JP5397686B2 - Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof - Google Patents

Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof Download PDF

Info

Publication number
JP5397686B2
JP5397686B2 JP2009247655A JP2009247655A JP5397686B2 JP 5397686 B2 JP5397686 B2 JP 5397686B2 JP 2009247655 A JP2009247655 A JP 2009247655A JP 2009247655 A JP2009247655 A JP 2009247655A JP 5397686 B2 JP5397686 B2 JP 5397686B2
Authority
JP
Japan
Prior art keywords
group
fluorine
compound
curable resin
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009247655A
Other languages
Japanese (ja)
Other versions
JP2011093978A (en
Inventor
潤 野口
秀也 鈴木
寛樹 所
悠介 尾崎
隆 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2009247655A priority Critical patent/JP5397686B2/en
Publication of JP2011093978A publication Critical patent/JP2011093978A/en
Application granted granted Critical
Publication of JP5397686B2 publication Critical patent/JP5397686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、硬化塗膜表面に優れた防汚性を付与することができ、フッ素系界面活性剤、フッ素系表面改質剤として用いることができる含フッ素硬化性樹脂に関する。また、該含フッ素硬化性樹脂を用いた活性エネルギー線硬化型塗料組成物及びその硬化物に関する。   The present invention relates to a fluorine-containing curable resin that can impart excellent antifouling properties to the surface of a cured coating film and can be used as a fluorine-based surfactant or a fluorine-based surface modifier. The present invention also relates to an active energy ray-curable coating composition using the fluorine-containing curable resin and a cured product thereof.

フッ素系界面活性剤又はフッ素系表面改質剤は、レベリング性、濡れ性、浸透性、ブロッキング防止性、滑り性、撥水撥油性、防汚性などに優れる点から、各種コーティング材料、表面改質剤等に広く使用されている。   Fluorine-based surfactants or fluorine-based surface modifiers are excellent in leveling, wettability, permeability, anti-blocking, slipperiness, water / oil repellency, antifouling properties, etc. Widely used in quality materials.

このフッ素系界面活性剤又はフッ素系表面改質剤(以下、これらを併せて単に「フッ素系界面活性剤」という。)を配合した活性エネルギー線硬化型塗料を塗布、硬化させて得られる硬化塗膜は、優れた表面特性を発現する一方で、加熱、加湿、酸・アルカリ等の薬品への暴露、汚れ除去のための洗浄等によって、フッ素系界面活性剤の一部が硬化塗膜表面から脱離又は揮発しやすくなり、その結果、製造ラインが汚染されたり、塗膜表面の防汚性が低下したりするという問題があった。   A cured coating obtained by applying and curing an active energy ray-curable coating containing this fluorosurfactant or fluorochemical surface modifier (hereinafter simply referred to as “fluorosurfactant”). While the film exhibits excellent surface properties, a part of the fluorosurfactant is removed from the surface of the cured coating film by heating, humidification, exposure to chemicals such as acids and alkalis, and washing to remove dirt. Desorption or volatilization tends to occur, and as a result, the production line is contaminated, and the antifouling property of the coating film surface is lowered.

例えば、液晶ディスプレイ用偏光板におけるトリアセチルセルロース(TAC)フィルム等の保護フィルムのコート材の分野では、フィルム表面に指紋や汚れに対する防汚性を具備させるために、フッ素系界面活性剤が添加された紫外線硬化型ハードコート材が該保護フィルム表面にコーティングされている。ところが、コーティング後、紫外線を照射する通常の製造ラインでは、空気雰囲気下で紫外線を照射する場合も多く、空気中に存在する酸素により重合が阻害され、防汚性が低下するという問題があった。   For example, in the field of coating materials for protective films such as triacetyl cellulose (TAC) films in polarizing plates for liquid crystal displays, a fluorosurfactant is added to provide antifouling properties against fingerprints and dirt on the film surface. An ultraviolet curable hard coat material is coated on the surface of the protective film. However, in a normal production line that irradiates ultraviolet rays after coating, there are many cases where ultraviolet rays are irradiated in an air atmosphere, and there is a problem in that polymerization is inhibited by oxygen present in the air and the antifouling property is lowered. .

また、液晶ディスプレイ用カラーフィルターに使用されるブラックマトリックス用の塗料・インキ又はブラックレジストや、赤・緑・青の3色の色画素を形成する着色材料には、塗膜形成後の撥液性を向上させるために、フッ素系界面活性剤を添加した活性エネルギー線硬化型樹脂組成物が用いられている。しかしながら、特にブラックマトリックスをレジスト方式で形成する際は、紫外線照射による硬化後、230℃×30分といった高温条件で熱セット処理が施されるために、表面からフッ素系界面活性剤の成分の一部が揮発し、表面の撥液性が低下する他、その揮発物によって他の部位や製造ラインが汚染される等の問題が生じていた。   In addition, paints and inks for black matrix used for color filters for liquid crystal displays, black resists, and coloring materials that form color pixels of three colors of red, green, and blue are used for liquid repellency after coating film formation. In order to improve the above, an active energy ray-curable resin composition to which a fluorosurfactant is added is used. However, particularly when forming a black matrix by a resist method, after curing by ultraviolet irradiation, heat setting is performed under a high temperature condition of 230 ° C. × 30 minutes. In addition to the volatilization of the part, the liquid repellency of the surface is reduced, and other parts and production lines are contaminated by the volatiles.

そこで、このような塗料表面の機能低下を防止するために、フッ素化アルキル基を有するモノアクリレートを、活性水素を有するアクリル系単量体と共重合させ、次いで、得られた重合体にイソシアネート基を有するアクリル系単量体を反応させて得られる不飽和基を有する重合型フッ素系界面活性剤が提案されている(例えば、特許文献1参照。)。また、ジイソシアネートの3量体であるトリイソシアネート化合物に水酸基含有パーフルオロポリエーテルと水酸基含有アクリル系単量体とを反応させたパーフルオロポリエーテル基含有ウレタンアクリレートをフッ素系界面活性剤として用いることが提案されている(例えば、特許文献2参照。)。   Therefore, in order to prevent such functional degradation of the paint surface, a monoacrylate having a fluorinated alkyl group is copolymerized with an acrylic monomer having active hydrogen, and then the resulting polymer has an isocyanate group. There has been proposed a polymerizable fluorosurfactant having an unsaturated group obtained by reacting an acrylic monomer having benzene (see, for example, Patent Document 1). In addition, a perfluoropolyether group-containing urethane acrylate obtained by reacting a hydroxyl group-containing perfluoropolyether and a hydroxyl group-containing acrylic monomer with a triisocyanate compound that is a diisocyanate trimer is used as a fluorosurfactant. It has been proposed (see, for example, Patent Document 2).

しかしながら、前記特許文献1記載の重合型フッ素系界面活性剤は、フッ化アルキル基がペンダント状に重合鎖に結合しているため、前記した強アルカリ処理によって依然として分解・脱離しやすく、防汚性が低下しやすく、特に汚れが一旦付着した後は容易に拭き取ることができず、汚れの除去が極めて困難なものであった。また、空気雰囲気下(酸素存在下)で紫外線を照射して硬化させた場合、十分な防汚性を発揮できない問題があった。   However, in the polymerization type fluorosurfactant described in Patent Document 1, since the fluorinated alkyl group is bonded to the polymer chain in a pendant form, it is still easily decomposed and detached by the strong alkali treatment described above, and has antifouling properties. In particular, it was difficult to wipe off the dirt once it had adhered, and it was extremely difficult to remove the dirt. In addition, when cured by irradiating with ultraviolet rays in an air atmosphere (in the presence of oxygen), there is a problem that sufficient antifouling properties cannot be exhibited.

一方、前記特許文献2記載のパーフルオロポリエーテル基含有ウレタンアクリレートは、3官能性イソシアネート化合物に対して水酸基含有パーフルオロポリエーテルと水酸基含有アクリル系単量体とを適切な割合で反応させることが困難であって、パーフルオロポリエーテルのみ有する化合物や、アクリロイル基のみ有する化合物が多量に生成してしまうため、工業的に製造することが困難なものであった。   On the other hand, the perfluoropolyether group-containing urethane acrylate described in Patent Document 2 can react a hydroxyl group-containing perfluoropolyether and a hydroxyl group-containing acrylic monomer at an appropriate ratio with respect to the trifunctional isocyanate compound. It is difficult to produce a large amount of a compound having only a perfluoropolyether or a compound having only an acryloyl group, so that it is difficult to produce industrially.

特開2007−246696号公報JP 2007-246696 A 特許第3963169号公報Japanese Patent No. 3963169

本発明が解決しようとする課題は、硬化塗膜表面に優れた防汚性を付与することができ、かつ空気雰囲気下(酸素存在下)で硬化した場合においても優れた防汚性を発揮できる含フッ素硬化性樹脂を提供することである。また、フッ素系界面活性剤として用いることができる含フッ素硬化性樹脂を提供することである。さらに、塗布、硬化させた後に塗膜表面からの前記フッ素系界面活性剤又はその分解物の揮発や脱離を防止することができ、防汚性等の表面性能の安定性を向上することができ、かつ空気雰囲気下で硬化した場合においても優れた防汚性を発揮できる活性エネルギー線硬化型塗料組成物及びその硬化物を提供することである。   The problem to be solved by the present invention is that it can impart excellent antifouling properties to the surface of the cured coating film, and can exhibit excellent antifouling properties even when cured in an air atmosphere (in the presence of oxygen). It is to provide a fluorine-containing curable resin. Moreover, it is providing the fluorine-containing curable resin which can be used as a fluorine-type surfactant. Furthermore, it is possible to prevent volatilization and desorption of the fluorosurfactant or its decomposition product from the coating surface after being applied and cured, and to improve the stability of surface performance such as antifouling property. An active energy ray-curable coating composition capable of exhibiting excellent antifouling properties even when cured in an air atmosphere and a cured product thereof.

本発明者等は上記課題を解決すべく鋭意研究を重ねた結果、樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有する含フッ素硬化性樹脂、又は、該含フッ素硬化性樹脂をフッ素系界面活性剤として活性エネルギー線硬化型塗料組成物に配合したものは、硬化塗膜からの含フッ素硬化性樹脂又はその分解物の揮発や脱離が抑制でき、塗膜表面に防汚性等の表面性能を安定よく付与でき、かつ空気雰囲気下で硬化した場合においても優れた防汚性を発揮できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have obtained a fluorine-containing curable resin having a poly (perfluoroalkylene ether) chain and a maleimide group in the resin structure, or the fluorine-containing curable resin. When blended with an active energy ray-curable coating composition as a fluorosurfactant, the volatilization and detachment of the fluorinated curable resin or its decomposition products from the cured coating can be suppressed, and the coating surface is antifouling. The present inventors have found that the surface performance such as the above can be stably imparted and excellent antifouling properties can be exhibited even when cured in an air atmosphere, and the present invention has been completed.

すなわち、本発明は、樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有する含フッ素硬化性樹脂であり、該含フッ素硬化性樹脂がポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、ラジカル重合性を有しないマレイミド基を有するラジカル重合性不飽和単量体(B)とを必須の単量体成分として共重合させて得られるラジカル重合性樹脂であることを特徴とする含フッ素硬化性樹脂を提供するものである。
また、本発明は、樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有する含フッ素硬化性樹脂であり、該フッ素硬化性樹脂がポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、反応性官能基(c)を有するラジカル重合性不飽和単量体(C)とを必須の単量体成分として共重合させて得られる重合体(P2)に、前記官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)を反応させて得られることを特徴とする含フッ素硬化性樹脂を提供するものである。
That is, the present invention is a curable fluorine-containing resin that having a poly (perfluoroalkylene ether) chain and a maleimide group in the resin structure, the fluorine-containing curable resin is poly (perfluoroalkylene ether) chain and its An essential monomer component comprising a compound (A) having a structural moiety having a radically polymerizable unsaturated group at both ends and a radically polymerizable unsaturated monomer (B) having a maleimide group having no radically polymerizable property The present invention provides a fluorine-containing curable resin characterized in that it is a radically polymerizable resin obtained by copolymerization.
The present invention is also a fluorine-containing curable resin having a poly (perfluoroalkylene ether) chain and a maleimide group in the resin structure, and the fluorine-curable resin is attached to the poly (perfluoroalkylene ether) chain and both ends thereof. A compound (A) having a structural site having a radically polymerizable unsaturated group and a radically polymerizable unsaturated monomer (C) having a reactive functional group (c) are copolymerized as essential monomer components. A fluorine-containing product obtained by reacting the polymer (P2) obtained by reacting a compound (E) having a functional group (e) and a maleimide group having reactivity with the functional group (c). A curable resin is provided.

さらに、本発明は、前記含フッ素硬化性樹脂を基材に塗布し、活性エネルギー線を照射して硬化させてなる硬化物、並びに前記含フッ素硬化性樹脂を配合した活性エネルギー線硬化型塗料組成物、及び該塗料組成物を基材に塗布し、活性エネルギー線を照射して硬化させてなる硬化物を提供するものである。   Furthermore, the present invention provides a cured product obtained by applying the fluorine-containing curable resin to a substrate and irradiating and curing the active energy ray, and an active energy ray-curable coating composition containing the fluorine-containing curable resin. And a cured product obtained by applying the coating composition to a substrate and irradiating it with an active energy ray to be cured.

本発明の含フッ素硬化性樹脂は、フッ素系界面活性剤として活性エネルギー線硬化型塗料組成物に配合することにより、該塗料組成物の硬化塗膜に防汚性等の表面性能を付与することができる。また、本発明の含フッ素硬化性樹脂は、空気雰囲気下(酸素存在下)で紫外線照射して硬化した場合においても、非常に安定した防汚性等の表面性能を塗膜表面に付与することができる。   The fluorine-containing curable resin of the present invention imparts surface performance such as antifouling property to the cured coating film of the coating composition by blending it into the active energy ray-curable coating composition as a fluorosurfactant. Can do. In addition, the fluorine-containing curable resin of the present invention imparts very stable surface performance such as antifouling property to the coating film surface even when cured by irradiation with ultraviolet rays in an air atmosphere (in the presence of oxygen). Can do.

したがって、本発明の含フッ素硬化性樹脂及びそれを配合した活性エネルギー線硬化型塗料組成物は、紫外線等の活性エネルギー線を照射する硬化装置内から空気を排出するため窒素パージした窒素雰囲気下での硬化のみならず、製造コスト、装置上の制約等により窒素パージが困難な場合においても十分な性能を発揮することができるという利点がある。   Therefore, the fluorine-containing curable resin of the present invention and the active energy ray-curable coating composition containing the same are discharged under a nitrogen purged nitrogen atmosphere in order to discharge air from the inside of the curing device that irradiates active energy rays such as ultraviolet rays. There is an advantage that sufficient performance can be exhibited not only in the case of curing, but also in the case where nitrogen purging is difficult due to manufacturing cost, apparatus restrictions, and the like.

図1は、実施例1で得られた含フッ素硬化性樹脂(1)のIRスペクトルのチャート図である。FIG. 1 is an IR spectrum chart of the fluorinated curable resin (1) obtained in Example 1. 図2は、実施例1で得られた含フッ素硬化性樹脂(1)の13C−NMRのチャート図である。2 is a 13 C-NMR chart of the fluorinated curable resin (1) obtained in Example 1. FIG. 図3は、実施例1で得られた含フッ素硬化性樹脂(1)のGPCのチャート図である。FIG. 3 is a GPC chart of the fluorinated curable resin (1) obtained in Example 1.

本発明の含フッ素硬化性樹脂は、樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有するものである。この含フッ素硬化性樹脂の製造方法としては、例えば、下記の方法などが挙げられる。   The fluorine-containing curable resin of the present invention has a poly (perfluoroalkylene ether) chain and a maleimide group in the resin structure. As a manufacturing method of this fluorine-containing curable resin, the following method etc. are mentioned, for example.

(方法1)
まず、(方法1)として、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、ラジカル重合性を有しないマレイミド基を有するラジカル重合性不飽和単量体(B)とを必須の単量体成分として共重合させて、含フッ素硬化性樹脂を得る方法(得られる含フッ素硬化性樹脂を「含フッ素硬化性樹脂(V1)」とする。)が挙げられる。
(Method 1)
First, as (Method 1), a compound (A) having a poly (perfluoroalkylene ether) chain and a structure part having a radically polymerizable unsaturated group at both ends thereof, and a radical having a maleimide group having no radically polymerizable property A method of obtaining a fluorine-containing curable resin by copolymerizing a polymerizable unsaturated monomer (B) as an essential monomer component (the obtained fluorine-containing curable resin is referred to as “fluorine-containing curable resin (V1)”). ").).

