JP5393514B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5393514B2
JP5393514B2 JP2010022997A JP2010022997A JP5393514B2 JP 5393514 B2 JP5393514 B2 JP 5393514B2 JP 2010022997 A JP2010022997 A JP 2010022997A JP 2010022997 A JP2010022997 A JP 2010022997A JP 5393514 B2 JP5393514 B2 JP 5393514B2
Authority
JP
Japan
Prior art keywords
fin
fin member
heat exchanger
pipe
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010022997A
Other languages
Japanese (ja)
Other versions
JP2011163567A5 (en
JP2011163567A (en
Inventor
正一郎 臼井
啓明 近藤
久志 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2010022997A priority Critical patent/JP5393514B2/en
Priority to KR1020127015384A priority patent/KR101698966B1/en
Priority to EP10845251.7A priority patent/EP2532998B1/en
Priority to US13/577,343 priority patent/US20130118724A1/en
Priority to PCT/JP2010/069768 priority patent/WO2011096120A1/en
Publication of JP2011163567A publication Critical patent/JP2011163567A/en
Publication of JP2011163567A5 publication Critical patent/JP2011163567A5/ja
Application granted granted Critical
Publication of JP5393514B2 publication Critical patent/JP5393514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F9/002Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Description

本発明は、主に自動車の床下やエンジンルーム下部であって、特にエンジンフロントの下などに搭載する空冷式の熱交換器に関するものである。   The present invention relates to an air-cooled heat exchanger that is mainly mounted under the floor of an automobile or in the lower part of an engine room, particularly under an engine front.

従来より、自動車用、又はその他の用途の熱交換器として、特許文献1に示す如く、コルゲート状のフィン部材を蛇行形成した管部材に配置して成る熱交換器が公知となっている。この熱交換器は、管部材を蛇行形成することによりコンパクトでありながら管部材の内部を流れる流体の流通路を長くすることが可能となり、更にコルゲート状のフィン部材を用いることにより管部材に多数のフィンを配置することが可能となり、熱交換性能を向上させることができるものである。   Conventionally, as a heat exchanger for automobiles or other uses, as shown in Patent Document 1, a heat exchanger in which corrugated fin members are arranged on a meandering tube member has been known. This heat exchanger can be made compact by forming the pipe member in a meandering manner, making it possible to lengthen the flow path of the fluid flowing through the inside of the pipe member, and by using corrugated fin members, a large number of pipe members can be used. It is possible to arrange the fins, and the heat exchange performance can be improved.

特開2005−201622号公報JP 2005-201622 A

しかしながら、特に自動車の床下やエンジンルーム下部等の狭い空間に熱交換器を搭載する場合には、厚さ方向の嵩を小さくする必要があるのに対し、特許文献1に示す如き熱交換器は、特許文献1の図18に示す如く、管部材を2段に形成しているため厚さ方向の嵩が高いものとなっていた。そこで、特許文献1に記載の発明において厚さ方向の嵩を低くする手段としては、2段の管部材を1段に形成するとともに、熱交換器の厚さ方向におけるフィン部材の形成幅を短くすることが考えられる。しかしながら、フィン部材の形成幅を短くし過ぎると、フィン部材を組みつけた管部材の表面がフィン部材よりも外方に露出するものとなる。そのため、走行時において上記管部材の露出部分に路面からの飛石が直接当たりやすくなり、この飛石が管部材に直接当たった場合には、管部材の当接部が損傷して凹部が形成され、この凹部に振動などによる外力によって応力集中が生じ、上記管部材が破損するという事態が生じることが危惧される。   However, particularly when a heat exchanger is mounted in a narrow space such as under the floor of an automobile or in the lower part of an engine room, it is necessary to reduce the thickness in the thickness direction. As shown in FIG. 18 of Patent Document 1, since the pipe member is formed in two stages, the bulk in the thickness direction is high. Therefore, in the invention described in Patent Document 1, as means for reducing the bulk in the thickness direction, the two-stage pipe member is formed in one stage, and the formation width of the fin member in the thickness direction of the heat exchanger is shortened. It is possible to do. However, if the formation width of the fin member is made too short, the surface of the tube member assembled with the fin member is exposed to the outside of the fin member. Therefore, it becomes easy for the stepping stone from the road surface to directly hit the exposed portion of the pipe member during traveling, and when the stepping stone directly hits the pipe member, the contact portion of the pipe member is damaged and a recess is formed, There is a concern that stress concentration may occur in the concave portion due to external force due to vibration or the like, and the pipe member may be damaged.

そこで、本発明は上記の如き課題を解決しようとするものであって、管部材を1段に蛇行形成して熱交換器の厚さ方向の嵩を低いものとして、自動車の床下やエンジンルーム下部等への搭載性を良好なものとするとともに、走行時に路面からの飛石が管部材へ直接当接して損傷し、この損傷により形成された凹部に、振動などによる外力によって応力集中が生じ、上記管部材が破損するという事態を防止可能とした熱交換器を得ようとするものである。   Accordingly, the present invention is intended to solve the above-described problems. The pipe member is formed in a meandering manner to reduce the bulk of the heat exchanger in the thickness direction, so that the floor of an automobile or the lower part of an engine room is formed. In addition, the stepping stones from the road surface are in direct contact with the pipe member and damaged during traveling, and stress concentration occurs in the recess formed by this damage due to external force due to vibration, etc. An object of the present invention is to obtain a heat exchanger capable of preventing a situation where a pipe member is damaged.

本発明は上述の如き課題を解決するため、板材をコルゲート状に繰り返し折曲加工して重積させ、コルゲートフィンを形成するとともに、上記折曲加工により形成された湾曲部を凹状に押圧変形して係合凹部を形成した複数のフィン部材と、このフィン部材を介して複数の直管部を平行に配置するとともにこの直管部をU字状の折返し部を有する蛇行状の管部材とから成り、この管部材の複数の直管部を、上記複数のフィン部材の係合凹部に係合したものである。本発明は上記の如く、複数の直管部を一体に形成した蛇行状の管部材に、コルゲートフィンにて形成したフィン部材を組みつけたものであるから、管部材に複数のフィンを容易に配置することができ、製造を容易なものとすることが可能となる。   In order to solve the above-described problems, the present invention repeatedly folds and stacks plate materials in a corrugated shape to form corrugated fins, and presses and deforms the curved portion formed by the bending processing into a concave shape. A plurality of fin members formed with engaging recesses, and a plurality of straight pipe portions arranged in parallel via the fin members and the straight pipe portions having meandering pipe members having U-shaped folded portions. The plurality of straight pipe portions of the pipe member are engaged with the engagement concave portions of the plurality of fin members. As described above, the present invention is such that a fin member formed of corrugated fins is assembled to a meandering tube member in which a plurality of straight pipe portions are integrally formed. It can arrange | position and can make manufacture easy.

