JP5393581B2 - Method for producing organic-inorganic composite dispersion - Google Patents

Method for producing organic-inorganic composite dispersion Download PDF

Info

Publication number
JP5393581B2
JP5393581B2 JP2010098743A JP2010098743A JP5393581B2 JP 5393581 B2 JP5393581 B2 JP 5393581B2 JP 2010098743 A JP2010098743 A JP 2010098743A JP 2010098743 A JP2010098743 A JP 2010098743A JP 5393581 B2 JP5393581 B2 JP 5393581B2
Authority
JP
Japan
Prior art keywords
clay mineral
organic
water
inorganic composite
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010098743A
Other languages
Japanese (ja)
Other versions
JP2011225769A (en
Inventor
哲生 高田
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2010098743A priority Critical patent/JP5393581B2/en
Publication of JP2011225769A publication Critical patent/JP2011225769A/en
Application granted granted Critical
Publication of JP5393581B2 publication Critical patent/JP5393581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、(メタ)アクリル系モノマー(A)の重合体(P)と、水膨潤性粘土鉱物(B)とが三次元網目を形成してなる有機無機複合体粒子(X)が、水媒体(C)中に分散していることを特徴とする有機無機複合体分散液の製造方法に関する。   In the present invention, organic-inorganic composite particles (X) in which a polymer (P) of a (meth) acrylic monomer (A) and a water-swellable clay mineral (B) form a three-dimensional network include water The present invention relates to a method for producing an organic-inorganic composite dispersion characterized by being dispersed in a medium (C).

ポリアミド、ポリスチレン、ポリプロピレン、ポリイミド、ポリウレタンなどの有機高分子を粘土と複合させることによりナノコンポジットと呼ばれる高分子複合体が調製されている。得られた高分子複合体はアスペクト比の大きい粘土層を微細に分散させていることから、弾性率、熱変形温度、ガス透過性、および燃焼速度などが効果的に改良されることが報告されている(例えば非特許文献1参照)。   Polymer composites called nanocomposites have been prepared by combining organic polymers such as polyamide, polystyrene, polypropylene, polyimide, and polyurethane with clay. Since the resulting polymer composite has finely dispersed clay layers with a large aspect ratio, it has been reported that the elastic modulus, heat distortion temperature, gas permeability, and burning rate are effectively improved. (For example, refer nonpatent literature 1).

高分子複合体中に含まれる粘土鉱物量としては、性能強化の観点からは高い粘土鉱物含有量が望まれるが、より低い粘土鉱物量で効果的な性能強化が達成されることも重要である。これまでの研究では通常0.2〜5質量%が用いられ、0.1質量%以下の低無機含有高分子複合体や10質量%を超える高無機含有高分子複合体は用いられていない。これは無機含有率が低くなると性能向上の効果が無視されるほど小さくなり、一方、無機含有率が高くなると製造時の粘度増加が大きく、得られる複合体中での、粘土鉱物のナノスケールでの微細且つ均一な分散が達成できなかったり、或いは複合体が脆くなり力学物性(強度や伸び)が大きく低下したりするためである。   As the amount of clay mineral contained in the polymer composite, a high clay mineral content is desired from the viewpoint of performance enhancement, but it is also important to achieve effective performance enhancement with a lower amount of clay mineral. . In the studies so far, 0.2 to 5% by mass is usually used, and a low inorganic content polymer complex of 0.1% by mass or less and a high inorganic content polymer complex exceeding 10% by mass are not used. This is so small that the performance improvement effect is ignored when the inorganic content is low, while the increase in viscosity at the time of production is large when the inorganic content is high, at the nanoscale of the clay mineral in the resulting composite. This is because fine and uniform dispersion cannot be achieved, or the composite becomes brittle and mechanical properties (strength and elongation) are greatly reduced.

このような問題に対し、優れた力学物性を示すナノコンポジット材料として、広い範囲の粘土鉱物含有率において粘土鉱物が有機高分子中に均一に分散した有機無機複合ヒドロゲルが開示されており、該有機無機複合ヒドロゲルは水媒体中で水膨潤性粘土鉱物と重合開始剤の存在下にアクリルアミドやメタクリルアミドの誘導体、(メタ)アクリル酸エステルなどを重合させることにより、力学物性の良い高分子複合体を製造できることが開示されている(例えば特許文献1、特許文献2参照)。   To solve such problems, an organic-inorganic composite hydrogel in which clay mineral is uniformly dispersed in an organic polymer in a wide range of clay mineral content is disclosed as a nanocomposite material exhibiting excellent mechanical properties. Inorganic composite hydrogels form polymer composites with good mechanical properties by polymerizing acrylamide, methacrylamide derivatives, (meth) acrylates, etc. in the presence of water-swellable clay minerals and polymerization initiators in aqueous media. It is disclosed that it can be manufactured (for example, refer to Patent Document 1 and Patent Document 2).

また、乾燥状態で優れた力学物性を示すナノコンポジット材料として、水溶性(メタ)アクリル酸エステル(a)から得られる重合体と水膨潤性粘土鉱物(B)とが三次元網目を形成してなることを特徴とする高分子複合体が開示されており、該複合体は、水膨潤性粘土鉱物(B)と水溶性(メタ)アクリル酸エステル(a)と重合開始剤、更に必要に応じて触媒または/および有機架橋剤(C)を、水または水と有機溶媒との混合溶媒中に溶解または均一に分散させた後、(a)を重合させ、次いで乾燥させて溶媒を除去することにより、高分子複合体を製造できることが開示されている(例えば特許文献3参照)。   Moreover, as a nanocomposite material exhibiting excellent mechanical properties in a dry state, a polymer obtained from a water-soluble (meth) acrylic acid ester (a) and a water-swellable clay mineral (B) form a three-dimensional network. The polymer composite is characterized by comprising: a water-swellable clay mineral (B), a water-soluble (meth) acrylic acid ester (a), a polymerization initiator, and further if necessary The catalyst or / and the organic crosslinking agent (C) are dissolved or uniformly dispersed in water or a mixed solvent of water and an organic solvent, and then the polymer is polymerized and then dried to remove the solvent. Discloses that a polymer composite can be produced (see, for example, Patent Document 3).

更に、酸素の影響を受けにくく、短時間で有機無機複合ヒドロゲルを製造できる方法が開示されており、即ち、非水溶性の重合開始剤(d)を水媒体(c)中に分散させた反応溶液中で、水膨潤性粘土鉱物(B)の共存下において、水溶性のアクリル系モノマー(A)をエネルギー線の照射により反応させることにより、力学物性の優れた有機無機複合ヒドロゲルを製造できる方法である(例えば特許文献4参照)。   Furthermore, a method is disclosed in which an organic-inorganic composite hydrogel is hardly affected by oxygen and can be produced in a short time, that is, a reaction in which a water-insoluble polymerization initiator (d) is dispersed in an aqueous medium (c). A method of producing an organic-inorganic composite hydrogel having excellent mechanical properties by reacting a water-soluble acrylic monomer (A) by irradiation with energy rays in the presence of a water-swellable clay mineral (B) in a solution. (For example, see Patent Document 4).

上記に示す有機無機複合ヒドロゲル及び高分子複合体は、全てバルク体であり、製造過程においても、反応系全体がゲル化する工程を経て製造されている。また、何れも反応液にラジカルを発生させる重合開始剤を含んでおり、使用目的により、作製後のゲルより開始剤を除去する工程が必要になる。   The organic-inorganic composite hydrogel and polymer composite shown above are all bulk bodies, and are manufactured through a process in which the entire reaction system is gelated even in the manufacturing process. Each of them also contains a polymerization initiator that generates radicals in the reaction solution, and depending on the intended purpose, a step of removing the initiator from the gel after preparation is required.

また、有機高分子、例えばポリテトラフルオルエチレン(PTFE)のフィルム表面にプラズマを照射し、空気中の水分と反応させた後、前記PTFEフィルムをアクリル酸のような水溶性モノマーの水溶液中に入れ、紫外線を照射することにより、PTFEフィルムの表面に親水性モノマーをグラフト重合させる技術、即ち、プラズマ照射後水分との反応により過酸化物が生成し、他の開始剤を添加することなくグラフト重合が行える技術が開示されている(例えば非特許文献2参照)。   In addition, after irradiating plasma on the film surface of an organic polymer such as polytetrafluoroethylene (PTFE) and reacting with moisture in the air, the PTFE film is placed in an aqueous solution of a water-soluble monomer such as acrylic acid. The technology to graft polymerize hydrophilic monomers on the surface of PTFE film by irradiating with ultraviolet rays, that is, peroxide is generated by reaction with moisture after plasma irradiation, and grafting without adding other initiator A technique capable of polymerization is disclosed (for example, see Non-Patent Document 2).

しかし、無機化合物においては、同様なプラズマ処理では、無機化合物表面でのグラフト重合は困難で、また、プラズマ処理済み無機化合物を開始剤代わりに使用する例はなかった。   However, in the case of an inorganic compound, graft polymerization on the surface of the inorganic compound is difficult in the same plasma treatment, and there has been no example of using the plasma-treated inorganic compound instead of the initiator.

更に一方、自動車、建築などの工業分野においては、皮膜形成能に優れ、且つ基材との接着性にも優れた皮膜を形成することができる有機無機複合体の分散液(塗料)、または、外部温度の変化による有機無機複合体分散液の透明度変化を利用した透過光の調節機能、などの機能性を付与できる有機無機複合体の分散液が求められている。しかしながら、上記の特許文献等においては、このような特性を満足する有機無機複合体の粒子が、水媒体中に分散している有機無機複合体分散液を開始剤フリー系で作製する製造方法に関する技術は開示されていない。   On the other hand, in industrial fields such as automobiles and architecture, a dispersion (paint) of an organic-inorganic composite capable of forming a film having excellent film forming ability and excellent adhesion to a substrate, or There is a demand for a dispersion of an organic-inorganic composite capable of imparting functionality such as a function of adjusting transmitted light using a change in transparency of an organic-inorganic composite dispersion due to a change in external temperature. However, in the above-mentioned patent documents and the like, an organic-inorganic composite dispersion liquid in which particles of an organic-inorganic composite satisfying such characteristics are dispersed in an aqueous medium relates to a production method for producing an initiator-free system. The technology is not disclosed.

ところで、特許文献5には、アルコキシアルキル基を側鎖に有するアクリレートモノマーを含むモノマーの重合体と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料とが三次元網目を形成してなる有機無機複合体粒子が、水媒体中に分散している有機無機複合体分散液及びその製造方法に関する技術が開示されている。しかしながら、当該技術においても、開始剤を使用せずに有機無機複合体分散液を製造する方法は開示されていない。   By the way, in Patent Document 5, a polymer of a monomer containing an acrylate monomer having an alkoxyalkyl group in the side chain and one or more inorganic materials selected from water-swellable clay minerals and silica form a three-dimensional network. A technique relating to an organic-inorganic composite dispersion liquid in which organic-inorganic composite particles thus formed are dispersed in an aqueous medium and a method for producing the same is disclosed. However, this technique does not disclose a method for producing an organic-inorganic composite dispersion without using an initiator.