(方法1’)
また、(方法1’)として、上記の(方法1)のポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、ラジカル重合性を有しないマレイミド基を有するラジカル重合性不飽和単量体(B)とを共重合させる際に、前記単量体(B)に加え反応性官能基(c)を有するラジカル重合性不飽和単量体(C)を単量体成分として共重合させて得られる重合体(P1)に、前記官能基(c)との反応性を有する官能基(d)と活性エネルギー線硬化性基とを有する化合物(D)を反応させて、含フッ素硬化性樹脂を得る方法(得られる含フッ素硬化性樹脂を「含フッ素硬化性樹脂(V1’)」とする。)も挙げられる。この含フッ素硬化性樹脂(V1’)は、硬化性官能基として、マレイミド基とマレイミド基以外の活性エネルギー線硬化性基とを有する。
(Method 1 ')
Further, as (Method 1 ′), a compound (A) having a structural site having a radically polymerizable unsaturated group at both ends of the poly (perfluoroalkylene ether) chain of the above (Method 1), radical polymerization In the copolymerization with the radically polymerizable unsaturated monomer (B) having a maleimide group not having a radical, the radically polymerizable unsaturated monomer having a reactive functional group (c) in addition to the monomer (B) A functional group (d) having reactivity with the functional group (c) and an active energy ray-curable group are added to the polymer (P1) obtained by copolymerizing the monomer (C) as a monomer component. A method for obtaining a fluorine-containing curable resin by reacting the compound (D) having the compound (D) is referred to as “fluorine-containing curable resin (V1 ′)”. This fluorine-containing curable resin (V1 ′) has a maleimide group and an active energy ray-curable group other than the maleimide group as a curable functional group.

(方法2)
一方、(方法2)として、ポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、反応性官能基(c)を有するラジカル重合性不飽和単量体(C)とを必須の単量体成分として共重合させて得られる重合体(P2)に、前記官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)を反応させて、含フッ素硬化性樹脂を得る方法(得られる含フッ素硬化性樹脂を「含フッ素硬化性樹脂(V2)」とする。)が挙げられる。
(Method 2)
On the other hand, as (Method 2), a compound (A) having a poly (perfluoroalkylene ether) chain and a structural moiety having a radical polymerizable unsaturated group at both ends thereof, and radical polymerization having a reactive functional group (c) A functional group (e) having a reactivity with the functional group (c) and a maleimide to a polymer (P2) obtained by copolymerizing a polymerizable unsaturated monomer (C) as an essential monomer component And a method of reacting a group-containing compound (E) to obtain a fluorine-containing curable resin (the resulting fluorine-containing curable resin is referred to as “fluorine-containing curable resin (V2)”).

(方法2’)
さらに、(方法2’)として、上記の(方法2)で得られる重合体(P2)に、前記官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)に加えて、前記官能基(c)との反応性を有する官能基(d)と活性エネルギー線硬化性基とを有する化合物(D)を反応させて、含フッ素硬化性樹脂を得る方法(得られる含フッ素硬化性樹脂を「含フッ素硬化性樹脂(V2’)」とする。)も挙げられる。この含フッ素硬化性樹脂(V2’)は、硬化性官能基として、マレイミド基とマレイミド基以外の活性エネルギー線硬化性基とを有する。
(Method 2 ')
Further, as (Method 2 ′), the compound (P2) obtained by the above (Method 2) is combined with a compound having a functional group (e) having a reactivity with the functional group (c) and a maleimide group ( A method of obtaining a fluorine-containing curable resin by reacting a compound (D) having a functional group (d) having reactivity with the functional group (c) and an active energy ray-curable group in addition to E) (The obtained fluorine-containing curable resin is referred to as “fluorine-containing curable resin (V2 ′)”). This fluorine-containing curable resin (V2 ′) has a maleimide group and an active energy ray-curable group other than the maleimide group as a curable functional group.

まず、本発明の含フッ素硬化性樹脂の原料となるポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)について説明する。前記化合物(A)が有するポリ(パーフルオロアルキレンエーテル)鎖としては、炭素原子数1〜3の2価フッ化炭素基と酸素原子が交互に連結した構造を有するものが挙げられる。炭素原子数1〜3の2価フッ化炭素基は、一種類であっても良いし複数種の混合であっても良く、具体的には、下記構造式1で表されるものが挙げられる。   First, the compound (A) having a poly (perfluoroalkylene ether) chain as a raw material of the fluorine-containing curable resin of the present invention and a structural site having a radically polymerizable unsaturated group at both ends thereof will be described. Examples of the poly (perfluoroalkylene ether) chain of the compound (A) include those having a structure in which divalent fluorocarbon groups having 1 to 3 carbon atoms and oxygen atoms are alternately connected. The divalent fluorinated carbon group having 1 to 3 carbon atoms may be one kind or a mixture of plural kinds, and specifically, those represented by the following structural formula 1 may be mentioned. .

Figure 0005397686
(上記構造式1中、Xは下記構造式a〜dであり、構造式1中の全てのXが同一構造のものであってもよいし、また、複数の構造がランダムに又はブロック状に存在していてもよい。また、nは繰り返し単位を表す1以上の数である。)
Figure 0005397686
(In the above structural formula 1, X is the following structural formulas a to d, and all X in the structural formula 1 may have the same structure, or a plurality of structures are randomly or block-shaped. And n is a number of 1 or more representing a repeating unit.

Figure 0005397686
Figure 0005397686

これらの中でも特に塗膜表面の汚れの拭き取り性が良好となって防汚性に優れた塗膜が得られる点から前記構造式aで表されるパーフルオロメチレン構造と、前記構造bで表されるパーフルオロエチレン構造とが共存するものがとりわけ好ましい。ここで、前記構造式aで表されるパーフルオロメチレン構造と、前記構造bで表されるパーフルオロエチレン構造との存在比率は、モル比率(構造a/構造b)が1/4〜4/1となる割合であることが防汚性の点から好ましく、また、前記構造式1中のnの値は3〜40の範囲であること、特に6〜30が好ましい。   Among these, the perfluoromethylene structure represented by the structural formula a and the structure b are particularly preferred in that the coating film surface has good wiping off of dirt and excellent antifouling properties. Those having a coexisting perfluoroethylene structure are particularly preferred. Here, the abundance ratio between the perfluoromethylene structure represented by the structural formula a and the perfluoroethylene structure represented by the structure b is such that the molar ratio (structure a / structure b) is 1/4 to 4 /. A ratio of 1 is preferable from the viewpoint of antifouling properties, and the value of n in the structural formula 1 is in the range of 3 to 40, particularly 6 to 30.

また、前記ポリ(パーフルオロアルキレンエーテル)鎖は、汚れ拭き取り性と滑り性が優れる点と非フッ素系硬化性樹脂組成物への溶解性を向上させやすい点からポリ(パーフルオロアルキレンエーテル)鎖1本に含まれるフッ素原子の合計が18〜200個の範囲であることが好ましく、25〜80個の範囲であることが特に好ましい。   The poly (perfluoroalkylene ether) chain is a poly (perfluoroalkylene ether) chain 1 because it has excellent dirt wiping property and slipperiness and is easy to improve the solubility in a non-fluorinated curable resin composition. The total number of fluorine atoms contained in the book is preferably in the range of 18 to 200, and particularly preferably in the range of 25 to 80.

前記化合物(A)の鎖の両末端に有するラジカル重合性不飽和基は、例えば、下記構造式U−1〜U−4で示されるラジカル重合性不飽和基を有するものが挙げられる。   Examples of the radically polymerizable unsaturated group at both ends of the chain of the compound (A) include those having a radically polymerizable unsaturated group represented by the following structural formulas U-1 to U-4.

Figure 0005397686
Figure 0005397686

これらのラジカル重合性不飽和基の中でも特に化合物(A)自体の入手や製造の容易さ、あるいは、前記したラジカル重合性不飽和単量体との反応性に優れる点から、構造式U−1で表されるアクリロイルオキシ基、又は、構造式U−2で表されるメタクリロイルオキシ基が好ましい。   Among these radically polymerizable unsaturated groups, the structural formula U-1 is particularly preferred because the compound (A) itself is easily available and manufactured, or is excellent in reactivity with the radically polymerizable unsaturated monomer described above. The acryloyloxy group represented by these, or the methacryloyloxy group represented by Structural formula U-2 is preferable.

前記化合物(A)のなかで、前記したアクリロイルオキシ基又はメタクリロイルオキシ基を有するものとしては、下記構造式A−1〜A−10で表されるものが挙げられる。なお、下記の各構造式中における「−PFPE−」は、ポリ(パーフルオロアルキレンエーテル)鎖を示す。   Among the compounds (A), those having the acryloyloxy group or methacryloyloxy group include those represented by the following structural formulas A-1 to A-10. In the following structural formulas, “—PFPE—” represents a poly (perfluoroalkylene ether) chain.

Figure 0005397686
Figure 0005397686

これらの中でも特に化合物(A)自体の工業的製造が容易であり、また、重合体(P1)を製造する際の重合反応も容易である点から前記構造式A−1、A−2、A−5、A−6で表されるものが好ましい。   Among these, the structural formulas A-1, A-2, A are particularly easy because the industrial production of the compound (A) itself is easy and the polymerization reaction when producing the polymer (P1) is also easy. Those represented by −5 and A-6 are preferred.

上記化合物(A)を製造するには、例えば、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して、(メタ)アクリル酸クロライドを脱塩酸反応させて得る方法、(メタ)アクリル酸を脱水反応させて得る方法、2−(メタ)アクリロイルオキシエチルイソシアネートをウレタン化反応させて得る方法、無水イタコン酸をエステル化反応させて得る方法、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にカルボキシル基を1つずつ有する化合物に対して、4−ヒドロキシブチルアクリレートグリシジルエーテルをエステル化反応させて得る方法、グリシジルメタクリレートをエステル化反応させて得る方法、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にイソシアネート基を1つずつ有する化合物に対して、2−ヒドロキシエチルアクリルアミドを反応させる方法が挙げられる。これらのなかでも、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に水酸基を1つずつ有する化合物に対して、(メタ)アクリル酸クロライドを脱塩酸反応させて得る方法と、2−(メタ)アクリロイルオキシエチルイソシアネートをウレタン化反応させて得る方法が合成上得られやすい点で特に好ましい。   In order to produce the compound (A), for example, a method obtained by dehydrochlorinating a (meth) acrylic acid chloride with respect to a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain. , A method obtained by dehydrating (meth) acrylic acid, a method obtained by urethanizing 2- (meth) acryloyloxyethyl isocyanate, a method obtained by esterifying itaconic anhydride, poly (perfluoroalkylene ether) ) A method obtained by esterifying 4-hydroxybutyl acrylate glycidyl ether to a compound having one carboxyl group at both ends of the chain, a method obtained by esterifying glycidyl methacrylate, poly (perfluoroalkylene) Ether) One isocyanate group at each end of the chain For the compound to include a method of reacting a 2-hydroxyethyl acrylamide. Among these, a method obtained by dehydrochlorinating (meth) acrylic acid chloride for a compound having one hydroxyl group at both ends of a poly (perfluoroalkylene ether) chain, and 2- (meth) acryloyl A method obtained by subjecting oxyethyl isocyanate to a urethanization reaction is particularly preferred in that it is easily obtained synthetically.

なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。   In the present invention, “(meth) acrylate” refers to one or both of methacrylate and acrylate, and “(meth) acrylic acid” refers to one or both of methacrylic acid and acrylic acid.

次に、上記の(方法1)及び(方法1’)において用いるラジカル重合性を有しないマレイミド基を有するラジカル重合性不飽和単量体(B)について説明する。前記単量体(B)としては、アクリル系単量体、芳香族ビニル系単量体、ビニルエステル系単量体等が挙げられる。これらの中でもアクリル系単量体が好ましく、この場合、前記単量体(B)が有するラジカル重合性不飽和基は(メタ)アクリロイル基である。   Next, the radical polymerizable unsaturated monomer (B) having a maleimide group having no radical polymerization property used in the above (Method 1) and (Method 1 ') will be described. Examples of the monomer (B) include acrylic monomers, aromatic vinyl monomers, vinyl ester monomers, and the like. Among these, an acrylic monomer is preferable. In this case, the radical polymerizable unsaturated group of the monomer (B) is a (meth) acryloyl group.

また、ラジカル重合性不飽和単量体(B)が有するラジカル重合性を有しないマレイミド基は、上記の(方法1)又は(方法1’)において前記化合物(A)と単量体(B)との共重合反応で、マレイミド基の炭素−炭素不飽和二重結合がこの共重合反応に関与しない、すなわち共重合反応でのラジカル重合性を有しないものであれば、特に制限なく用いることができるが、下記一般式(1)で表されるような炭素−炭素不飽和二重結合の炭素にアルキル基等の置換基が結合した2置換マレイミド基が好ましい。このような2置換マレイミド基を有するラジカル重合性不飽和単量体(B)を用いることで、前記化合物(A)と共重合する際に、マレイミド基の二重結合を共重合反応に消費されることを抑制することができ、目的物である含フッ素硬化性樹脂(V1)又は(V1’)を得ることができる。なお、このマレイミド基は、後述する光重合開始剤(H)の不存在下でも、活性エネルギー線の照射により光二量化反応を生じて光硬化可能な官能基である。   The maleimide group having no radical polymerizability of the radically polymerizable unsaturated monomer (B) is the same as the compound (A) and the monomer (B) in the above (Method 1) or (Method 1 ′). As long as the carbon-carbon unsaturated double bond of the maleimide group does not participate in this copolymerization reaction, that is, does not have radical polymerizability in the copolymerization reaction, it can be used without particular limitation. A disubstituted maleimide group in which a substituent such as an alkyl group is bonded to carbon of a carbon-carbon unsaturated double bond represented by the following general formula (1) is preferable. By using such a radically polymerizable unsaturated monomer (B) having a disubstituted maleimide group, the double bond of the maleimide group is consumed in the copolymerization reaction when copolymerizing with the compound (A). The fluorine-containing curable resin (V1) or (V1 ′), which is the target product, can be obtained. The maleimide group is a functional group that can be photocured by causing a photodimerization reaction by irradiation with an active energy ray even in the absence of a photopolymerization initiator (H) described later.

Figure 0005397686
(式中、R及びRは、それぞれ独立して、炭素原子数1〜6のアルキル基、又はRとRとが1つとなって5員環もしくは6員環を形成する炭化水素基を表す。)
Figure 0005397686
(In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or a hydrocarbon in which R 1 and R 2 are combined to form a 5-membered or 6-membered ring. Represents a group.)

また、上記一般式(1)で表されるマレイミド基の具体例としては、例えば、下記式(1−1)〜(1−3)等が挙げられる。   Specific examples of the maleimide group represented by the general formula (1) include the following formulas (1-1) to (1-3).

Figure 0005397686
Figure 0005397686

さらに、前記単量体(B)の具体例として、下記式(B−1)〜(B−6)で表される化合物等が挙げられる。   Furthermore, specific examples of the monomer (B) include compounds represented by the following formulas (B-1) to (B-6).

Figure 0005397686
Figure 0005397686

次に、上記の(方法1’)において、本発明の含フッ素硬化性樹脂の原料となる反応性官能基(c)を有するラジカル重合性不飽和単量体(C)について説明する。前記単量体(C)としては、アクリル系単量体、芳香族ビニル系単量体、ビニルエステル系単量体等が挙げられる。これらの中でもアクリル系単量体が好ましく、この場合、前記単量体(B)が有するラジカル重合性不飽和基は(メタ)アクリロイル基である。   Next, the radically polymerizable unsaturated monomer (C) having a reactive functional group (c) as a raw material for the fluorine-containing curable resin of the present invention in the (Method 1 ') will be described. Examples of the monomer (C) include acrylic monomers, aromatic vinyl monomers, vinyl ester monomers, and the like. Among these, an acrylic monomer is preferable. In this case, the radical polymerizable unsaturated group of the monomer (B) is a (meth) acryloyl group.

ここで、前記したラジカル重合性不飽和単量体(C)が有する反応性官能基(c)としては、水酸基、イソシアネート基、エポキシ基、カルボキシル基等が挙げられ、該ラジカル重合性不飽和単量体(C)としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルフタレート、末端水酸基含有ラクトン変性(メタ)アクリレート等の水酸基含有不飽和単量体;2−(メタ)アクリロイルオキシエチルイソシアネート、2−(2−(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1−ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基含有不飽和単量体;グリシジルメタクリレート、4−ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基含有不飽和単量体;(メタ)アクリル酸、2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシエチルフタル酸、マレイン酸、イタコン酸等のカルボキシル基含有不飽和単量体;無水マレイン酸、無水イタコン酸等の不飽和二重結合を有する酸無水物が挙げられる。   Here, examples of the reactive functional group (c) possessed by the radical polymerizable unsaturated monomer (C) include a hydroxyl group, an isocyanate group, an epoxy group, and a carboxyl group, and the radical polymerizable unsaturated monomer. Examples of the monomer (C) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl. (Meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono ( (Meth) acrylate, 2- Hydroxyl group-containing unsaturated monomers such as droxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, terminal hydroxyl group-containing lactone-modified (meth) acrylate; 2- (meta ) Isocyanate group-containing unsaturated monomers such as acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate; glycidyl methacrylate, Epoxy group-containing unsaturated monomers such as 4-hydroxybutyl acrylate glycidyl ether; (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl phthalic acid, maleic acid , Itaconic acid, etc. Carboxyl group-containing unsaturated monomers; maleic acid, acid anhydride having an unsaturated double bond such as itaconic anhydride.