また、フィン部材をコルゲートフィンによって形成しているため、コルゲートフィンの各フィン間に形成される湾曲部の存在によって、フィン部材の表面積を広いものとすることができる。従って、管部材からの熱を効率よく放熱することが可能となり、熱交換性能を高めることができる。また、上記の構成とすることにより、特許文献1に記載の2段の熱交換器とは異なる1段の熱交換器が形成されるため、製品の厚さ方向の嵩を低いものとし、自動車の床下への搭載性を良好なものとすることができる。 Moreover, since the fin member is formed of corrugated fins, the surface area of the fin member can be increased due to the presence of the curved portions formed between the fins of the corrugated fins. Therefore, it is possible to efficiently dissipate heat from the pipe member, and heat exchange performance can be improved. In addition, by adopting the above configuration, a one-stage heat exchanger different from the two-stage heat exchanger described in Patent Document 1 is formed. Can be easily mounted under the floor.

また、管部材の外径を8mm〜12mmとしている。管部材の外径が8mm未満の場合には、特に管内流体としてオイルやガソリン、軽油等の液体を使用した場合にあっては、流体の圧力損失が大きくなるために必要流量の確保が難しくなり、流量が減少して所望の交換熱量を得ることが困難となったり、圧力損失が閾値を超えて使用できなくなるという事態が生じるものとなる。一方、12.0mmよりも大きい場合には、管部材の外径が大きくなるため、外径の拡大に伴って流体の必要流量は確保しやすくなるものの、製品全体が嵩高いものとなって自動車の床下やエンジンルーム下部等の狭いスペースへの搭載性が低下することとなる。 Further, the outer diameter of the pipe member is set to 8 mm to 12 mm. When the outer diameter of the pipe member is less than 8 mm, especially when liquids such as oil, gasoline, and light oil are used as the fluid in the pipe, it becomes difficult to secure the required flow rate because the pressure loss of the fluid increases. The flow rate decreases and it becomes difficult to obtain a desired amount of exchange heat, or the pressure loss exceeds a threshold value and it becomes impossible to use. On the other hand, when the diameter is larger than 12.0 mm, the outer diameter of the pipe member becomes larger, so it becomes easier to secure the required flow rate of the fluid with the expansion of the outer diameter. The mountability in a narrow space such as under the floor or the lower part of the engine room is reduced.

また、隣接するフィン部材の湾曲部において最も外方に張り出した湾曲頂部の対向間隔を0.5〜5.0mmとしている。尚、本発明における湾曲頂部とは、板材の折曲加工により湾曲形成されたフィン部材の湾曲部において、フィン部材の折曲幅方向に最も張り出した頂部を意味するものである。そして、対向間隔を5.0mmよりも大きくした場合には、隣接するフィン部材を、管部材を介して離間方向に配置する必要が生じる。従って、フィン部材の係合凹部は、浅く、且つ管部材の軸方向の幅が狭く、更に管部材の軸方向とは垂直方向の形成長さが短いものとなり、この浅く幅狭で短尺な係合凹部に管部材を係合配置するものとなるため、フィン部材と管部材との接触面積が小さくなり熱交換性能が低下するとともに、組み付け強度が低下するおそれがある。 Moreover, the opposing space | interval of the curved top part protruded most outward in the curved part of an adjacent fin member is 0.5-5.0 mm. In addition, the curved top part in this invention means the top part most projected in the bending width direction of the fin member in the curved part of the fin member curvedly formed by the bending process of a board | plate material. When the facing distance is larger than 5.0 mm, it is necessary to arrange adjacent fin members in the separating direction via the pipe members. Therefore, the engaging recess of the fin member is shallow and the axial width of the tube member is narrow, and the formation length in the direction perpendicular to the axial direction of the tube member is short. Since the pipe member is engaged and disposed in the mating recess, the contact area between the fin member and the pipe member becomes small, and the heat exchange performance may be lowered, and the assembly strength may be lowered.

一方、対向間隔を0.5mm未満とした場合には、隣接するフィン部材の対向間隔が狭くなるためこの対向間隔内に路面からの飛石が入り込みにくいものとなり、走行中に飛石が管部材の表面に直接当たるという事態は生じにくいものとなるため、飛石によって管部材表面が損傷して凹部が形成され、この凹部に、振動などの外力によって応力集中を生じて破損するという事態を防止するという点からは好ましいものである。しかしながら、対向間隔を0.5mm未満とするためには、隣り合うフィン部材の突出部分どうしを近接して配置しなければならないが、隣り合うフィン部材の間に管部材が位置するため、上記両突出部分を近接して配置するためにはフィン部材に係合凹部を深く形成し、この深い係合凹部に管部材を係合配置する必要がある。従って、深い係合凹部を形成する際には大きな変形に伴って大きな剪断応力が加わり、係合凹部付近に不必要な変形が生じる可能性がある。尚、本発明における対向間隔とは、管部材を介して対向して隣り合うフィン部材間の配置間隔を意味するものであって、特に、両フィン部材間の管部材を介さない、係合凹部からフィン部材の幅方向に突出した湾曲頂部における間隔を意味するものである。 On the other hand, when the facing distance is less than 0.5 mm, the facing distance between the adjacent fin members is narrowed, so it is difficult for stepping stones from the road surface to enter the facing distance, and the stepping stones on the surface of the pipe member during traveling. From the point of preventing the situation where the direct contact is difficult to occur, the tube member surface is damaged by stepping stones and a recess is formed, and stress is concentrated in this recess due to external forces such as vibration. Is preferred. However, in order to make the facing interval less than 0.5 mm, the protruding portions of adjacent fin members must be arranged close to each other. However, since the pipe member is located between adjacent fin members, In order to arrange the portions close to each other, it is necessary to form a deep engagement recess in the fin member, and to engage and dispose the pipe member in this deep engagement recess. Therefore, when forming a deep engagement recess, a large shear stress is applied with a large deformation, and unnecessary deformation may occur in the vicinity of the engagement recess. In the present invention, the facing interval means a disposition interval between adjacent fin members facing each other through the tube member, and in particular, an engagement recess that does not involve the tube member between both fin members. It means an interval at the curved top protruding from the fin member in the width direction.

