aが設けられている。   The counter electrode 6 has a plate shape having conductivity, and a Ti plate having a thickness of 0.1 mm whose surface is non-conductive is used. The counter electrode 6 has a catalyst film (not shown) made of Pt on the surface. Note that an extraction electrode 6a is provided at the end for current collection.

作用極5、対極6、および絶縁体からなる粒子28を含む電解質18は、PET、またはPEN(ポリエチレンナフタレート)からなる収納袋14内に収納されている。該収納袋14に用いられる材料としては、PET、PENに限ることはなく、透光性を有し、電解液に耐えられる材料であれば、適宜変更可能である。
収納袋14内には、電解質18が封入されており、作用極5の集電用配線4および対極6の引出電極6aを外部に出すようにして、接着剤で封止されている。接着剤の材料としては、電解質に耐え、収納袋14およびTiと良好な接着力が得られるものが好ましい。
The electrolyte 18 including the working electrode 5, the counter electrode 6, and the particles 28 made of an insulator is stored in a storage bag 14 made of PET or PEN (polyethylene naphthalate). The material used for the storage bag 14 is not limited to PET and PEN, and can be appropriately changed as long as the material has translucency and can withstand the electrolytic solution.
An electrolyte 18 is sealed in the storage bag 14 and is sealed with an adhesive so that the current collection wiring 4 of the working electrode 5 and the extraction electrode 6a of the counter electrode 6 are exposed to the outside. As an adhesive material, an adhesive material that can withstand an electrolyte and can provide a good adhesive force with the storage bag 14 and Ti is preferable.

次に、本発明の第一実施形態の色素増感型光電変換素子1A(1)の集電部3の構造及びその製造方法について、図3を用いて説明する。
前記集電部3は、発電部2と同様に網目状電極を有している。集電を実施するために、Cu箔21が用いられており、Cu箔21と網目状電極をなす集電領域19とが重ね合わされた上で、抵抗溶接法を用いて一体化されている。
Next, the structure of the current collector 3 of the dye-sensitized photoelectric conversion element 1A (1) and the manufacturing method thereof according to the first embodiment of the present invention will be described with reference to FIG.
Similar to the power generation unit 2, the current collector 3 has a mesh electrode. In order to implement current collection, Cu foil 21 is used, and Cu foil 21 and current collection region 19 forming a mesh electrode are overlapped and integrated using resistance welding.

ただし、Cu箔21と網目状電極である集電領域19との間で直接、抵抗溶接法を用いて圧着を行うと、CuはTiと比較して融点が低いため、抵抗溶接時にTiより先に溶融してしまう。この場合、溶融したCuが抵抗溶接法で使用される抵抗溶接用電極25に溶着してしまうため、集電領域19とCuとは接合しない。また、網目状電極の集電領域19と抵抗溶接用電極25とを直接接触させて抵抗溶接を行うと、接触状態によって接合状態に差が生じるため、溶接が安定しない。   However, when pressure bonding is performed directly between the Cu foil 21 and the current collecting region 19 that is a mesh electrode using a resistance welding method, Cu has a lower melting point than Ti, and therefore, prior to Ti during resistance welding. Will melt. In this case, since the molten Cu is deposited on the resistance welding electrode 25 used in the resistance welding method, the current collecting region 19 and Cu are not joined. Further, when resistance welding is performed by directly bringing the current collecting region 19 of the mesh electrode and the resistance welding electrode 25 into contact with each other, a difference occurs in the joining state depending on the contact state, so that welding is not stable.

そこで、本発明の第一実施形態においては、図3(a)に示すように、集電領域19とCu箔21とを重ね合わせた上に、さらにこの集電領域19とCu箔21とを一対のTi箔22a、22bで挟み込んだ状態で抵抗溶接を行った。図3(b)は、集電領域19とCu箔21と一対のTi箔22a、22bとを、一対の抵抗溶接用電極25で加圧した上で電流を流し、抵抗溶接を実施している様子を示す図である。   Therefore, in the first embodiment of the present invention, as shown in FIG. 3A, the current collection region 19 and the Cu foil 21 are overlapped, and the current collection region 19 and the Cu foil 21 are further combined. Resistance welding was performed while being sandwiched between a pair of Ti foils 22a and 22b. In FIG. 3B, the current collecting region 19, the Cu foil 21, and the pair of Ti foils 22 a and 22 b are pressed with a pair of resistance welding electrodes 25, and then a current is passed to perform resistance welding. It is a figure which shows a mode.