また、上記の(方法1)において前記化合物(A)と前記単量体(B)とを共重合させる際、又は(方法1’)において前記化合物(A)、前記単量体(B)及び前記単量体(C)を共重合させる際に、その他のラジカル重合性不飽和単量体を共重合させても構わない。このようなその他のラジカル重合性不飽和単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニル等の(メタ)アクリル酸エステル類;スチレン、α−メチルスチレン、p−メチルスチレン、p−メトキシスチレン等の芳香族ビニル類;マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−ブチルマレイミド、N−ヘキシルマレイミド、N−オクチルマレイミド、N−ドデシルマレイミド、N−ステアリルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド類などが挙げられる。なお、これらのその他の単量体は、(方法2)又は(方法2’)においても、前記化合物(A)と前記単量体(C)とを共重合させて重合体(P2)を得る際に、重合体(P2)の原料として同様に用いることができる。   Further, when the compound (A) and the monomer (B) are copolymerized in the (Method 1), or in the (Method 1 ′), the compound (A), the monomer (B) and When the monomer (C) is copolymerized, other radical polymerizable unsaturated monomers may be copolymerized. Examples of such other radical polymerizable unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylate-n-propyl, (meth) acrylate-n-butyl, (Meth) acrylic acid isobutyl, (meth) acrylic acid-n-pentyl, (meth) acrylic acid-n-hexyl, (meth) acrylic acid-n-heptyl, (meth) acrylic acid-n-octyl, (meth) 2-ethylhexyl acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopenta (meth) acrylate Nyl, (meth) acrylic acid esters such as (meth) acrylic acid dicyclopentenyl; styrene, α-methylstyrene, p- Aromatic vinyls such as tilstyrene and p-methoxystyrene; maleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-butylmaleimide, N-hexylmaleimide, N-octylmaleimide, N-dodecylmaleimide, And maleimides such as N-stearylmaleimide, N-phenylmaleimide and N-cyclohexylmaleimide. These other monomers are also obtained in (Method 2) or (Method 2 ′) by copolymerizing the compound (A) and the monomer (C) to obtain a polymer (P2). In this case, it can be used similarly as a raw material for the polymer (P2).

ここで、(方法1)において本発明の含フッ素硬化性樹脂(V1)を得る際、(方法1’)において本発明の含フッ素硬化性樹脂の中間生成物である重合体(P1)を得る際、(方法2)及び(方法2’)において本発明の含フッ素硬化性樹脂の中間生成物である重合体(P2)を得る際には、前記化合物(A)、前記単量体(B)、前記単量体(C)、さらに必要によりその他のラジカル重合性不飽和単量体を、有機溶剤中、ラジカル重合開始剤を使用して重合させる。ここで用いる有機溶媒としては、ケトン類、エステル類、アミド類、スルホキシド類、エーテル類、炭化水素類が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。これらは、沸点、相溶性、重合性を考慮して適宜選択される。ラジカル重合開始剤としては、例えば、過酸化ベンゾイル等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。さらに必要に応じてラウリルメルカプタン、2−メルカプトエタノ−ル、チオグリセロール、エチルチオグリコ−ル酸、オクチルチオグリコ−ル酸等の連鎖移動剤を使用することができる。   Here, when obtaining the fluorine-containing curable resin (V1) of the present invention in (Method 1), the polymer (P1) which is an intermediate product of the fluorine-containing curable resin of the present invention is obtained in (Method 1 ′). In (Method 2) and (Method 2 ′), when obtaining the polymer (P2) which is an intermediate product of the fluorine-containing curable resin of the present invention, the compound (A), the monomer (B) ), The monomer (C), and, if necessary, other radical polymerizable unsaturated monomers are polymerized in an organic solvent using a radical polymerization initiator. As the organic solvent used here, ketones, esters, amides, sulfoxides, ethers, hydrocarbons are preferable. Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, Examples include propylene glycol monomethyl ether acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, toluene, xylene and the like. These are appropriately selected in consideration of boiling point, compatibility, and polymerizability. Examples of the radical polymerization initiator include peroxides such as benzoyl peroxide and azo compounds such as azobisisobutyronitrile. Furthermore, chain transfer agents such as lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid, octylthioglycolic acid and the like can be used as necessary.

上記の(方法1’)において得られる重合体(P1)に、その重合体(P1)の原料である前記単量体(C)が有する反応性官能基(c)との反応性を有する官能基(d)と活性エネルギー線硬化性基とを有する化合物(D)を反応させることにより、目的とする含フッ素硬化性樹脂(V1’)が得られる。また、上記の(方法2)において得られる重合体(P2)に、その重合体(P2)の原料である前記単量体(C)が有する反応性官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)を反応させることにより、目的とする含フッ素硬化性樹脂(V2)が得られる。さらに、上記の(方法2’)において得られる重合体(P2)に、その重合体(P2)の原料である前記単量体(C)が有する反応性官能基(c)との反応性を有する官能基(d)と活性エネルギー線硬化性基とを有する化合物(D)と、前記官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)とを反応させることにより、目的とする含フッ素硬化性樹脂(V2’)が得られる。   Functionality having reactivity with the reactive functional group (c) of the monomer (C) which is the raw material of the polymer (P1) is added to the polymer (P1) obtained in the above (Method 1 ′). The target fluorine-containing curable resin (V1 ′) can be obtained by reacting the compound (D) having the group (d) and the active energy ray-curable group. Further, the polymer (P2) obtained in the above (Method 2) has reactivity with the reactive functional group (c) of the monomer (C) which is a raw material of the polymer (P2). The target fluorine-containing curable resin (V2) is obtained by reacting the compound (E) having a functional group (e) and a maleimide group. Furthermore, the reactivity of the polymer (P2) obtained in the above (Method 2 ′) with the reactive functional group (c) of the monomer (C) that is the raw material of the polymer (P2) is increased. A compound (D) having a functional group (d) having an active energy ray-curable group, a compound (E) having a functional group (e) having reactivity with the functional group (c) and a maleimide group, Is reacted to obtain the intended fluorine-containing curable resin (V2 ′).

前記化合物(D)が有する官能基(d)としては、例えば、水酸基、イソシアネート基、エポキシ基、カルボキシル基等が挙げられる。反応性官能基(c)が水酸基である場合には、官能基(d)としてイソシアネート基、カルボキシル基、カルボン酸ハライド基、エポキシ基が挙げられ、反応性官能基(c)がイソシアネート基である場合には、官能基(d)として水酸基が挙げられ、反応性官能基(c)がエポキシ基である場合には、官能基(d)としてカルボキシル基、水酸基が挙げられ、反応性官能基(c)がカルボキシル基である場合には、官能基(d)としてエポキシ基、水酸基が挙げられる。特に、前記単量体(C)が有する反応性官能基(c)がイソシアネート基であり、かつ前記化合物(D)が有する官能基(d)が水酸基であるか、又は、前記単量体(C)が有する反応性官能基(c)が水酸基であり、かつ前記化合物(D)が有する官能基(d)がイソシアネート基であることが、反応がスムーズに進行するため好ましい。   As a functional group (d) which the said compound (D) has, a hydroxyl group, an isocyanate group, an epoxy group, a carboxyl group etc. are mentioned, for example. When the reactive functional group (c) is a hydroxyl group, examples of the functional group (d) include an isocyanate group, a carboxyl group, a carboxylic acid halide group, and an epoxy group, and the reactive functional group (c) is an isocyanate group. In this case, the functional group (d) includes a hydroxyl group. When the reactive functional group (c) is an epoxy group, the functional group (d) includes a carboxyl group and a hydroxyl group, and the reactive functional group ( When c) is a carboxyl group, examples of the functional group (d) include an epoxy group and a hydroxyl group. In particular, the reactive functional group (c) of the monomer (C) is an isocyanate group, and the functional group (d) of the compound (D) is a hydroxyl group, or the monomer ( It is preferable that the reactive functional group (c) possessed by C) is a hydroxyl group and the functional group (d) possessed by the compound (D) is an isocyanate group because the reaction proceeds smoothly.

このような化合物(D)としては、具体的には、前記した反応性官能基(c)を有するラジカル重合性不飽和単量体(C)として例示したものと同様のものを用いることができ、その他2つ以上のラジカル重合性基を有するものとして、2−ヒドロキシ−3−アクリロイルオキシプロピルメタクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。   As such a compound (D), specifically, the same compounds as those exemplified as the radical polymerizable unsaturated monomer (C) having the reactive functional group (c) can be used. Examples of those having two or more radical polymerizable groups include 2-hydroxy-3-acryloyloxypropyl methacrylate, pentaerythritol triacrylate, and dipentaerythritol pentaacrylate.

これらの中でも特に紫外線照射での重合硬化性が好ましい点から、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、3−ヒドロキシプロピルアクリレート、2−ヒドロキシブチルアクリレート、4−ヒドロキシブチルアクリレート、1,4−シクロヘキサンジメタノールモノアクリレート、2−ヒドロキシ−3−アクリロイルオキシプロピルメタクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、N−(2−ヒドロキシエチル)アクリルアミド、2−アクリロイルオキシエチルイソシアネート、4−ヒドロキシブチルアクリレートグリシジルエーテル、アクリル酸が好ましい。   Of these, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 1,4- Cyclohexanedimethanol monoacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, N- (2-hydroxyethyl) acrylamide, 2-acryloyloxyethyl isocyanate, 4-hydroxybutyl acrylate Glycidyl ether and acrylic acid are preferred.

前記化合物(E)が有する官能基(e)としては、上記した前記化合物(D)が有する官能基(d)と同様に、前記単量体(C)が有する反応性官能基(c)の種類に応じて選択する。特に、前記単量体(C)が有する反応性官能基(c)がイソシアネート基であり、かつ前記化合物(E)が有する官能基(e)が水酸基であるか、又は、前記単量体(C)が有する反応性官能基(c)が水酸基であり、かつ前記化合物(E)が有する官能基(e)がイソシアネート基であることが、反応がスムーズに進行するため好ましい。   As the functional group (e) of the compound (E), the reactive functional group (c) of the monomer (C) is the same as the functional group (d) of the compound (D). Select according to the type. In particular, the reactive functional group (c) of the monomer (C) is an isocyanate group, and the functional group (e) of the compound (E) is a hydroxyl group, or the monomer ( It is preferable that the reactive functional group (c) possessed by C) is a hydroxyl group and the functional group (e) possessed by the compound (E) is an isocyanate group since the reaction proceeds smoothly.

また、前記化合物(E)が有するマレイミド基としては、例えば、下記一般式(2)で表されるものが挙げられる。   Moreover, as a maleimide group which the said compound (E) has, what is represented by following General formula (2) is mentioned, for example.

Figure 0005397686
(式中、R及びRは、それぞれ独立して、水素原子もしくは炭素原子数1〜6のアルキル基、又はRとRとが1つとなって5員環もしくは6員環を形成する炭化水素基を表す。)
Figure 0005397686
(Wherein R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or R 3 and R 4 are combined to form a 5-membered or 6-membered ring. Represents a hydrocarbon group.)

また、上記一般式(2)で表されるマレイミド基の具体例としては、例えば、下記式(2−1)〜(2−5)等が挙げられる。   Specific examples of the maleimide group represented by the general formula (2) include the following formulas (2-1) to (2-5).

Figure 0005397686
Figure 0005397686

さらに、前記化合物(E)の具体例として、下記式(E−1)〜(E−11)で表される化合物等が挙げられる。   Furthermore, specific examples of the compound (E) include compounds represented by the following formulas (E-1) to (E-11).

Figure 0005397686
Figure 0005397686

上記の(方法1’)において重合体(P1)に、前記化合物(D)を反応させる際、上記の(方法2)において重合体(P2)に、前記化合物(E)を反応させる際、上記の(方法2’)において重合体(P2)に、前記化合物(D)及び化合物(E)を反応させる際の反応条件は、前記化合物(D)中の活性エネルギー線硬化性基及び前記化合物(E)中のマレイミド基が重合しない条件で行えばよく、例えば、温度条件を30〜120℃の範囲に調節して反応させることが好ましい。この反応は触媒や重合禁止剤の存在下、必要により有機溶剤の存在下に行うことが好ましい。   When the compound (D) is reacted with the polymer (P1) in the above (Method 1 ′), the above compound (E) is reacted with the polymer (P2) in the above (Method 2). In (Method 2 ′), the reaction conditions for reacting the compound (D) and the compound (E) with the polymer (P2) are the active energy ray-curable group and the compound (D) in the compound (D). The reaction may be performed under the condition that the maleimide group in E) is not polymerized. For example, the reaction is preferably carried out by adjusting the temperature condition in the range of 30 to 120 ° C. This reaction is preferably carried out in the presence of a catalyst or a polymerization inhibitor, and if necessary in the presence of an organic solvent.

例えば、前記官能基(c)が水酸基であって、前記官能基(d)もしくは前記官能基(e)がイソシアネート基である場合、又は、前記官能基(c)がイソシアネート基であって、前記官能基(d)もしくは前記官能基(e)が水酸基である場合、重合禁止剤としてp−メトキシフェノール、ヒドロキノン、2,6−ジ−t−ブチル−4−メチルフェノール等を使用し、ウレタン化反応触媒としてジブチル錫ジラウレート、ジブチル錫ジアセテート、オクチル酸錫、オクチル酸亜鉛等を使用し、反応温度40〜120℃、特に60〜90℃で反応させる方法が好ましい。また、前記官能基(b)がエポキシ基であって前記官能基(c)がカルボキシル基である場合、又は、前記官能基(b)がカルボキシル基であって前記官能基(c)がエポキシ基である場合は、重合禁止剤としてp−メトキシフェノール、ヒドロキノン、2,6−ジ−t−ブチル−4−メチルフェノール等を使用し、エステル化反応触媒としてトリエチルアミン等の第3級アミン類、塩化テトラメチルアンモニウム等の第4級アンモニウム類、トリフェニルホスフィン等の第3級ホスフィン類、塩化テトラブチルホスホニウム等の第4級ホスホニウム類等を使用し、反応温度80〜130℃、特に100〜120℃で反応させることが好ましい。   For example, when the functional group (c) is a hydroxyl group and the functional group (d) or the functional group (e) is an isocyanate group, or the functional group (c) is an isocyanate group, When the functional group (d) or the functional group (e) is a hydroxyl group, p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol or the like is used as a polymerization inhibitor and urethanized. A method in which dibutyltin dilaurate, dibutyltin diacetate, tin octylate, zinc octylate or the like is used as a reaction catalyst and the reaction is carried out at a reaction temperature of 40 to 120 ° C., particularly 60 to 90 ° C. is preferred. When the functional group (b) is an epoxy group and the functional group (c) is a carboxyl group, or the functional group (b) is a carboxyl group and the functional group (c) is an epoxy group. In this case, p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol or the like is used as a polymerization inhibitor, and tertiary amines such as triethylamine are used as an esterification reaction catalyst. Using a quaternary ammonium such as tetramethylammonium, a tertiary phosphine such as triphenylphosphine, a quaternary phosphonium such as tetrabutylphosphonium chloride, etc., and a reaction temperature of 80 to 130 ° C., particularly 100 to 120 ° C. It is preferable to make it react with.

上記反応で用いられる有機溶媒はケトン類、エステル類、アミド類、スルホキシド類、エーテル類、炭化水素類が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。これらは、沸点、相溶性を考慮して適宜選択すればよい。   The organic solvent used in the above reaction is preferably ketones, esters, amides, sulfoxides, ethers, hydrocarbons, specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, Examples include propylene glycol monomethyl ether acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, toluene, xylene and the like. These may be appropriately selected in consideration of the boiling point and compatibility.

上記の(方法1)、(方法1’)、(方法2)又は(方法2’)によって得られる含フッ素硬化性樹脂(V1)、(V1’)、(V2)又は(V2’)の数平均分子量(Mn)が1,000〜6,000の範囲であることが好ましく、1,500〜5,000の範囲であることがより好ましい。また、重量平均分子量(Mw)が3,000〜200,000の範囲であることが好ましく、4,000〜120,000の範囲であることがより好ましい。前記ラジカル重合性樹脂(V)のMn及びMwをこれらの範囲にすることで、前記ラジカル重合性樹脂(V)の製造時におけるゲル化を防止でき、高架橋で防汚性に優れた塗膜性能を発現するものとできる。   Number of fluorine-containing curable resins (V1), (V1 ′), (V2) or (V2 ′) obtained by the above (Method 1), (Method 1 ′), (Method 2) or (Method 2 ′) The average molecular weight (Mn) is preferably in the range of 1,000 to 6,000, and more preferably in the range of 1,500 to 5,000. Further, the weight average molecular weight (Mw) is preferably in the range of 3,000 to 200,000, and more preferably in the range of 4,000 to 120,000. By setting Mn and Mw of the radical polymerizable resin (V) within these ranges, gelation during the production of the radical polymerizable resin (V) can be prevented, and the coating performance with excellent cross-linking and excellent antifouling properties. Can be expressed.

ここで、数平均分子量(Mn)及び重量平均分子量(Mw)はゲル浸透クロマトグラフィー(GPC)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は実施例に記載する。   Here, the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values converted to polystyrene based on gel permeation chromatography (GPC) measurement. The measurement conditions for GPC are described in the examples.

また、本発明の含フッ素硬化性樹脂は、該樹脂中に含有するフッ素原子の含有比率であるフッ素含有率は、2〜35質量%の範囲が硬化塗膜の防汚性の点から好ましい。   In the fluorine-containing curable resin of the present invention, the fluorine content, which is the content ratio of fluorine atoms contained in the resin, is preferably from 2 to 35% by mass from the viewpoint of the antifouling property of the cured coating film.