特開2002−53762JP2002-53762 特開2004−143212JP-A-2004-143212 特開2005−232402JP2005-232402 特開2006−169314JP 2006-169314 A 特開2010−18775JP2010-18775

ピナバイアおよびベアル編(T.J.Pinnavaia and G. W.Beall Eds.)「ポリマークレイナノコンポジット」(Polymer-Clay Nano Composites ),ワイリー社(wiley)、2000年出版T.J. Pinnavaia and G. W. Beall Eds. "Polymer-Clay Nano Composites", Wiley, 2000. K. L. Tanら、Macromolecules 1993, 26, 2832-2836K. L. Tan et al., Macromolecules 1993, 26, 2832-2836

したがって、本発明が解決しようとする課題は、有機無機複合体粒子が水中で安定に分散し、乾燥による皮膜形成能に優れ、且つ基材との間に優れた接着性を有し、更に、無機物と高分子重合体とが複合化して形成される有機無機複合体粒子の構造や、該粒子の粒径の制御が容易であり、広い範囲の粘土鉱物含有率において、その水分散液を、開始剤フリー系で、簡便に短時間で製造できる有機無機複合体分散液の製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is that organic-inorganic composite particles are stably dispersed in water, have excellent film-forming ability by drying, and have excellent adhesiveness with a substrate. The structure of the organic-inorganic composite particles formed by combining the inorganic substance and the high-molecular polymer and the particle size of the particles are easy to control. An object is to provide a method for producing an organic-inorganic composite dispersion which is an initiator-free system and can be easily produced in a short time.

特許文献1−4は、製造過程において反応系全体がゲル化する工程を経て有機無機複合ヒドロゲルや高分子複合体を製造する技術に関するものである。本発明者らは、これらの技術を基に、無機物の濃度や無機物と有機高分子の質量比を調整しながら、粒子状の有機無機複合体を水中で製造する方法を種々検討した。その結果、図1に示すように反応系全体がゲル化する領域のほかに、反応系のモノマー及び無機物の濃度が特定の範囲(図1中の式(1)及び式(2)で示す境界よりも下側の領域)になると反応系が全くゲル化せず、有機無機複合粒子の水分散液を製造できる領域が存在すること、更に多官能架橋剤として使用される水膨潤性粘土鉱物(B)にプラズマによる表面処理を施すことにより、反応液に開始剤を添加しなくても、モノマー(A)を重合させることができることを見出し、本発明を完成させた。   Patent Documents 1-4 relate to a technique for manufacturing an organic-inorganic composite hydrogel or a polymer composite through a process in which the entire reaction system gels in the manufacturing process. Based on these techniques, the present inventors have studied various methods for producing a particulate organic-inorganic composite in water while adjusting the concentration of the inorganic substance and the mass ratio of the inorganic substance to the organic polymer. As a result, in addition to the region in which the entire reaction system gels as shown in FIG. 1, the concentration of the monomer and inorganic substance in the reaction system is within a specific range (boundary indicated by the equations (1) and (2) in FIG. 1). The lower region), the reaction system does not gel at all, there is a region where an aqueous dispersion of organic-inorganic composite particles can be produced, and a water-swellable clay mineral used as a polyfunctional crosslinking agent ( It was found that by subjecting B) to a surface treatment with plasma, the monomer (A) can be polymerized without adding an initiator to the reaction solution, and the present invention was completed.

即ち、本発明は、(メタ)アクリル系モノマー(A)、プラズマによる表面処理を施した水膨潤性粘土鉱物(B)を水媒体(C)中に溶解または均一に分散させた後、重合開始剤を用いずに、前記モノマー(A)を加熱又は紫外線の照射により重合させ、有機無機複合体(X)を形成する工程を含み、
前記水媒体(C)中の前記水膨潤性粘土鉱物(B)の濃度(質量%)が下記式(1)又は式(2)で表される範囲であることを特徴とする有機無機複合体分散液の製造方法を提供するものである。
式(1) Ra<0.19のとき
粘土鉱物(B)の濃度(質量%)<12.4Ra+0.05
式(2) Ra≧0.19のとき
粘土鉱物(B)の濃度(質量%)<0.87Ra+2.17
(式中、粘土鉱物(B)の濃度(質量%)は、粘土鉱物(B)の質量を水媒体(C)と粘土鉱物(B)の合計質量で除して100を掛けた数値、Raは粘土鉱物(B)と重合体(P)との質量比((B)/(P))である。)
That is, in the present invention, after the (meth) acrylic monomer (A) and the water-swellable clay mineral (B) subjected to the surface treatment by plasma are dissolved or uniformly dispersed in the aqueous medium (C), the polymerization is started. A step of polymerizing the monomer (A) by heating or irradiation with ultraviolet rays without using an agent to form an organic-inorganic composite (X),
An organic-inorganic composite, wherein the concentration (mass%) of the water-swellable clay mineral (B) in the aqueous medium (C) is in a range represented by the following formula (1) or formula (2) A method for producing a dispersion is provided.
Formula (1) When Ra <0.19
Concentration (mass%) of clay mineral (B) <12.4Ra + 0.05
Formula (2) When Ra ≧ 0.19
Concentration (mass%) of clay mineral (B) <0.87Ra + 2.17
(Wherein the concentration (mass%) of the clay mineral (B) is a numerical value obtained by dividing the mass of the clay mineral (B) by the total mass of the aqueous medium (C) and the clay mineral (B) and multiplying by 100, Ra Is the mass ratio of clay mineral (B) to polymer (P) ((B) / (P)).)

本発明の製造方法は、製造工程が少なく、高価な設備投資が不要で、重合開始剤を用いることなく、簡便に短時間で有機無機複合体分散液を製造できる。また、本発明の製造方法で製造された有機無機複合体は、無機物をナノメーターレベルで微細且つ均一に、しかも広い濃度範囲で含有することができ、良好な安定性と皮膜形成能を有し、得られた皮膜は、高い透明性と、良好な弾性率と柔軟性、屈曲性を有する。大気中で安定して用いられる特徴を有する。本発明の有機無機複合体分散液は環境温度の変化に伴う調光機能に優れ、また分散液から得られた皮膜は、防曇性に優れるため、住宅や自動車などに利用可能な調光機能を有する光学素子、防曇性材料、更に、透明性、伸縮性に優れるため各種工業材料、医療・生化学用具などの表面改質剤として有用である。   The production method of the present invention has few production steps, does not require expensive equipment investment, and can produce an organic-inorganic composite dispersion easily and in a short time without using a polymerization initiator. In addition, the organic-inorganic composite produced by the production method of the present invention can contain inorganic substances finely and uniformly at a nanometer level and in a wide concentration range, and has good stability and film-forming ability. The obtained film has high transparency, good elastic modulus, flexibility and flexibility. It has the characteristics of being used stably in the atmosphere. The organic-inorganic composite dispersion liquid of the present invention is excellent in the light control function accompanying changes in the environmental temperature, and the film obtained from the dispersion liquid is excellent in anti-fogging properties, so that it can be used in houses, automobiles, etc. It is useful as a surface modifier for various industrial materials and medical / biochemical tools because of its excellent transparency and stretchability.

一般式(1)と(2)を満足する有機無機複合体分散液の形成可能な領域を示した図である。It is the figure which showed the area | region which can form the organic inorganic composite dispersion liquid which satisfies General formula (1) and (2).

本発明で用いる(メタ)アクリル系モノマー(A)は、その重合体が粘土鉱物と相互作用し、重合により有機無機複合ヒドロゲルを形成できるものであれば、好適に使用できるが、中でも、(メタ)アクリルアミドおよび/ またはこれらの誘導体(N−またはN,N置換(メタ)アクリルアミド)や(メタ)アクリル酸エステルが好ましく用いられ、特に好ましくは(メタ)アクリルアミド、および/またはこれらの誘導体(N−またはN,N置換(メタ)アクリルアミド)が用いられる。   The (meth) acrylic monomer (A) used in the present invention can be suitably used as long as the polymer interacts with the clay mineral and can form an organic-inorganic composite hydrogel by polymerization. ) Acrylamide and / or derivatives thereof (N- or N, N-substituted (meth) acrylamide) and (meth) acrylic acid esters are preferably used, particularly preferably (meth) acrylamide and / or derivatives thereof (N- Alternatively, N, N-substituted (meth) acrylamide) is used.

更に好ましくは下記式(1)〜(6)の(メタ)アクリル系モノマーが用いられる。   More preferably, (meth) acrylic monomers represented by the following formulas (1) to (6) are used.

Figure 0005393581
Figure 0005393581

Figure 0005393581
Figure 0005393581

Figure 0005393581
Figure 0005393581

Figure 0005393581
Figure 0005393581

Figure 0005393581
Figure 0005393581

Figure 0005393581
(式中、Rは水素原子またはメチル基、R及びRはそれぞれ独立に水素原子又は炭素原子数1〜3のアルキル基、Rは炭素原子数1〜2のアルキル基を表し、nは1〜9の整数である。)
Figure 0005393581
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkyl group having 1 to 2 carbon atoms, n is an integer of 1 to 9.)

上記のアクリル系モノマーは、要求される力学物性や化学物性などにより、一種以上を混合して使用してもよい。モノマー(A)の使用により、得られる有機無機複合体分散液が基材、特に疎水性基材に対する濡れ性がよく、より薄く、平滑性が高く、品質のよい塗膜が得られ、防曇性を有する皮膜が得られ、また、LCST(下限臨界溶解温度)を有する重合体(P)となるモノマー(A)(例えば、N−イソプロピルアクリルアミド)を用いれば、環境温度に伴い、分散液の透明度が変化するといった省エネ型の調光機能を有する分散液が得られる。
また、有機無機複合ヒドロゲルの物性に影響を及ぼさない程度に、その他の共重合モノマーとして、例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、ポリエチレングリコール、ポリプロピレングリコール鎖を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、ポリエチレングリコールジアクリレート、N,N’−メチレンビスアクリルアミドなどを併用することができる。
One or more of the above acrylic monomers may be mixed and used depending on required mechanical properties and chemical properties. By using the monomer (A), the resulting organic-inorganic composite dispersion liquid has good wettability with respect to a substrate, particularly a hydrophobic substrate, and is thinner, smoother and has a higher quality coating film, and is anti-fogging. If a monomer (A) (for example, N-isopropylacrylamide) to be a polymer (P) having LCST (Lower Critical Solution Temperature) is used, the dispersion temperature of the dispersion increases. A dispersion having an energy-saving dimming function in which the transparency changes can be obtained.
In addition, as other copolymerization monomers, for example, acrylic monomers having an anion group such as a sulfone group or a carboxyl group, cationic groups such as a quaternary ammonium group, to the extent that the physical properties of the organic-inorganic composite hydrogel are not affected. Acrylic monomer having quaternary ammonium group and phosphoric acid group, acrylic monomer having zwitterion group, acrylic monomer having amino acid residue having carboxyl group and amino group, acrylic monomer having sugar residue In addition, an acrylic monomer having a hydroxyl group, polyethylene glycol, an acrylic monomer having a polypropylene glycol chain, an amphiphilic acrylic monomer having a hydrophilic chain such as polyethylene glycol and a hydrophobic group such as a nonylphenyl group, Polyethylene glycol Diacrylate, N, may be used in combination such as N'- methylenebisacrylamide.