その結果、図3(c)に示すように、抵抗溶接時に、内側の集電領域19とCu箔21が溶融することで溶融部23を形成し、Cu箔21と集電領域19とを十分に接合することができた。その一方で、抵抗溶接用電極25はTi箔22a、22bのみと接触するので、抵抗溶接用電極25にCuが溶着することはなかった。
溶接後は、接触抵抗の低いCu箔21の部分から集電するため、集電が容易となる。
As a result, as shown in FIG. 3C, the melted portion 23 is formed by melting the inner current collecting region 19 and the Cu foil 21 during resistance welding, so that the Cu foil 21 and the current collecting region 19 are sufficiently formed. Could be joined. On the other hand, since the resistance welding electrode 25 is in contact with only the Ti foils 22a and 22b, Cu was not deposited on the resistance welding electrode 25.
After welding, current is collected from the portion of the Cu foil 21 having low contact resistance, so that current collection becomes easy.

上述のように、スポット溶接を多点で行う方法のほかに、シーム溶接による方法やレーザー溶接による方法でも集電領域19とCu箔21、Ti箔22a及びTi箔22bとを溶接することができる。該集電領域19とCu箔21、Ti箔22a及びTi箔22bとはなるべく連続的に溶接されていることが好ましい。   As described above, the current collecting region 19 and the Cu foil 21, the Ti foil 22a, and the Ti foil 22b can be welded by a method using seam welding or a laser welding method in addition to the method of performing spot welding at multiple points. . The current collecting region 19 and the Cu foil 21, the Ti foil 22a, and the Ti foil 22b are preferably welded as continuously as possible.

前記集電部3を保護するために、溶接された集電部3には樹脂を含浸させることが好ましい。該樹脂としては、電解液に対して化学的に安定であり、Ti箔22a及びTi箔22bに対して接着性の良いものであれば特に制限されず、例えばポリイミド、フッ素含有樹脂、PET樹脂等が挙げられる。また、該樹脂に代えて、低粘度の接着剤を前記集電部3に塗布してもよい。   In order to protect the current collector 3, the welded current collector 3 is preferably impregnated with resin. The resin is not particularly limited as long as it is chemically stable to the electrolytic solution and has good adhesion to the Ti foil 22a and the Ti foil 22b. For example, polyimide, fluorine-containing resin, PET resin, etc. Is mentioned. Further, instead of the resin, a low viscosity adhesive may be applied to the current collector 3.

