JP5397740B2 - Metal balls for rolling elements - Google Patents

Metal balls for rolling elements Download PDF

Info

Publication number
JP5397740B2
JP5397740B2 JP2008294676A JP2008294676A JP5397740B2 JP 5397740 B2 JP5397740 B2 JP 5397740B2 JP 2008294676 A JP2008294676 A JP 2008294676A JP 2008294676 A JP2008294676 A JP 2008294676A JP 5397740 B2 JP5397740 B2 JP 5397740B2
Authority
JP
Japan
Prior art keywords
metal
metal sphere
rolling elements
hardness
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008294676A
Other languages
Japanese (ja)
Other versions
JP2009174045A (en
Inventor
辰也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008294676A priority Critical patent/JP5397740B2/en
Publication of JP2009174045A publication Critical patent/JP2009174045A/en
Application granted granted Critical
Publication of JP5397740B2 publication Critical patent/JP5397740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、転がり軸受け等に使用される転動体用金属球に関する。   The present invention relates to a rolling element metal ball used for a rolling bearing or the like.

従来、ボールベアリングなどに用いられる転動体用の鋼球は、鋼線を一定の長さに切断したピースを両側から半球状の球座をもつ雌、雄の金型で圧縮して球形に成形し、次に2枚の硬質鋳物盤の間にはさんで圧力をかけて転動させ、バリを除去した後、組織調整のための熱処理を行い、精研磨して製造される(例えば、非特許文献1参照)。   Conventionally, steel balls for rolling elements used for ball bearings, etc., are formed into a spherical shape by compressing a piece of steel wire cut to a certain length from both sides with female and male molds with hemispherical ball seats. Next, it is rolled between two hard casting machines by applying pressure to remove burrs, and then heat treatment for adjusting the structure is performed and fine polishing is performed (for example, non-casting) Patent Document 1).

しかし、前述の鍛造成形する方法だとボールが小径になるほど製造時間が掛かり、不経済である。そこで例えば、所望の金属あるいは合金の溶湯に圧力と振動を付与してるつぼの底部に設けたオリフィスから溶湯を押出し、滴下した溶湯を急冷凝固させて金属球を製造する方法は、均一液滴法と呼ばれ、前述の転動体用金属球を製造するのに適した方法であるとされている。この方法を用いた、質量%にてB:1.5%〜9.0%を含むFe基合金からなる転動体用金属球が特許文献1に開示されている。
株式会社天辻鋼球製作所ホームページ(2004)(インターネット<URL:http://www.aksball.co.jp/seir.htm>) 特開2007−217722号公報
However, the forging method described above is uneconomical because the smaller the ball, the longer the manufacturing time. Thus, for example, a method of producing a metal ball by extruding a molten metal from an orifice provided at the bottom of a crucible by applying pressure and vibration to a molten metal or alloy desired, and rapidly solidifying the molten molten metal is a uniform droplet method. It is said that it is a method suitable for manufacturing the metal balls for rolling elements described above. Patent Document 1 discloses a rolling element metal sphere made of an Fe-based alloy containing B: 1.5% to 9.0% by mass% using this method.
Tengu Steel Ball Manufacturing Co., Ltd. website (2004) (Internet <URL: http://www.aksball.co.jp/seir.htm>) JP 2007-217722 A

しかしながら、実際に転動体としてFe−B合金球を均一液適法で作製したところ、製造条件や組成によっては欠陥のない真球形状とならない問題が生じた。また欠陥がみられない凝固球においても、内部の硬さに大きいバラツキが生じ、転動体として使用するに特性の不足があることがわかった。   However, when Fe-B alloy spheres were actually produced as a rolling element by the uniform liquid method, there was a problem that a perfect spherical shape without defects was generated depending on the production conditions and composition. Moreover, it was found that even in a solidified sphere with no defects, the internal hardness greatly varies, and the characteristics are insufficient for use as a rolling element.

従来の鍛造、線引きを経て製造される転動体用金属球は、炭化物が均一に分散した組織であるために材質の機械的特性について偏りが生じがたいが、凝固球の場合は、組織の均一性は組成のみならず、冷却速度にも依存する。特に10〜10K/sec程度の冷却速度では、溶融金属の液滴に大きな過冷却が起こり、その結果予期しない準安定相の晶出や異常成長を引き起こすため、平衡状態図上の共晶に近い組成であっても凝固球に粗大な引け巣が残ることがあり、引け巣のない場合でも金属球内部の硬さに大きいバラツキの生じることがある。 Conventional metal balls for rolling elements manufactured through forging and wire drawing have a structure in which carbides are uniformly dispersed. Therefore, it is difficult for the mechanical properties of the material to be biased. The property depends not only on the composition but also on the cooling rate. In particular, at a cooling rate of about 10 2 to 10 4 K / sec, large supercooling occurs in the molten metal droplets, resulting in unexpected metastable phase crystallization and abnormal growth. Even if the composition is close to a crystal, coarse shrinkage cavities may remain in the solidified spheres, and even if there is no shrinkage cavities, the hardness inside the metal spheres may vary greatly.