また、管部材の直管部の表面からのフィン部材の幅方向の突出高さを11mm以下としている。その理由としては、フィン部材の幅方向の突出高さを11mmよりも大きくすると、フィン部材を組みつけた製品全体が嵩高いものとなって、自動車などへの搭載性が低下するとともに、下記に示すフィン部材のフィン効率の算出から、熱交換性能の著しい向上は望めないことが明らかとなった。ここで、フィン部材の突出高さと、フィン部材の熱交換性能に関するフィン効率との関係について以下に説明する。 Moreover, the protrusion height of the fin member in the width direction from the surface of the straight pipe portion of the pipe member is set to 11 mm or less. The reason for this is that if the protruding height of the fin member in the width direction is larger than 11 mm, the entire product assembled with the fin member becomes bulky, which reduces the mountability to automobiles, etc. From the calculation of the fin efficiency of the fin member shown, it became clear that a significant improvement in heat exchange performance cannot be expected. Here, the relationship between the protrusion height of a fin member and the fin efficiency regarding the heat exchange performance of a fin member is demonstrated below.

本発明の熱交換器を計算の単純化のために折返しの湾曲部分を有さない平板フィンと近似して考え、下記数式

η=tanh(mL)/mL m≡(2h/kδt)1/2×L
η:フィン効率(%)
k:熱伝導率(標準的なアルミ合金として約150w/mK)
h:熱伝達係数(曲げ平面垂直;約60w/m2K、曲げ平面平行;約25w/m2K)
L:フィン部材の突出高さ(mm)
δt:フィン部材の板厚(0.3mm)

にて計算を行った。この計算結果を基に作成したグラフを図2に示す。尚、上記フィン効率とは、フィン部材の形状、フィン部材の高さ、フィン部材の板厚により変化するフィン部材の放熱効率を意味するものであり、図2の結果は、フィン部材の形状、密度、及びフィン部材の板厚を一定とし、フィン部材の高さのみを3〜13.5mmに変化させた場合のフィン効率の変化状況を表したものである。
Considering the heat exchanger of the present invention as a flat plate fin having no folded curved portion for the sake of simplicity of calculation,

η = tanh (mL) / mL m≡ (2h / kδ t ) 1/2 × L
η: Fin efficiency (%)
k: Thermal conductivity (about 150w / mK as a standard aluminum alloy)
h: Heat transfer coefficient (bending plane perpendicular; about 60w / m 2 K, bending plane parallel; about 25w / m 2 K)
L: Projection height of fin member (mm)
[delta] t: plate thickness of the fin members (0.3 mm)

The calculation was performed. A graph created based on this calculation result is shown in FIG. In addition, the said fin efficiency means the heat dissipation efficiency of the fin member which changes with the shape of a fin member, the height of a fin member, and the plate | board thickness of a fin member, and the result of FIG. It shows the change of fin efficiency when the density and the plate thickness of the fin member are constant and only the height of the fin member is changed to 3 to 13.5 mm.

図2より、フィン部材の幅方向の突出高さが11mmを超えると、フィン効率が80%よりも低いものとなり、熱交換効率が低下する一方、フィン部材の突出高さを11mm以下とした場合には、フィン効率を80%以上に確保することが可能となり、熱交換効率を良好に維持することができることが明らかとなった。よって、本発明の熱交換効率を良好に維持するためには、フィン部材の幅方向の突出高さを11mm以下とする必要がある。 As shown in Fig. 2, when the fin member's protruding height in the width direction exceeds 11mm, the fin efficiency is lower than 80%, and the heat exchange efficiency decreases, while the fin member's protruding height is 11mm or less. The fin efficiency can be secured at 80% or more, and the heat exchange efficiency can be maintained well. Therefore, in order to maintain the heat exchange efficiency of the present invention satisfactorily, the protrusion height in the width direction of the fin member needs to be 11 mm or less.

また、上記の如くフィン部材の幅方向の突出高さを11mm以下に限定した上で、本発明はこのフィン部材の突出高さを、上記湾曲頂部の対向間隔が0.5〜5.0mmの範囲内において、y≧2.46x-0.29 (y:管部材表面からのフィン部材の幅方向の突出高さ/上記湾曲頂部の対向間隔、x:上記湾曲頂部の対向間隔)の数式が成立する値としている。この数式は、以下の実験及びシミュレーション分析から導き出したものである。 Further, as described above, after limiting the protruding height in the width direction of the fin member to 11 mm or less, the present invention sets the protruding height of the fin member within the range where the facing interval between the curved tops is 0.5 to 5.0 mm. , Y ≧ 2.46x −0.29 (y: projection height in the width direction of the fin member from the surface of the pipe member / opposite spacing of the curved tops, x: opposing spacing of the curved tops) . This formula is derived from the following experiment and simulation analysis.

まず、シミュレーション分析の際に使用するための飛石の形状を決定するために、フィン部材の湾曲頂部の対向間隔tを2.0mm、フィン部材の板厚を0.3mmとするとともに、フィン部材の幅方向の突出高さLを3mm、及び4mmとした場合における飛石試験を行った。尚、この飛石試験は、自動車規格JASO M 104「ブレーキチューブ試験方法」(区分;第一区分、試験の目的;ブレーキチューブの有機被膜など外表面に劣化を与えることを目的とした試験方法、試験の名称;飛石試験(試験方法項目番号5.1))に準じた試験であって、同規格の試験条件及び試験装置は主に下記の通りである。
(1)空気圧力;0.4±0.03MPa
(2)吹付角度;直角
(3)吹付距離;350mm
(4)飛石量;850g
(5)回数;5回
(6)試験装置;グラベロメーター
(7)飛石;花崗岩(玉砂利、大きさ9〜15mm)
First, in order to determine the shape of the stepping stone to be used in the simulation analysis, the facing distance t between the curved tops of the fin member is set to 2.0 mm, the plate thickness of the fin member is set to 0.3 mm, and the width direction of the fin member A stepping stone test was conducted when the projecting height L was 3 mm and 4 mm. This stepping stone test is an automotive standard JASO M 104 “Brake tube test method” (category: first category, test purpose: test method and test for the purpose of deteriorating the organic surface of the brake tube, etc. The test conditions and test equipment of the same standard are mainly as follows.
(1) Air pressure: 0.4 ± 0.03MPa
(2) Spray angle; right angle
(3) Spraying distance: 350mm
(4) Stepping stone amount; 850 g
(5) Number of times: 5 times
(6) Test equipment; Gravelometer
(7) Stepping stones: Granite (Jade gravel, size 9-15mm)