本発明に用いる水膨潤性粘土鉱物(B)は、層状に剥離可能な膨潤性粘土鉱物が挙げられ、好ましくは水または水と有機溶剤との混合溶液中で膨潤し均一に分散可能な粘土鉱物、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。具体的にはナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリライト、水膨潤性サポナイト、水膨潤性合成雲母等が挙げられる。これらの粘土鉱物を混合して用いても良い。   Examples of the water-swellable clay mineral (B) used in the present invention include a swellable clay mineral that can be peeled in layers, and preferably a clay mineral that can swell and uniformly disperse in water or a mixed solution of water and an organic solvent. Particularly preferably, an inorganic clay mineral that can be uniformly dispersed at a molecular level (single layer) or close to that in water is used. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorlite, water-swellable saponite, and water-swellable synthetic mica. You may mix and use these clay minerals.

粘土鉱物(B)の使用により、分散液の安定性や皮膜の形成能がよく、優れた防曇性を有する乾燥皮膜が得られる。   By using the clay mineral (B), the stability of the dispersion and the film-forming ability are good, and a dry film having excellent antifogging properties can be obtained.

本発明の有機無機複合体分散液を製造する際、重合体(P)と粘土鉱物(B)との質量比((B)/(P))が、0.01〜10であることが好ましく、0.03〜5がより好ましく、0.05〜3が特に好ましい。質量比((B)/(P))がこの範囲であると、得られる分散液の安定性がよく、平滑で基材と強い接着性を有する皮膜が得られ易い。   When producing the organic-inorganic composite dispersion of the present invention, the mass ratio ((B) / (P)) of the polymer (P) and the clay mineral (B) is preferably 0.01 to 10. 0.03 to 5 is more preferable, and 0.05 to 3 is particularly preferable. When the mass ratio ((B) / (P)) is within this range, the resulting dispersion has good stability, and it is easy to obtain a smooth and strong coating with the substrate.

粘土鉱物(B)の水媒体に対する濃度(質量%)は式(1)又は式(2)で表される範囲であることが本発明の有機無機複合体分散液製造の一つの特徴である。粘土鉱物(B)の水媒体に対する濃度(質量%)が上記範囲以上になると、重合により反応系全体のゲル化が起きたり、分散液が不均一になったりするため、良好な有機無機複合体分散液の製造ができない。   One characteristic of the organic-inorganic composite dispersion production of the present invention is that the concentration (mass%) of the clay mineral (B) in the aqueous medium is in the range represented by the formula (1) or the formula (2). When the concentration (mass%) of the clay mineral (B) in the aqueous medium exceeds the above range, the polymerization may cause gelation of the entire reaction system or the dispersion becomes non-uniform. Dispersion cannot be produced.

本発明に用いる水媒体(C)は、モノマー(A)や粘土鉱物(B)などを含むことができ、物性のよい有機無機複合体分散液が得られれば良く、特に限定されない。例えば水、または水と混和性を有する溶剤及び/またはその他の化合物を含む水溶液であってよく、その中には更に、防腐剤や抗菌剤、着色料、香料、酵素、コラーゲン、たんぱく質、糖類、アミノ酸類、細胞、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、無機化合物、発泡剤、レベリング剤などを含むことができる。   The aqueous medium (C) used in the present invention is not particularly limited as long as it can contain the monomer (A), the clay mineral (B), etc., and an organic-inorganic composite dispersion liquid with good physical properties can be obtained. For example, it may be water or an aqueous solution containing a solvent miscible with water and / or other compounds, and further includes preservatives and antibacterial agents, coloring agents, fragrances, enzymes, collagen, proteins, sugars, Amino acids, cells, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, inorganic compounds, foaming agents, leveling agents and the like can be included.

本発明におけるプラズマによる粘土鉱物の表面処理方法は、粉状の粘土鉱物に直接プラズマを照射する方法や、粘土鉱物の水分散液を支持体に塗布し、乾燥させて、粘土鉱物の薄層を形成させた後、プラズマを照射する方法などがある。後者の場合、より均一なプラズマ処理ができ、処理される粘土鉱物の割合も高く、好ましい。この場合の粘土鉱物の薄層の厚みが10μm以下であることが好ましく、3μm以下が更に好ましい。水膨潤性粘土鉱物の薄層の厚みが10μm以下であれば、プラズマ照射後、ラジカルを持つ粘土鉱物が十分生成することができ、良好な有機無機複合体分散液が得られ、好ましい。   The surface treatment method of the clay mineral with plasma in the present invention includes a method of directly irradiating a powdery clay mineral with plasma, or applying an aqueous dispersion of clay mineral to a support and drying to form a thin layer of clay mineral. There is a method of irradiating with plasma after the formation. In the latter case, a more uniform plasma treatment can be performed, and the proportion of the clay mineral to be treated is high, which is preferable. In this case, the thickness of the clay mineral thin layer is preferably 10 μm or less, more preferably 3 μm or less. If the thickness of the thin layer of the water-swellable clay mineral is 10 μm or less, a clay mineral having radicals can be sufficiently generated after plasma irradiation, and a good organic-inorganic composite dispersion can be obtained.

プラズマ照射は、公知慣用のプラズマ照射装置を用いることができる。例えば、真空型プラズマ処理装置や大気圧プラズマ処理装置、大気圧コロナ処理装置などが挙げられる。   For plasma irradiation, a known and commonly used plasma irradiation apparatus can be used. For example, a vacuum type plasma processing apparatus, an atmospheric pressure plasma processing apparatus, an atmospheric pressure corona processing apparatus, etc. are mentioned.

(メタ)アクリル系モノマー(A)を重合させる方法は、一定時間の加熱による熱重合法や、紫外線を照射する光重合方法を用いる。中でも、加熱せず、重合時間が短く、酸素の影響も少ない点から、紫外線による重合方法が好ましい。照射する紫外線の強度は10〜500mW/cmが好ましく、照射時間は一般に0.1秒〜200秒程度である。 As a method of polymerizing the (meth) acrylic monomer (A), a thermal polymerization method by heating for a certain time or a photopolymerization method of irradiating ultraviolet rays is used. Among them, the polymerization method using ultraviolet rays is preferable because it is not heated, the polymerization time is short, and the influence of oxygen is small. The intensity of the irradiated ultraviolet light is preferably 10 to 500 mW / cm 2 and the irradiation time is generally about 0.1 to 200 seconds.

本発明は、反応系に熱重合または光重合用の重合開始剤を一切添加せず、プラズマ照射を施した、多官能架橋剤として使用される粘土鉱物(B)の表面に生成したラジカルを利用して、モノマー(A)を重合させることが本発明のもう一つの特徴である。
本発明の製造方法で製造される有機無機複合体分散液は、そのまま塗料として使用してもよいし、水洗などによる精製工程を経てから使用してもよい。また塗布性や乾燥皮膜の表面平滑性、調光性能、防曇性などの機能性を付与する目的に、該有機無機複合体分散液に更にレベリング剤や界面活性剤、高分子化合物、着色剤などを添加して使用してもよい。LCSTを有する重合体Pを使用することにより、本発明の有機無機複合体分散液をそのまま調光機能を有する光学素子として使用することができる。例えば、自然の太陽光が当たることにより、分散液の温度がLCST以上に上昇し、分散液が白濁し、自然光線を遮断し、また、太陽光が当たらなくなると、周囲温度がLCST以下に下がると、分散液が透明に変わり、自然光線が透過できるようになる。
The present invention utilizes radicals generated on the surface of a clay mineral (B) used as a polyfunctional crosslinking agent that has been subjected to plasma irradiation without adding any polymerization initiator for thermal polymerization or photopolymerization to the reaction system. Thus, it is another feature of the present invention that the monomer (A) is polymerized.
The organic-inorganic composite dispersion produced by the production method of the present invention may be used as it is as a paint or may be used after undergoing a purification step such as washing with water. In addition, for the purpose of imparting functionality such as coatability, surface smoothness of the dry film, light control performance, and antifogging property, the organic-inorganic composite dispersion is further provided with a leveling agent, surfactant, polymer compound, and colorant. Etc. may be added and used. By using the polymer P having LCST, the organic-inorganic composite dispersion liquid of the present invention can be used as it is as an optical element having a light control function. For example, when natural sunlight hits, the temperature of the dispersion rises above LCST, the dispersion becomes cloudy, blocks natural light, and when sunlight falls off, the ambient temperature drops below LCST. Then, the dispersion liquid becomes transparent and natural light can be transmitted.

また、本発明の有機無機複合体分散液を支持体上に塗布して乾燥皮膜とすることにより積層体を製造することができる。支持体上に塗布する際には、必要に応じて、特定形状のパターン状に塗布することもできる。   Moreover, a laminated body can be manufactured by apply | coating the organic inorganic composite dispersion liquid of this invention on a support body, and making it a dry film. When applying on the support, it can be applied in a pattern of a specific shape, if necessary.

更に、本発明の有機無機複合体分散液を乾燥することにより、透明で良好な柔軟性と力学物性を有する乾燥皮膜を得ることができる。この皮膜は支持体(基材)に貼り付いた状態(塗膜)であってもよいし、支持体のない独立のフィルム状であってもよい。皮膜の厚みは用途に応じて任意に調整でき、フィルムとしての皮膜の厚みは、0.01mm〜2mmであることが扱いやすく好ましい。この範囲であれば皮膜の強度が十分であり、取り扱い易く、また、表面平滑性の高い皮膜の製造が容易となる。また、支持体に貼り付いた状態の皮膜の厚みは、0.00005mm(0.05μm)以上であれば好適に取り扱うことができ、好ましい。   Furthermore, by drying the organic-inorganic composite dispersion liquid of the present invention, a transparent dry film having good flexibility and mechanical properties can be obtained. This film may be in a state of being attached to a support (base material) (coating film) or may be an independent film without a support. The thickness of the coating can be arbitrarily adjusted according to the application, and the thickness of the coating as a film is preferably 0.01 mm to 2 mm for ease of handling. If it is this range, the intensity | strength of a film | membrane will be enough, and it will be easy to handle and manufacture of a film | membrane with high surface smoothness will become easy. Further, the thickness of the film adhered to the support is preferably 0.00005 mm (0.05 μm) or more because it can be suitably handled.