本発明の目的は、凝固組織の均一性が高く、粗大な引け巣がなく、金属球内部の硬さバラツキが少ない転動体用金属球を提供することにある。   An object of the present invention is to provide a metal sphere for a rolling element with high uniformity of solidified structure, no coarse shrinkage nest, and less hardness variation inside the metal sphere.

本発明者は、前記の事情に鑑み、Fe−B共晶系合金を種々検討した結果、凝固組織が網目状のα−Fe樹枝状晶とFe−B化合物の複合組織からなるように、Fe−B共晶系合金にSiおよびCを添加し、急冷下で凝固させることにより、均一性の高い組織を持つ金属球が得られることを見出し、本発明に到達した。   In view of the above circumstances, the present inventor has studied Fe-B eutectic alloys in various ways. As a result, the solidification structure is composed of a composite structure of a network α-Fe dendritic crystal and an Fe-B compound. It has been found that metal spheres having a highly uniform structure can be obtained by adding Si and C to a -B eutectic alloy and solidifying under rapid cooling.

すなわち本発明は、質量%にてSi:4.0%〜6.0%、B:2.5%〜3.0%、C:0.1%〜0.6%を含有し、残部Feおよび不可避的不純物からなる合金が球状に凝固されてなり、組織の80%以上が5μm以下の2次アーム間距離からなるα−Fe樹枝状晶とFe−B化合物の複合組織からなり、硬さが700HV以上である転動体用金属球である。   That is, the present invention contains Si: 4.0% to 6.0%, B: 2.5% to 3.0%, and C: 0.1% to 0.6% by mass%, with the balance being Fe. An alloy composed of inevitable impurities is solidified in a spherical shape, and 80% or more of the structure is composed of a composite structure of α-Fe dendrite and Fe-B compound having a distance between secondary arms of 5 μm or less. Is a metal sphere for rolling elements having 700 HV or more.

前記Fe−B化合物はFeB化合物からなることが好ましい。
また、本発明の転動体用金属球は、質量%にてMo:0.1%〜2%を含むことが好ましい。
また、本発明の転動体用金属球は、粒径が0.05mm以上3mm以下で特に有効である。
The Fe-B compound is preferably composed of Fe 2 B compound.
Moreover, it is preferable that the metal sphere for rolling elements of this invention contains Mo: 0.1%-2% in the mass%.
Moreover, the metal sphere for rolling elements of the present invention is particularly effective when the particle size is 0.05 mm or more and 3 mm or less.

本発明によれば、特定の組成に調整した合金を急冷下において凝固させ、微細なα−Fe樹枝状晶とFe−B化合物の複合組織に調整することにより、粗大な引け巣がなく、金属球内部の硬さバラツキが少ない金属球が得られる。よって従来の鍛造工程を経ずして必要な機械的特性を維持でき、最終の精研磨作業も容易な素材となる金属球が提供できることから、転動体用金属球の製造コスト低減に有効な技術となる。   According to the present invention, an alloy adjusted to a specific composition is solidified under rapid cooling and adjusted to a composite structure of fine α-Fe dendrites and Fe—B compounds, so that there is no coarse shrinkage nest and a metal. A metal sphere with less variation in hardness inside the sphere can be obtained. Therefore, it is possible to maintain the necessary mechanical characteristics without going through the conventional forging process, and to provide a metal ball that can be used for easy final polishing work. This technology is effective in reducing the manufacturing cost of metal balls for rolling elements. It becomes.

本発明の重要な特徴は、微細なα−Fe樹枝状晶とFe−B化合物の複合組織となるよう組成を調整することで、過冷による準安定相の晶出を抑える点にある。以下に詳細を説明する。   An important feature of the present invention is that the crystallization of a metastable phase due to supercooling is suppressed by adjusting the composition so as to be a composite structure of fine α-Fe dendrites and Fe—B compounds. Details will be described below.

本発明においては、Fe−B共晶系合金にSiを添加しB量を調整することによって、α−Feの樹枝状晶を優先的に成長させ、凝固速度を低下させることによって引け巣の発生を抑えるとともに、過冷度を低下させることによって残りのFe−B合金系融液からFeB化合物を晶出させ、硬さのバラツキを抑えることを主眼とした。樹枝状晶の2次アーム間距離は冷却速度と相関があるため、本発明における網目状のα−Fe樹枝状晶は、5μm以下の2次アーム間距離を持って金属球の80%以上を占めていることが必要である。より好ましくは、網目状のα−Fe樹枝状晶が3μm以下の2次アーム間距離を持って金属球の90%以上を占めている組織がよい。 In the present invention, by adding Si to the Fe—B eutectic alloy and adjusting the amount of B, α-Fe dendrites are preferentially grown and the rate of solidification is reduced, thereby generating shrinkage nests. In addition to reducing the degree of supercooling, the Fe 2 B compound was crystallized from the remaining Fe—B alloy-based melt to reduce hardness variation. Since the distance between the secondary arms of the dendrites correlates with the cooling rate, the network-like α-Fe dendrites according to the present invention have a distance between secondary arms of 5 μm or less and more than 80% of the metal spheres. It is necessary to occupy. More preferably, a structure in which the network α-Fe dendrites occupy 90% or more of the metal spheres with a secondary arm distance of 3 μm or less is preferable.