ここで、上記JASO法の規格では、飛石として滑らかな表面を有する玉砂利を使用するものであるが、本飛石試験では、有機被膜などの外表面に、より大きな劣化を与え、より厳しい評価試験を実施するために、一般切削用研磨石として市販されている研磨石(株式会社チップトン製研磨石:品名「GT」型番「4」)を使用し、評価を行うこととした。この研磨石は、一辺の長さが約10mm、高さが約8mmの略正三角柱若しくは略正三角錐台状でエッジ部を有する研磨石であって、一部の自動車メーカーにおいて実際に上記飛石試験に使用されているものである。 Here, the JASO method standard uses gravel with a smooth surface as a stepping stone. However, in this stepping stone test, the outer surface of the organic coating and the like is further deteriorated and a stricter evaluation test is performed. In order to carry out, evaluation was carried out using a grinding stone commercially available as a grinding stone for general cutting (a grinding stone manufactured by Chipton Co., Ltd .: product name “GT”, model number “4”). This grinding stone is an approximately regular triangular prism with a side length of about 10 mm and a height of about 8 mm, or an approximately regular triangular frustum shape and has an edge portion. It is what is used for.

上記研磨石を使用した飛石試験の結果について図3及び図4に示す。尚、図3(a) は、フィン部材の幅方向の突出高さLが4mmの場合における飛石試験前の熱交換器の拡大平面写真であり、図3(b)は、フィン部材の幅方向の突出高さLが4mmの場合における飛石試験後の熱交換器の拡大平面写真である。また、図4(a)は、フィン部材の幅方向の突出高さLが3mmの場合における飛石試験前の熱交換器の拡大平面写真であり、図4(b)は、フィン部材の幅方向の突出高さLが3mmの場合における飛石試験後の熱交換器の拡大平面写真である。 The results of the stepping stone test using the above grinding stone are shown in FIGS. 3A is an enlarged plan view of the heat exchanger before the stepping stone test when the protrusion height L in the width direction of the fin member is 4 mm, and FIG. 3B is the width direction of the fin member. 6 is an enlarged plan view of the heat exchanger after the stepping stone test when the protrusion height L is 4 mm. 4A is an enlarged plan view of the heat exchanger before the stepping stone test when the protrusion height L in the width direction of the fin member is 3 mm, and FIG. 4B is the width direction of the fin member. 6 is an enlarged plan view of the heat exchanger after the stepping stone test when the protrusion height L is 3 mm.

そして、フィン部材の幅方向の突出高さが4mmの場合の管部材の表面を目視により確認した結果、図3(b)に示す如く飛石による傷は確認されなかった。一方、フィン部材の幅方向の突出高さを3mmとした場合には、図4(b)に示す如く、管部材の表面には飛石により生じた複数の傷が目視にて確認された。この結果より、フィン部材の湾曲頂部の対向間隔tが2.0mmの条件下で、フィン部材の幅方向の突出高さを3mmとした場合には、走行時において飛石が管部材の表面に直接当たりやすいものとなり、フィン部材の幅方向の突出高さを4mmとした場合には、飛石が管部材の表面に直接当たることは殆どないことが明らかとなった。 As a result of visually confirming the surface of the pipe member when the protruding height in the width direction of the fin member was 4 mm, no flaws due to flying stones were confirmed as shown in FIG. On the other hand, when the protrusion height in the width direction of the fin member was 3 mm, as shown in FIG. 4B, a plurality of scratches caused by stepping stones were visually confirmed on the surface of the tube member. From this result, if the projecting height in the width direction of the fin member is 3 mm under the condition where the facing distance t between the curved tops of the fin member is 2.0 mm, the stepping stone directly hits the surface of the pipe member during traveling. It became clear that when the projecting height in the width direction of the fin member was 4 mm, the stepping stone hardly hit the surface of the pipe member.

そして、上記飛石試験ではフィン部材の湾曲頂部の対向間隔tが2mmの場合について試験を行ったが、他の対向間隔における飛石の影響については、上記結果を踏まえた上で模式図によるシミュレーション分析を行った。このシミュレーション分析について説明すると、まず、シミュレーション分析に用いる飛石の形状を決定するために、上記試験結果に基づき、図5に示す如くフィン部材の湾曲頂部の対向間隔tが2mmの場合における模式図を作成した。尚、図5及び図6における各模式図は、管部材の直管部の管軸方向とは垂直方向における、熱交換器の断面図を模式化したものである。また、図5(a)は、フィン部材の幅方向の突出高さLが3mmの場合の模式図であり、図5(b)は、フィン部材の幅方向の突出高さLが4mmの場合の模式図である。 And, in the stepping stone test, the test was conducted for the case where the facing interval t of the curved top portion of the fin member was 2 mm.For the influence of stepping stones at other facing intervals, simulation analysis based on the schematic diagram was conducted based on the above results. went. The simulation analysis will be described. First, in order to determine the shape of the stepping stone used for the simulation analysis, based on the above test results, a schematic diagram in the case where the facing interval t between the curved tops of the fin members is 2 mm as shown in FIG. Created. Each schematic diagram in FIGS. 5 and 6 is a schematic cross-sectional view of the heat exchanger in a direction perpendicular to the tube axis direction of the straight tube portion of the tube member. FIG. 5 (a) is a schematic diagram in the case where the protrusion height L in the width direction of the fin member is 3 mm, and FIG. 5 (b) is a case in which the protrusion height L in the width direction of the fin member is 4mm. FIG.

そして、上記飛石試験においては、フィン部材の幅方向の突出高さを3mmとした場合に管部材の表面に飛石が直接当たり、フィン部材の幅方向の突出高さを4mmとした場合は管部材の表面に飛石が直接当たらなかったことから、図5に示す模式図上ではフィン部材(3)の幅方向の突出高さLが3mmの場合(図5(a))には飛石(21)が管部材(1)の表面に接触した状態となるとともに、フィン部材(3)の幅方向の突出高さLを4mmとした場合(図5(b))には管部材(1)の表面と飛石(21)との最短距離Pが1mmとなるよう、熱交換器(20)の形状を模式的に表した。 In the stepping stone test, when the protruding height in the width direction of the fin member is 3 mm, the stepping stone directly hits the surface of the pipe member, and when the protruding height in the width direction of the fin member is 4 mm, the pipe member Since the stepping stone did not directly hit the surface of Fig. 5, in the schematic diagram shown in Fig. 5, when the protrusion height L in the width direction of the fin member (3) is 3mm (Fig. 5 (a)), the stepping stone (21) Is in contact with the surface of the pipe member (1), and the protrusion height L in the width direction of the fin member (3) is 4 mm (FIG. 5B), the surface of the pipe member (1) The shape of the heat exchanger (20) is schematically shown so that the shortest distance P between the stepping stone and the stepping stone (21) is 1 mm.