本発明の含フッ素硬化性樹脂は、それ自体を活性エネルギー線硬化型塗料組成物の主剤として用いることができるが、極めて優れた表面改質性能を有しているため、活性エネルギー線硬化型塗料組成物に添加するフッ素系界面活性剤として用いることで、硬化塗膜に優れた防汚性を付与できる。   The fluorine-containing curable resin of the present invention can be used as a main component of the active energy ray-curable coating composition itself, but has an extremely excellent surface modification performance. By using it as a fluorosurfactant added to the composition, excellent antifouling properties can be imparted to the cured coating film.

本発明の活性エネルギー線硬化型塗料組成物は、本発明の含フッ素硬化性樹脂を配合したものであるが、その主成分しては、活性エネルギー線硬化型樹脂(F)又は活性エネルギー線硬化性単量体(G)を含有する。なお、本発明の活性エネルギー線硬化型塗料組成物において、活性エネルギー線硬化型樹脂(F)と活性エネルギー線硬化性単量体(G)とは、それぞれ単独で用いてもよいが、併用しても構わない。また、本発明の含フッ素硬化性樹脂は、当該活性エネルギー線硬化型塗料組成物において、フッ素系界面活性剤として用いることが好ましい。   The active energy ray-curable coating composition of the present invention is a blend of the fluorine-containing curable resin of the present invention. The main component thereof is an active energy ray-curable resin (F) or an active energy ray-curable resin. Containing a polymerizable monomer (G). In the active energy ray curable coating composition of the present invention, the active energy ray curable resin (F) and the active energy ray curable monomer (G) may be used alone or in combination. It doesn't matter. The fluorine-containing curable resin of the present invention is preferably used as a fluorine-based surfactant in the active energy ray-curable coating composition.

前記活性エネルギー線硬化型樹脂(F)は、ウレタン(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂、マレイミド基含有樹脂等が挙げられるが、本発明では、特に透明性や低収縮性等の点からウレタン(メタ)アクリレート樹脂が好ましい。   The active energy ray-curable resin (F) is a urethane (meth) acrylate resin, unsaturated polyester resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin, acrylic (meth) acrylate resin, maleimide group-containing resin, etc. In the present invention, a urethane (meth) acrylate resin is particularly preferable from the viewpoint of transparency and low shrinkage.

ここで用いるウレタン(メタ)アクリレート樹脂は、脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物とヒドロキシ基含有(メタ)アクリレート化合物とを反応させて得られるウレタン結合と(メタ)アクリロイル基とを有する樹脂が挙げられる。   The urethane (meth) acrylate resin used here is a resin having a urethane bond and a (meth) acryloyl group obtained by reacting an aliphatic polyisocyanate compound or an aromatic polyisocyanate compound with a hydroxy group-containing (meth) acrylate compound. Is mentioned.

前記脂肪族ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下、HDIと略する。)、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、2−メチル−1,5−ペンタンジイソシアネート、3−メチル−1,5−ペンタンジイソシアネート、ドデカメチレンジイソシアネート、2−メチルペンタメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、シクロヘキシルジイソシアネート等が挙げられ、また、芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、トリジンジイソシアネート、p−フェニレンジイソシアネート等が挙げられる。   Examples of the aliphatic polyisocyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as HDI), heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, 2-methyl-1, 5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, dodecamethylene diisocyanate, 2-methylpentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, isophorone Diisocyanate, norbornane diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate And hydrogenated xylylene diisocyanate, hydrogenated tetramethyl xylylene diisocyanate, cyclohexyl diisocyanate and the like, and examples of the aromatic polyisocyanate compound include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, 1 , 5-naphthalene diisocyanate, tolidine diisocyanate, p-phenylene diisocyanate and the like.

一方、ヒドロキシ基含有アクリレート化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,5−ペンタンジオールモノ(メタ)アクリレート、1,6−ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパン(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2−(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε−カプロラクトンで変性した水酸基含有モノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε−カプロラクトンで変性した水酸基含有多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリエチレングリコール−ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン−ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリ(エチレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物等が挙げられる。   On the other hand, examples of the hydroxy group-containing acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1, Monovalent dihydric alcohols such as 5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, and hydroxypivalate neopentyl glycol mono (meth) acrylate ( (Meth) acrylate; trimethylolpropane di (meth) acrylate, ethoxylated trimethylolpropane (meth) acrylate, propoxylated trimethylolpropane di (meth) acrylate, glycerin di (meth) Mono- or di (meth) acrylates of trivalent alcohols such as acrylate and bis (2- (meth) acryloyloxyethyl) hydroxyethyl isocyanurate, or hydroxyl groups obtained by modifying some of these alcoholic hydroxyl groups with ε-caprolactone Containing mono- and di (meth) acrylates; monofunctional hydroxyl groups such as pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and more than trifunctional (meth) acryloyl groups Or a hydroxyl group-containing polyfunctional (meth) acrylate further modified with ε-caprolactone; dipropylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, polypropylene (Meth) acrylate compounds having an oxyalkylene chain such as polyethylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate; polyethylene glycol-polypropylene glycol mono (meth) acrylate, polyoxybutylene-polyoxypropylene mono (meth) (Meth) acrylate compounds having a block structure oxyalkylene chain such as acrylate; random structures such as poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate and poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate And (meth) acrylate compounds having an oxyalkylene chain.

上記した脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物とヒドロキシ基含有アクリレート化合物との反応は、ウレタン化触媒の存在下、常法により行うことができる。ここで使用し得るウレタン化触媒は、具体的には、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミンなどのアミン類、トリフェニルホスフィン、トリエチルホスフィンなどのホフィン類、ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫などの有機錫化合物、オクチル酸亜鉛などの有機金属化合物が挙げられる。   The reaction of the above-mentioned aliphatic polyisocyanate compound or aromatic polyisocyanate compound and the hydroxy group-containing acrylate compound can be carried out by a conventional method in the presence of a urethanization catalyst. Specific examples of urethanization catalysts that can be used here include amines such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine, phosphines such as triphenylphosphine and triethylphosphine, dibutyltin dilaurate, octyltin trilaurate, and octyl. Examples thereof include organotin compounds such as tin diacetate, dibutyltin diacetate, and tin octylate, and organometallic compounds such as zinc octylate.

これらのウレタンアクリレート樹脂の中でも特に脂肪族ポリイソシアネート化合物とヒドロキシ基含有(メタ)アクリレート化合物とを反応させて得られるものが硬化塗膜の透明性に優れ、かつ、活性エネルギー線に対する感度が良好で硬化性に優れる点から好ましい。   Among these urethane acrylate resins, those obtained by reacting an aliphatic polyisocyanate compound with a hydroxy group-containing (meth) acrylate compound are excellent in transparency of the cured coating film and have good sensitivity to active energy rays. It is preferable from the viewpoint of excellent curability.

次に、不飽和ポリエステル樹脂は、α,β−不飽和二塩基酸又はその酸無水物、芳香族飽和二塩基酸又はその酸無水物、及び、グリコール類の重縮合によって得られる硬化性樹脂であり、α,β−不飽和二塩基酸又はその酸無水物としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロルマレイン酸、及びこれらのエステル等が挙げられる。芳香族飽和二塩基酸又はその酸無水物としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等が挙げられる。脂肪族あるいは脂環族飽和二塩基酸としては、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、グルタル酸、ヘキサヒドロ無水フタル酸及びこれらのエステル等が挙げられる。グリコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2−メチルプロパン−1,3−ジオール、ネオペンチルグリコール、トリエチレングリコール、テトラエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ビスフェノールA、水素化ビスフェノールA、エチレングリコールカーボネート、2,2−ジ−(4−ヒドロキシプロポキシジフェニル)プロパン等が挙げられ、その他にエチレンオキサイド、プロピレンオキサイド等の酸化物も同様に使用できる。   Next, the unsaturated polyester resin is a curable resin obtained by polycondensation of α, β-unsaturated dibasic acid or acid anhydride thereof, aromatic saturated dibasic acid or acid anhydride thereof, and glycols. The α, β-unsaturated dibasic acid or its acid anhydride includes maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, and esters thereof. As aromatic saturated dibasic acid or acid anhydride thereof, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, nitrophthalic acid, tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, halogenated phthalic anhydride and these Examples include esters. Examples of the aliphatic or alicyclic saturated dibasic acid include oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, glutaric acid, hexahydrophthalic anhydride, and esters thereof. As glycols, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 2-methylpropane-1,3-diol, neopentyl glycol, triethylene glycol, Examples include tetraethylene glycol, 1,5-pentanediol, 1,6-hexanediol, bisphenol A, hydrogenated bisphenol A, ethylene glycol carbonate, 2,2-di- (4-hydroxypropoxydiphenyl) propane, and others. In addition, oxides such as ethylene oxide and propylene oxide can be used in the same manner.

次に、エポキシビニルエステル樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂のエポキシ基に(メタ)アクリル酸を反応させて得られるものが挙げられる。   Next, as an epoxy vinyl ester resin, (meth) acrylic acid is reacted with an epoxy group of an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin. What is obtained is mentioned.

また、マレイミド基含有樹脂としては、N−ヒドロキシエチルマレイミドとイソホロンジイソシアネートとをウレタン化して得られる2官能マレイミドウレタン化合物、マレイミド酢酸とポリテトラメチレングリコールとをエステル化して得られる2官能マレイミドエステル化合物、マレイミドカプロン酸とペンタエリスリトールのテトラエチレンオキサイド付加物とをエステル化して得られる4官能マレイミドエステル化合物、マレイミド酢酸と多価アルコール化合物とをエステル化して得られる多官能マレイミドエステル化合物等が挙げられる。これらの活性エネルギー線硬化型樹脂(F)は、単独で用いることも2種以上併用することもできる。   As the maleimide group-containing resin, a bifunctional maleimide urethane compound obtained by urethanizing N-hydroxyethylmaleimide and isophorone diisocyanate, a bifunctional maleimide ester compound obtained by esterifying maleimide acetic acid and polytetramethylene glycol, Examples thereof include a tetrafunctional maleimide ester compound obtained by esterification of maleimidocaproic acid and a tetraethylene oxide adduct of pentaerythritol, a polyfunctional maleimide ester compound obtained by esterification of maleimide acetic acid and a polyhydric alcohol compound, and the like. These active energy ray-curable resins (F) can be used alone or in combination of two or more.

前記活性エネルギー線硬化性単量体(G)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、数平均分子量が150〜1000の範囲にあるポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、数平均分子量が150〜1000の範囲にあるポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジペンタエリスルトールペンタ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等の脂肪族アルキル(メタ)アクリレート、グリセロール(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、2−(ジエチルアミノ)エチル(メタ)アクリレート、2−(ジメチルアミノ)エチル(メタ)アクリレート、γ−(メタ)アクリロキシプロピルトリメトキシシラン、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジプロピレングルリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、ポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール−ポリブチレングリコール(メタ)アクリレート、ポリスチリルエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、フェニル(メタ)アクリレート;マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−ブチルマレイミド、N−ヘキシルマレイミド、N−オクチルマレイミド、N−ドデシルマレイミド、N−ステアリルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド、2−マレイミドエチル−エチルカーボネート、2−マレイミドエチル−プロピルカーボネート、N−エチル−(2−マレイミドエチル)カーバメート、N,N−ヘキサメチレンビスマレイミド、ポリプロピレングリコール−ビス(3−マレイミドプロピル)エーテル、ビス(2−マレイミドエチル)カーボネート、1,4−ジマレイミドシクロヘキサン等のマレイミド類などが挙げられる。   Examples of the active energy ray-curable monomer (G) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and a number average molecular weight in the range of 150 to 1,000. Polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di having a number average molecular weight in the range of 150 to 1000 (Meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol (Meth) acrylate, hydroxypivalate ester neopentyl glycol di (meth) acrylate, bisphenol A di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol Hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane di (meth) acrylate, dipentaerythritol penta (meth) acrylate, dicyclopentenyl (meth) acrylate, methyl (meth) acrylate, Propyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, decyl (meta Aliphatic alkyl (meth) acrylates such as acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, glycerol (meth) acrylate, 2-hydroxyethyl (meth) acrylate , 3-chloro-2-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, allyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2- (diethylamino) ethyl (meth) acrylate, 2- (dimethyl Amino) ethyl (meth) acrylate, γ- (meth) acryloxypropyltrimethoxysilane, 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxydi Lopylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydipropylene glycolicol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, Polybutadiene (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polyethylene glycol-polybutylene glycol (meth) acrylate, polystyrylethyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopenta Nyl (meth) acrylate, dicyclopentenyl (meth) acryl , Isobornyl (meth) acrylate, methoxylated cyclodecatriene (meth) acrylate, phenyl (meth) acrylate; maleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-butylmaleimide, N-hexyl Maleimide, N-octylmaleimide, N-dodecylmaleimide, N-stearylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, 2-maleimidoethyl-ethylcarbonate, 2-maleimidoethyl-propylcarbonate, N-ethyl- (2- Maleimidoethyl) carbamate, N, N-hexamethylene bismaleimide, polypropylene glycol-bis (3-maleimidopropyl) ether, bis (2-maleimidoethyl) carbonate, 1,4-di And maleimides such as maleimide cyclohexane.

これらのなかでも特に硬化塗膜の硬度に優れる点からトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレートが好ましい。これらの活性エネルギー線硬化性単量体(G)は、単独で用いることも2種以上併用することもできる。   Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra ( A trifunctional or higher polyfunctional (meth) acrylate such as (meth) acrylate is preferred. These active energy ray-curable monomers (G) can be used alone or in combination of two or more.

本発明の活性エネルギー線硬化型塗料組成物において、本発明の含フッ素硬化性樹脂をフッ素系界面活性剤として使用する場合、その使用量は、前記活性エネルギー線硬化型樹脂(F)及び活性エネルギー線硬化性単量体(G)の合計100質量部に対して、0.01〜10質量部の範囲であることが好ましく、0.1〜5質量%の範囲であることがより好ましい。本発明の含フッ素硬化性樹脂の使用量がこの範囲であれば、レベリング性、撥水撥油性、防汚性を十分なものにすることができ、該塗料組成物の硬化後の硬度や透明性も十分なものとすることができる。   In the active energy ray-curable coating composition of the present invention, when the fluorine-containing curable resin of the present invention is used as a fluorosurfactant, the amount used thereof is the active energy ray-curable resin (F) and the active energy. It is preferably in the range of 0.01 to 10 parts by mass, more preferably in the range of 0.1 to 5% by mass, with respect to 100 parts by mass in total of the linear curable monomer (G). If the amount of the fluorine-containing curable resin of the present invention is within this range, leveling properties, water / oil repellency and antifouling properties can be made sufficient, and the hardness and transparency of the coating composition after curing can be improved. The property can also be sufficient.

本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化型塗料組成物は、基材に塗布後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線のような電離放射線をいう。ここで、本発明の含フッ素硬化性樹脂を単独で硬化塗膜とする場合、上記の(方法1)又は(方法2)で得られる含フッ素硬化性樹脂(V1)又は(V2)は、活性エネルギー線硬化性基としてマレイミド基しか有していないため、光重合開始剤が存在しなくても活性エネルギー線の照射によりマレイミド基の光二量化反応が生じて光硬化可能である。一方、上記の(方法1’)又は(方法2’)で得られる含フッ素硬化性樹脂(V1’)又は(V2’)を単独で硬化塗膜とする場合、又は本発明の含フッ素硬化性樹脂を添加した活性エネルギー線硬化型塗料組成物を、活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、該含フッ素硬化性樹脂又は活性エネルギー線硬化型組成物中に光重合開始剤(H)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特に光重合開始剤(H)や光増感剤を添加する必要はない。   The fluorine-containing curable resin or active energy ray-curable coating composition of the present invention can be formed into a cured coating film by irradiating active energy rays after being applied to a substrate. The active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. Here, when the fluorine-containing curable resin of the present invention is used alone as a cured coating film, the fluorine-containing curable resin (V1) or (V2) obtained by the above (Method 1) or (Method 2) is active. Since it has only a maleimide group as an energy ray curable group, even if no photopolymerization initiator is present, photodimerization reaction of the maleimide group occurs by irradiation with active energy rays, and photocuring is possible. On the other hand, when the fluorine-containing curable resin (V1 ′) or (V2 ′) obtained by the above (Method 1 ′) or (Method 2 ′) is used alone as a cured coating film, or the fluorine-containing curable resin of the present invention. When an active energy ray-curable coating composition containing a resin is irradiated with ultraviolet rays as an active energy ray to form a cured coating film, photopolymerization is carried out in the fluorine-containing curable resin or active energy ray-curable composition. It is preferable to add an initiator (H) to improve curability. Further, if necessary, a photosensitizer can be further added to improve curability. On the other hand, when ionizing radiation such as electron beam, α-ray, β-ray, and γ-ray is used, it cures quickly without using a photopolymerization initiator or photosensitizer. It is not necessary to add H) or a photosensitizer.