なお本発明においてα−Fe樹枝状晶とFe−B化合物の複合組織とは、図4の光学顕微鏡写真及び模式図に示すように、Fe−B化合物とα−Feの共晶組織1中に初晶であるα−Fe樹枝状晶2が発達した組織である。二次アーム間距離5とは、α−Fe樹枝状晶2の一次アーム3から直角に伸びた、隣り合う二次アーム4の中心間の距離であり、連続して3つ以上並んでいる二次アーム4における中心間距離5の2つ以上の平均値から求める。その値は1つの球断面につき3箇所計測し、その平均をとるものとする。また、組織の80%以上とは、球の中心を通る断面で観察したときの、断面積に対するα−Fe樹脂状晶2が占める組織の比率が80%以上であることを示す。   In the present invention, the composite structure of the α-Fe dendrites and the Fe—B compound is included in the eutectic structure 1 of the Fe—B compound and α-Fe as shown in the optical micrograph and schematic diagram of FIG. It is a structure in which α-Fe dendrites 2 which are primary crystals are developed. The inter-secondary arm distance 5 is a distance between the centers of the adjacent secondary arms 4 extending perpendicularly from the primary arm 3 of the α-Fe dendrite 2, and two or more of them are arranged side by side. Obtained from the average value of two or more of the center-to-center distance 5 in the next arm 4. The value is measured at three points for one sphere cross section, and the average is taken. Moreover, 80% or more of the structure | tissue shows that the ratio of the structure | tissue which the alpha-Fe resinous crystal 2 accounts with respect to a cross-sectional area when it observes in the cross section which passes along the center of a sphere is 80% or more.

また、FeB化合物は、初晶のα−Fe樹枝状晶の後にFeとの共晶成分として晶出する化合物であるため、結果としてFeBのような準安定相も同時に晶出すると考えられる。この準安定相は、金属球内部の硬さにバラツキが生じる原因となると考えられ、本発明では均質な組織による硬さバラツキの低減のために、Fe(B,C)のような準安定相をできるだけ低減させることが望ましい。 In addition, since the Fe 2 B compound is a compound that crystallizes as an eutectic component with Fe after the primary α-Fe dendrite, as a result, a metastable phase such as Fe 3 B also crystallizes at the same time. Conceivable. This metastable phase is considered to cause variation in the hardness inside the metal sphere, and in the present invention, in order to reduce the hardness variation due to a homogeneous structure, metastable such as Fe 3 (B, C). It is desirable to reduce the phase as much as possible.

本発明の転動体用金属球におけるBは、微細なホウ化物として金属球中に分散することで、転動体としての金属球の機械的特性を決定する元素であり、他の主成分であるFe及びSiと共晶を形成する重要な元素である。多量のBを含有し、溶融金属からホウ化物が初晶として晶出する状態では、ホウ化物が溶融金属中で粗大に成長するため、凝固した金属球の耐疲労特性や靭性が低下する。また、平衡状態図上の極めて共晶に近い添加量であっても、急冷される製造条件下では液滴が過冷しやすくなるため、準安定相が晶出して硬さのバラツキの原因となるため、B添加量は3.0質量%以下とする。
一方、B添加量を低減すると、亜共晶組成となるため、微細に成長したα−Feの樹枝状晶の隙間を埋めるべき共晶融液が相対的に減少し、結果として樹枝状晶の隙間に微小な引け巣が形成されるので、B添加量は2.5質量%以上必要である。望ましくは、2.6〜2.8質量%がよい。
B in the metal sphere for rolling element of the present invention is an element that determines the mechanical properties of the metal sphere as a rolling element by being dispersed in the metal sphere as a fine boride, and is the other main component Fe. And an important element that forms a eutectic with Si. In a state where a large amount of B is contained and the boride crystallizes from the molten metal as the primary crystal, the boride grows coarsely in the molten metal, so that the fatigue resistance and toughness of the solidified metal spheres are reduced. In addition, even if the addition amount is very close to eutectic on the equilibrium diagram, the liquid droplets are likely to be supercooled under the manufacturing conditions where they are rapidly cooled, so that the metastable phase crystallizes and causes hardness variations. Therefore, the amount of B added is 3.0% by mass or less.
On the other hand, when the amount of addition of B is reduced, a hypoeutectic composition is obtained, so that the eutectic melt to fill the gaps between the finely grown α-Fe dendrites is relatively reduced. Since a minute shrinkage nest is formed in the gap, the amount of B added needs to be 2.5% by mass or more. Desirably, 2.6 to 2.8 mass% is good.