上述した第一実施形態の色素増感型光電変換素子1A(1)では、集電部3を構成する網目状の集電領域19とCu箔21とが抵抗溶接法を用いて圧着され、集電領域19とCu箔21とが溶融されることによって、集電領域19とCu箔21の間の接触抵抗が大幅に低減され、光電変換効率の向上が可能となる。
また、Cu箔21に電気機器などを接続導体を介して接続した場合、太陽光などの光線を入射させると、発電部2において発生した電子のうち、第1基材8に発生した電子の全てを取り出すことができるので、光電変換効率の向上が可能となる。
また、発電部2は、網目状構造の作用極5、板状の対極6、電解質18に含まれる絶縁体からなる粒子28、およびPETからなる収納袋14の組合せであるため、フレキシブル性に優れ、薄型化も可能となる。
また、第1基材8と第2基材9とからなる作用極5を互いに交差するように網目状に編む際、同時に集電領域19を網目状に編むことによって、より短時間で作用極5と集電領域19を形成することが可能となる。
In the dye-sensitized photoelectric conversion element 1A (1) of the first embodiment described above, the mesh-shaped current collecting region 19 and the Cu foil 21 constituting the current collecting unit 3 are pressure-bonded using a resistance welding method, and collected. By melting the electric current region 19 and the Cu foil 21, the contact resistance between the current collecting region 19 and the Cu foil 21 is greatly reduced, and the photoelectric conversion efficiency can be improved.
In addition, when an electrical device or the like is connected to the Cu foil 21 via a connection conductor, all of the electrons generated in the first base material 8 among the electrons generated in the power generation unit 2 when a light beam such as sunlight is incident. Therefore, the photoelectric conversion efficiency can be improved.
Further, the power generation unit 2 is a combination of the working electrode 5 having a mesh structure, the plate-like counter electrode 6, the particles 28 made of an insulator contained in the electrolyte 18, and the storage bag 14 made of PET, and thus has excellent flexibility. Thinning is also possible.
Further, when the working electrode 5 composed of the first base material 8 and the second base material 9 is knitted in a mesh shape so as to cross each other, the current collecting region 19 is knitted in a mesh shape at the same time, so that the working electrode can be obtained in a shorter time. 5 and the current collecting region 19 can be formed.

<第二実施形態>
図4、図5に示すように、本発明の第二実施形態の色素増感型光電変換素子1B(1)は、平面視矩形の発電部2、引出電極6a、及び引出電極35aから構成されており、発電部2において発生した電子が、発電部2の一辺より引き出された引出電極6aを介して集電される構成である。
発電部2は、平面視矩形の板状の作用極5及び対極6が、電解質18に含まれる絶縁体からなる粒子28を介して重ね合わされるように構成されている。
<Second embodiment>
As shown in FIGS. 4 and 5, the dye-sensitized photoelectric conversion element 1B (1) according to the second embodiment of the present invention includes a power generation unit 2, an extraction electrode 6a, and an extraction electrode 35a that are rectangular in plan view. In this configuration, electrons generated in the power generation unit 2 are collected through an extraction electrode 6 a that is extracted from one side of the power generation unit 2.
The power generation unit 2 is configured such that a plate-like working electrode 5 and a counter electrode 6 having a rectangular shape in plan view are superposed via particles 28 made of an insulator contained in an electrolyte 18.

前記作用極5は、透明導電性基板35と該透明導電性基板35の導電性を有する面に配され増感色素を担持した多孔質半導体層13とから構成されており、該多孔質酸化物半導体層13は、増感色素とともに電解質18をも含浸している。該多孔質酸化物半導体層13は、例えばスクリーン印刷法によって、該透明導電性基板35上に成膜することができる。また、該透明導電性基板35には引出電極35aが備えられ、発電部2の外側に延出されている。   The working electrode 5 is composed of a transparent conductive substrate 35 and a porous semiconductor layer 13 which is disposed on the conductive surface of the transparent conductive substrate 35 and carries a sensitizing dye. The semiconductor layer 13 is impregnated with the electrolyte 18 together with the sensitizing dye. The porous oxide semiconductor layer 13 can be formed on the transparent conductive substrate 35 by, for example, a screen printing method. The transparent conductive substrate 35 is provided with an extraction electrode 35 a and extends outside the power generation unit 2.

対極6は、板状の導電性基材であり、電解質18に含まれる絶縁体からなる粒子28を介して作用極5と重ね合わされている。また対極6は、前記引出電極35aと対となる引出電極6aを有しており、この引出電極6aは、発電部2の外側に延出している。
作用極5、対極6、及びその間に介在する絶縁体からなる粒子28を含む電解質18は収納袋14内に収納されており、該収納袋14内は電解質18で満たされている。
The counter electrode 6 is a plate-like conductive base material, and is overlapped with the working electrode 5 via particles 28 made of an insulator contained in the electrolyte 18. The counter electrode 6 has an extraction electrode 6 a that forms a pair with the extraction electrode 35 a, and the extraction electrode 6 a extends to the outside of the power generation unit 2.
The electrolyte 18 including the working electrode 5, the counter electrode 6, and the particles 28 made of an insulator interposed therebetween is stored in the storage bag 14, and the storage bag 14 is filled with the electrolyte 18.