前記光重合開始剤(H)としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6−トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。   Examples of the photopolymerization initiator (H) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy. 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thio) Acetophenone-based compounds such as methylphenyl) propan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether and benzoin isopropyl ether; 4,6-trimethylbenzoindiphenylphos In'okishido, bis (2,4,6-trimethylbenzoyl) - acyl phosphine oxide-based compounds such as triphenylphosphine oxide; benzyl, and methyl phenylglyoxylate ester.

一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル−4−フェニルベンゾフェノン、4,4’−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系化合物;2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ−ケトン、4,4’−ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等が挙げられる。   On the other hand, examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone, o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide. Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 A thioxanthone compound such as dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone; an aminobenzophenone compound such as Michler's ketone and 4,4′-diethylaminobenzophenone; 2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like.

上記の光重合開始剤(H)の中でも、活性エネルギー線硬化型塗料組成物中の前記活性エネルギー線硬化性樹脂(F)及び活性エネルギー線硬化性単量体(G)との相溶性に優れる点から、1−ヒドロキシシクロヘキシルフェニルケトン、及びベンゾフェノンが好ましく、特に、1−ヒドロキシシクロヘキシルフェニルケトンが好ましい。これらの光重合開始剤(H)は、単独で用いることも、2種以上を併用することもできる。   Among the photopolymerization initiators (H), the compatibility with the active energy ray-curable resin (F) and the active energy ray-curable monomer (G) in the active energy ray-curable coating composition is excellent. From the viewpoint, 1-hydroxycyclohexyl phenyl ketone and benzophenone are preferable, and 1-hydroxycyclohexyl phenyl ketone is particularly preferable. These photopolymerization initiators (H) can be used alone or in combination of two or more.

また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o−トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s−ベンジルイソチウロニウム−p−トルエンスルホネート等の硫黄化合物などが挙げられる。   Examples of the photosensitizer include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiuronium-p-toluenesulfonate, and the like. And sulfur compounds.

これらの光重合開始剤及び光増感剤の使用量は、活性エネルギー線硬化型組成物中の不揮発成分100質量部に対し、各々0.01〜20質量部が好ましく、0.1〜15質量%がより好ましく、0.3〜7質量部がさらに好ましい。   These photopolymerization initiators and photosensitizers are preferably used in an amount of 0.01 to 20 parts by weight, preferably 0.1 to 15 parts by weight, based on 100 parts by weight of the nonvolatile component in the active energy ray-curable composition. % Is more preferable, and 0.3 to 7 parts by mass is more preferable.

さらに、本発明の活性エネルギー線硬化型塗料組成物は、用途、特性等の目的に応じ、本発明の効果を損なわない範囲で、粘度や屈折率の調整、あるいは、塗膜の色調の調整やその他の塗料性状や塗膜物性の調整を目的に各種の配合材料、例えば、各種有機溶剤、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリスチレン樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリカーボネート樹脂、石油樹脂、フッ素樹脂等の各種樹脂、PTFE(ポリテトラフルオロエチレン)、ポリエチレン、ポリプロピレン、カーボン、酸化チタン、アルミナ、銅、シリカ微粒子等の各種の有機又は無機粒子、重合開始剤、重合禁止剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、酸化防止剤、防錆剤、スリップ剤、ワックス、艶調整剤、離型剤、相溶化剤、導電調整剤、顔料、染料、分散剤、分散安定剤、シリコーン系、炭化水素系界面活性剤等を併用することができる。   Furthermore, the active energy ray-curable coating composition of the present invention can be used to adjust the viscosity and refractive index, or to adjust the color tone of the coating film within the range that does not impair the effects of the present invention, depending on the purpose of use, characteristics, etc. Various compounding materials for the purpose of adjusting other paint properties and coating film properties, for example, various organic solvents, acrylic resins, phenol resins, polyester resins, polystyrene resins, urethane resins, urea resins, melamine resins, alkyd resins, epoxy resins Various resins such as polyamide resin, polycarbonate resin, petroleum resin, fluororesin, PTFE (polytetrafluoroethylene), polyethylene, polypropylene, carbon, titanium oxide, alumina, copper, silica fine particles, polymerized Initiator, polymerization inhibitor, antistatic agent, antifoaming agent, viscosity modifier, light resistance stabilizer, weather resistance stabilizer, Thermal stabilizers, antioxidants, rust inhibitors, slip agents, waxes, gloss modifiers, mold release agents, compatibilizers, conductivity modifiers, pigments, dyes, dispersants, dispersion stabilizers, silicones, hydrocarbons A surfactant or the like can be used in combination.

上記の各配合成分中、有機溶媒は、本発明の活性エネルギー線硬化型塗料組成物の溶液粘度を適宜調整する上で有用であり、特に薄膜コーティングを行うためには、膜厚を調整することが容易となる。ここで使用できる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロパノール、t−ブタノール等のアルコール類;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。   Among the above ingredients, the organic solvent is useful for appropriately adjusting the solution viscosity of the active energy ray-curable coating composition of the present invention, and in particular, for thin film coating, the film thickness should be adjusted. Becomes easy. Examples of the organic solvent that can be used here include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, isopropanol, and t-butanol; esters such as ethyl acetate and propylene glycol monomethyl ether acetate; Examples thereof include ketones such as methyl isobutyl ketone and cyclohexanone. These solvents can be used alone or in combination of two or more.

ここで有機溶媒の使用量は、用途や目的とする膜厚や粘度によって異なるが、硬化成分の全質量に対して、質量基準で、0.5〜4倍量の範囲であることが好ましい。   Here, the amount of the organic solvent used varies depending on the intended use and the target film thickness and viscosity, but is preferably in the range of 0.5 to 4 times the mass of the total mass of the curing component.

本発明の活性エネルギー線硬化型塗料組成物を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源又は硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。   As described above, the active energy ray for curing the active energy ray-curable coating composition of the present invention is ionizing radiation such as ultraviolet rays, electron rays, α rays, β rays, and γ rays, but specific energy. Examples of the source or curing device include germicidal lamps, fluorescent lamps for ultraviolet rays, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, Or an electron beam by a scanning type or curtain type electron beam accelerator.

これらの中でも特に紫外線であることが好ましく、酸素等による硬化阻害を避けるため、窒素ガス等の不活性ガス雰囲気下で、紫外線を照射することが好ましい。また、必要に応じて熱をエネルギー源として併用し、紫外線にて硬化した後、熱処理を行ってもよい。   Among these, ultraviolet rays are particularly preferable, and ultraviolet rays are preferably irradiated in an inert gas atmosphere such as nitrogen gas in order to avoid curing inhibition due to oxygen or the like. Further, if necessary, heat may be used as an energy source and heat treatment may be performed after curing with ultraviolet rays.

本発明の活性エネルギー線硬化型塗料組成物の塗工方法は用途により異なるが、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等を用いた塗布方法、あるいは各種金型を用いた成形方法等が挙げられる。   The application method of the active energy ray-curable coating composition of the present invention varies depending on the application. Examples thereof include a coating method using a coater, dipping, screen printing, spray, applicator, bar coater, etc., or a molding method using various molds.

本発明の含フッ素硬化性樹脂の硬化塗膜は、優れた防汚性(撥インク性、耐指紋性等)、耐擦傷性等を有するため、物品の表面に塗布・硬化することで、物品の表面に防汚性、耐擦傷性等を付与することができる。また、本発明の含フッ素硬化性樹脂は、塗材にフッ素系界面活性剤として添加することで、その塗材にレベリング性を付与することもできるため、本発明の活性エネルギー線硬化型塗料組成物は、高いレベリング性を有する。   The cured coating film of the fluorine-containing curable resin of the present invention has excellent antifouling properties (ink repellency, fingerprint resistance, etc.), scratch resistance, etc. It is possible to impart antifouling property, scratch resistance, etc. The fluorine-containing curable resin of the present invention can also impart leveling properties to the coating material by adding it as a fluorosurfactant to the coating material. Therefore, the active energy ray-curable coating composition of the present invention The thing has a high leveling property.

本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化型塗料組成物を用いて防汚性(撥インク性、耐指紋性等)を付与できる物品としては、TACフィルム等の液晶ディスプレイ(LCD)の偏光板用保護フィルム;プラズマディスプレイ(PDP)、有機ELディスプレイ等の各種ディスプレイ画面;タッチパネル;携帯電話筐体又は携帯電話の画面;CD、DVD、ブルーレイディスク等の光学記録媒体;インサートモールド(IMD、IMF)用転写フィルム;コピー機、プリンター等のOA機器用ゴムローラー;コピー機、スキャナー等のOA機器の読み取り部のガラス面;カメラ、ビデオカメラ、メガネ等の光学レンズ;腕時計等の時計の風防、ガラス面;自動車、鉄道車輌等の各種車輌のウインドウ;化粧板等の各種建材;住宅の窓ガラス;家具等の木工材料、人工・合成皮革、家電の筐体等の各種プラスチック成形品、FRP浴槽などが挙げられる。これらの物品表面に本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化型塗料組成物を塗布し、紫外線等の活性エネルギー線を照射して硬化塗膜を形成することで、物品表面に防汚性を付与することができる。また、本発明の含フッ素硬化性樹脂を各物品に適した各種塗料に添加し、塗布・乾燥することで、物品表面に防汚性を付与することも可能である。   Articles that can be imparted with antifouling properties (ink repellency, fingerprint resistance, etc.) using the fluorine-containing curable resin or the active energy ray-curable coating composition of the present invention include liquid crystal displays (LCD) such as TAC films. Protective film for polarizing plate; various display screens such as plasma display (PDP) and organic EL display; touch panel; mobile phone casing or mobile phone screen; optical recording medium such as CD, DVD, Blu-ray disc; insert mold (IMD, Transfer film for IMF); Rubber roller for OA equipment such as copiers and printers; Glass surface of the reading part of OA equipment such as copiers and scanners; Optical lenses such as cameras, video cameras and glasses; Windshields for watches such as watches , Glass surface; windows for various vehicles such as automobiles and railway vehicles; various building materials such as decorative panels; Glazing; furniture such woodworking materials, artificial-synthetic leather, home appliances of the housing or the like of various plastic molded products, such as FRP bathtubs and the like. By applying the fluorine-containing curable resin or active energy ray-curable coating composition of the present invention to the surface of these articles and irradiating active energy rays such as ultraviolet rays to form a cured coating film, the surface of the article is antifouled. Sex can be imparted. Further, the fluorine-containing curable resin of the present invention can be added to various paints suitable for each article, applied, and dried to impart antifouling properties to the article surface.

また、本発明の含フッ素硬化性樹脂を添加し、レベリング性を向上するとともに、塗膜に防汚性(撥インク性、耐指紋性等)を付与できる塗材としては、TACフィルム等のLCDの偏光板用保護フィルム用ハードコート材、アンチグレア(AG:防眩)コート材又は反射防止(LR)コート材;プラズマディスプレイ、有機ELディスプレイ(PDP)等の各種ディスプレイ画面用ハードコート材;タッチパネル用ハードコート材;液晶ディスプレイ用カラーフィルター(以下、「CF」という。)に使用されるRGBの各画素を形成するためのカラーレジスト、印刷インク、インクジェットインク又は塗料;CFのブラックマトリックス用のブラックレジスト、印刷インク、インクジェットインク又は塗料;プラズマディスプレイ(PDP)、有機ELディスプレイ等の画素隔壁用樹脂組成物;携帯電話筐体用塗料又はハードコート材;携帯電話の画面用ハードコート材;CD、DVD、ブルーレイディスク等の光学記録媒体用ハードコート材;インサートモールド(IMD、IMF)用転写フィルム用ハードコート材;コピー機、プリンター等のOA機器用ゴムローラー用コート材;コピー機、スキャナー等のOA機器の読み取り部のガラス用コート材;カメラ、ビデオカメラ、メガネ等の光学レンズ用コート材;腕時計等の時計の風防、ガラス用コート材;自動車、鉄道車輌等の各種車輌のウインドウ用コート材;化粧板等の各種建材用印刷インキ又は塗料;住宅の窓ガラス用コート材;家具等の木工用塗料;人工・合成皮革用コート材;家電の筐体等の各種プラスチック成形品用塗料又はコート材;FRP浴槽用塗料又はコート材などが挙げられる。   Further, as a coating material that can improve the leveling property by adding the fluorine-containing curable resin of the present invention and impart antifouling properties (ink repellency, fingerprint resistance, etc.) to the coating film, an LCD such as a TAC film can be used. Hard coating materials for protective films for polarizing plates, anti-glare (AG: anti-glare) coating materials or anti-reflection (LR) coating materials; hard coating materials for various display screens such as plasma displays and organic EL displays (PDP); for touch panels Hard coating material; Color resist, printing ink, inkjet ink or paint for forming each pixel of RGB used in a color filter for liquid crystal display (hereinafter referred to as “CF”); Black resist for black matrix of CF , Printing ink, inkjet ink or paint; plasma display (PD ), Resin composition for pixel partition walls such as organic EL display; paint for mobile phone casing or hard coat material; hard coat material for screen of mobile phone; hard coat material for optical recording medium such as CD, DVD, Blu-ray disc; Hard coating material for transfer film for insert molds (IMD, IMF); Coating material for rubber rollers for OA equipment such as copying machines and printers; Coating material for glass for reading parts of OA equipment such as copying machines and scanners; Cameras, videos Coating materials for optical lenses such as cameras and glasses; windshields for watches such as watches; coating materials for glass; coating materials for windows of various vehicles such as automobiles and railway vehicles; printing inks or paints for various building materials such as decorative panels; Window glass coating materials; wood coatings for furniture, etc .; coating materials for artificial and synthetic leather; various plastics such as housings for home appliances Shaped piece paint or coating material; such as FRP tub paint or coating material and the like.

さらに、本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化型塗料組成物を用いて耐擦傷性(耐スクラッチ性)及び防汚性を付与できる物品としては、LCDのバックライト部材であるプリズムシート又は拡散シート等が挙げられる。また、プリズムシート又は拡散シート用コート材に本発明の含フッ素硬化性樹脂を添加することで、該コート材のレベリング性を向上するとともに、コート材の塗膜に耐擦傷性(耐スクラッチ性)及び防汚性を付与することができる。   Further, as an article that can be provided with scratch resistance (scratch resistance) and antifouling property using the fluorine-containing curable resin or active energy ray-curable coating composition of the present invention, a prism sheet that is a backlight member of an LCD Or a diffusion sheet etc. are mentioned. Further, by adding the fluorine-containing curable resin of the present invention to the prism sheet or the diffusion sheet coating material, the leveling property of the coating material is improved and the coating film of the coating material is scratch resistant (scratch resistance). And antifouling properties can be imparted.

また、本発明の含フッ素硬化性樹脂の硬化塗膜は低屈折率であるため、LCD等の各種ディスプレイ表面への蛍光灯等の映り込みを防止する反射防止層中の低屈折率層用塗材としても用いることができる。また、反射防止層用の塗材、特に反射防止層中の低屈折率層用塗材に本発明の含フッ素硬化性樹脂を添加することで、塗膜の低屈折率を維持しつつ、塗膜表面に防汚性を付与することもできる。   Further, since the cured coating film of the fluorinated curable resin of the present invention has a low refractive index, the coating for the low refractive index layer in the antireflection layer for preventing the reflection of a fluorescent lamp or the like on the surface of various displays such as LCDs. It can also be used as a material. Further, by adding the fluorine-containing curable resin of the present invention to the coating material for the antireflection layer, particularly the coating material for the low refractive index layer in the antireflection layer, the coating material can be applied while maintaining the low refractive index of the coating film. Antifouling properties can also be imparted to the membrane surface.

さらに、本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化型塗料組成物を用いることができるその他の用途として、光ファイバクラッド材、導波路、液晶パネルの封止材、各種光学用シール材、光学用接着剤等が挙げられる。   Furthermore, as other applications in which the fluorine-containing curable resin or active energy ray-curable coating composition of the present invention can be used, optical fiber cladding materials, waveguides, liquid crystal panel sealing materials, various optical sealing materials, Examples include optical adhesives.

特に、LCD用偏光板の保護フィルム用コート材用途のうち、アンチグレアコート材として本発明の活性エネルギー線硬化型塗料組成物を用いる場合、上記した各組成のうち、シリカ微粒子、アクリル樹脂微粒子、ポリスチレン樹脂微粒子等の無機又は有機微粒子を、本発明の活性エネルギー線硬化型塗料組成物中の硬化成分の全質量の0.1〜0.5倍量となる割合で配合することで防眩性に優れたものとなるため好ましい。   In particular, when the active energy ray-curable coating composition of the present invention is used as an antiglare coating material among coating materials for protective films for polarizing plates for LCDs, among the above-mentioned compositions, silica fine particles, acrylic resin fine particles, polystyrene Anti-glare properties are obtained by blending inorganic or organic fine particles such as resin fine particles at a ratio of 0.1 to 0.5 times the total mass of the curing component in the active energy ray-curable coating composition of the present invention. It is preferable because it is excellent.