そして、このように表した模式図から、図5に示す如く本シミュレーション分析において、管部材の表面に当接した際の、飛石の形状を逆三角形と決定した。尚、本シミュレーション分析では、図5(b)に示す如く飛石(21)が管部材(1)に直接当たらないとした場合における管部材(1)と飛石(21)との最短距離の限界値を1mmとし、模式図において管部材と飛石との距離が少なくとも1mm以上であれば、実際の走行時においても飛石が管部材に直接当たらないことを想定している。 Then, from the schematic diagram expressed in this way, as shown in FIG. 5, in this simulation analysis, the shape of the stepping stone when contacting the surface of the pipe member was determined to be an inverted triangle. In this simulation analysis, as shown in FIG. 5B, the limit value of the shortest distance between the pipe member (1) and the stepping stone (21) when the stepping stone (21) does not directly hit the pipe member (1). It was a 1mm, if the distance between the tubular member and the stepping stones in schematic view of at least 1mm or more, stepping stones are virtual constant that it will not directly hit the pipe member even when the actual traveling.

そして、図5に示す如き湾曲頂部の対向間隔tが2mmの場合と同様に、対向間隔tが0.5mm、1mm、4mm、5mmの場合における、各対向間隔tとフィン部材の幅方向の突出高さLとの関係について図6の(a)〜(d)に示す如く各対向間隔毎に模式図を作成し、シミュレーション分析を行った。尚、図6では、(a)において対向間隔tが0.5mm、(b)において対向間隔tが1mm、(c)において対向間隔tが4mm、(d)において対向間隔tが5mmの場合の模式図をそれぞれ示している。そして、上記各対向間隔tにおいて、飛石(21)と管部材(1)の表面との最短距離Pが1mmとなる、即ち飛石が管部材に直接当たらないとするフィン部材の突出高さLの下限値を、図6に示す模式図から割り出した。 Similarly to the case where the facing distance t of the curved top as shown in FIG. 5 is 2 mm, each facing distance t and the protruding height in the width direction of the fin member when the facing distance t is 0.5 mm, 1 mm, 4 mm, and 5 mm. As shown in FIGS. 6 (a) to 6 (d), a schematic diagram was created for each facing interval, and a simulation analysis was performed. 6A and 6B are schematic views when the facing interval t is 0.5 mm in (a), the facing interval t is 1 mm in (b), the facing interval t is 4 mm in (c), and the facing interval t is 5 mm in (d). Each figure is shown. And in each said opposing space | interval t, the shortest distance P between the stepping stone (21) and the surface of the pipe member (1) is 1 mm, that is, the protrusion height L of the fin member that the stepping stone does not directly hit the pipe member. The lower limit value was determined from the schematic diagram shown in FIG.

その結果、図6(a)〜(d)に示す如く、管部材(1)の表面と飛石(21)との距離Pが1mmとなる場合のフィン部材(3)の幅方向の突出高さLは、対向間隔tが0.5mmの場合は1.7mm、対向間隔tが1mmの場合は2.5mm、対向間隔tが4mmの場合は7.0mm、対向間隔tが5mmの場合は8.5mmであった。そして、上記各対向間隔tにおけるフィン部材の突出高さLを、各対向間隔において、管部材の表面に飛石が直接当たらないフィン部材の突出高さの下限値とした。 As a result, as shown in FIGS. 6 (a) to 6 (d), the protruding height in the width direction of the fin member (3) when the distance P between the surface of the pipe member (1) and the stepping stone (21) is 1 mm. L was 1.7 mm when the facing distance t was 0.5 mm, 2.5 mm when the facing distance t was 1 mm, 7.0 mm when the facing distance t was 4 mm, and 8.5 mm when the facing distance t was 5 mm . And the protrusion height L of the fin member in each said opposing space | interval t was made into the lower limit of the protrusion height of the fin member in which a stepping stone does not directly hit the surface of a pipe member in each opposing space | interval.

次に、上記シミュレーション分析を行った結果について、図7に示す如くフィン部材の湾曲頂部の対向間隔tとフィン部材の幅方向の突出高さL/フィン部材の湾曲頂部の対向間隔tとの関係をプロットしてグラフで表し、このプロットの近似曲線から、数式:y=2.46x-0.29 (y:管部材表面からのフィン部材の幅方向の突出高さ/フィン部材の湾曲頂部の対向間隔、x:フィン部材の湾曲頂部の対向間隔)を導き出した。 Next, results of the simulation analysis, the opposing distance t of the bay Kyokuitadaki portion in the width direction of the protruding height L / fin member facing distance t and the fin member of the curved top portion of the fin member as shown in FIG. 7 The relationship is plotted and expressed as a graph. From the approximate curve of this plot, the formula: y = 2.46x -0.29 (y: the protruding height of the fin member in the width direction from the pipe member surface / opposite of the curved top of the fin member) The distance, x: the facing distance of the curved top of the fin member) was derived.

そして、フィン部材の幅方向の突出高さを高くするほど管部材の表面はフィン部材の内方に位置するものとなるため、フィン部材の幅方向の突出高さが、y≧2.46x-0.29(y:管部材表面からのフィン部材の幅方向の突出高さ/フィン部材の湾曲頂部の対向間隔、x:フィン部材の湾曲頂部の対向間隔)の関係を満たす場合には、飛石が管部材の表面に直接当たりにくいものとなるということができる。一方、フィン部材の湾曲頂部の対向間隔が0.5〜5.0mmの範囲内において、y<2.46x-0.29 (y:管部材表面からのフィン部材の幅方向の突出高さ/フィン部材の湾曲頂部の対向間隔、x:フィン部材の湾曲頂部の対向間隔)の場合には、フィン部材の幅方向の突出高さが不十分となり、フィン部材から管部材の表面までの間隔が小さく、飛石が直接当たりやすいものとなる。 And as the protrusion height in the width direction of the fin member is increased, the surface of the tube member is positioned inward of the fin member. Therefore, the protrusion height in the width direction of the fin member is y ≧ 2.46x −. If the relationship 0.29 (y: protrusion height in the width direction of the fin member from the surface of the tube member / opposite spacing of the curved apex of the fin member, x: opposing spacing of the curved apex of the fin member) It can be said that it is difficult to directly contact the surface of the member. On the other hand, in the range where the facing distance of the curved top portion of the fin member is 0.5 to 5.0 mm, y <2.46x −0.29 (y: the protruding height of the fin member in the width direction from the pipe member surface / curved top portion of the fin member , X: facing distance of the curved apex of the fin member), the protrusion height in the width direction of the fin member is insufficient, the distance from the fin member to the surface of the tube member is small, and the stepping stone is directly It will be easy to hit.