前記透明導電性基板35は、透明基板の少なくとも一方の面に透明導電層が形成されたものである。
本実施形態に用いられる透明基板としては、光透過性の素材からなる板が用いられ、ガラス、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常太陽電池の透明基板として用いられるものであればどのようなものも用いることができ、電解質への耐性などを考慮して適宜選択すればよいが、用途上、できるだけ光透過性の高い基板が好ましい。
The transparent conductive substrate 35 has a transparent conductive layer formed on at least one surface of the transparent substrate.
As the transparent substrate used in this embodiment, a plate made of a light-transmitting material is used, and glass, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, etc. are usually used as transparent substrates for solar cells. Any substrate can be used as long as it is selected, and an appropriate substrate may be selected in consideration of resistance to an electrolyte. However, a substrate having as high a light transmission as possible is preferable for use.

透明基板の少なくとも一方の面には金属、炭素、導電性金属酸化物層などからなる透明導電層が形成されている。金属層や炭素層を形成する場合には透明性を著しく損ねない構造とすることが好ましく、導電性と透明性を損なわない薄膜を形成できるものという観点から金属の種類も適宜選択される。
導電性金属酸化物としては、例えばITO、SnO2 、フッ素ドープのSnO2 などを用いることができる。
好ましい透明導電性基板として、例えば、フッ素ドープのSnO2 、ITOなどを蒸着した導電性ガラスを例示できる。
A transparent conductive layer made of metal, carbon, a conductive metal oxide layer or the like is formed on at least one surface of the transparent substrate. When forming a metal layer or a carbon layer, it is preferable to have a structure that does not significantly impair transparency, and the type of metal is also appropriately selected from the viewpoint that a thin film that does not impair conductivity and transparency can be formed.
As the conductive metal oxide, for example, ITO, SnO 2 , fluorine-doped SnO 2 or the like can be used.
As a preferable transparent conductive substrate, for example, conductive glass on which fluorine-doped SnO 2 , ITO or the like is deposited can be exemplified.

前記増感色素、前記多孔質酸化物半導体層13、前記対極6、電解質18、絶縁体からなる粒子28、及び該収納袋14の説明は、前述の第一実施形態における説明と同様である。   The description of the sensitizing dye, the porous oxide semiconductor layer 13, the counter electrode 6, the electrolyte 18, the particles 28 made of an insulator, and the storage bag 14 are the same as those described in the first embodiment.

本発明の第二実施形態の色素増感型光電変換素子1B(1)においても、前述の第一実施形態の色素増感型光電変換素子1A(1)と同様に、絶縁体からなる粒子28が、作用極5と対極6との間に電解質18とともに介在して、該作用極5と該対極6とを電気的に絶縁するセパレータとして機能する。そして、多孔質平膜をセパレータとして用いている従来の色素増感型光電変換素子と比べて、優れた効率で光電変換を行うことができる。   In the dye-sensitized photoelectric conversion element 1B (1) according to the second embodiment of the present invention, similarly to the dye-sensitized photoelectric conversion element 1A (1) according to the first embodiment described above, the particles 28 made of an insulator are used. However, it functions as a separator that is interposed between the working electrode 5 and the counter electrode 6 together with the electrolyte 18 to electrically insulate the working electrode 5 from the counter electrode 6. And compared with the conventional dye-sensitized photoelectric conversion element which uses the porous flat film as a separator, photoelectric conversion can be performed with the outstanding efficiency.

本発明に係る色素増感型光電変換素子1としては、フレキシブル性及び光電変換効率に優れることから、前述の第一実施形態が好ましい。
すなわち、本発明に係る色素増感型光電変換素子1としては、前記作用極5が、導電性を有するとともに線状をなす複数の第1基材8および第2基材9が網目状に編まれてなる領域から構成されてなるものが好ましい。
As the dye-sensitized photoelectric conversion element 1 according to the present invention, the first embodiment described above is preferable because of excellent flexibility and photoelectric conversion efficiency.
That is, in the dye-sensitized photoelectric conversion element 1 according to the present invention, the working electrode 5 has a plurality of first base material 8 and second base material 9 that are conductive and have a linear shape. Those composed of rare regions are preferred.