本発明の有機無機複合体分散液を支持体(例えばポリスチレン製容器)に塗布した後、乾燥し、必要に応じて洗浄を行った後、支持体に貼り付いた状態で乾燥させることにより、細胞の接着性や増殖性または剥離性が良好な細胞培養基材として使用することができる。また、重合体(P)を選ぶことにより、細胞が培養表面へ接着せず、浮遊状態で培養できる(細胞低接着性)培養基材として、更に、タンパク吸着を抑制できる基材として使用することもできる。   The organic-inorganic composite dispersion liquid of the present invention is applied to a support (for example, a polystyrene container), dried, washed as necessary, and then dried in a state of being attached to the support, thereby producing cells. It can be used as a cell culture substrate having good adhesion, growth and release properties. In addition, by selecting the polymer (P), the cell does not adhere to the culture surface, and can be used as a culture substrate that can be cultured in a floating state (cell low adhesion), and further as a substrate that can suppress protein adsorption. You can also.

複合体粒子(X)の粒径は、30nm〜5μmであることが好ましい。50nm〜1μmであることが更に好ましい。この範囲であると、分散液の安定性がよく、より強靭で且つ平滑性の高い皮膜が形成でき、膜厚の制御も容易である。   The particle size of the composite particles (X) is preferably 30 nm to 5 μm. More preferably, it is 50 nm-1 micrometer. Within this range, the dispersion is stable, a tougher and smoother film can be formed, and the film thickness can be easily controlled.

以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited only to these Examples.

本発明者らは、粘度鉱物の濃度や粘土鉱物と有機高分子の質量比を調整しながら、粒子状の有機無機複合体を水中で製造する方法を種々検討した。その結果、図1に示すように反応系全体がゲル化する領域のほかに、反応系のモノマー及び粘土鉱物の濃度が特定の範囲(図1中の式(1)及び式(2)で示す境界よりも下側の領域)になると反応系が全くゲル化せず、有機無機複合粒子の水分散液を製造できる領域が存在することを見出した。   The inventors of the present invention studied various methods for producing a particulate organic-inorganic composite in water while adjusting the concentration of the viscosity mineral and the mass ratio of the clay mineral and the organic polymer. As a result, in addition to the region in which the entire reaction system gels as shown in FIG. 1, the concentrations of the monomer and clay mineral in the reaction system are in a specific range (shown by equations (1) and (2) in FIG. 1). It has been found that there is a region in which the reaction system does not gel at all, and an aqueous dispersion of organic-inorganic composite particles can be produced.

更に、本発明者らは、粘土鉱物にプラズマによる表面処理を施すことにより、反応液に重合開始剤を添加することなく、モノマー(A)を重合させ、有機無機複合粒子の水分散液を製造できることを見出した。   Furthermore, the present inventors produced a water dispersion of organic-inorganic composite particles by polymerizing the monomer (A) without adding a polymerization initiator to the reaction solution by subjecting the clay mineral to a surface treatment with plasma. I found out that I can do it.

図1中の各プロットは、実施例1、2、3、4、5、8、9、比較例1〜9である。比較例はゲル化する領域に位置し、実施例はゲル化しない領域に位置する。これからも判るように式(1)、式(2)を境にゲル化する領域と粒子化する領域とが分かれている。   Each plot in FIG. 1 is Examples 1, 2, 3, 4, 5, 8, 9, and Comparative Examples 1-9. A comparative example is located in the area | region which gelatinizes, and an Example is located in the area | region which does not gel. As can be seen from this, the region that gels and the region that forms particles are separated on the basis of Equation (1) and Equation (2).

(実施例1)
[水膨潤性粘土鉱物のプラズマによる表面処理]
粘土鉱物(B)としてLaponite XLG(Rockwood Additives Ltd.社製)0.5g、水媒体(C)として水10g、を均一に混合した水分散液を、6×15cmの硝子板に、乾燥粘土鉱物の薄層の厚みが1μmになるように塗布し、80℃、1時間乾燥させ、粘土鉱物の薄層を作製した。この硝子板に作製した粘土鉱物の薄層を、真空型プラズマ処理装置(PR31型、ヤマト科学(株)製)に入れ、アルゴンガス雰囲気中で、60Wの照射強度で、5分間プラズマ照射を行い、プラズマ処理粘土鉱物(B1)を調製した。
[モノマー(A)、粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてN−イソプロピルアクリルアミド(株式会社興人製)0.6g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.02g、水媒体(C)として水10g、を均一に混合して反応液(E1)を調製した。
Example 1
[Surface treatment of water-swellable clay mineral with plasma]
A clay dispersion (B), 0.5 g Laponite XLG (manufactured by Rockwood Additives Ltd.) and 10 g water as an aqueous medium (C), uniformly mixed with a 6 × 15 cm glass plate, dried clay mineral The thin layer was applied so as to have a thickness of 1 μm and dried at 80 ° C. for 1 hour to prepare a thin layer of clay mineral. A thin layer of clay mineral produced on this glass plate is put into a vacuum type plasma processing apparatus (PR31 type, manufactured by Yamato Scientific Co., Ltd.) and irradiated with plasma at an irradiation intensity of 60 W in an argon gas atmosphere for 5 minutes. A plasma-treated clay mineral (B1) was prepared.
[Preparation of reaction liquid (E) containing monomer (A), clay mineral (B) and aqueous medium (C)]
0.6 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as monomer (A), 0.02 g of plasma-treated clay mineral (B1) as clay mineral (B), and 10 g of water as aqueous medium (C) are uniformly mixed. Thus, a reaction solution (E1) was prepared.

[有機無機複合複合体Xの分散液の作製]
上記反応液(E1)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ほぼ透明な有機無機複合体Xの分散液(1)を作製した。
この反応系のRa=0.03、無機材料(B)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.42
上記分散液(1)を入れた容器を水槽に入れ、水槽の温度を室温から1℃/3分の昇温速度で昇温しながら、分散液の白濁開始温度(LCST)を測定したところ、該分散液(1)のLCSTは約32℃であった。
上記有機無機複合体分散液(1)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は60nmであった。
[Preparation of dispersion liquid of organic-inorganic composite complex X]
While stirring the reaction liquid (E1) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare a substantially transparent organic-inorganic composite X dispersion liquid (1).
Ra = 0.03 of this reaction system, concentration (mass%) of inorganic material (B) = 0.20 (%) <12.4Ra + 0.05 = 0.42
When the container containing the dispersion (1) was placed in a water tank and the temperature of the water tank was raised from room temperature at a rate of temperature increase of 1 ° C./3 minutes, the cloudiness start temperature (LCST) of the dispersion was measured. The LCST of the dispersion (1) was about 32 ° C.
About the said organic inorganic composite dispersion liquid (1), when the particle size distribution was measured using the particle size distribution measuring apparatus (Microtrac UPA150 type, Nikkiso Co., Ltd. product), the average particle diameter was 60 nm.

(実施例2)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてアクリロイルモルホリン(株式会社興人製)0.5g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.15g、水媒体(C)として水10gを均一に混合して反応液(E2)を調製した。
(Example 2)
[Preparation of reaction liquid (E) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
Reaction is performed by uniformly mixing 0.5 g of acryloylmorpholine (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.15 g of the plasma treated clay mineral (B1) as the clay mineral (B), and 10 g of water as the aqueous medium (C). A liquid (E2) was prepared.

[有機無機複合複合体Xの分散液の作製]
上記反応液(E2)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ほぼ透明な有機無機複合体の分散液(2)を作製した。
[Preparation of dispersion liquid of organic-inorganic composite complex X]
While stirring the reaction liquid (E2) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare a substantially transparent organic-inorganic composite dispersion liquid (2).

この反応系のRa=0.30、無機材料(B)の濃度(質量%)=1.48(%)<0.87Ra+2.17=2.43
本実施例の重合体PがLCSTを有しないため、分散液(2)もLCSTを示さなかった。
上記有機無機複合体分散液(2)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は50nmであった。
Ra = 0.30 of this reaction system, concentration (mass%) of inorganic material (B) = 1.48 (%) <0.87 Ra + 2.17 = 2.43
Since the polymer P of this example does not have LCST, the dispersion (2) also did not show LCST.
When the particle size distribution of the organic-inorganic composite dispersion liquid (2) was measured using a particle size distribution analyzer (Microtrac UPA150 type, manufactured by Nikkiso Co., Ltd.), the average particle size was 50 nm.

(実施例3)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)0.18g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.32g、水媒体(C)として水10gを均一に混合して反応液(E3)を調製した。
(Example 3)
[Preparation of reaction liquid (E) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
Uniformly, 0.18 g of N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.32 g of the plasma treated clay mineral (B1) as the clay mineral (B), and 10 g of water as the aqueous medium (C) The reaction solution (E3) was prepared by mixing.

[有機無機複合複合体Xの分散液の作製]
上記反応液(E3)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ほぼ透明な有機無機複合体Xの分散液(3)を作製した。
[Preparation of dispersion liquid of organic-inorganic composite complex X]
While stirring the reaction liquid (E3) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare a substantially transparent organic-inorganic composite X dispersion liquid (3).

この反応系のRa=1.8、粘土鉱物(B)の濃度(質量%)=3.10(%)<0.87Ra+2.17=3.74
本実施例の重合体PがLCSTを有しないため、分散液(3)もLCSTを示さなかった。
上記有機無機複合体分散液(3)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は50nmであった。
Ra = 1.8 in this reaction system, concentration (mass%) of clay mineral (B) = 3.10 (%) <0.87Ra + 2.17 = 3.74
Since the polymer P of this example does not have LCST, the dispersion (3) also did not show LCST.
With respect to the organic-inorganic composite dispersion liquid (3), the particle size distribution was measured using a particle size distribution analyzer (Microtrac UPA150 type, manufactured by Nikkiso Co., Ltd.), and the average particle size was 50 nm.

(実施例4)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてN−イソプロピルアクリルアミド(株式会社興人製)0.28g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.02g、水媒体(C)として水10g、を均一に混合して反応液(E4)を調製した。
Example 4
[Preparation of reaction liquid (E) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
Uniform mixing of 0.28 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as monomer (A), 0.02 g of plasma-treated clay mineral (B1) as clay mineral (B), and 10 g of water as aqueous medium (C) Thus, a reaction solution (E4) was prepared.