また、フィン部材は、板厚を0.2mm〜0.5mmとしたものであっても良い。尚、板厚を0.2mm未満とした場合には、フィン部材が薄くなるためフィンの熱容量が乏しくなってフィンの温度低下が速くなり、熱交換効率が低下するとともに、フィンの強度が低下して飛石が管部材の表面に当接しやすくなる。また、0.5mmよりも厚くした場合には、強度は向上するものの、熱交換効率については多少改善されるが著しい向上は望めないことから、材料が無駄となる。 The fin member may have a plate thickness of 0.2 mm to 0.5 mm. When the plate thickness is less than 0.2 mm, the fin member becomes thin, so the heat capacity of the fin becomes poor, the temperature of the fin decreases rapidly, the heat exchange efficiency decreases, and the strength of the fin decreases. The stepping stones easily come into contact with the surface of the pipe member. When the thickness is greater than 0.5 mm, although the strength is improved, the heat exchange efficiency is somewhat improved, but a significant improvement cannot be expected, so the material is wasted.

また、フィン部材は、折曲加工により形成されるフィンの配置間隔を、1.6mm〜2.2mmとしたものであっても良い。尚、上記フィンの配置間隔とは、折曲加工によりフィン部材に形成された複数のフィン部分において、隣接する各フィン間の管部材の直管部の管軸方向の離間距離を意味するものである。そして、フィンの配置間隔1.6mm〜2.2mmの数値範囲は、以下の冷却性能試験結果に基づくものである。この冷却性能試験について説明すると、まず、アルミ合金製フィン部材の板厚を0.3mm、機械的性質のうちの引張強度を200MPaとするとともに、フィンの配置間隔を1.6mm、2.0mm、2.3mm、3.2mm、4.0mmとしたフィン部材をそれぞれ用いて、各配置間隔毎に熱交換器を作成した。   Further, the fin member may have a fin arrangement interval of 1.6 mm to 2.2 mm formed by bending. In addition, the arrangement | positioning space | interval of the said fin means the separation distance of the pipe axis direction of the straight pipe part of the tube member between adjacent fins in the several fin part formed in the fin member by the bending process. is there. The numerical range of the fin arrangement interval of 1.6 mm to 2.2 mm is based on the following cooling performance test results. To explain this cooling performance test, first, the plate thickness of the aluminum alloy fin member is 0.3 mm, the tensile strength of mechanical properties is 200 MPa, and the fin spacing is 1.6 mm, 2.0 mm, 2.3 mm, A heat exchanger was created for each arrangement interval using fin members of 3.2 mm and 4.0 mm, respectively.

そして、断面正方形の筒型の風洞内に、フィンの配置間隔が異なる各熱交換器を車載時に受ける風向きと平行(熱交換器の一般的な設置方法である垂直ではない。)となるよう設置するとともに、この熱交換器の管部材に水を流通し、熱交換器に流入する水の温度、及び熱交換器を通過した水の温度をそれぞれ測定した。尚、この時の測定条件は下記の通りである。
水の入口温度 70℃一定
空気流の入口温度 20℃一定
管内の水の流量 1.5〜2.5L/min
空気流の流速 2.5〜5.5m/s
Then, in a cylindrical wind tunnel having a square cross section, the heat exchangers with different fin arrangement intervals are installed so as to be parallel to the direction of the wind received when the vehicle is mounted (not vertical, which is a general method of installing heat exchangers). At the same time, water was circulated through the pipe member of the heat exchanger, and the temperature of water flowing into the heat exchanger and the temperature of water passing through the heat exchanger were measured. The measurement conditions at this time are as follows.
Water inlet temperature 70 ° C constant air flow inlet temperature 20 ° C constant water flow rate 1.5 ~ 2.5L / min
Air flow velocity 2.5 ~ 5.5m / s

そして、上記の測定条件にて測定した各熱交換器において管内流体である水と、フィン間の流体である空気の入口温度及び出口温度、並びに両温度の温度差をそれぞれ算出し、この温度差を、水に代わって軽油を使用した場合の温度差に変換し、この変換した温度差を本発明の熱交換器を通過した際の流体の低下温度とした。尚、上記変換時の条件は、下記の通りである。
軽油の入口温度 100℃
空気流の入口温度 50℃
軽油の流量 0.75L/min
空気流の流速 5m/sec
Then, in each heat exchanger measured under the above measurement conditions, the temperature of the inlet and outlet temperatures of water that is the fluid in the pipe and the air that is the fluid between the fins, and the temperature difference between the two temperatures are respectively calculated. Was converted into a temperature difference when light oil was used instead of water, and the converted temperature difference was defined as a fluid drop temperature when passing through the heat exchanger of the present invention. The conditions for the conversion are as follows.
Light oil inlet temperature 100 ° C
Air flow inlet temperature 50 ℃
Light oil flow rate 0.75L / min
Air flow velocity 5m / sec

そして、このようにして得られた各熱交換器の管内流体の低下温度と、各熱交換器のフィンの配置間隔との関係をプロットし、図8に示す如くグラフにて表した。図8より、配置間隔が1.6mm〜2.2mmの範囲においては、管内流体の低下温度が約10℃を超えることが明らかとなった。この結果より、フィンの配置間隔が1.6mm〜2.2mmの範囲において、熱交換器への通過に伴う管内流体の低下温度が他の配置間隔と比較して高い値を示すことから、フィン部材の熱交換性能を良好に保つためにはフィンの配置間隔を1.6mm〜2.2mmの範囲とするのが好ましい。そして、フィンの配置間隔が1.6mm未満の場合には、フィン部材の表面積は増加するものの、配置間隔が狭くなり過ぎるため流過抵抗が増加してフィン部材を通過する流体の流通性が悪くなり熱交換性能が低下するものとなるとともに、2.2mmよりも広い場合には、流過抵抗は減少して流れやすくなるものの、フィン部材の表面積が小さくなるため、この場合にも熱交換性能が低下するものとなる。 Then, the relationship between the drop temperature of the fluid in the pipe of each heat exchanger obtained in this way and the arrangement interval of the fins of each heat exchanger was plotted and represented by a graph as shown in FIG. From FIG. 8, it was found that the temperature drop of the fluid in the pipe exceeds about 10 ° C. when the arrangement interval is in the range of 1.6 mm to 2.2 mm. From this result, in the range where the fin arrangement interval is 1.6 mm to 2.2 mm, the drop temperature of the fluid in the pipe accompanying the passage to the heat exchanger shows a higher value compared to other arrangement intervals. In order to maintain good heat exchange performance, it is preferable that the fin spacing be in the range of 1.6 mm to 2.2 mm. When the fin arrangement interval is less than 1.6 mm, the surface area of the fin member increases, but the arrangement interval becomes too narrow, so that the flow resistance increases and the fluidity of the fluid passing through the fin member deteriorates. Heat exchange performance will be reduced, and if it is wider than 2.2 mm, the flow resistance will decrease and flow will be easier, but the surface area of the fin member will be smaller, so in this case the heat exchange performance will also be reduced. To be.