本発明の転動体用金属球におけるSiは、α−Feの樹枝状晶を安定成長させると共に、Fe−Si−Bの3元系共晶を形成する重要な元素である。添加量が少ないとα−Feが安定成長せず、凝固した金属球に引け巣が残るようになり、結果として転動体に要求される極めて平滑な表面を、研磨で成形することが困難になるため、Si添加量は4.0質量%以上必要である。また、Siの添加量が多いと、Siのα−Feへの固溶量が増加することで、凝固した金属球の耐疲労特性や靭性が低下するおそれがあるため、Si添加量は6.0質量%以下とする。望ましくは、4.5〜5.5質量%がよい。   Si in the metal sphere for rolling element of the present invention is an important element for stably growing an α-Fe dendritic crystal and forming an Fe—Si—B ternary eutectic. If the amount added is small, α-Fe does not grow stably, and shrinkage cavities remain in the solidified metal spheres. As a result, it becomes difficult to form an extremely smooth surface required for rolling elements by polishing. Therefore, the amount of Si added is required to be 4.0% by mass or more. Further, if the amount of Si added is large, the amount of Si dissolved in α-Fe increases, which may reduce the fatigue resistance and toughness of the solidified metal spheres. 0 mass% or less. Desirably, 4.5-5.5 mass% is good.

本発明の転動体用金属球におけるCは、微細な炭化物として金属球中に分散するのみならず基材への強化機構をも有し、転動体に必要な機械的特性を満たすための重要な元素である。過度に添加すると、準安定相であるFe(B,C)型化合物が優先的に晶出するようになり、金属球内部の硬さのバラツキ原因になると考えられるため、C添加量は0.6質量%までとする。また、添加量が少ないと金属球の硬さが低下し、転動体として使用したときの耐疲労特性が低下するため、C添加量は0.1質量%以上必要である。望ましくは、0.3〜0.5質量%がよい。 C in the metal spheres for rolling elements of the present invention is not only dispersed in the metal spheres as fine carbides but also has a strengthening mechanism for the base material, and is important for satisfying the mechanical properties required for the rolling elements. It is an element. If added excessively, the metastable phase Fe 3 (B, C) type compound is preferentially crystallized, which is considered to cause the hardness variation inside the metal sphere. Up to 6% by mass. Moreover, since the hardness of a metal sphere will fall if there is little addition amount and a fatigue resistance characteristic when using as a rolling element will fall, C addition amount needs to be 0.1 mass% or more. Desirably, 0.3-0.5 mass% is good.

本発明の転動体用金属球は、Moを添加することが好ましい。Moの添加による働きについて明らかでない部分もあるが、溶融液滴中のCを強固に引きつけることで組織中における固溶Cの偏析を防ぎ、また前述のFe(B,C)型化合物の晶出を抑制することで硬さのバラツキを著しく低減させると考えられる。本発明の転動体用金属球では、より硬さバラツキを低減するために、少なくともMoを0.1質量%添加することで効果を得ることができる。
しかし、多量に添加すると引け巣や化合物の異常成長の原因となるため、Mo添加量は2.0質量%以下が望ましい。より望ましくは、0.3〜1.5質量%がよい。
It is preferable that Mo is added to the metal sphere for rolling elements of the present invention. Although there is a part that is not clear about the action due to the addition of Mo, segregation of solid solution C in the structure is prevented by strongly attracting C in the molten droplet, and the crystal of the aforementioned Fe 3 (B, C) type compound. It is considered that the variation in hardness is remarkably reduced by suppressing the protrusion. In the metal sphere for rolling elements of the present invention, the effect can be obtained by adding at least 0.1% by mass of Mo in order to further reduce the hardness variation.
However, addition of a large amount causes abnormal growth of shrinkage cavities and compounds, so the Mo addition amount is desirably 2.0% by mass or less. More desirably, the content is 0.3 to 1.5% by mass.

本発明の転動体用金属球は、転動体に使用された場合、金属球を保持するレールやホルダー等との摩擦と摩耗を抑えることで、金属球の変形や損傷を防ぎ、長期間にわたる良好な転動特性を確保する目的から、ビッカース硬さで700HV以上を有する。さらに長寿命を得るためには、ビッカース硬さで800HV以上が好ましい。なお、金属球の硬さとは、金属球の断面の硬さをいう。   When the metal sphere for rolling elements of the present invention is used in a rolling element, it prevents deformation and damage of the metal sphere by suppressing friction and wear with a rail or holder that holds the metal sphere, and is good for a long period of time. From the purpose of ensuring a good rolling characteristic, it has a Vickers hardness of 700 HV or more. Furthermore, in order to obtain a long life, the Vickers hardness is preferably 800 HV or more. The hardness of the metal sphere refers to the hardness of the cross section of the metal sphere.