[有機無機複合複合体Xの分散液の作製]
上記反応液(E4)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ほぼ透明な有機無機複合体Xの分散液(4)を作製した。
上記有機無機複合体分散液(4)をガラス製のスクリュー管に入れ密閉した状態で室温(約23℃)3ヶ月静置して、沈殿や粒径分布の変化はなかった。
この反応系のRa=0.07、粘土鉱物(B)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.92
上記有機無機複合体分散液(4)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は40nmであった。
上記分散液(4)を入れた容器を水槽に入れ、水槽の温度を室温から1℃/3分の昇温速度で昇温しながら、分散液の白濁開始温度(LCST)を測定したところ、該分散液(4)のLCSTは約32℃であった。
[Preparation of dispersion liquid of organic-inorganic composite complex X]
While stirring the reaction liquid (E4) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare an almost transparent dispersion liquid (4) of the organic-inorganic composite X.
The organic-inorganic composite dispersion (4) was allowed to stand at room temperature (about 23 ° C.) for 3 months in a glass screw tube and sealed, and there was no precipitation or change in particle size distribution.
Ra = 0.07 of this reaction system, concentration (mass%) of clay mineral (B) = 0.20 (%) <12.4Ra + 0.05 = 0.92
With respect to the organic-inorganic composite dispersion liquid (4), the particle size distribution was measured using a particle size distribution measuring device (Microtrac UPA150 type, manufactured by Nikkiso Co., Ltd.), and the average particle size was 40 nm.
The container containing the dispersion (4) was placed in a water tank, and when the temperature of the water tank was raised from room temperature at a temperature increase rate of 1 ° C./3 minutes, the cloudiness start temperature (LCST) of the dispersion was measured. The LCST of the dispersion (4) was about 32 ° C.

(実施例5)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてN−メチルアクリルアミド(株式会社興人製)0.21g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.04g、水媒体(C)として水10gを均一に混合して反応液(E5)を調製した。
(Example 5)
[Preparation of reaction liquid (E) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
As a monomer (A), 0.21 g of N-methylacrylamide (manufactured by Kojin Co., Ltd.), 0.04 g of plasma-treated clay mineral (B1) as a clay mineral (B), and 10 g of water as an aqueous medium (C) are uniformly mixed. To prepare a reaction solution (E5).

[有機無機複合複合体Xの分散液の作製]
上記反応液(E5)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ほぼ透明な有機無機複合体Xの分散液(5)を作製した。
この反応系のRa=0.19、粘土鉱物(B)の濃度(質量%)=0.4(%)<0.87Ra+2.17=2.34
上記有機無機複合体分散液(5)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は40nmであった。
本実施例の重合体PがLCSTを有しないため、分散液(5)もLCSTを示さなかった。
[Preparation of dispersion liquid of organic-inorganic composite complex X]
While stirring the reaction liquid (E5) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare a substantially transparent organic-inorganic composite X dispersion liquid (5).
Ra = 0.19 of this reaction system, concentration (mass%) of clay mineral (B) = 0.4 (%) <0.87 Ra + 2.17 = 2.34
With respect to the organic-inorganic composite dispersion liquid (5), the particle size distribution was measured using a particle size distribution measuring device (Microtrac UPA150 type, manufactured by Nikkiso Co., Ltd.), and the average particle size was 40 nm.
Since the polymer P of this example does not have LCST, the dispersion (5) also did not show LCST.

(実施例6)
この実施例はLCSTを有する分散液を光学素子に応用した例を示すものである。
(Example 6)
This example shows an example in which a dispersion having LCST is applied to an optical element.

長さ100×100mm、厚さ2mmの板状並みガラス、及びスペーサとして長さ100mm、幅5mm、厚さ2mmの並みガラスを用いてペアガラス状の疑似窓を作製し、上記実施例4の分散液(4)を板ガラス間に流し込み、密封して、調光機能を有する光学素子を作製した。   A pair glass-like pseudo window is produced using a plate-like glass having a length of 100 × 100 mm and a thickness of 2 mm, and a glass having a length of 100 mm, a width of 5 mm, and a thickness of 2 mm as spacers. The liquid (4) was poured between the plate glasses and sealed to produce an optical element having a light control function.

この光学素子を用い、可視光の透過率を測定したところ、透過率は約96%であった。一方、この光学素子を40℃の温水に入れ、数秒後ガラス全体が白濁になり、可視光の透過率を測定したところ、透過率はほぼ0%であった。   When the transmittance of visible light was measured using this optical element, the transmittance was about 96%. On the other hand, this optical element was put in 40 ° C. warm water, and after a few seconds, the entire glass became cloudy. When the transmittance of visible light was measured, the transmittance was almost 0%.

更に、この光学素子を窓際に置いて、日光を当てたところ、ガラス全体が徐々に白濁することが観察された。   Furthermore, when this optical element was placed near a window and exposed to sunlight, it was observed that the entire glass gradually became cloudy.

以上の実施例6より、この光学素子に日光を当てることにより、内部の分散液の温度が徐々に上昇し、LCST(32℃)を達すると、ガラス全体が白濁し、日光を遮断する機能を有することが理解できる。   From the above Example 6, by applying sunlight to this optical element, the temperature of the internal dispersion gradually rises, and when LCST (32 ° C.) is reached, the entire glass becomes cloudy and functions to block sunlight. You can understand that

(実施例7)
この実施例はLCSTを有しない分散液からなる乾燥皮膜を防曇材料としての応用例を示すものである。
(Example 7)
In this example, a dry film made of a dispersion liquid without LCST is used as an antifogging material.

実施例5の分散液(5)をガラス板に厚み約200μmになるように塗布し、80℃、60分乾燥させて、防曇性塗膜7を調製した。乾燥後の有機無機複合体の乾燥皮膜の厚みは約5μmであった。この防曇性塗膜7を目視で観察したところ、塗布前と同等な透明度を有し、乾燥皮膜が高い透明度を有することが分かる。   The dispersion liquid (5) of Example 5 was applied to a glass plate so as to have a thickness of about 200 μm, and dried at 80 ° C. for 60 minutes to prepare an antifogging coating film 7. The thickness of the dried film of the organic-inorganic composite after drying was about 5 μm. When this anti-fogging coating film 7 is visually observed, it can be seen that the anti-fogging coating film 7 has transparency equivalent to that before application, and the dry coating film has high transparency.

この塗膜にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れた後、碁盤目を入れた所にセロハンテープを強く圧着させ、テープの端を45°の角度で急速に引き剥がし、碁盤目の状態を観察したところ、塗膜は全く剥離せず、基材との接着性が良好であることが確認された。   Using a cutter knife on this coating, cut a 1 x 1 mm square grid, and then strongly press the cellophane tape on the grid, and pull the end of the tape rapidly at an angle of 45 °. When peeling and observing the state of the grid, it was confirmed that the coating film did not peel at all and the adhesiveness with the substrate was good.

また、この防曇性塗膜7を50℃の水から発生した水蒸気に約1分間暴露したところ(塗膜と水面間の距離が約5cm)、塗膜は全く曇らなかった。   Further, when this antifogging coating film 7 was exposed to water vapor generated from water at 50 ° C. for about 1 minute (distance between the coating film and the water surface was about 5 cm), the coating film was not fogged at all.

この実施例より、親水性重合体を含有する有機無機複合体の塗膜が、基材との接着性が良好で、防曇性を有していることがわかる。   From this example, it can be seen that the coating film of the organic-inorganic composite containing the hydrophilic polymer has good adhesion to the substrate and has antifogging properties.

(実施例8)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)0.223g、その他のモノマーとしてポリエチレングリコールアクリレート(新中村化学工業株式会社製)0.165g、水膨潤性粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.02g、水媒体(C)として水10gを均一に混合して反応液(E8)を調製した。
(Example 8)
[Preparation of reaction liquid (E) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 0.223 g as the monomer (A), 0.165 g of polyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), water-swellable clay mineral (B) The reaction solution (E8) was prepared by uniformly mixing 0.02 g of the plasma-treated clay mineral (B1) and 10 g of water as the aqueous medium (C).

[有機無機複合複合体Xの分散液の作製]
上記反応液(E8)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ほぼ透明な有機無機複合体Xの分散液(8)を作製した。
この反応系のRa=0.05、粘土鉱物(B)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.67
上記有機無機複合体分散液(8)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は50nmであった。
[Preparation of dispersion liquid of organic-inorganic composite complex X]
While stirring the reaction liquid (E8) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare a substantially transparent organic-inorganic composite X dispersion liquid (8).
Ra = 0.05 in this reaction system, concentration (mass%) of clay mineral (B) = 0.20 (%) <12.4Ra + 0.05 = 0.67
With respect to the organic-inorganic composite dispersion liquid (8), the particle size distribution was measured using a particle size distribution analyzer (Microtrac UPA150 type, manufactured by Nikkiso Co., Ltd.), and the average particle size was 50 nm.

上記分散液(8)を、35mmポリスチレン製シャーレ(AGCテクノグラス株式会社製)に厚み50μmになるように流延し、80℃、20分乾燥した後、滅菌水でシャーレを洗浄し、滅菌袋中でシャーレを乾燥して、細胞培養基材(8)を得た。この培養基材8を目視で観察したところ、塗布前と同等な透明度を有し、乾燥皮膜が高い透明度を有することが分かる。 The dispersion (8) was cast on a 35 mm polystyrene petri dish (manufactured by AGC Techno Glass Co., Ltd.) to a thickness of 50 μm, dried at 80 ° C. for 20 minutes, washed with sterile water, and then sterilized bag The petri dish was dried inside to obtain a cell culture substrate (8). When this culture substrate 8 is visually observed, it can be seen that it has a transparency equivalent to that before application, and the dried film has a high transparency.

[マウスマクロファージ細胞(J744.1)の浮遊培養]
上記得られた細胞培養基材8に、10%牛血清を添加したDMEM培地(バイオウエスト社製)を適量入れ、マウスマクロファージ細胞(J744.1)を播種して(播種濃度は2×10個/35mmシャーレ)、5%二酸化炭素中、37℃で3日間培養を行った。次いで、シャーレ中の培地及び浮遊している細胞を吸い取り、PBSバッファーで1回リンスした後、顕微鏡でシャーレ表面に細胞接着の有無を確認したところ、細胞は全くPBSバッファーで洗い流され、シャーレ表面には接着した細胞は観察されなかった。
一方、35mmポリスチレン製シャーレ(AGCテクノグラス株式会社製)を用いて、同様な培養試験を行ったところ、マウスマクロファージ細胞がほぼ全てシャーレに接着していた。
以上の実施例より、この培養基材8は、細胞がシャーレ表面に接着せず、浮遊状態で培養されていることが理解できる。
[Suspension culture of mouse macrophage cells (J744.1)]
An appropriate amount of DMEM medium (Bio West) supplemented with 10% bovine serum is added to the obtained cell culture substrate 8, and mouse macrophage cells (J744.1) are seeded (seeding concentration is 2 × 10 5). The culture was performed in 5% carbon dioxide at 37 ° C. for 3 days. Next, the medium and floating cells in the petri dish were sucked up, rinsed once with a PBS buffer, and then confirmed for cell adhesion on the petri dish surface with a microscope. The cells were completely washed away with the PBS buffer. No adherent cells were observed.
On the other hand, when a similar culture test was performed using a 35 mm polystyrene petri dish (manufactured by AGC Techno Glass Co., Ltd.), almost all mouse macrophage cells were adhered to the petri dish.
From the above examples, it can be understood that the culture substrate 8 is cultured in a floating state without cells adhering to the petri dish surface.