(実施例)
図1に示す構造の色素増感型光電変換素子を作製した。
まず、直径0.05mmまで伸線したTi被覆Cu線を、図1のように織機により密な平織り構造の網目状電極に製織した。縦横のTi被覆Cu線が織り重ねられる矩形の網目状構造からなる領域のサイズは10cm×10cmとし、Ti被覆Cu線の本数は縦横それぞれ1500〜2000本とした。
集電部を構成するTi被覆Cu線の本数は1500〜2000本とし、集電部の幅は1cmとした。
(Example)
A dye-sensitized photoelectric conversion element having the structure shown in FIG. 1 was produced.
First, Ti coated Cu wire drawn to a diameter of 0.05 mm was woven into a mesh electrode having a dense plain weave structure by a loom as shown in FIG. The size of the area of the rectangular network structure in which the vertical and horizontal Ti-coated Cu wires are woven is 10 cm × 10 cm, and the number of Ti-coated Cu wires is 1500 to 2000 in the vertical and horizontal directions.
The number of Ti-coated Cu wires constituting the current collector was 1500 to 2000, and the width of the current collector was 1 cm.

<作用極の作製>
この発電部にTiOペースト(日揮触媒化成株式会社製;PNT−21NR)をスキージ法により塗布し、電気炉にて500℃、1時間で焼結した。前記網目状電極には、膜厚が約15μmの多孔質TiO膜が形成された。
なお、作用極を構成する発電部(10cm×10cm)以外の部分は、テープなどによりマスキングを行うことによって、TiOがペーストが塗布されないようにした。
<Production of working electrode>
A TiO 2 paste (manufactured by JGC Catalysts & Chemicals Co., Ltd .; PNT-21NR) was applied to this power generation unit by a squeegee method, and sintered in an electric furnace at 500 ° C. for 1 hour. A porous TiO 2 film having a thickness of about 15 μm was formed on the mesh electrode.
Note that portions other than the power generation unit (10 cm × 10 cm) constituting the working electrode were masked with a tape or the like so that the paste of TiO 2 was not applied.

つぎに、集電部の長手方向の長さより所定寸法長く形成されたCu箔を集電部に重ね合わせ、さらにこれらをTi箔で挟んだ上で、所定のスポット溶接機を使用して抵抗溶接法を用いて圧着を行った。スポット溶接の間隔は、集電部の長手方向に沿って約2mm間隔とした。その後、該集電部をポリイミド樹脂に浸漬させて被覆した。なお、浸漬時には真空によって脱泡した。   Next, the Cu foil formed longer than the length in the longitudinal direction of the current collector is overlapped on the current collector, and further sandwiched between Ti foils, and then resistance welding is performed using a predetermined spot welder. Crimping was performed using this method. The spot welding interval was about 2 mm along the longitudinal direction of the current collector. Thereafter, the current collector was coated by being immersed in a polyimide resin. In addition, it deaerated by the vacuum at the time of immersion.

つづいて、発電部を120℃のオーブン中に10分保持して、吸着していた水分を蒸発させた後、ルテニウム色素{Solaronix社製;RutheAlum535−bisTBA(一般にはN719と呼ばれる)}の0.3mM、アセトニトリル/tert−ブタノール=1:1溶液に浸漬し、室温で24時間放置してTiO表面に色素を担持した。色素溶液から引き上げた後、上記混合溶媒で洗浄し、これを作用極とした。 Subsequently, the power generation unit was kept in an oven at 120 ° C. for 10 minutes to evaporate the adsorbed water, and then the ruthenium dye {manufactured by Solaronix; RutheAlum 535-bisTBA (generally called N719)}. It was immersed in a 3 mM acetonitrile / tert-butanol = 1: 1 solution and allowed to stand at room temperature for 24 hours to carry the dye on the TiO 2 surface. After pulling up from the dye solution, it was washed with the above mixed solvent and used as a working electrode.