また、機器の小型化を求める消費者ニーズと相まって金属球を保持する周辺部品の加工技術も著しく向上した結果、粒径が1mm以下の金属球を使用した製品が多くなってきている。近年の状況を鑑みると、本発明の転動体用金属球の直径は0.05mm以上3mm以下が望ましい。0.05mm未満の粒径では、溶湯から球状に凝固するための制御が困難であり、生産性が劣る。一方、3mmを越える粒径では、溶湯から凝固に至る冷却時間が長くなるために、組織の粗大化や所望しない相の晶出が起こりやすくなり、製造性が劣る。製造性を考慮すれば粒径は0.2mm以上1.5mm以下がより好ましい。   In addition, as a result of significant improvement in processing technology for peripheral parts that hold metal balls in combination with consumer needs for miniaturization of equipment, products using metal balls having a particle diameter of 1 mm or less are increasing. In view of the situation in recent years, the diameter of the metal sphere for rolling elements of the present invention is preferably 0.05 mm or more and 3 mm or less. When the particle diameter is less than 0.05 mm, it is difficult to control the molten metal to solidify into a spherical shape, and the productivity is poor. On the other hand, when the particle size exceeds 3 mm, the cooling time from the molten metal to solidification becomes long, so that coarsening of the structure and crystallization of an undesired phase easily occur, resulting in poor productivity. Considering manufacturability, the particle size is more preferably 0.2 mm or more and 1.5 mm or less.

なお、本発明の球状に凝固した転動体用金属球は、その組織が凝固ままのものであってもよい他には、必要に応じて熱処理といった、組織あるいは特性の改善処理を施してもよい。つまり、製造した凝固ままの金属球は、適切な熱処理を施して、その特性を最大限に引き出すことが可能である。例えば、凝固ひずみを焼鈍で除去することにより靭性の向上や、化合物を微細析出させることにより強度の向上が可能である。   In addition, the metal balls for rolling elements solidified into a spherical shape of the present invention may be subjected to a treatment for improving the structure or characteristics such as heat treatment, if necessary, in addition to the solidified structure. . That is, the manufactured solid metal sphere can be subjected to an appropriate heat treatment to maximize its characteristics. For example, the toughness can be improved by removing the solidification strain by annealing, and the strength can be improved by fine precipitation of the compound.

本発明の転動体用金属球は、溶融した合金を球状に凝固させることができる如何なる製造方法でも適用することができる。好ましくは、前述したような、均一液滴法を用いることがよい。溶融した合金は、全ての構成成分の拡散が固体に比べると非常に高速で生じているので、均質に混ざり合った溶融合金から直接、液滴を作製し、凝固させて金属球とすることにより、全ての金属球ごとの成分比は等しくなる。したがって、既に偏析が生じているインゴットから製造された細線を用いる従来の製造方法では得ることが困難であった、組成バラツキの少ない金属球を安定して製造することができる。また、溶湯から直接液滴を作り凝固させるので、塑性加工が不要であり、高合金化した転動体用金属球の製造が可能である。   The metal balls for rolling elements of the present invention can be applied by any manufacturing method that can solidify a molten alloy into a spherical shape. Preferably, the uniform droplet method as described above is used. In the molten alloy, the diffusion of all the constituents occurs at a very high speed compared to solids, so by creating droplets directly from the homogeneously mixed molten alloy and solidifying them into metal spheres The component ratio for every metal sphere is equal. Therefore, it is possible to stably produce metal spheres with little composition variation, which is difficult to obtain by a conventional production method using a thin wire produced from an ingot that has already been segregated. Further, since the droplets are directly formed and solidified from the molten metal, plastic processing is not required, and it is possible to manufacture a metal sphere for a rolling element having a high alloy.

溶融した合金の凝固および金属球を回収する雰囲気は、大気中であると金属球表面が過剰に酸化することによって、溶湯の表面張力による球状化を阻害するため、He、Ar等の不活性ガス中で冷却凝固させることが望ましい。特にHeは、不活性ガスの中でも熱伝導率が高く、短時間、短距離で液滴を凝固させることができるため、製造装置のコスト及び金属球の量産性において望ましい。また、高い冷却速度を得るために、水や焼入油、ポリマー系冷却剤、あるいは液化ガス等の液体の冷媒を使用して、これらと液滴とを接触させて冷却してもよい。   The atmosphere in which the molten alloy is solidified and the metal spheres are recovered is that the surface of the metal spheres is excessively oxidized in the air, thereby inhibiting spheroidization due to the surface tension of the molten metal. It is desirable to cool and solidify inside. In particular, He has a high thermal conductivity among inert gases, and can coagulate droplets in a short time and a short distance. Therefore, He is desirable in terms of the cost of the manufacturing apparatus and the mass productivity of metal spheres. In addition, in order to obtain a high cooling rate, water or quenching oil, a polymer-based coolant, or a liquid refrigerant such as a liquefied gas may be used to cool them by bringing them into contact with the droplets.