(実施例9)
[モノマー(A)、その他のモノマー、水膨潤性粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてアクリル酸2メトキシエチル(東亞合成株式会社製)0.27g、その他のモノマーとしてメトキシポリエチレングリコールアクリレート(新中村化学工業株式会社製)0.18g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.02g、水媒体(C)として水10g、を均一に混合して反応液(E9)を調製した。
Example 9
[Preparation of reaction liquid (E) containing monomer (A), other monomers, water-swellable clay mineral (B), aqueous medium (C)]
0.27 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) as monomer (A), 0.18 g of methoxypolyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) as other monomer, and plasma treatment as clay mineral (B) 0.02 g of clay mineral (B1) and 10 g of water as the aqueous medium (C) were uniformly mixed to prepare a reaction liquid (E9).

[有機無機複合複合体分散液の作製]
上記反応液(E9)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、やや乳白色を呈する有機無機複合体分散液(9)を作製した。
[Preparation of organic / inorganic composite dispersion]
While stirring the reaction liquid (E9) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare an organic-inorganic composite dispersion liquid (9) having a slightly milky white color.

上記有機無機複合体分散液(9)について、粒度分布測定装置(Microtrac UPA150型、日機装株式会社製)を用いて粒度分布を測定したところ、平均粒径は70nmであった。
この反応系のRa=0.074、粘土鉱物(B)の濃度(質量%)=0.20(%)<12.4Ra+0.05=0.97
With respect to the organic-inorganic composite dispersion liquid (9), the particle size distribution was measured using a particle size distribution analyzer (Microtrac UPA150 type, manufactured by Nikkiso Co., Ltd.), and the average particle size was 70 nm.
In this reaction system, Ra = 0.074, the concentration (mass%) of the clay mineral (B) = 0.20 (%) <12.4 Ra + 0.05 = 0.97

[細胞培養基材の作製]
前記分散液(9)を、35mmポリスチレン製シャーレ(AGCテクノグラス株式会社製)に厚み50μmになるように流延し、80℃、20分乾燥した後、滅菌水でシャーレを洗浄し、滅菌袋中でシャーレを乾燥して、細胞培養基材(9)を得た。
[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材(9)に、CS-C complete medium(Cell Systems社製培地)を適量入れ、正常ヒト真皮線維芽細胞を播種して(播種濃度は1.2×10個/cm)、5%二酸化炭素中、37℃で培養を行った。5日間増殖させた細胞を顕微鏡で確認したところ、シャーレ一面に細胞に覆われていることが観察された。次いで、シャーレ内の培地を吸い取り、4℃の培地を入れ、一定時間静置させ、増殖した細胞の自然剥離を行った。その結果、細胞が徐々に剥離し、約20分でほぼ全ての細胞が薄膜状に剥離した。
[Preparation of cell culture substrate]
The dispersion (9) was cast on a 35 mm polystyrene petri dish (manufactured by AGC Techno Glass Co., Ltd.) to a thickness of 50 μm, dried at 80 ° C. for 20 minutes, washed with sterilized water, and sterilized bag. The petri dish was dried inside to obtain a cell culture substrate (9).
[Culture of normal human dermal fibroblasts]
An appropriate amount of CS-C complete medium (Cell Systems Inc. medium) is added to the obtained cell culture substrate (9), and normal human dermal fibroblasts are seeded (seeding concentration is 1.2 × 10 4 cells). / Cm 2 ) The cells were cultured at 37 ° C. in 5% carbon dioxide. When the cells grown for 5 days were confirmed with a microscope, it was observed that the cells were covered with the entire surface of the petri dish. Next, the medium in the petri dish was sucked up, a medium at 4 ° C. was added, and allowed to stand for a certain time, and the proliferated cells were naturally detached. As a result, the cells gradually detached, and almost all the cells detached in a thin film form in about 20 minutes.

上記実施例9より、分散液(9)で塗布した表面が、37℃では細胞に対する接着性を示し、細胞が増殖できるが、温度を下げることにより、細胞が塗膜表面から自然に剥離することが理解できる。   From Example 9 above, the surface coated with the dispersion liquid (9) shows adhesion to cells at 37 ° C., and the cells can proliferate, but the cells naturally peel off from the coating surface by lowering the temperature. Can understand.

(実施例10)
この実施例は分散液からなる乾燥皮膜をタンパク質吸着防止材としての応用例を示すものである。
(Example 10)
This example shows an application example in which a dry film made of a dispersion is used as a protein adsorption preventing material.

[タンパク質吸着試験]
上記実施例8で作製された細胞培養基材8に、濃度0.2μg/mlの免疫グロブリンG(IgG)水溶液を1ml入れ、室温3時間静置し、IgGの吸着を行う。次いで、シャーレ中のIgG水溶液を吸い取り、PBSバッファーで3回リンスした後、1mlのTMB発色剤(KPL社製)を入れ、2分間静置して、更に1Nの塩酸を1ml入れた(シャーレ表面にタンパク質が残ると発色)。この溶液を、紫外可視分光光度計(日立株式会社製)を用いて、450nmでの吸光度を測定して、タンパク質の吸着度合いを評価した。その結果、吸光度は0.2であった。
一方、35mmポリスチレン製シャーレ(AGCテクノグラス株式会社製)を用い、同様なタンパク質吸着試験を行ったところ、吸光度は2.0であった。
[Protein adsorption test]
1 ml of an immunoglobulin G (IgG) aqueous solution having a concentration of 0.2 μg / ml is placed in the cell culture substrate 8 produced in Example 8 above, and left at room temperature for 3 hours to adsorb IgG. Next, the IgG aqueous solution in the petri dish was sucked up and rinsed three times with PBS buffer. Then, 1 ml of TMB color former (manufactured by KPL) was added, left to stand for 2 minutes, and 1 ml of 1N hydrochloric acid was further added (the surface of the petri dish). When protein remains in the color). This solution was measured for absorbance at 450 nm using an ultraviolet-visible spectrophotometer (manufactured by Hitachi, Ltd.) to evaluate the degree of protein adsorption. As a result, the absorbance was 0.2.
On the other hand, when a similar protein adsorption test was performed using a 35 mm polystyrene petri dish (manufactured by AGC Techno Glass Co., Ltd.), the absorbance was 2.0.

以上の実施例10より、分散液(8)からなる乾燥皮膜をPSシャーレの表面に形成させることにより、タンパク質吸着が大きく抑制されたことが理解できる。   From Example 10 above, it can be understood that protein adsorption was greatly suppressed by forming a dry film made of the dispersion (8) on the surface of the PS petri dish.

(実施例11)
この実施例は細胞培養基材を製造する例である。
[モノマー(A)、粘土鉱物(B)、水媒体(C)を含む反応液(E)の調製]
モノマー(A)としてアクリル酸2メトキシエチル(東亞合成株式会社製)0.32g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.08g、水媒体(C)として水10g、を均一に混合して反応溶液(E11)を調製した。
(Example 11)
This example is an example of producing a cell culture substrate.
[Preparation of reaction liquid (E) containing monomer (A), clay mineral (B) and aqueous medium (C)]
Uniformly, 0.32 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) as monomer (A), 0.08 g of plasma-treated clay mineral (B1) as clay mineral (B), and 10 g of water as aqueous medium (C) A reaction solution (E11) was prepared by mixing.

[有機無機複合複合体分散液の作製]
上記反応液(E11)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、やや乳白色を呈する有機無機複合体分散液(11)を作製した。
[Preparation of organic / inorganic composite dispersion]
While stirring the reaction liquid (E11) with a magnetic stirrer, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare an organic-inorganic composite dispersion liquid (11) having a slightly milky white color.

この反応系のRa=0.25、無機材料(C)の濃度(質量%)=0.79(%)<0.87Ra+2.17=2.39

[LCSTを有する重合体Pの水溶液の調製]
モノマー(A)としてN―イソプロピルアクリルアミド(株式会社興人製)1.7g、水10g、1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(重合開始剤、チバガイギー社製)の2wt%メタノール溶液140μl、を混合した後、該水溶液を入れるガラス容器の周りを冷却しながら(約10℃)、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ポリN―イソプロピルアクリルアミドの水溶液を調製した。この水溶液に更に水を5g添加し、均一に混合した後、DIGITAL VISCOMATE粘度計(MODEL VM-100A、山一電機株式会社製)を用いてこの溶液の粘度を測定して、粘度は368mPa・sであった。測定時の溶液温度は24.2℃であった。
Ra = 0.25 in this reaction system, concentration (mass%) of inorganic material (C) = 0.79 (%) <0.87 Ra + 2.17 = 2.39

[Preparation of aqueous solution of polymer P having LCST]
As monomer (A), 1.7 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.), 10 g of water, 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (polymerization initiator, manufactured by Ciba Geigy), 140 μl of 2 wt% methanol solution, Then, the glass container containing the aqueous solution was cooled (about 10 ° C.) and irradiated with ultraviolet rays having an ultraviolet intensity of 365 m at 40 mW / cm 2 for 180 seconds to prepare an aqueous solution of poly N-isopropylacrylamide. . After adding 5 g of water to this aqueous solution and mixing it uniformly, the viscosity of this solution was measured using a DIGITAL VISCOMATE viscometer (MODEL VM-100A, manufactured by Yamaichi Electronics Co., Ltd.). The viscosity was 368 mPa · s. Met. The solution temperature at the time of measurement was 24.2 ° C.