<対極の作製>
一方、三元RFスパッタ装置を用いて、厚さ約0.1mmの矩形Ti板(10cm×10cm)上に、厚さ約200nmのPt層を形成したものを対極とした。また、その端部には引出電極を設けた。
<Production of counter electrode>
On the other hand, a counter electrode was formed by forming a Pt layer having a thickness of about 200 nm on a rectangular Ti plate (10 cm × 10 cm) having a thickness of about 0.1 mm using a ternary RF sputtering apparatus. In addition, an extraction electrode was provided at the end.

<電解質の作製>
メトキシプロピオニトリル(MPN)10mL中に、I2を0.3777g(0.15M)、DMPImIを2.128g(0.8M)、GuSCNを0.1182g(0.1M)、NMBIを0.6609g(0.5M)溶解して、電解液とした。
<Production of electrolyte>
In 10 mL of methoxypropionitrile (MPN), 0.377 g (0.15 M) of I2, 2.128 g (0.8 M) of DMPImI, 0.1182 g (0.1 M) of GuSCN, and 0.6609 g of NMBI ( 0.5M) was dissolved to obtain an electrolytic solution.

表1に示す直径を有する球状のソーダ石灰ガラス製粒子を、前記電解液に対して表1に示す割合で混入して、それぞれを電解質1〜17とした。   Spherical soda-lime glass particles having the diameters shown in Table 1 were mixed in the ratio shown in Table 1 with respect to the electrolytic solution, and the respective electrolytes were designated as electrolytes 1-17.

<セルの作製>
PETからなる収納袋内に、前記作用極と前記対極とを対向させて挿入し、前記電解質1〜17を注入した後、接着剤によって封止して、実施例1〜8、比較例1〜9の色素増感型光電変換素子(セル)とした。
一方、比較例10の色素増感型光電変換素子(セル)は、次のように作製した。
前記作用極と前記対極とを対向させて、さらにその間に厚さ20μmのポリオレフィンからなる多孔質平膜を挟んで介して重ね合わせ、PETからなる収納袋に挿入し、前記電解液を注入した後、接着剤によって封止した。
<Production of cell>
In the storage bag made of PET, the working electrode and the counter electrode are inserted to face each other, and after the electrolytes 1 to 17 are injected, they are sealed with an adhesive, and Examples 1 to 8 and Comparative Examples 1 to 1 are used. No. 9 dye-sensitized photoelectric conversion element (cell).
On the other hand, the dye-sensitized photoelectric conversion element (cell) of Comparative Example 10 was produced as follows.
After the working electrode and the counter electrode are made to face each other and a porous flat membrane made of polyolefin having a thickness of 20 μm is sandwiched therebetween, inserted into a storage bag made of PET, and the electrolytic solution is injected And sealed with an adhesive.

<光電変換効率の評価>
以上のようにして作製された実施例1〜8、比較例1〜9の各色素増感型光電変換素子に対して、ソーラーシミュレータ(AM1.5、100mW/cm)を用いて光を照射し、電流電位曲線を測定し、その光電変換効率を求めた。その結果を表1に併記した。
また、同様の条件で、比較例10の色素増感型光電変換素子の光電変換効率を求めたところ、3.2%であった。なお、作用極と対極とを絶縁できなかった比較例1〜6については、光電変換素子として機能しなかったため、その光電変換効率は測定されなかった。
<Evaluation of photoelectric conversion efficiency>
Irradiating light to each of the dye-sensitized photoelectric conversion elements of Examples 1 to 8 and Comparative Examples 1 to 9 manufactured as described above using a solar simulator (AM1.5, 100 mW / cm 2 ). Then, the current potential curve was measured, and the photoelectric conversion efficiency was obtained. The results are also shown in Table 1.
Moreover, when the photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element of Comparative Example 10 was determined under the same conditions, it was 3.2%. In addition, about Comparative Examples 1-6 which could not insulate a working electrode and a counter electrode, since it did not function as a photoelectric conversion element, the photoelectric conversion efficiency was not measured.