本発明は上述の如く構成したものであって、蛇行形成した管部材にコルゲートフィンとして形成したフィン部材を係合配置したものであるから、製造を容易なものとすることができるとともに、フィン部材の表面積を広いものとすることが可能となり、管部材からの熱を効率よく放熱することができる。また、このような熱交換器を上記構成及び寸法の範囲内にて形成することにより、良好な熱交換性能を損なうことなく、走行時において路面からの飛石が管部材の表面に直接当たることにより管部材の当接部が損傷して凹部が形成され、この凹部に振動などの外力による応力集中が生じ、管部材を破損するという危惧をなくすことができるとともに、製品の厚さ方向の嵩を低いものとすることができる。そのため、自動車の床下やエンジンルーム下部であって特にエンジンフロントの下等の、狭い空間への搭載性を良好なものとすることが可能となる。   Since the present invention is configured as described above, and the fin member formed as a corrugated fin is engaged with the meandering tube member, the manufacturing can be facilitated, and the fin member The surface area of the tube member can be increased, and the heat from the tube member can be efficiently radiated. In addition, by forming such a heat exchanger within the range of the configuration and dimensions described above, it is possible that the stepping stone from the road surface directly hits the surface of the pipe member during traveling without impairing good heat exchange performance. The abutting part of the tube member is damaged and a recess is formed. In this recess, stress concentration due to external forces such as vibration occurs, and the risk of damaging the tube member can be eliminated, and the bulk of the product in the thickness direction can be reduced. Can be low. Therefore, it is possible to improve the mountability in a narrow space under the floor of an automobile or at the lower part of the engine room, particularly under the engine front.

本発明の実施例1を示す斜視図。The perspective view which shows Example 1 of this invention. フィン部材の幅方向の突出高さとフィン効率との関係を示すグラフ。The graph which shows the relationship between the protrusion height of the width direction of a fin member, and fin efficiency. (a)フィン部材の幅方向の突出高さを4mmとした場合の飛石試験前の熱交換器の状態を示す部分平面拡大写真。 (b)フィン部材の幅方向の突出高さを4mmとした場合の飛石試験後の熱交換器の状態を示す部分平面拡大写真。(a) The partial plane enlarged photograph which shows the state of the heat exchanger before a stepping stone test in case the protrusion height of the width direction of a fin member shall be 4 mm. (b) The partial plane enlarged photograph which shows the state of the heat exchanger after a stepping stone test in case the protrusion height of the width direction of a fin member shall be 4 mm. (a)フィン部材の幅方向の突出高さを3mmとした場合の飛石試験前の熱交換器の状態を示す部分平面拡大写真。 (b)フィン部材の幅方向の突出高さを3mmとした場合の飛石試験後の熱交換器の状態を示す部分平面拡大写真。(a) The partial plane enlarged photograph which shows the state of the heat exchanger before a stepping stone test when the protrusion height of the width direction of a fin member is 3 mm. (b) The partial plane enlarged photograph which shows the state of the heat exchanger after a stepping stone test when the protrusion height of the width direction of a fin member is 3 mm. フィン部材の湾曲頂部の対向間隔t=2のシミュレーション分析に用いた模式図。The schematic diagram used for the simulation analysis of facing space | interval t = 2 of the curved top part of a fin member. フィン部材の湾曲頂部の対向間隔t=0.5,1,4,5,の各シミュレーション分析に用いた模式図。The schematic diagram used for each simulation analysis of facing space | interval t = 0.5,1,4,5 of the curved top part of a fin member. フィン部材の湾曲頂部の対向間隔とフィン部材の幅方向の突出高さ/フィン部材の湾曲頂部の対向間隔との関係及びその近似曲線を表すグラフ。The graph showing the relationship between the opposing space | interval of the curved top part of a fin member, the protrusion height of the width direction of a fin member / the opposing space | interval of the curved top part of a fin member, and its approximated curve. フィンの配置間隔と熱交換器を通過した管内流体の低下温度との関係を表すグラフ。The graph showing the relationship between the arrangement | positioning space | interval of a fin, and the fall temperature of the fluid in the pipe | tube which passed the heat exchanger. 実施例1のフィン部材を示す斜視図。FIG. 3 is a perspective view illustrating a fin member according to the first embodiment. 図1のA−A線部分拡大断面図。The AA line partial expanded sectional view of FIG. 図1のB−B線部分拡大断面図。The BB line partial expanded sectional view of FIG.

本発明の実施例1を説明すると、(1)はアルミ合金にて形成した管部材であって、図1に示す如く、複数の直管部(2)をフィン部材(3)の挿入間隔(4)を介して平行に配置するとともに、この直管部(2)の端部を湾曲形成し、この湾曲部分をU字状の折返し部(5)としている。このように管部材(1)を蛇行させて形成することにより、フィン部材(3)の挿入間隔(4)が並列して好ましくは複数形成されるものとなる。そして、各挿入間隔(4)内には、それぞれフィン部材(3)を係合配置している。尚、本実施例では図11に示す管部材(1)の外径rを8mmとしている。また、本実施例では上記の如く、管部材(1)をアルミ合金にて形成しているが、他の異なる実施例においては、管部材(1)を鋼鉄、ステンレス鋼、銅、銅合金、チタン、チタン合金等にて形成することも可能である。   The first embodiment of the present invention will be described. (1) is a pipe member formed of an aluminum alloy. As shown in FIG. 1, a plurality of straight pipe portions (2) are inserted into fin members (3) at intervals ( 4), the end portion of the straight pipe portion (2) is curved, and this curved portion is a U-shaped folded portion (5). By forming the pipe member (1) meandering in this manner, a plurality of insertion intervals (4) of the fin members (3) are preferably formed in parallel. In each insertion interval (4), a fin member (3) is engaged and arranged. In this embodiment, the outer diameter r of the pipe member (1) shown in FIG. 11 is 8 mm. In this embodiment, the pipe member (1) is formed of an aluminum alloy as described above. However, in other different embodiments, the pipe member (1) is made of steel, stainless steel, copper, copper alloy, It is also possible to form with titanium, titanium alloy or the like.