更に、Shodex GPC System−21装置(昭和電工株式会社製)で測定した結果、このポリN―イソプロピルアクリルアミドの重量平均分子量Mwは3.40×10であった。測定時の溶媒として10mmol/LのLiBrを含有するN,N−ジメチルホルムアミド(DMF)溶液を使用した。分子量の計算に使用したポリスチレン標準物質としては、STANDARD SH−75とSM−105キット(昭和電工株式会社製)を使用した。
[細胞培養基材の作製]
分散液(11)全量に、上記ポリN―イソプロピルアクリルアミドの水溶液を1.0g(固形分0.1g)入れ、均一に混合した後、60mmポリスチレン製シャーレ(旭テクノグラス株式会社製)に厚み50μmになるように流延し、80℃、20分乾燥した後、滅菌水でシャーレを洗浄し、滅菌袋中でシャーレを乾燥して、細胞培養基材(11)を得た。
[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材11に、実施例9と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。その結果、細胞が徐々に剥離し、約7分でほぼ全ての細胞が薄膜状に剥離した。
Furthermore, as a result of measuring with Shodex GPC System-21 apparatus (made by Showa Denko KK), the weight average molecular weight Mw of this poly N-isopropylacrylamide was 3.40 × 10 6 . An N, N-dimethylformamide (DMF) solution containing 10 mmol / L LiBr was used as a solvent for the measurement. STANDARD SH-75 and SM-105 kit (manufactured by Showa Denko KK) were used as polystyrene standard substances used for the calculation of molecular weight.
[Preparation of cell culture substrate]
To the total amount of the dispersion (11), 1.0 g (0.1 g solid content) of the above poly N-isopropylacrylamide aqueous solution was added and mixed uniformly, and then a 60 mm polystyrene petri dish (Asahi Techno Glass Co., Ltd.) had a thickness of 50 μm. Then, the petri dish was washed with sterilized water and dried in a sterile bag to obtain a cell culture substrate (11).
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 11 in the same manner as in Example 9. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. As a result, the cells gradually detached, and almost all the cells detached in a thin film form in about 7 minutes.

上記実施例11より、LCSTを有するポリN―イソプロピルアクリルアミドを含有する分散液(11)で塗布した表面が、37℃では細胞に対する接着性を示し、細胞が増殖できるが、温度を下げることにより、細胞が塗膜表面から自然に剥離することが理解できる。   From Example 11 above, the surface coated with the dispersion (11) containing poly N-isopropylacrylamide having LCST shows adhesion to cells at 37 ° C., and the cells can grow, but by lowering the temperature, It can be understood that the cells naturally detach from the coating surface.

(比較例1)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN−イソプロピルアクリルアミド(株式会社興人製)1.8g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.018g、水媒体(C)として予め窒素でバブリングし酸素を除去した水10gを均一に混合して反応液(S1)を調製した。
(Comparative Example 1)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
1.8 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.018 g of the plasma treated clay mineral (B1) as the clay mineral (B), and bubbling with nitrogen as the aqueous medium (C) in advance with oxygen 10 g of the removed water was uniformly mixed to prepare a reaction solution (S1).

上記反応液(S1)を60℃で15時間攪拌したところ、反応液全体がゲル化した。このゲルを大量の水に入れ、長時間攪拌してもゲルの溶解や分散せずゲルのままであった。
この反応系のRa=0.01、粘土鉱物(B)の濃度(質量%)=0.18>12.4Ra+0.05=0.17
When the said reaction liquid (S1) was stirred at 60 degreeC for 15 hours, the whole reaction liquid gelatinized. Even if this gel was put in a large amount of water and stirred for a long time, the gel did not dissolve or disperse and remained as a gel.
Ra = 0.01 of this reaction system, concentration (mass%) of clay mineral (B) = 0.18> 12.4Ra + 0.05 = 0.17

(比較例2)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)1.7g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.05g、水媒体(C)として予め窒素でバブリングし酸素を除去した水10gを均一に混合して反応液(S2)を調製した。
(Comparative Example 2)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
1.7 g of N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.05 g of the plasma treated clay mineral (B1) as the clay mineral (B), and nitrogen as the aqueous medium (C) are previously bubbled. A reaction solution (S2) was prepared by uniformly mixing 10 g of water from which oxygen was removed.

上記反応液(S2)を60℃で15時間攪拌したところ、反応液全体がゲル化した。このゲルを大量の水に入れ、長時間攪拌してもゲルの溶解や分散せずゲルのままであった。   When the said reaction liquid (S2) was stirred at 60 degreeC for 15 hours, the whole reaction liquid gelatinized. Even if this gel was put in a large amount of water and stirred for a long time, the gel did not dissolve or disperse and remained as a gel.

この反応系のRa=0.03、粘土鉱物(B)の濃度(質量%)=0.50>12.4Ra+0.05=0.42   Ra = 0.03 of this reaction system, concentration (mass%) of clay mineral (B) = 0.50> 12.4Ra + 0.05 = 0.42

(比較例3)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN−メチルアクリルアミド(株式会社興人製)1.3g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.08g以外は、上記参考例2と同様にして反応液(S3)を調製した。
(Comparative Example 3)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
The reaction solution (as in Reference Example 2 above) except that 1.3 g of N-methylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A) and 0.08 g of the plasma-treated clay mineral (B1) as the clay mineral (B) ( S3) was prepared.

上記反応液(S3)を60℃で15時間攪拌したところ、反応液全体がゲル化した。このゲルを大量の水に入れて長時間攪拌しても溶解や分散せずゲルのままであった。   When the said reaction liquid (S3) was stirred at 60 degreeC for 15 hours, the whole reaction liquid gelatinized. Even when this gel was placed in a large amount of water and stirred for a long time, it did not dissolve or disperse and remained as a gel.

この反応系のRa=0.06、粘土鉱物(B)の濃度(質量%)=0.79=12.4Ra+0.05=0.79   Ra = 0.06 of this reaction system, concentration (mass%) of clay mineral (B) = 0.79 = 12.4Ra + 0.05 = 0.79

(比較例4)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてアクリロイルモルホリン(株式会社興人製)1.28g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.16g以外は、上記参考例2と同様にして反応液(S4)を調製した。
(Comparative Example 4)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
Reaction solution (S4) in the same manner as in Reference Example 2 except that 1.28 g of acryloylmorpholine (manufactured by Kojin Co., Ltd.) as monomer (A) and 0.16 g of plasma-treated clay mineral (B1) as clay mineral (B) Was prepared.

上記反応液(S4)を60℃で15時間攪拌したところ、ほぼ全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。   When the reaction solution (S4) was stirred at 60 ° C. for 15 hours, almost the whole gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.

この反応系のRa=0.125、粘土鉱物(B)の濃度(質量%)=1.60=12.4Ra+0.05=1.60   Ra = 0.125 of this reaction system, concentration (mass%) of clay mineral (B) = 1.60 = 12.4Ra + 0.05 = 1.60

(比較例5)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)1.28g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.24g、水媒体(C)として水10gを均一に混合して反応液(S5)を調製した。
(Comparative Example 5)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
1.28 g of N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.24 g of the plasma treated clay mineral (B1) as the clay mineral (B), and 10 g of water as the aqueous medium (C) The reaction solution (S5) was prepared by mixing.

上記反応液(S5)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。 When the reaction liquid (S5) was stirred with a magnetic stirrer and irradiated with ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds, the entire reaction liquid was gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.

この反応系のRa=0.19、粘土鉱物(B)の濃度(質量%)=2.34%=0.87Ra+2.17=2.34   Ra = 0.19 of this reaction system, concentration (mass%) of the clay mineral (B) = 2.34% = 0.87Ra + 2.17 = 2.34

(比較例6)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)0.22g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.40g、水媒体(C)として水10gを均一に混合して反応液(S6)を調製した。
(Comparative Example 6)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 0.22 g as the monomer (A), 0.40 g of the plasma treated clay mineral (B1) as the clay mineral (B), and 10 g of water as the aqueous medium (C). The reaction solution (S6) was prepared by mixing.

上記反応液(S6)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。 When the reaction solution (S6) was stirred with a magnetic stirrer and irradiated with ultraviolet rays having an ultraviolet intensity of 365 m at 40 mW / cm 2 for 180 seconds, the entire reaction solution was gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.

この反応系のRa=1.82、粘土鉱物(B)の濃度(質量%)=3.85%>0.87Ra+2.17=3.75   Ra = 1.82 of this reaction system, concentration (mass%) of clay mineral (B) = 3.85%> 0.87Ra + 2.17 = 3.75

(比較例7)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)3.2g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.16g、水媒体(C)として水10gを均一に混合して反応液(S7)を調製した。
(Comparative Example 7)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 3.2 g as the monomer (A), 0.16 g of the plasma treated clay mineral (B1) as the clay mineral (B), and 10 g of water as the aqueous medium (C) The reaction solution (S7) was prepared by mixing.

上記反応液(S7)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。
この反応系のRa=0.05、粘土鉱物(B)の濃度(質量%)=1.57>12.4Ra+0.05=0.67
When the reaction solution (S7) was stirred with a magnetic stirrer and irradiated with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds, the entire reaction solution gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.
Ra = 0.05 of this reaction system, concentration (mass%) of clay mineral (B) = 1.57> 12.4Ra + 0.05 = 0.67

(比較例8)
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN,N−ジメチルアクリルアミド(株式会社興人製)0.64g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.64g、水媒体(C)として水10gを均一に混合して反応液(S8)を調製した。
上記反応液(S8)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。
この反応系のRa=1.0、粘土鉱物(B)の濃度(質量%)=6.02>0.87Ra+2.17=3.04
(Comparative Example 8)
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
0.64 g of N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.64 g of the plasma treated clay mineral (B1) as the clay mineral (B), and 10 g of water as the aqueous medium (C) The reaction solution (S8) was prepared by mixing.
When the reaction solution (S8) was stirred with a magnetic stirrer and irradiated with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds, the entire reaction solution gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.
Ra = 1.0 of this reaction system, concentration (mass%) of clay mineral (B) = 6.02> 0.87Ra + 2.17 = 3.04

(比較例9)
[モノマー(A)、粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN−イソプロピルアクリルアミド(株式会社興人製)1.13g、粘土鉱物(B)としてプラズマ処理粘土鉱物(B1)0.4g、水媒体(C)として水10g、を均一に混合して反応液(S9)を調製した。
[有機無機複合複合体Xの分散液の作製]
上記反応液(S9)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液全体が完全にゲル化してしまった。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。
この反応系のRa=0.35、粘土鉱物(B)の濃度(質量%)=3.85(%)>0.87Ra+2.17=2.47
(Comparative Example 9)
[Preparation of dispersion (S) containing monomer (A), clay mineral (B), and aqueous medium (C)]
1.13 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as monomer (A), 0.4 g of plasma-treated clay mineral (B1) as clay mineral (B), and 10 g of water as aqueous medium (C) are uniformly mixed. Thus, a reaction solution (S9) was prepared.
[Preparation of dispersion liquid of organic-inorganic composite complex X]
When the reaction solution (S9) was stirred with a magnetic stirrer and irradiated with ultraviolet rays having an ultraviolet intensity of 365 m at 40 mW / cm 2 for 180 seconds, the entire reaction solution was completely gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.
Ra = 0.35 of this reaction system, concentration (mass%) of clay mineral (B) = 3.85 (%)> 0.87Ra + 2.17 = 2.47

(比較例10)
この比較例はプラズマによる表面処理を施さない粘土鉱物を使用した例である。
[モノマー(A)、水膨潤性粘土鉱物(B)、水媒体(C)を含む分散液(S)の調製]
モノマー(A)としてN−イソプロピルアクリルアミド(株式会社興人製)1.13g、粘土鉱物(B)としてLaponite XLG(Rockwood Additives Ltd.社製)0.4g、水媒体(C)として水10gを均一に混合して分散液(S10)を調製した。
上記分散液(S10)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、分散液(S10)がゲル化せず、モノマー(A)は重合しなかった。
(Comparative Example 10)
This comparative example is an example using a clay mineral not subjected to surface treatment with plasma.
[Preparation of dispersion (S) containing monomer (A), water-swellable clay mineral (B), and aqueous medium (C)]
1.13 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as the monomer (A), 0.4 g of Laponite XLG (manufactured by Rockwood Additives Ltd.) as the clay mineral (B), and 10 g of water as the aqueous medium (C) To prepare a dispersion (S10).
When the dispersion (S10) was stirred with a magnetic stirrer and irradiated with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds, the dispersion (S10) did not gel and the monomer (A) was polymerized. I did not.