また、本発明の含フッ素硬化性樹脂又は活性エネルギー線硬化型塗料組成物を、LCD用偏光板の保護フィルム用アンチグレアコート材に用いる場合、コート材を硬化させる前に凹凸の表面形状の金型に接触させた後、金型と反対側から活性エネルギー線を照射して硬化し、コート層の表面をエンボス加工して防眩性を付与する転写法にも適用できる。   In addition, when the fluorine-containing curable resin or the active energy ray-curable coating composition of the present invention is used for an antiglare coating material for a protective film of a polarizing plate for LCD, a mold having an uneven surface shape before the coating material is cured. After the contact, the active energy ray is irradiated from the side opposite to the mold and cured, and the surface of the coating layer is embossed to apply an antiglare property.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

[IRスペクトル]
装置:株式会社島津製作所製「IRPrestige−21」
実施例で得られた樹脂をKBr法にて測定した。
[IR spectrum]
Apparatus: “IR Prestige-21” manufactured by Shimadzu Corporation
The resins obtained in the examples were measured by the KBr method.

13C−NMR測定条件]
装置:日本電子株式会社製「AL−400」
溶媒:アセトン−d
[ 13C -NMR measurement conditions]
Apparatus: “AL-400” manufactured by JEOL Ltd.
Solvent: acetone-d 6

[GPC測定条件]
測定装置:東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HHR−H」(6.0mmI.D.×4cm)
+東ソー株式会社製「TSK−GEL GMHHR」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR」(7.8mmI.D.×30cm)
+東ソー株式会社製「TSK−GEL GMHHR」(7.8mmI.D.×30cm)
検出器:ELSD(オルテック製「ELSD2000」)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件:カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準試料:前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HHR-H” manufactured by Tosoh Corporation (6.0 mm ID × 4 cm)
+ "TSK-GEL GMHHR" (7.8 mm ID x 30 cm) manufactured by Tosoh Corporation
+ "TSK-GEL GMHHR" (7.8 mm ID x 30 cm) manufactured by Tosoh Corporation
+ "TSK-GEL GMHHR" (7.8 mm ID x 30 cm) manufactured by Tosoh Corporation
+ "TSK-GEL GMHHR" (7.8 mm ID x 30 cm) manufactured by Tosoh Corporation
Detector: ELSD ("ELSD2000" manufactured by Oltec)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate 1.0 ml / min Standard sample: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.

(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)。
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl).

(合成例1)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記構造式(X−1)で表される両末端水酸基含有パーフルオロポリエーテル化合物(X−1)20質量部、溶媒としてジイソプロピルエーテル20質量部、重合禁止剤としてp−メトキシフェノール0.02質量部、中和剤としてトリエチルアミン3.1質量部を仕込み、空気気流下にて攪拌を開始し、フラスコ内を10℃に保ちながらアクリル酸クロライド2.7質量部を1時間かけて滴下した。滴下終了後、10℃で1時間攪拌し、昇温して30℃で1時間攪拌した後、50℃に昇温して10時間攪拌することにより反応を行い、ガスクロマトグラフィー測定にてアクリル酸クロライドの消失が確認された。次いで、溶媒としてジイソプロピルエーテル40質量部を追加した後、イオン交換水80質量部を混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、重合禁止剤としてp−メトキシフェノール0.02質量部を添加し、脱水剤として硫酸マグネシウム8質量部を添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。
(Synthesis Example 1)
In a glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device, 20 parts by mass of a hydroxyl group-containing perfluoropolyether compound (X-1) represented by the following structural formula (X-1), as a solvent 20 parts by mass of diisopropyl ether, 0.02 parts by mass of p-methoxyphenol as a polymerization inhibitor, and 3.1 parts by mass of triethylamine as a neutralizing agent were added, and stirring was started in an air stream, and the flask was kept at 10 ° C. Then, 2.7 parts by mass of acrylic acid chloride was added dropwise over 1 hour. After completion of dropping, the mixture is stirred at 10 ° C. for 1 hour, heated to 30 ° C. for 1 hour, then heated to 50 ° C. and stirred for 10 hours, and acrylic acid is measured by gas chromatography. The disappearance of chloride was confirmed. Next, after adding 40 parts by mass of diisopropyl ether as a solvent, 80 parts by mass of ion-exchanged water was mixed and stirred, and then left to stand to separate and remove the aqueous layer, and washing was repeated 3 times. Subsequently, 0.02 parts by mass of p-methoxyphenol was added as a polymerization inhibitor, 8 parts by mass of magnesium sulfate was added as a dehydrating agent, and the mixture was allowed to stand for 1 day for complete dehydration, and then the dehydrating agent was filtered off. .

Figure 0005397686
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。また、GPCによる数平均分子量は1,500である。)
Figure 0005397686
(In the formula, X is a perfluoromethylene group and a perfluoroethylene group, and an average of 7 perfluoromethylene groups and an average of 8 perfluoroethylene groups are present per molecule, and the number of fluorine atoms is (The average is 46. The number average molecular weight by GPC is 1,500.)

次いで、減圧下で溶媒を留去することによって、下記構造式(A−1−1)で表されるポリ(パーフルオロアルキレンエーテル)鎖を有する単量体を得た。   Subsequently, the solvent was distilled off under reduced pressure to obtain a monomer having a poly (perfluoroalkylene ether) chain represented by the following structural formula (A-1-1).

Figure 0005397686
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。)
Figure 0005397686
(In the formula, X is a perfluoromethylene group and a perfluoroethylene group, and an average of 7 perfluoromethylene groups and an average of 8 perfluoroethylene groups are present per molecule, and the number of fluorine atoms is (The average is 46.)

(実施例1)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン91.1質量部を加え、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られた(A−1−1)20質量部(滴下液1)と、2−ヒドロキシエチルメタクリレート19.2質量部及びN−アクリロイルオキシエチルテトラヒドロフタルイミド(前記式(B−5)で表される化合物)40質量部をメチルイソブチルケトン152.1質量部に溶解したモノマー溶液211.3質量部(滴下液2)と、ラジカル重合開始剤(t−ブチルペルオキシ−2−エチルヘキサノエート)11.9質量部をメチルイソブチルケトン30.1質量部に溶解したラジカル重合開始剤溶液42質量部(滴下液3)との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌した後、減圧下で溶媒を留去することによって、重合体(P1−1)を得た。
Example 1
91.1 parts by mass of methyl isobutyl ketone as a solvent was added to a glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device, and the temperature was raised to 105 ° C. while stirring in a nitrogen stream. Subsequently, 20 parts by mass (Drip 1) of (A-1-1) obtained in Synthesis Example 1, 19.2 parts by mass of 2-hydroxyethyl methacrylate, and N-acryloyloxyethyl tetrahydrophthalimide (formula (B- The compound represented by 5)) 211.3 parts by mass of monomer solution (drip liquid 2) in which 40 parts by mass of methyl isobutyl ketone was dissolved in 152.1 parts by mass and a radical polymerization initiator (t-butylperoxy-2-ethyl) Hexanoate) 3 types of dripping liquid and 42 parts by mass of radical polymerization initiator solution (drip liquid 3) in which 11.9 parts by mass of methyl isobutyl ketone was dissolved in 30.1 parts by mass were set in separate dripping apparatuses. While keeping the inside of the flask at 105 ° C., it was dropped simultaneously over 2 hours. After completion of dropping, the mixture was stirred at 105 ° C. for 10 hours, and then the solvent was distilled off under reduced pressure to obtain a polymer (P1-1).

次いで、上記で得た重合体(P1−1)に、溶媒としてメチルエチルケトン101.2質量部、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を加え、空気気流下で攪拌を開始し、60℃を保ちながら2−アクリロイルオキシエチルイソシアネート20.8質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して4時間攪拌することにより反応を行った結果、反応液のIRスペクトル測定によりイソシアネート基の吸収ピークの消失が確認された。次いで、溶媒としてメチルエチルケトンを加え、含フッ素硬化性樹脂(1)40質量%含有のメチルエチルケトン溶液を得た。含フッ素硬化性樹脂(1)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量3,000、重量平均分子量13,600であった。また、フッ素含有率は11質量%であった。得られた含フッ素硬化性樹脂(1)のIRスペクトルのチャートを図1に、13C−NMRのチャートを図2に、GPCのチャートを図3にそれぞれ示す。 Next, 101.2 parts by mass of methyl ethyl ketone as a solvent, 0.1 part by mass of p-methoxyphenol as a polymerization inhibitor, and 0.03 part by mass of tin octylate as a urethanization catalyst were added to the polymer (P1-1) obtained above. Then, stirring was started under an air stream, and 20.8 parts by mass of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour while maintaining 60 ° C. After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 2 hours, then heated to 80 ° C. and stirred for 4 hours. As a result, the disappearance of the isocyanate group absorption peak was confirmed by IR spectrum measurement of the reaction solution. . Subsequently, methyl ethyl ketone was added as a solvent to obtain a methyl ethyl ketone solution containing 40% by mass of the fluorinated curable resin (1). As a result of measuring the molecular weight of the fluorine-containing curable resin (1) by GPC (polystyrene equivalent molecular weight), the number average molecular weight was 3,000 and the weight average molecular weight was 13,600. The fluorine content was 11% by mass. FIG. 1 shows an IR spectrum chart of the obtained fluorinated curable resin (1), FIG. 2 shows a 13 C-NMR chart, and FIG. 3 shows a GPC chart.

(実施例2)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン69.3質量部を加え、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られた(A−1−1)20.5質量部(滴下液1)と、2−ヒドロキシエチルメタクリレート28.3質量部及びN−アクリロイルオキシエチルテトラヒドロフタルイミド(前記式(B−5)で表される化合物)20.5質量部をメチルイソブチルケトン123.4質量部に溶解したモノマー溶液172.2質量部(滴下液2)と、ラジカル重合開始剤(t−ブチルペルオキシ−2−エチルヘキサノエート)10.4質量部をメチルイソブチルケトン15.1質量部に溶解したラジカル重合開始剤溶液25.5質量部(滴下液3)との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌した後、減圧下で溶媒を留去することによって、重合体(P1−2)を得た。
(Example 2)
69.3 parts by mass of methyl isobutyl ketone as a solvent was added to a glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device, and the temperature was raised to 105 ° C. while stirring under a nitrogen stream. Subsequently, 20.5 parts by mass (Drip 1) obtained in Synthesis Example 1 and 28.3 parts by mass of 2-hydroxyethyl methacrylate and N-acryloyloxyethyl tetrahydrophthalimide (the above formula ( Compound represented by B-5): 172.2 parts by mass of monomer solution (2 drops) dissolved in 123.4 parts by mass of methyl isobutyl ketone and 2 radical polymerization initiator (t-butylperoxy) 2-ethylhexanoate) 3 types of dripping liquids separately with 25.5 parts by mass of radical polymerization initiator solution (drip liquid 3) in which 10.4 parts by mass of methyl isobutyl ketone was dissolved in 15.1 parts by mass Were added dropwise over 2 hours while keeping the inside of the flask at 105 ° C. After completion of dropping, the mixture was stirred at 105 ° C. for 10 hours, and then the solvent was distilled off under reduced pressure to obtain a polymer (P1-2).

次いで、上記で得た重合体(P1−2)に、溶媒としてメチルエチルケトン101.0質量部、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を加え、空気気流下で攪拌を開始し、60℃を保ちながら2−アクリロイルオキシエチルイソシアネート30.7質量部を1時間で滴下した。滴下終了後、60℃で2時間攪拌した後、80℃に昇温して4時間攪拌することにより反応を行った結果、反応液のIRスペクトル測定によりイソシアネート基の吸収ピークの消失が確認された。次いで、溶媒としてメチルエチルケトンを加え、含フッ素硬化性樹脂(2)40質量%含有のメチルエチルケトン溶液を得た。この含フッ素硬化性樹脂(2)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,700、重量平均分子量9,200であった。また、フッ素含有率は11質量%であった。   Next, 101.0 parts by mass of methyl ethyl ketone as a solvent, 0.1 part by mass of p-methoxyphenol as a polymerization inhibitor, and 0.03 part by mass of tin octylate as a urethanization catalyst were added to the polymer (P1-2) obtained above. Then, stirring was started under an air stream, and 30.7 parts by mass of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour while maintaining 60 ° C. After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 2 hours, then heated to 80 ° C. and stirred for 4 hours. As a result, the disappearance of the isocyanate group absorption peak was confirmed by IR spectrum measurement of the reaction solution. . Subsequently, methyl ethyl ketone was added as a solvent to obtain a methyl ethyl ketone solution containing 40% by mass of the fluorinated curable resin (2). As a result of measuring the molecular weight of this fluorine-containing curable resin (2) by GPC (polystyrene conversion molecular weight), it was a number average molecular weight 2,700 and a weight average molecular weight 9,200. The fluorine content was 11% by mass.

(実施例3)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン70.9質量部を加え、窒素気流下にて攪拌しながら95℃に昇温した。次いで、合成例1で得られた(A−1−1)20質量部(滴下液1)と、2−メタクリロイルオキシエチルイソシアネート44質量部(滴下液2)と、ラジカル重合開始剤(2,2’−アゾビス(2−メチルブチロニトリル))9.6質量部をメチルイソブチルケトン47.9質量部に溶解したラジカル重合開始剤溶液57.5質量部(滴下液3)との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を95℃に保ちながら同時に2時間かけて滴下した。滴下終了後、95℃で10時間攪拌することによって、重合体(P2−1)の溶液を得た。
(Example 3)
70.9 parts by mass of methyl isobutyl ketone was added as a solvent to a glass flask equipped with a stirrer, thermometer, condenser, and dropping device, and the temperature was raised to 95 ° C. while stirring under a nitrogen stream. Next, 20 parts by mass (Drip 1) obtained in Synthesis Example 1, 44 parts by mass of 2-methacryloyloxyethyl isocyanate (Drip 2), and a radical polymerization initiator (2, 2). Three types of dropwise addition with 57.5 parts by weight of a radical polymerization initiator solution (dropping liquid 3) in which 9.6 parts by weight of '-azobis (2-methylbutyronitrile)) was dissolved in 47.9 parts by weight of methyl isobutyl ketone The liquids were set in separate dropping devices, and dropped simultaneously over 2 hours while maintaining the inside of the flask at 95 ° C. After completion of dropping, the solution was stirred at 95 ° C. for 10 hours to obtain a polymer (P2-1) solution.

次いで、上記で得られた重合体(P2−1)の溶液に、溶媒としてメチルエチルケトン21.2質量部、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を加え、空気気流下で攪拌して60℃を保ちながら、N−ヒドロキシエチルシトラコンイミド(前記式(E−2)で表される化合物)36質量部を4回に分けて加えた。その後、60℃で2時間攪拌した後、80℃に昇温して4時間攪拌することにより反応を行った結果、反応液のIRスペクトル測定によりイソシアネート基の吸収ピークの消失が確認された。この操作により含フッ素硬化性樹脂(3)40質量%含有のメチルイソブチルケトン/メチルエチルケトン溶液を得た。この含フッ素硬化性樹脂(3)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,100、重量平均分子量26,000であった。また、フッ素含有率は11質量%であった。   Next, 21.2 parts by mass of methyl ethyl ketone as a solvent, 0.1 part by mass of p-methoxyphenol as a polymerization inhibitor, and tin octylate as a urethanization catalyst were added to the polymer (P2-1) solution obtained above. 03 parts by mass was added, and 36 parts by mass of N-hydroxyethylcitraconimide (compound represented by the above formula (E-2)) was added in four portions while stirring at an air flow and maintaining 60 ° C. . Then, after stirring at 60 ° C. for 2 hours, the reaction was carried out by raising the temperature to 80 ° C. and stirring for 4 hours. As a result, disappearance of the absorption peak of the isocyanate group was confirmed by IR spectrum measurement of the reaction solution. By this operation, a methyl isobutyl ketone / methyl ethyl ketone solution containing 40% by mass of the fluorinated curable resin (3) was obtained. As a result of measuring the molecular weight of this fluorine-containing curable resin (3) by GPC (polystyrene conversion molecular weight), it was a number average molecular weight 2,100 and a weight average molecular weight 26,000. The fluorine content was 11% by mass.

(実施例4)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン69.3質量部を加え、窒素気流下にて攪拌しながら95℃に昇温した。次いで、合成例1で得られた(A−1−1)20.4質量部(滴下液1)と、2−メタクリロイルオキシエチルイソシアネート43.5質量部(滴下液2)と、ラジカル重合開始剤(2,2’−アゾビス(2−メチルブチロニトリル))9.6質量部をメチルイソブチルケトン48.5質量部に溶解したラジカル重合開始剤溶液58.1質量部(滴下液3)との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を95℃に保ちながら同時に2時間かけて滴下した。滴下終了後、95℃で10時間攪拌することによって、重合体(P2−2)の溶液を得た。
Example 4
69.3 parts by mass of methyl isobutyl ketone as a solvent was added to a glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device, and the temperature was raised to 95 ° C. while stirring under a nitrogen stream. Subsequently, 20.4 parts by mass (drop 1) of (A-1-1) obtained in Synthesis Example 1, 43.5 parts by mass of 2-methacryloyloxyethyl isocyanate (drop 2), and a radical polymerization initiator. With 58.1 parts by mass (dropping solution 3) of radical polymerization initiator solution in which 9.6 parts by mass of (2,2′-azobis (2-methylbutyronitrile)) was dissolved in 48.5 parts by mass of methyl isobutyl ketone Three types of dropping liquids were set in separate dropping apparatuses, respectively, and dropped simultaneously over 2 hours while maintaining the inside of the flask at 95 ° C. After completion of dropping, the solution was stirred at 95 ° C. for 10 hours to obtain a polymer (P2-2) solution.