Figure 2011070876
Figure 2011070876

以上の結果から、本発明に係る実施例1〜8の色素増感型光電変換素子は、比較例1〜10の色素増感型光電変換素子に比べて、いずれも同等以上の優れた光電変換効率を有することが明らかである。   From the above results, the dye-sensitized photoelectric conversion elements of Examples 1 to 8 according to the present invention are all superior to or equivalent to the dye-sensitized photoelectric conversion elements of Comparative Examples 1 to 10. It is clear that it has efficiency.

本発明は、色素増感型光電変換素子に広く適用可能である。   The present invention is widely applicable to dye-sensitized photoelectric conversion elements.

1…色素増感型光電変換素子、2…発電部、3…集電部、4…集電用配線、5…作用極、6…対極、8…第1基材、9…第2基材、13…多孔質酸化物半導体層、14…収納袋、18…電解質、19…集電領域、20…外周基材、21…Cu箔、22…Ti箔、23…溶融部、24…スポット溶接部、25…抵抗溶接用電極、28…絶縁体からなる粒子、30…第一辺、31…第二辺、32…第三辺、33…第四辺、35…透明導電性基板、100…従来の色素増感型変換素子、102…発電部、103…集電部、104…集電用配線、105…作用極、106…対極、108…第1基材、109…第2基材、110…セパレーター、113…多孔質酸化物半導体層、114…収納袋、118…電解質、120…外周基材、121…Cu箔、122…Ti箔、123…溶融部。 DESCRIPTION OF SYMBOLS 1 ... Dye-sensitized photoelectric conversion element, 2 ... Power generation part, 3 ... Current collection part, 4 ... Current collection wiring, 5 ... Working electrode, 6 ... Counter electrode, 8 ... 1st base material, 9 ... 2nd base material DESCRIPTION OF SYMBOLS 13 ... Porous oxide semiconductor layer, 14 ... Storage bag, 18 ... Electrolyte, 19 ... Current collection area | region, 20 ... Outer periphery base material, 21 ... Cu foil, 22 ... Ti foil, 23 ... Molten part, 24 ... Spot welding Part, 25 ... electrode for resistance welding, 28 ... particle made of insulator, 30 ... first side, 31 ... second side, 32 ... third side, 33 ... fourth side, 35 ... transparent conductive substrate, 100 ... Conventional dye-sensitized conversion element, 102 ... power generation section, 103 ... current collection section, 104 ... current collection wiring, 105 ... working electrode, 106 ... counter electrode, 108 ... first base material, 109 ... second base material, DESCRIPTION OF SYMBOLS 110 ... Separator, 113 ... Porous oxide semiconductor layer, 114 ... Storage bag, 118 ... Electrolyte, 120 ... Outer periphery base material, 121 ... Cu foil, 22 ... Ti foil, 123 ... melting unit.

Claims (3)