上述した均一液適法により、るつぼの底部に設けたサファイア製ノズルから表1に示す組成の溶湯を押出し、滴下した溶湯を急冷凝固させ、金属球を製造した。このとき、表1に示すようにノズル径を調整し、ノズルから溶湯を押出す際の出湯温度は1360℃に設定して溶湯を押出した。押出した(a)〜(o)の液滴はHeガス中で球状化、凝固させ回収し、(p)〜(r)の液滴は室温の焼入油(大同化学工業製#125、JIS K2242 1種2号)中でそれぞれ球状化、凝固させ回収した。
得られた金属球の引け巣の有無を確認した。表1中に示す引け巣は、金属球をポニー工業製透過X線装置MH−3160−Dで観察したとき、金属球の最長径の5%を超える空孔(外部、内部含む)がある場合は×、空孔がない場合は○で示した。
表1に示すように、所定のSi、B、C、Mo量を満たすように組成調整した本発明例(f)〜(r)のいずれの金属球にも、引け巣が確認されなかった。一方、所定のSi、B、C、Mo量を満たさない比較例(a)〜(e)の金属球には、引け巣がみられた。代表例として、図1に金属球の透過X線像を示す。本発明例(f)では淡色にみえる空孔、すなわち引け巣は確認されなかった。これに対して、比較例(d)の金属球の透過X線像においては、金属球の一部が淡色にみえる空孔、すなわち引け巣が確認された。
A molten metal having the composition shown in Table 1 was extruded from a sapphire nozzle provided at the bottom of the crucible by the above-described uniform liquid method, and the molten molten metal was rapidly cooled and solidified to produce metal balls. At this time, as shown in Table 1, the nozzle diameter was adjusted, and the molten metal was extruded with the molten metal temperature set at 1360 ° C. when the molten metal was extruded from the nozzle. The extruded droplets (a) to (o) were spheroidized and solidified in He gas and recovered, and the droplets (p) to (r) were quenched oil at room temperature (# 125, JIS, manufactured by Daido Chemical Industries). In K2242 type 1 No. 2), each was spheroidized, solidified and recovered.
The presence or absence of shrinkage nests of the obtained metal balls was confirmed. The shrinkage nest shown in Table 1 is when there are holes (including the outside and inside) exceeding 5% of the longest diameter of the metal sphere when the metal sphere is observed with a transmission X-ray apparatus MH-3160-D made by Pony Industries. Is indicated by ×, and when there is no hole, it is indicated by ○.
As shown in Table 1, no shrinkage cavities were observed in any of the metal spheres of the present invention examples (f) to (r) whose compositions were adjusted to satisfy predetermined amounts of Si, B, C, and Mo. On the other hand, shrinkage nests were observed in the metal balls of Comparative Examples (a) to (e) that did not satisfy the predetermined amounts of Si, B, C, and Mo. As a representative example, FIG. 1 shows a transmission X-ray image of a metal sphere. In Example (f) of the present invention, no vacant holes, i.e., shrinkage cavities, were observed. On the other hand, in the transmission X-ray image of the metal sphere of the comparative example (d), vacancies in which a part of the metal sphere appears light, that is, shrinkage nests were confirmed.

次に、表1の本発明例(j)の金属球において粒径測定を行った。その結果を図2に示す。金属球の粒径は、図2に示すように、中央値でφ612μm、標準偏差は3.4であり、単分散を呈していることが確認できた。
また、表1の本発明例(j)の金属球の走査型電子顕微鏡による外観観察を行った。その結果を図3に示す。図3に示すように、外観に引け巣はなく、極めて平滑な表面を有していることを確認した。
Next, particle size measurement was performed on the metal spheres of the invention example (j) in Table 1. The result is shown in FIG. As shown in FIG. 2, the metal spheres had a median value of φ612 μm and a standard deviation of 3.4, confirming monodispersion.
In addition, the appearance of the metal spheres of the invention example (j) in Table 1 was observed with a scanning electron microscope. The result is shown in FIG. As shown in FIG. 3, it was confirmed that there was no shrinkage nest in the appearance and an extremely smooth surface.

上記で作製した、引け巣のみられなかった本発明例(f)〜(r)の金属球を精研磨によって調整し、光学顕微鏡による断面観察を行い、組織の均一性を調査した。その結果、表1に示すように本発明例(f)〜(r)の金属球において、金属球の80%以上の組織が5μm以下の2次アーム間距離からなるα−Fe樹枝状晶を呈していることが確認できた。また、図4に示すように、表1中の本発明例(j)の金属球においては、断面組織が微細なFe−B化合物とα−Feによる均質な組織を呈していることが確認できた。   The metal spheres of the present invention examples (f) to (r), which were produced as described above, were adjusted by fine polishing, cross-sectional observation was performed with an optical microscope, and the uniformity of the tissue was investigated. As a result, as shown in Table 1, in the metal spheres of Examples (f) to (r) of the present invention, α-Fe dendrites having a structure in which 80% or more of the metal spheres have a distance between secondary arms of 5 μm or less. It was confirmed that it was present. Moreover, as shown in FIG. 4, in the metal sphere of the invention example (j) in Table 1, it can be confirmed that the cross-sectional structure exhibits a homogeneous structure composed of a fine Fe-B compound and α-Fe. It was.