次いで、上記で得られた重合体(P2−2)の溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.03質量部を加え、空気気流下で攪拌して60℃を保ちながら、N−ヒドロキシエチルマレイミド(前記式(E−1)で表される化合物)19.8質量部及び2−ヒドロキシエチルアクリレート16.3質量部をメチルエチルケトン22.5質量部に溶解した溶液を4回に分けて加えた。その後、60℃で2時間攪拌した後、80℃に昇温して4時間攪拌することにより反応を行った結果、反応液のIRスペクトル測定によりイソシアネート基の吸収ピークの消失が確認された。この操作により含フッ素硬化性樹脂(4)40質量%含有のメチルイソブチルケトン/メチルエチルケトン溶液を得た。この含フッ素硬化性樹脂(4)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量3,900、重量平均分子量105,000であった。また、フッ素含有率は11質量%であった。   Next, 0.1 parts by mass of p-methoxyphenol as a polymerization inhibitor and 0.03 parts by mass of tin octylate as a urethanization catalyst were added to the polymer (P2-2) solution obtained above, 19.8 parts by weight of N-hydroxyethylmaleimide (compound represented by the above formula (E-1)) and 16.3 parts by weight of 2-hydroxyethyl acrylate were added to methyl ethyl ketone 22.5 while stirring at 60 ° C. The solution dissolved in parts by mass was added in four portions. Then, after stirring at 60 ° C. for 2 hours, the reaction was carried out by raising the temperature to 80 ° C. and stirring for 4 hours. As a result, disappearance of the absorption peak of the isocyanate group was confirmed by IR spectrum measurement of the reaction solution. By this operation, a methyl isobutyl ketone / methyl ethyl ketone solution containing 40% by mass of the fluorinated curable resin (4) was obtained. As a result of measuring the molecular weight of this fluorine-containing curable resin (4) by GPC (polystyrene conversion molecular weight), it was number average molecular weight 3,900 and weight average molecular weight 105,000. The fluorine content was 11% by mass.

(実施例5)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン79.2部を加え、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られた(A−1−1)20質量部(滴下液1)と、グリシジルメタクリレート38.7質量部(滴下液2)と、ラジカル重合開始剤(t−ブチルペルオキシ−2−エチルヘキサノエート)8.8質量部をメチルイソブチルケトン16.2部に溶解したラジカル重合開始剤溶液25質量部(滴下液3)との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌することによって、重合体(P2−3)の溶液を得た。
(Example 5)
79.2 parts of methyl isobutyl ketone was added as a solvent to a glass flask equipped with a stirrer, thermometer, condenser, and dropping device, and the temperature was raised to 105 ° C. while stirring under a nitrogen stream. Subsequently, 20 parts by mass (Drip 1) obtained in Synthesis Example 1, 38.7 parts by mass of glycidyl methacrylate (Drip 2), and a radical polymerization initiator (t-butylperoxy- 2-ethylhexanoate) 3.8 parts by mass of a radical polymerization initiator solution obtained by dissolving 8.8 parts by mass of methyl isobutyl ketone in 16.2 parts (drip liquid 3) was added to separate dropping devices. The flask was added dropwise at the same time over 2 hours while keeping the inside of the flask at 105 ° C. After completion of dropping, the solution was stirred at 105 ° C. for 10 hours to obtain a polymer (P2-3) solution.

次いで、上記で得られた重合体(P2−3)の溶液に、重合禁止剤としてp−メトキシフェノール0.1部、触媒としてテトラメチルアンモニウムクロライド50質量%水溶液0.1部を加え、空気気流下で攪拌と昇温を開始し、60℃に達したときにマレイミド酢酸(前記式(E−8)で表される化合物)20.6質量部及びアクリル酸9.6質量部をメチルイソブチルケトン21.3質量部に溶解した溶液を加えた。その後、100℃に達するまで更に昇温を続け、100℃で13時間攪拌することにより反応を行った結果、反応液の酸価の測定によりカルボニル基の消失が確認された。この操作により含フッ素硬化性樹脂(5)43質量%含有のメチルイソブチルケトン溶液を得た。この含フッ素硬化性樹脂(5)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,200、重量平均分子量9,100であった。また、フッ素含有率は11質量%であった。   Next, 0.1 part of p-methoxyphenol as a polymerization inhibitor and 0.1 part of a 50% by weight aqueous solution of tetramethylammonium chloride as a catalyst were added to the polymer (P2-3) solution obtained above, and an air stream Under stirring and heating, when 60 ° C. is reached, 20.6 parts by mass of maleimidoacetic acid (compound represented by the formula (E-8)) and 9.6 parts by mass of acrylic acid are added to methyl isobutyl ketone. A solution dissolved in 21.3 parts by mass was added. Thereafter, the temperature was further increased until reaching 100 ° C., and the reaction was carried out by stirring at 100 ° C. for 13 hours. As a result, the disappearance of the carbonyl group was confirmed by measuring the acid value of the reaction solution. By this operation, a methyl isobutyl ketone solution containing 43% by mass of the fluorinated curable resin (5) was obtained. As a result of measuring the molecular weight of this fluorine-containing curable resin (5) by GPC (polystyrene conversion molecular weight), it was number average molecular weight 2,200 and weight average molecular weight 9,100. The fluorine content was 11% by mass.

上記の実施例1〜5で合成した含フッ素硬化性樹脂(1)〜(5)について、原料、分子量等を表1にまとめた。   For the fluorine-containing curable resins (1) to (5) synthesized in Examples 1 to 5, raw materials, molecular weights, and the like are summarized in Table 1.

Figure 0005397686
Figure 0005397686

なお、表1中の略号は、下記の通りである。
HEA:2−ヒドロキシエチルアクリレート
HEMA:2−ヒドロキシエチルメタクリレート
AOI:2−アクリロイルオキシエチルイソシアネート
MOI:2−メタクリロイルオキシエチルイソシアネート
GMA:グリシジルメタクリレート
AA:アクリル酸
The abbreviations in Table 1 are as follows.
HEA: 2-hydroxyethyl acrylate HEMA: 2-hydroxyethyl methacrylate AOI: 2-acryloyloxyethyl isocyanate MOI: 2-methacryloyloxyethyl isocyanate GMA: glycidyl methacrylate AA: acrylic acid

(比較例1)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン69質量部を仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、下記式(Y−1)で表されるフッ素化アルキル基を有するアクリレート40質量部及び2−ヒドロキシエチルメタクリレート28.8質量部と、溶媒としてメチルイソブチルケトン69質量部とを混合した単量体溶液137.8質量部、ラジカル重合開始剤としてt−ブチルペルオキシ−2−エチルヘキサノエート3.4質量部と溶媒としてメチルイソブチルケトン22.5質量部を混合した開始剤溶液25.9質量部の2種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に3時間かけて滴下した。滴下終了後、105℃で10時間攪拌し、重合体溶液を得た。
(Comparative Example 1)
A glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device was charged with 69 parts by mass of methyl isobutyl ketone as a solvent and heated to 105 ° C. while stirring under a nitrogen stream. Subsequently, 40 parts by mass of an acrylate having a fluorinated alkyl group represented by the following formula (Y-1) and 28.8 parts by mass of 2-hydroxyethyl methacrylate, and 69 parts by mass of methyl isobutyl ketone as a solvent 135.8 parts by mass of a body solution, 25.9 parts by mass of an initiator solution in which 3.4 parts by mass of t-butylperoxy-2-ethylhexanoate as a radical polymerization initiator and 22.5 parts by mass of methyl isobutyl ketone as a solvent were mixed. The two types of dripping liquids were set in separate dripping devices, and dripped simultaneously over 3 hours while maintaining the inside of the flask at 105 ° C. After completion of dropping, the mixture was stirred at 105 ° C. for 10 hours to obtain a polymer solution.

Figure 0005397686
Figure 0005397686

次いで、上記で得られた重合体溶液に、重合禁止剤としてp−メトキシフェノール0.1質量部、ウレタン化触媒としてオクチル酸錫0.05質量部を仕込み、空気気流下で60℃を保ちながら2−アクリロイルオキシエチルイソシアネート31.2質量部を1時間で滴下した。滴下終了後、60℃で1時間攪拌した後、80℃に昇温して10時間攪拌することにより反応を行った結果、IRスペクトル測定によりイソシアネート基の消失が確認された。次いで、溶媒の一部を減圧留去し、含フッ素硬化性樹脂(Z−1)50質量%含有のメチルイソブチルケトン溶液を得た。含フッ素硬化性樹脂(Z−1)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量3,000、重量平均分子量7,000であった。   Next, 0.1 parts by mass of p-methoxyphenol as a polymerization inhibitor and 0.05 part by mass of tin octylate as a urethanization catalyst were charged into the polymer solution obtained above, while maintaining 60 ° C. in an air stream. 31.2 parts by mass of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 1 hour, then heated to 80 ° C. and stirred for 10 hours. As a result, the disappearance of the isocyanate group was confirmed by IR spectrum measurement. Next, a part of the solvent was distilled off under reduced pressure to obtain a methyl isobutyl ketone solution containing 50% by mass of the fluorinated curable resin (Z-1). The molecular weight of the fluorine-containing curable resin (Z-1) was measured by GPC (polystyrene equivalent molecular weight). As a result, the number average molecular weight was 3,000 and the weight average molecular weight was 7,000.

(比較例2)
撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン63質量部を加え、窒素気流下にて攪拌しながら105℃に昇温した。次いで、合成例1で得られた(A−1−1)21.5質量部(滴下液1)と、2−ヒドロキシエチルメタクリレート41.3質量部(滴下液2)と、ラジカル重合開始剤(t−ブチルペルオキシ−2−エチルヘキサノエート)9.4質量部をメチルイソブチルケトン126質量部に溶解したラジカル重合開始剤溶液135.4質量部(滴下液3)との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌した後、減圧下で溶媒を留去することによって、重合体を得た。
(Comparative Example 2)
Methyl isobutyl ketone 63 parts by mass was added as a solvent to a glass flask equipped with a stirrer, thermometer, condenser, and dropping device, and the temperature was raised to 105 ° C. while stirring under a nitrogen stream. Then, 21.5 parts by mass (Drip 1) obtained in Synthesis Example 1, 41.3 parts by mass of 2-hydroxyethyl methacrylate (Drip 2), and a radical polymerization initiator ( (t-butylperoxy-2-ethylhexanoate) 9.4 parts by mass of radical polymerization initiator solution 135.4 parts by mass of methyl isobutyl ketone 126 parts by mass (Drips 3) Each was set in a separate dropping device and dropped simultaneously over 2 hours while keeping the inside of the flask at 105 ° C. After completion of dropping, the mixture was stirred at 105 ° C. for 10 hours, and then the solvent was distilled off under reduced pressure to obtain a polymer.

次いで、上記で得られた重合体に、溶媒としてメチルエチルケトン74.7質量部、重合禁止剤としてp−メトキシフェノール0.1質量部及びウレタン化触媒としてオクチル酸錫0.06質量部を加え、空気気流下で攪拌して60℃を保ちながら、2−アクリロイルオキシエチルイソシアネート44.8質量部を1時間で滴下した。滴下終了後、60℃で1時間攪拌した後、80℃に昇温して5時間攪拌することにより反応を行った結果、反応液のIRスペクトル測定によりイソシアネート基の吸収ピークの消失が確認された。次いで、溶媒としてメチルエチルケトンを加え、含フッ素硬化性樹脂(Z−2)50質量%含有のメチルエチルケトン溶液を得た。この含フッ素硬化性樹脂(Z−2)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,400、重量平均分子量7,100であった。   Next, 74.7 parts by mass of methyl ethyl ketone as a solvent, 0.1 part by mass of p-methoxyphenol as a polymerization inhibitor and 0.06 part by mass of tin octylate as a urethanization catalyst are added to the polymer obtained above, and air is added. 44.8 parts by mass of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour while stirring at an air flow and maintaining 60 ° C. After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 1 hour, then heated to 80 ° C. and stirred for 5 hours. As a result, the disappearance of the isocyanate group absorption peak was confirmed by IR spectrum measurement of the reaction solution. . Next, methyl ethyl ketone was added as a solvent to obtain a methyl ethyl ketone solution containing 50% by mass of the fluorinated curable resin (Z-2). As a result of measuring the molecular weight of this fluorine-containing curable resin (Z-2) by GPC (polystyrene conversion molecular weight), it was number average molecular weight 2,400 and weight average molecular weight 7,100.

(活性エネルギー線硬化型塗料組成物のベース樹脂組成物の調製)
5官能無黄変型ウレタンアクリレート50質量部、ジペンタエリスリトールヘキサアクリレート50質量部、酢酸ブチル25質量部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティーケミカルズ社製「イルガキュア184」)5質量部、溶剤としてトルエン54質量部、2−プロパノール28質量部、酢酸エチル28質量部、プロピレングリコールモノメチルエーテル28質量部を混合し溶解させて、活性エネルギー線硬化型塗料組成物のベース樹脂組成物を得た。
(Preparation of base resin composition of active energy ray-curable coating composition)
50 parts by mass of pentafunctional non-yellowing urethane acrylate, 50 parts by mass of dipentaerythritol hexaacrylate, 25 parts by mass of butyl acetate, 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator 5 The base resin composition of the active energy ray-curable coating composition is prepared by mixing and dissolving 54 parts by mass of toluene, 28 parts by mass of 2-propanol, 28 parts by mass of ethyl acetate, and 28 parts by mass of propylene glycol monomethyl ether as a solvent. Got.

(実施例6〜10、比較例3〜5)
上記で得られたベース樹脂組成物268質量部に、実施例1〜5及び比較例1〜2で得られた含フッ素硬化性樹脂溶液を樹脂分として1質量部となる量を加えて均一に混合して、活性エネルギー線硬化型塗料組成物を得た。次いで、この活性エネルギー線硬化型塗料組成物をバーコーターNo.13を用いて、厚さ188μmのPETフィルムに塗布した後、60℃の乾燥機に5分間入れて溶剤を揮発させ、紫外線硬化装置にて紫外線(UV)を照射して硬化させ、実施例6〜10及び比較例3〜4として塗工フィルムを作製した。なお、紫外線の照射条件は、(1)窒素雰囲気下、高圧水銀灯使用、紫外線照射量2kJ/m、及び(2)空気(酸素濃度21%)雰囲気下、高圧水銀灯使用、紫外線照射量3.5kJ/mの2水準とした。また、何も添加していない活性エネルギー線硬化型塗料組成物についても同様に塗工フィルムを作製して比較例5とした。
(Examples 6 to 10, Comparative Examples 3 to 5)
To the 268 parts by mass of the base resin composition obtained above, uniformly add 1 part by mass of the fluorine-containing curable resin solutions obtained in Examples 1 to 5 and Comparative Examples 1 and 2 as a resin component. By mixing, an active energy ray-curable coating composition was obtained. Next, this active energy ray-curable coating composition was applied to a bar coater No. Example 6 was applied to a PET film having a thickness of 188 μm, and then put in a drier at 60 ° C. for 5 minutes to evaporate the solvent, and cured by irradiating with ultraviolet rays (UV) with an ultraviolet curing device. -10 and Comparative Examples 3 to 4 were prepared as coated films. The irradiation conditions of ultraviolet rays were as follows: (1) use of a high-pressure mercury lamp in a nitrogen atmosphere, ultraviolet irradiation amount of 2 kJ / m 2 , and (2) use of a high-pressure mercury lamp in an air (oxygen concentration of 21%) atmosphere. Two levels of 5 kJ / m 2 were set. Moreover, the coating film was similarly produced about the active energy ray hardening-type coating composition in which nothing was added, and it was set as the comparative example 5.

得られた塗工フィルムの塗工表面に、フェルトペン(寺西化学工業株式会社製マジックインキ大型青色)で線を描き、その青色インクの付着状態を目視で観察することで防汚性(汚れ付着防止性、汚れ拭き取り性)の評価を行った。なお、評価基準は下記の通りである。   On the coated surface of the resulting coated film, draw a line with a felt-tip pen (Magic Ink Large Blue manufactured by Teranishi Chemical Industry Co., Ltd.) and visually observe the blue ink adhering state (antifouling) Evaluation of prevention property and dirt wiping property was performed. The evaluation criteria are as follows.

[汚れ付着防止性の評価基準]
◎:防汚性が最も良好で、インクが玉状にはじくもの。
○:インクが玉状にはじかず、線状のはじきが生じるもの(線幅がフェルトペンのペン先の幅の50%未満)。
×:インクの線状のはじきが生じ、線幅がフェルトペンのペン先の幅の50%以上100%未満であったもの。
××:インクがまったくはじかずに表面にきれいに描けてしまうもの。
[Evaluation criteria for dirt adhesion prevention]
A: The antifouling property is the best and the ink repels.
◯: The ink does not repel but forms a linear repellency (the line width is less than 50% of the width of the tip of the felt pen).
X: Ink repelling occurred and the line width was 50% or more and less than 100% of the width of the tip of the felt pen.
XX: The ink can be drawn cleanly on the surface without repelling at all.