この比較例より、粘土鉱物にプラズマによる表面処理を施さなければ、開始剤フリー系では、モノマーが重合せず、有機無機複合体Xの分散液が得られないことが理解できる。   From this comparative example, it can be understood that if the clay mineral is not subjected to plasma surface treatment, in the initiator-free system, the monomer is not polymerized and the dispersion of the organic-inorganic composite X cannot be obtained.

上記実施例及び比較例から、本発明の有機無機複合体分散液は、粒径制御が容易で、分散液の安定性がよく、プラスチックやガラスなど基材との接着性が良好である。また、この複合体分散液を乾燥させて得た乾燥皮膜は、高い透明性を持ち、優れた防曇性を有している。更に、製造方法によれば、重合開始剤を使用することなく、極短時間で、広い範囲の粘土鉱物含有率において、粘土鉱物と有機高分子が異なる構造で複合することができ、優れた分散安定性や皮膜形成能を示す有機無機複合体分散液を製造できることが明らかであった。   From the above examples and comparative examples, the organic-inorganic composite dispersion liquid of the present invention can be easily controlled in particle size, has good stability of the dispersion liquid, and has good adhesion to a substrate such as plastic or glass. Moreover, the dry film obtained by drying this composite dispersion has high transparency and excellent antifogging properties. Furthermore, according to the production method, clay minerals and organic polymers can be combined in different structures in a very short time and in a wide range of clay mineral content without using a polymerization initiator, and excellent dispersion It was clear that organic-inorganic composite dispersions exhibiting stability and film-forming ability can be produced.

Claims (5)

(メタ)アクリル系モノマー(A)、プラズマによる表面処理を施した水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト及び水膨潤性合成雲母から選ばれる少なくとも一種の水膨潤性粘土鉱物(B)を水媒体(C)中に溶解または均一に分散させた後、重合開始剤を用いずに、前記モノマー(A)を紫外線の照射により重合させ、有機無機複合体(X)を形成する工程を含み、前記水媒体(C)中の前記水膨潤性粘土鉱物(B)の濃度(質量%)が下記式(1)又は式(2)で表される範囲であることを特徴とする有機無機複合体分散液の製造方法。
式(1) Ra<0.19のとき
粘土鉱物(B)の濃度(質量%)<12.4Ra+0.05
式(2) Ra≧0.19のとき
粘土鉱物(B)の濃度(質量%)<0.87Ra+2.17
(式中、粘土鉱物(B)の濃度(質量%)は、粘土鉱物(B)の質量を水媒体(C)と粘土鉱物(B)の合計質量で除して100を掛けた数値、Raは粘土鉱物(B)と重合体(P)との質量比((B)/(P))である。)
At least one water-swellable clay mineral selected from (meth) acrylic monomer (A), water-swellable hectorite surface-treated with plasma , water-swellable montmorillonite, water-swellable saponite and water-swellable synthetic mica ( After dissolving or uniformly dispersing B) in the aqueous medium (C), the monomer (A) is polymerized by irradiation with ultraviolet rays without using a polymerization initiator to form an organic-inorganic composite (X). Including a step, wherein the concentration (mass%) of the water-swellable clay mineral (B) in the aqueous medium (C) is in a range represented by the following formula (1) or formula (2). A method for producing an organic-inorganic composite dispersion.
Formula (1) When Ra <0.19
Concentration (mass%) of clay mineral (B) <12.4Ra + 0.05
Formula (2) When Ra ≧ 0.19
Concentration (mass%) of clay mineral (B) <0.87Ra + 2.17
(Wherein the concentration (mass%) of the clay mineral (B) is a numerical value obtained by dividing the mass of the clay mineral (B) by the total mass of the aqueous medium (C) and the clay mineral (B) and multiplying by 100, Ra Is the mass ratio of clay mineral (B) to polymer (P) ((B) / (P)).)
前記(メタ)アクリル系モノマー(A)が、(メタ)アクリルアミド、もしくはこれらの誘導体、または(メタ)アクリル酸エステルからなる群から選ばれる少なくとも一種である請求項1に記載の有機無機複合体分散液の製造方法。 The organic-inorganic composite dispersion according to claim 1, wherein the (meth) acrylic monomer (A) is at least one selected from the group consisting of (meth) acrylamide, derivatives thereof, or (meth) acrylic acid esters. Liquid manufacturing method. 前記(メタ)アクリル系モノマー(A)が、下記式(1)〜(6)から選ばれる少なくとも一種である請求項1に記載の有機無機複合体分散液の製造方法。
Figure 0005393581
Figure 0005393581
Figure 0005393581
Figure 0005393581
Figure 0005393581
Figure 0005393581
(式中、Rは水素原子またはメチル基、R及びRはそれぞれ独立に水素原子又は炭素原子数1〜3のアルキル基、Rは炭素原子数1〜2のアルキル基を表し、nは1〜9の整数である。)
The method for producing an organic-inorganic composite dispersion according to claim 1, wherein the (meth) acrylic monomer (A) is at least one selected from the following formulas (1) to (6).
Figure 0005393581
Figure 0005393581
Figure 0005393581
Figure 0005393581
Figure 0005393581
Figure 0005393581
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkyl group having 1 to 2 carbon atoms, n is an integer of 1 to 9.)
前記有機無機複合体粒子(X)の平均粒径が、50nm〜5μmである請求項1〜のいずれかに記載の有機無機複合体分散液の製造方法。 The method for producing an organic-inorganic composite dispersion liquid according to any one of claims 1 to 3 , wherein an average particle diameter of the organic-inorganic composite particles (X) is 50 nm to 5 µm. 前記モノマー(A)の重合体(P)と前記水膨潤性粘土鉱(B)との質量比((B)/(P))が、0.01〜10の範囲にある請求項1〜のいずれかに記載の有機無機複合体分散液の製造方法。 Polymer (P) and the mass ratio of the water swelling clay mineral (B) of the monomer (A) ((B) / (P)) is, according to claim 1-4 in the range of 0.01 to 10 The manufacturing method of the organic inorganic composite dispersion liquid in any one of.
JP2010098743A 2010-04-22 2010-04-22 Method for producing organic-inorganic composite dispersion Active JP5393581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098743A JP5393581B2 (en) 2010-04-22 2010-04-22 Method for producing organic-inorganic composite dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098743A JP5393581B2 (en) 2010-04-22 2010-04-22 Method for producing organic-inorganic composite dispersion

Publications (2)

Publication Number Publication Date
JP2011225769A JP2011225769A (en) 2011-11-10
JP5393581B2 true JP5393581B2 (en) 2014-01-22

Family

ID=45041542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098743A Active JP5393581B2 (en) 2010-04-22 2010-04-22 Method for producing organic-inorganic composite dispersion

Country Status (1)

Country Link
JP (1) JP5393581B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495783B1 (en) * 2013-06-27 2015-02-26 한국생산기술연구원 Method for manufacturing oxygen barrier film by using nanoclay surface modification
JP6803371B2 (en) * 2016-03-10 2020-12-23 国立大学法人山形大学 Protein adsorption inhibitor and method of protein adsorption inhibitor
JP2021031462A (en) * 2019-08-27 2021-03-01 東ソー株式会社 1-acryloylimidazolidine-2-one compound
KR20230047450A (en) * 2020-09-04 2023-04-07 후지필름 가부시키가이샤 Organic-inorganic composite dispersion and manufacturing method thereof
CN115417945B (en) * 2022-09-16 2023-07-25 常州大学 Method for preparing polyacrylic acid/attapulgite clay composite thickener with assistance of ultrasound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130827A (en) * 1997-10-28 1999-05-18 Chiyoda Ute Co Ltd Inorganic material/polymer composite material and its production
JP2000143230A (en) * 1998-11-10 2000-05-23 Toshihide Haraguchi Surface-modified spherical silica particle and its production
JP4430124B2 (en) * 2008-06-12 2010-03-10 財団法人川村理化学研究所 Organic-inorganic composite dispersion and method for producing the same

Also Published As

Publication number Publication date
JP2011225769A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP4430124B2 (en) Organic-inorganic composite dispersion and method for producing the same
WO2009150931A1 (en) Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
Levkin et al. Porous polymer coatings: a versatile approach to superhydrophobic surfaces
EP1829896B1 (en) Process for production of organic-inorganic hybrid hydrogel, cell culture substrate comprising the same, and antifogging material comprising dried product thereof
JP5393581B2 (en) Method for producing organic-inorganic composite dispersion
JP5460302B2 (en) Method for producing organic-inorganic composite dispersion
JP6052432B2 (en) Temperature-responsive cell culture substrate and method for producing the same
JP3914501B2 (en) Polymer gel composite and method for producing the same
JP2008237088A (en) Base medium and method for cell culture
JP2011144236A (en) Organic inorganic composite dispersion and process for producing the same
JP4430123B1 (en) Cell culture substrate and method for producing the same
Khorasani et al. BHK cells behaviour on laser treated polydimethylsiloxane surface
JP2006288251A (en) Cell culture substrate and method for culturing cell
JP2006271252A (en) Substrate for cell culture and method for cell culture
JP2011072297A (en) Cell culture substrate
JP5099867B2 (en) Organic-inorganic composite hydrogel and method for producing the dried product
JP2011213793A (en) Method for producing organic-inorganic composite hydrogel
JP4979199B2 (en) Cell culture substrate and cell culture method
JP2006288217A (en) Cell culture substrate and cell culture method
CN103467768A (en) Polyethylene artificial joint with bionic nano brush layer and preparation method thereof
JP2012231788A (en) Cultural base material of bone marrow-derived cell, culture method, and culture bone marrow-derived cell
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP7545485B2 (en) Organic-inorganic composite dispersion and method for producing same
JP2013055907A (en) Selective culture method of adhesive cell from blood-originated mononuclear cell group
JP3795842B2 (en) Protein-containing gel, dried protein-containing gel, and method for producing protein-containing gel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250