次に、リガク製X線回折装置RINT2500PCを用いてX線回折を行い、金属球の構成物質を同定した。線源には、Cu−Kα線を用いた。表1に示すように、本発明例(f)〜(j)、(m)〜(r)においては、金属球はα−Fe、FeB、Fe(B,C)からなっていることが確認できた。一例として図5に示すように、本発明例(g)においては、Fe(B,C)がFeBに比べ僅かなピーク強度であった。また、本発明例(k)、(l)については、金属球がα−Fe、FeBからなり、Fe(B,C)は全く確認できなかった。 Next, X-ray diffraction was performed using a Rigaku X-ray diffractometer RINT2500PC, and the constituent materials of the metal spheres were identified. Cu-Kα rays were used as the radiation source. As shown in Table 1, in the inventive examples (f) to (j) and (m) to (r), the metal sphere is made of α-Fe, Fe 2 B, Fe 3 (B, C). I was able to confirm. As an example, as shown in FIG. 5, in the present invention example (g), Fe 3 (B, C) had a slight peak intensity compared to Fe 2 B. Further, in the inventive examples (k) and (l), the metal sphere was composed of α-Fe and Fe 2 B, and Fe 3 (B, C) could not be confirmed at all.

上記で作製した金属球を精研磨によって調整し、アカシ製ビッカース硬度計MUK−E3を用いて断面の中心部の硬さを荷重1.96N(200gf)で測定した。表1中の硬さは、10個の金属球を測定した値の平均値である。硬さを測定した結果、本発明例(f)〜(r)の金属球は、800HV以上を示し、転動体用材料として供するに十分な強度を有することを確認した。
次に、本発明例(f)〜(l)の金属球の中心を通る断面において12時、3時、6時、9時方向に端から0.1mmの位置の4点と、中心位置の1点の合計5箇所を金属球1個の測定位置として硬さを測定した。このとき、バラツキ幅(最大値−最小値)を5個の金属球について計算した。バラツキ幅の平均値の計算結果を図6に示す。図6に示すように、特に本発明例(j)では、他の本発明例に比べてバラツキが低減しており、金属球内部の組織が極めて均質であり、転動体用材料として供するに十分な特性を有することが確認できた。
The metal spheres prepared above were adjusted by fine polishing, and the hardness at the center of the cross section was measured with a load of 1.96 N (200 gf) using a Vickers hardness meter MUK-E3 manufactured by Akashi. The hardness in Table 1 is an average value obtained by measuring 10 metal balls. As a result of measuring the hardness, it was confirmed that the metal spheres of Examples (f) to (r) of the present invention showed 800 HV or more and had sufficient strength to serve as a rolling element material.
Next, in the cross section passing through the center of the metal sphere of the invention examples (f) to (l), 4 points at a position of 0.1 mm from the end in the direction of 12 o'clock, 3 o'clock, 6 o'clock, 9 o'clock, The hardness was measured using a total of five points at one point as a measurement position for one metal ball. At this time, the variation width (maximum value−minimum value) was calculated for five metal balls. The calculation result of the average value of the variation width is shown in FIG. As shown in FIG. 6, especially in the present invention example (j), the variation is reduced as compared with the other present invention examples, and the structure inside the metal sphere is extremely homogeneous, which is sufficient for serving as a rolling element material. It has been confirmed that it has excellent characteristics.

本発明例および比較例の転動体用金属球の表面あるいは内部に存在する引け巣を示す透過X線写真である。It is a transmission X-ray photograph which shows the shrinkage nest which exists in the surface or inside of the metal sphere for rolling elements of the example of the present invention and a comparative example. 本発明例の転動体用金属球の粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the metal sphere for rolling elements of the example of this invention. 本発明例の転動体用金属球の表面形態を示す顕微鏡写真である。It is a microscope picture which shows the surface form of the metal sphere for rolling elements of the example of this invention. 本発明例の転動体用金属球の断面組織を示す顕微鏡写真である。It is a microscope picture which shows the cross-sectional structure of the metal sphere for rolling elements of the example of this invention. 本発明例の転動体用金属球の構成物質を示すX線回折スペクトルである。It is an X-ray diffraction spectrum which shows the constituent material of the metal sphere for rolling elements of the example of this invention. 本発明例の転動体用金属球の球内部における硬さバラツキを示すグラフである。It is a graph which shows the hardness variation in the inside of the sphere of the metal ball for rolling elements of the example of the present invention.