導電性を有する作用極と対極とが、電解質を介して配されてなる色素増感型光電変換素子であって、
前記作用極と前記対極とは、前記電解質に含まれる絶縁体からなる粒子により絶縁されており、該絶縁体からなる粒子は、最大外径が40μm以上120μm以下の球形状であることを特徴とする色素増感型光電変換素子。
A dye-sensitized photoelectric conversion element in which a working electrode and a counter electrode having conductivity are arranged via an electrolyte,
The working electrode and the counter electrode are insulated by particles made of an insulator contained in the electrolyte, and the particles made of the insulator have a spherical shape with a maximum outer diameter of 40 μm or more and 120 μm or less. A dye-sensitized photoelectric conversion element.
前記作用極は、導電性を有するとともに線状をなす複数の第1基材および第2基材が網目状に編まれてなる領域から構成されてなることを特徴とする請求項1に記載の色素増感型光電変換素子。   The said working electrode is comprised from the area | region where the some 1st base material and 2nd base material which have electroconductivity and make linear form are knitted in mesh shape. Dye-sensitized photoelectric conversion element. 前記絶縁体からなる粒子は、球形状のガラス製粒子であり、
前記電解質中に1.0質量%以上5.0質量%以下の割合で含まれる
ことを特徴とする請求項1又は2に記載の色素増感型光電変換素子。
The particles made of the insulator are spherical glass particles,
3. The dye-sensitized photoelectric conversion element according to claim 1, wherein the dye-sensitized photoelectric conversion element is contained in the electrolyte at a ratio of 1.0% by mass or more and 5.0% by mass or less.
JP2009220071A 2009-09-25 2009-09-25 Dye-sensitized photoelectric conversion element Pending JP2011070876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220071A JP2011070876A (en) 2009-09-25 2009-09-25 Dye-sensitized photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220071A JP2011070876A (en) 2009-09-25 2009-09-25 Dye-sensitized photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2011070876A true JP2011070876A (en) 2011-04-07

Family

ID=44015972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220071A Pending JP2011070876A (en) 2009-09-25 2009-09-25 Dye-sensitized photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2011070876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030331A (en) * 2011-07-28 2013-02-07 Fujikura Ltd Working electrode for dye-sensitized solar cell and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299138A (en) * 1999-04-13 2000-10-24 Idemitsu Kosan Co Ltd Pigment sensitized solar battery
JP2001185245A (en) * 1999-12-28 2001-07-06 Catalysts & Chem Ind Co Ltd Photoelectric cell and application liquid for forming semiconductor film of photoelectric cell
JP2003308891A (en) * 2002-04-17 2003-10-31 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2009245750A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Dye-sensitized solar battery and method of manufacturing the same
WO2010023860A1 (en) * 2008-08-29 2010-03-04 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299138A (en) * 1999-04-13 2000-10-24 Idemitsu Kosan Co Ltd Pigment sensitized solar battery
JP2001185245A (en) * 1999-12-28 2001-07-06 Catalysts & Chem Ind Co Ltd Photoelectric cell and application liquid for forming semiconductor film of photoelectric cell
JP2003308891A (en) * 2002-04-17 2003-10-31 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2009245750A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Dye-sensitized solar battery and method of manufacturing the same
WO2010023860A1 (en) * 2008-08-29 2010-03-04 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030331A (en) * 2011-07-28 2013-02-07 Fujikura Ltd Working electrode for dye-sensitized solar cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5230481B2 (en) Photoelectric conversion element
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
JP2009289737A (en) Photoelectric conversion element module
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5134867B2 (en) Photoelectric conversion element
JP2012089407A (en) Mesh body for working electrode, working electrode, method for manufacturing working electrode, and dye-sensitized solar cell
JP5398441B2 (en) Dye-sensitized photoelectric conversion element
JP5114499B2 (en) Photoelectric conversion element
JP5160045B2 (en) Photoelectric conversion element
KR101188929B1 (en) Seal member for photoelectric conversion device, photoelectric conversion device comprising the same and method of preparing the same
JP2010015830A (en) Photoelectric conversion element
JP5460159B2 (en) Dye-sensitized photoelectric conversion element
JP5687873B2 (en) Working electrode and dye-sensitized solar cell having the same
JP2011070876A (en) Dye-sensitized photoelectric conversion element
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5398442B2 (en) Method for producing dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element
JP5398449B2 (en) Dye-sensitized photoelectric conversion element
JP5485425B2 (en) Photoelectric conversion element
JP4942919B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5398498B2 (en) Dye-sensitized photoelectric conversion element
JP5604090B2 (en) Dye-sensitized photoelectric conversion element
JP5460198B2 (en) Dye-sensitized photoelectric conversion element
JP5398504B2 (en) Dye-sensitized photoelectric conversion element
JP5398440B2 (en) Photoelectric conversion element
JP2010080216A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204