[汚れ拭き取り性の評価基準]
「汚れ付着防止性」の試験後、荷重1kgにて拭き取った際の様子を下記の基準にて評価した。
○:1回の拭き取りで完全にインクを除去できたもの。
△:2〜10回の拭き取りで完全にインクを除去できたもの。
×:10回の拭き取り操作で完全にはインクを除去できなかったもの。
[Evaluation criteria for wiping off dirt]
After the “stain adhesion prevention” test, the appearance when wiped off with a load of 1 kg was evaluated according to the following criteria.
○: The ink can be completely removed by wiping once.
Δ: The ink was completely removed by wiping 2 to 10 times.
X: The ink could not be completely removed by 10 wiping operations.

上記の評価結果を表2に示す。   The evaluation results are shown in Table 2.

Figure 0005397686
Figure 0005397686

本発明の含フッ素硬化性樹脂である実施例1〜5で得られた含フッ素硬化性樹脂を添加した実施例6〜10の活性エネルギー線硬化型塗料組成物の硬化塗膜は、窒素雰囲気下でのUV硬化において、優れた汚れ付着防止性及び汚れ拭き取り性を有することが分かった。さらに、空気雰囲気下(酸素存在下)でのUV硬化においても、窒素雰囲気下でのUV硬化した場合と同等の優れた汚れ付着防止性及び汚れ拭き取り性を有することが分かった。   The cured coating film of the active energy ray-curable coating composition of Examples 6 to 10 to which the fluorine-containing curable resin obtained in Examples 1 to 5 which is the fluorine-containing curable resin of the present invention is added is in a nitrogen atmosphere. It was found that in the UV curing in the above, it has excellent anti-smudge property and stain wiping property. Furthermore, it has been found that UV curing under an air atmosphere (in the presence of oxygen) has excellent dirt adhesion prevention and dirt wiping properties equivalent to those when UV curing is performed under a nitrogen atmosphere.

一方、含フッ素硬化性樹脂(Z−1)及び(Z−2)を用いた比較例3及び4では、窒素雰囲気下でのUV硬化においては、良好な汚れ付着防止性を示したが、比較例3では汚れ拭き取り性は不十分であった。また、空気雰囲気下でのUV硬化においては、比較例3及び4は、ともに汚れ付着防止性は比較的良好であったが、汚れ拭き取り性は不十分であった。なお、何も添加しなかった比較例5は、窒素雰囲気下及び空気雰囲気下でのUV硬化で、ともに汚れ付着防止性及び汚れ拭き取り性は不良であった。   On the other hand, in Comparative Examples 3 and 4 using the fluorinated curable resins (Z-1) and (Z-2), the UV curing under a nitrogen atmosphere showed good antifouling property, In Example 3, the dirt wiping property was insufficient. Further, in UV curing under an air atmosphere, both Comparative Examples 3 and 4 had relatively good anti-smudge properties, but the stain wiping property was insufficient. In addition, Comparative Example 5 in which nothing was added was UV curing under a nitrogen atmosphere and an air atmosphere, and both the stain adhesion preventing property and the stain wiping property were poor.

Claims (14)

樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有する含フッ素硬化性樹脂であり、該含フッ素硬化性樹脂がポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、ラジカル重合性を有しないマレイミド基を有するラジカル重合性不飽和単量体(B)とを必須の単量体成分として共重合させて得られるラジカル重合性樹脂であることを特徴とする含フッ素硬化性樹脂。 The resin structure a fluorine-containing curable resin that having a poly (perfluoroalkylene ether) chain and a maleimide group, the fluorine-containing curable resin is poly (perfluoroalkylene ether) chain and radical-polymerizable at both ends Obtained by copolymerizing a compound (A) having a structural moiety having an unsaturated group and a radically polymerizable unsaturated monomer (B) having a maleimide group having no radical polymerizability as essential monomer components. A fluorine-containing curable resin characterized by being a radically polymerizable resin. ポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、ラジカル重合性を有しないマレイミド基を有するラジカル重合性不飽和単量体(B)と、反応性官能基(c)を有するラジカル重合性不飽和単量体(C)とを必須の単量体成分として共重合させて得られる重合体(P1)に、前記官能基(c)との反応性を有する官能基(d)と活性エネルギー線硬化性基とを有する化合物(D)を反応させて得られるものである請求項1記載の含フッ素硬化性樹脂。   A compound (A) having a poly (perfluoroalkylene ether) chain and a structural moiety having a radically polymerizable unsaturated group at both ends thereof, and a radically polymerizable unsaturated monomer having a maleimide group having no radically polymerizable property ( B) and a radically polymerizable unsaturated monomer (C) having a reactive functional group (c) are copolymerized as essential monomer components to a polymer (P1), and the functional group ( The fluorine-containing curable resin according to claim 1, which is obtained by reacting a compound (D) having a functional group (d) having reactivity with c) and an active energy ray-curable group. 前記ラジカル重合性不飽和単量体(C)が有する反応性官能基(c)がイソシアネート基であり、かつ前記化合物(D)が有する官能基(d)が水酸基であるか、又は、前記ラジカル重合性不飽和単量体(C)が有する反応性官能基(c)が水酸基であり、かつ前記化合物(D)が有する官能基(d)がイソシアネート基である請求項記載の含フッ素硬化性樹脂。 The reactive functional group (c) of the radical polymerizable unsaturated monomer (C) is an isocyanate group and the functional group (d) of the compound (D) is a hydroxyl group, or the radical The fluorine-containing curing according to claim 2 , wherein the reactive functional group (c) of the polymerizable unsaturated monomer (C) is a hydroxyl group, and the functional group (d) of the compound (D) is an isocyanate group. Resin. 前記ラジカル重合性不飽和単量体(B)が有するラジカル重合性を有しないマレイミド基が、下記一般式(1)で表されるマレイミド基である請求項1〜3のいずれか記載の含フッ素硬化性樹脂。
Figure 0005397686
(式中、R及びRは、それぞれ独立して、炭素原子数1〜6のアルキル基、又はRとRとが1つとなって5員環もしくは6員環を形成する炭化水素基を表す。)
The fluorine-containing fluorine according to any one of claims 1 to 3, wherein the radical-polymerizable unsaturated monomer (B) has a maleimide group having no radical polymerizability, which is a maleimide group represented by the following general formula (1). Curable resin.
Figure 0005397686
(In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, or a hydrocarbon in which R 1 and R 2 are combined to form a 5-membered or 6-membered ring. Represents a group.)
樹脂構造中にポリ(パーフルオロアルキレンエーテル)鎖及びマレイミド基を有する含フッ素硬化性樹脂であり、該含フッ素硬化性樹脂がポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、反応性官能基(c)を有するラジカル重合性不飽和単量体(C)とを必須の単量体成分として共重合させて得られる重合体(P2)に、前記官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)を反応させて得られることを特徴とする含フッ素硬化性樹脂。 A fluorine-containing curable resin having a poly (perfluoroalkylene ether) chain and a maleimide group in the resin structure, and the fluorine-containing curable resin is a radically polymerizable unsaturated group at the poly (perfluoroalkylene ether) chain and both ends thereof. Polymer obtained by copolymerizing compound (A) having structural group having group and radical polymerizable unsaturated monomer (C) having reactive functional group (c) as essential monomer components to (P2), the functional groups (c) and the fluorine-containing curable resin compound having a functional group (e) and a maleimide group reactive with the (E) are reacted, characterized in that it is obtained by the. ポリ(パーフルオロアルキレンエーテル)鎖とその両末端にラジカル重合性不飽和基を有する構造部位を有する化合物(A)と、反応性官能基(c)を有するラジカル重合性不飽和単量体(C)とを必須の単量体成分として共重合させて得られる重合体(P2)に、前記官能基(c)との反応性を有する官能基(d)と活性エネルギー線硬化性基とを有する化合物(D)と、前記官能基(c)との反応性を有する官能基(e)とマレイミド基とを有する化合物(E)とを反応させて得られるものである請求項記載の含フッ素硬化性樹脂。 A compound (A) having a poly (perfluoroalkylene ether) chain and a structural moiety having a radically polymerizable unsaturated group at both ends thereof, and a radically polymerizable unsaturated monomer having a reactive functional group (c) (C ) As an essential monomer component, the polymer (P2) has a functional group (d) having reactivity with the functional group (c) and an active energy ray-curable group. 6. The fluorine-containing compound according to claim 5 , wherein the compound (D) is obtained by reacting a compound (E) having a maleimide group with a functional group (e) having reactivity with the functional group (c). Curable resin. 前記ラジカル重合性不飽和単量体(C)が有する反応性官能基(c)がイソシアネート基であり、かつ前記化合物(E)が有する官能基(e)が水酸基であるか、又は、前記ラジカル重合性不飽和単量体(C)が有する反応性官能基(c)が水酸基であり、かつ前記化合物(E)が有する官能基(e)がイソシアネート基である請求項5または6記載の含フッ素硬化性樹脂。 The reactive functional group (c) of the radical polymerizable unsaturated monomer (C) is an isocyanate group and the functional group (e) of the compound (E) is a hydroxyl group, or the radical reactive functional groups polymerizable unsaturated monomer (C) has (c) is a hydroxyl group, and containing the compound (E) according to claim 5 or 6, wherein the functional group (e) is an isocyanate group of the Fluorine curable resin. 前記ラジカル重合性不飽和単量体(C)が有する反応性官能基(c)がイソシアネート基であり、かつ前記化合物(D)が有する官能基(d)及び前記化合物(E)が有する官能基(e)が水酸基であるか、又は、前記ラジカル重合性不飽和単量体(C)が有する反応性官能基(c)が水酸基であり、かつ前記化合物(D)が有する官能基(d)及び前記化合物(E)が有する官能基(e)がイソシアネート基である請求項記載の含フッ素硬化性樹脂。 The reactive functional group (c) of the radical polymerizable unsaturated monomer (C) is an isocyanate group, and the functional group (d) of the compound (D) and the functional group of the compound (E). (E) is a hydroxyl group, or the reactive functional group (c) of the radical polymerizable unsaturated monomer (C) is a hydroxyl group and the functional group (d) of the compound (D) and the compound (E) a functional group having the (e) is a fluorine-containing curable resin according to claim 6 wherein the isocyanate groups. 前記化合物(E)が有するマレイミド基が、下記一般式(1)で表されるマレイミド基である請求項のいずれか1項記載の含フッ素硬化性樹脂。
Figure 0005397686
(式中、R及びRは、それぞれ独立して、水素原子もしくは炭素原子数1〜6のアルキル基、又はRとRとが1つとなって5員環もしくは6員環を形成する炭化水素基を表す。)
The fluorine-containing curable resin according to any one of claims 5 to 8 , wherein the maleimide group of the compound (E) is a maleimide group represented by the following general formula (1).
Figure 0005397686
(Wherein R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or R 3 and R 4 are combined to form a 5-membered or 6-membered ring. Represents a hydrocarbon group.)
樹脂構造中に含まれるポリ(パーフルオロアルキレンエーテル)鎖が、フッ素原子を1鎖あたり25〜80個含有するものである請求項1〜のいずれか1項記載の含フッ素硬化性樹脂。 The fluorine-containing curable resin according to any one of claims 1 to 9 , wherein the poly (perfluoroalkylene ether) chain contained in the resin structure contains 25 to 80 fluorine atoms per chain. 請求項1〜10のいずれか1項記載の含フッ素硬化性樹脂を、基材に塗布し、活性エネルギー線を照射して硬化させてなることを特徴とする硬化物。 A cured product obtained by applying the fluorine-containing curable resin according to any one of claims 1 to 10 to a base material and irradiating and curing the active energy ray. 請求項1〜10のいずれか1項記載の含フッ素硬化性樹脂、及び、活性エネルギー線硬化型樹脂(F)又は活性エネルギー線硬化性単量体(G)を含有することを特徴とする活性エネルギー線硬化型塗料組成物。 An activity comprising the fluorine-containing curable resin according to any one of claims 1 to 10 , and the active energy ray curable resin (F) or the active energy ray curable monomer (G). Energy ray curable coating composition. 請求項1〜10のいずれか1項記載の含フッ素硬化性樹脂をフッ素系界面活性剤又はフッ素系表面改質剤として用いる請求項12記載の活性エネルギー線硬化型塗料組成物。 The active energy ray-curable coating composition according to claim 12 , wherein the fluorine-containing curable resin according to any one of claims 1 to 10 is used as a fluorine-based surfactant or a fluorine-based surface modifier. 請求項12又は13記載の活性エネルギー線硬化型塗料組成物を、基材に塗布し、活性エネルギー線を照射して硬化させてなることを特徴とする硬化物。 A cured product obtained by applying the active energy ray-curable coating composition according to claim 12 or 13 to a substrate and irradiating and curing the active energy ray.
JP2009247655A 2009-10-28 2009-10-28 Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof Active JP5397686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247655A JP5397686B2 (en) 2009-10-28 2009-10-28 Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247655A JP5397686B2 (en) 2009-10-28 2009-10-28 Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2011093978A JP2011093978A (en) 2011-05-12
JP5397686B2 true JP5397686B2 (en) 2014-01-22

Family

ID=44111267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247655A Active JP5397686B2 (en) 2009-10-28 2009-10-28 Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP5397686B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019129691A1 (en) * 2017-12-26 2019-07-04 Akzo Nobel Coatings International B.V. A fluorinated ether polymer, the preparation method therefore and use thereof
US20210214485A1 (en) * 2018-09-04 2021-07-15 Threebond Co., Ltd. Curable resin composition and cured material
TWI794381B (en) * 2017-12-26 2023-03-01 荷蘭商安科智諾貝爾塗料國際股份有限公司 A fluorinated ether polymer, the preparation method therefore and use thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173088A1 (en) * 2011-06-17 2012-12-20 Dic株式会社 Fluorine-containing curable resin, active energy beam-curable composition, and cured product thereof
JP2019206178A (en) * 2018-05-25 2019-12-05 三菱ケミカル株式会社 Laminate, polarizer protective film and polarizing plate
CN112812685B (en) * 2021-01-25 2022-06-28 江南大学 Photocuring anti-doodling coating with self-healing function and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091479A (en) * 2002-07-09 2004-03-25 Dainippon Ink & Chem Inc Maleimide compound, composition to be cured by actinic ray containing it, polymer for optical material of low refractive index and production method of maleimide compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019129691A1 (en) * 2017-12-26 2019-07-04 Akzo Nobel Coatings International B.V. A fluorinated ether polymer, the preparation method therefore and use thereof
US11299586B2 (en) 2017-12-26 2022-04-12 Akzo Nobel Coatings International B.V. Fluorinated ether polymer, the preparation method therefore and use thereof
TWI794381B (en) * 2017-12-26 2023-03-01 荷蘭商安科智諾貝爾塗料國際股份有限公司 A fluorinated ether polymer, the preparation method therefore and use thereof
US20210214485A1 (en) * 2018-09-04 2021-07-15 Threebond Co., Ltd. Curable resin composition and cured material
US11739175B2 (en) * 2018-09-04 2023-08-29 Threebond Co., Ltd. Curable resin composition and cured material

Also Published As

Publication number Publication date
JP2011093978A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4547642B2 (en) Active energy ray-curable coating composition, cured product thereof, and novel curable resin
JP4873107B2 (en) Fluorine-containing curable resin and active energy ray-curable composition using the same
JP5794474B2 (en) Fluorine-containing polymerizable resin, active energy ray-curable composition using the same, and cured product thereof
JP5187471B2 (en) Fluorine-containing curable resin, active energy ray-curable composition and cured product thereof
JP5397686B2 (en) Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof
JP5581943B2 (en) Fluorine-containing polymerizable resin, active energy ray-curable coating composition and cured product thereof
JP5720921B2 (en) Fluorine-containing polyfunctional thiol, active energy ray-curable coating composition and cured product thereof
JP5887834B2 (en) Fluorine-containing polymerizable resin, active energy ray-curable composition using the same, and cured product thereof
JP5737582B2 (en) Silicone-based polymerizable resin, active energy ray-curable composition using the same, and cured product thereof
JP2011213818A (en) Fluorine-containing curable resin and active energy ray curable coating composition using the same
JP5760308B2 (en) Antireflection coating composition and antireflection film
JP5854303B2 (en) Polymerizable resin, active energy ray-curable composition and article
JP5487860B2 (en) Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof
JP5939419B2 (en) Fluorine atom-containing silicone-based polymerizable resin, active energy ray-curable composition using the same, cured product and article thereof
JP5487859B2 (en) Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof
JP2013155236A (en) Fluorine atom-containing silicone-based polymerizable resin, active energy ray-curable composition using the same, and cured material and article thereof
JP5353632B2 (en) Fluorine-containing curable resin, active energy ray-curable coating composition and cured product thereof
WO2011122392A1 (en) Fluorine-containing styrene compound and active energy ray curable composition using same
JP5605305B2 (en) Polymerizable fluorine surface-modified silica particles and active energy ray-curable composition using the same
JP5516969B2 (en) Fluorine-containing curable resin and active energy ray-curable composition using the same
JP6405647B2 (en) Polymerizable resin, active energy ray-curable composition and article.
JP2013040317A (en) Silicone-based polymerizable resin, active energy ray curable composition using the same, and cured product of the active energy ray curable composition
WO2021256131A1 (en) Fluorine-containing polymerizable resin, active energy ray-curable composition, cured coating film, and article
JP2013087213A (en) Fluorine-containing polymerizable resin, active energy ray-curable composition using the same, and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5397686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250