符号の説明Explanation of symbols

1 共晶組織
2 α−Fe樹枝状晶
3 1次アーム
4 2次アーム
5 2次アーム間距離
1 Eutectic structure 2 α-Fe dendrite 3 Primary arm 4 Secondary arm 5 Distance between secondary arms

Claims (4)

質量%にてSi:4.0%〜6.0%、B:2.5%〜3.0%、C:0.1%〜0.6%を含有し、残部Feおよび不可避的不純物からなる合金が球状に凝固されてなり、5μm以下の2次アーム間距離からなるα−Fe樹枝状晶とFe−B化合物の複合組織からなり、前記α−Fe樹枝状晶が占める組織の比率が80%以上であり、硬さが700HV以上であることを特徴とする転動体用金属球。 Si: 4.0% to 6.0% by mass%, B: 2.5% to 3.0%, C: 0.1% to 0.6%, and the remainder from Fe and inevitable impurities The ratio of the structure occupied by the α-Fe dendrite composed of a composite structure of α-Fe dendrite and Fe-B compound having a distance between secondary arms of 5 μm or less. Is a metal sphere for rolling elements, characterized by having a hardness of not less than 80% and a hardness of not less than 700 HV. 前記Fe−B化合物は、FeB化合物からなることを特徴とする請求項1に記載転動体用金属球。 The Fe-B compound, rolling metal ball according to claim 1, characterized in that it consists of Fe 2 B compound. 質量%にてMo:0.1%〜2%を含有することを特徴とする請求項1または2に記載の転動体用金属球。   The metal sphere for rolling elements according to claim 1, wherein Mo: 0.1% to 2% is contained in mass%. 0.05mm以上3mm以下の粒径を有することを特徴とする請求項1乃至3の何れかに記載の転動体用金属球。   The metal sphere for a rolling element according to any one of claims 1 to 3, wherein the metal sphere has a particle diameter of 0.05 mm or more and 3 mm or less.
JP2008294676A 2007-12-27 2008-11-18 Metal balls for rolling elements Active JP5397740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294676A JP5397740B2 (en) 2007-12-27 2008-11-18 Metal balls for rolling elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007336615 2007-12-27
JP2007336615 2007-12-27
JP2008294676A JP5397740B2 (en) 2007-12-27 2008-11-18 Metal balls for rolling elements

Publications (2)

Publication Number Publication Date
JP2009174045A JP2009174045A (en) 2009-08-06
JP5397740B2 true JP5397740B2 (en) 2014-01-22

Family

ID=40827191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294676A Active JP5397740B2 (en) 2007-12-27 2008-11-18 Metal balls for rolling elements

Country Status (2)

Country Link
JP (1) JP5397740B2 (en)
CN (1) CN101469389B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415535B (en) * 2022-11-04 2023-01-06 山东耀周研磨材料股份有限公司 Production method of bainite steel shot

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203958A (en) * 1997-04-29 1999-01-06 奥瓦科钢铁股份公司 Micro-alloyed steel for rolling bearings
JP2007217722A (en) * 2006-02-14 2007-08-30 Hitachi Metals Ltd Metal ball for rolling motion object having excellent formability

Also Published As

Publication number Publication date
CN101469389B (en) 2011-11-30
CN101469389A (en) 2009-07-01
JP2009174045A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5326114B2 (en) High strength copper alloy
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
US20130098510A1 (en) Metal composites and methods for forming same
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
WO2014126047A1 (en) HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
JP4958267B2 (en) Magnesium alloy material and method for producing the same
WO2020122230A1 (en) Pure copper sheet, member for electronic/electric device, and member for heat dissipation
CN109844150A (en) Band and powder from high-strength corrosion-resisting aluminium alloy
JP2010242146A (en) Magnesium alloy and magnesium alloy member
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
US20110056591A1 (en) Brass alloy powder, brass alloy extruded material, and method for producing the brass alloy extruded material
KR20120081974A (en) Copper alloy wire and process for producing same
EP2765209B1 (en) Copper alloy wire rod and method for producing same
JP4764094B2 (en) Heat-resistant Al-based alloy
WO2017081969A1 (en) Copper alloy material
KR102486303B1 (en) Mold materials for casting, and copper alloy materials
JP5397740B2 (en) Metal balls for rolling elements
WO2021005923A1 (en) Copper alloy trolley wire
KR102500630B1 (en) Mold materials for casting and Cu-Cr-Zr-Al alloy materials
JP2002003963A (en) Cu-Cr-Zr ALLOY EXCELLENT IN FATIGUE CHARACTERISTIC, ITS PRODUCTION METHOD AND COOLING ROLL FOR CONTINUOUS CASTING
WO2015030121A1 (en) Free-cutting aluminum alloy extruded material having reduced surface roughness and excellent productivity
WO2014020707A1 (en) Copper alloy trolley wire and method for manufacturing copper alloy trolley wire
JP2005139505A (en) Aluminum alloy fin material, and its production method
JP2008231519A (en) Quasi-crystal-particle-dispersed aluminum alloy and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5397740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350