上記フィン部材(3)は、板厚を0.3mmとしたアルミ合金製の平板状の帯材にて形成したものであって、図9に示す如く上記帯材を一定折波高さのコルゲート状に折曲加工したコルゲートフィンとしている。このようにフィン部材(3)をコルゲートフィンとすることにより、折曲加工により形成される湾曲部(6)を介して多数の平板状のフィン(7)が一体的に形成されるものとなる。尚、本実施例においては、図10に示すフィン(7)の配置間隔(18)qを2.0mmとしている。従って、フィン部材(3)を上記の如く形成することにより、多数のフィン(7)を等間隔且つ平行に管部材(1)に配置することが容易となるとともに、この多数のフィン(7)と多数の湾曲部(6)とにより、フィン部材(3)の表面積を広くして熱交換性能の高い製品を容易に製造することができる。また、湾曲部(6)の存在によりフィン部材(3)が立体的となって構造的に安定した一体構造のものとなり、耐衝撃性が向上して熱交換器(20)の耐久性をも向上させることが可能となる。尚、本実施例ではフィン部材(3)をアルミ合金にて形成しているが、他の異なる実施例においては、鋼鉄、ステンレス鋼、銅、銅合金、チタン、チタン合金などにて形成することも可能である。 The fin member (3) is formed of a flat strip made of aluminum alloy having a plate thickness of 0.3 mm, and the strip is formed into a corrugated shape having a constant folding height as shown in FIG. The corrugated fins are bent. Thus, by using the corrugated fin as the fin member (3), a large number of flat fins (7) are integrally formed via the curved portion (6) formed by bending. . In this embodiment, the arrangement interval (18) q of the fins (7) shown in FIG. 10 is set to 2.0 mm. Therefore, by forming the fin member (3) as described above, it becomes easy to arrange a large number of fins (7) on the pipe member (1) at equal intervals and in parallel, and the large number of fins (7). And a large number of curved portions (6), the surface area of the fin member (3) can be widened to easily produce a product with high heat exchange performance. Further, the presence of the curved portion (6) makes the fin member (3) three-dimensional and has a structurally stable integrated structure, which improves the impact resistance and increases the durability of the heat exchanger (20). It becomes possible to improve. In this embodiment, the fin member (3) is formed of an aluminum alloy. However, in other different embodiments, the fin member (3) is formed of steel, stainless steel, copper, copper alloy, titanium, titanium alloy, or the like. Is also possible.

また、上記の如く形成したフィン部材(3)において、湾曲形成された湾曲部(6)のうち、最も外方に張り出した湾曲頂部(15)を凹状に押圧変形することにより、図9に示す如く円弧状の係合凹部(8)を形成している。そして、この係合凹部(8)の形状を、図10、11に示す如く管部材(1)の外周面(10)と面接触が可能となるよう、管部材(1)の外周面(10)の形状に対応したものとしている。 Further, in the fin member (3) formed as described above, the curved top portion (15) that protrudes outwardly out of the curved portion (6) that is curved is pressed and deformed into a concave shape, thereby being shown in FIG. Thus, an arcuate engagement recess (8) is formed. The shape of the engaging recess (8) is such that the outer peripheral surface (10) of the pipe member (1) can be brought into surface contact with the outer peripheral surface (10) of the pipe member (1) as shown in FIGS. ).

そして、この係合凹部(8)に上記管部材(1)を係合させた状態で、図1に示す如く、この管部材(1)間の各挿入間隔(4)内にフィン部材(3)をそれぞれ挿入配置している。そして、上記の如くフィン部材(3)を配置した管部材(1)の両端及び両端の両側を、図1に示す如く、それぞれ一対の端部カバー部材(11)、及び側部カバー部材(12)にて被覆し、一方の端部カバー部材(11)からは、管部材(1)の両端部(13)を突出配置している。そして、端部カバー部材(11)の両側には、本実施例の熱交換器(20)を車輌の床下などに組みつけるためのブラケット(14)を突出形成している。 Then, with the pipe member (1) engaged with the engaging recess (8), as shown in FIG. 1, the fin members (3) are inserted into the insertion intervals (4) between the pipe members (1). ) Are inserted and arranged. As shown in FIG. 1, a pair of end cover members (11) and side cover members (12) are disposed at both ends and both ends of the tube member (1) on which the fin member (3) is disposed as described above. ), And both end portions (13) of the pipe member (1) project from the one end cover member (11). Brackets (14) for assembling the heat exchanger (20) of this embodiment under the floor of the vehicle are formed on both sides of the end cover member (11).

本実施例の熱交換器(20)は上記の如く、管部材(1)にコルゲートフィンであるフィン部材(3)を係合配置するという簡易な構成としているため、製造を容易なものとすることができるとともに、フィン部材(3)の広い表面積により、フィン部材(3)によって管部材(1)からの熱を効率よく放熱することが可能となり、熱交換性能を容易に高めることができるものである。また、図1に示す如くフィン部材(3)が1段に並列配置した構成となるため、上記特許文献1に記載の2段の熱交換器とは異なり、熱交換器(20)の厚さ方向の嵩を低くすることが可能となる。従って、自動車の床下等、狭い空間への搭載性を良好なものとすることができる。 Since the heat exchanger (20) of the present embodiment has a simple configuration in which the fin member (3), which is a corrugated fin, is engaged with the pipe member (1) as described above, it is easy to manufacture. In addition to the large surface area of the fin member (3), the fin member (3) can efficiently dissipate heat from the pipe member (1), and the heat exchange performance can be easily improved. It is. Further, since the fin members (3) are arranged in parallel in one stage as shown in FIG. 1, the thickness of the heat exchanger (20) is different from the two-stage heat exchanger described in Patent Document 1. It becomes possible to reduce the bulk of the direction. Therefore, the mountability in a narrow space such as under the floor of an automobile can be improved.

また、フィン(7)の配置間隔(18)qを2.0 mmとしているため、図8に示す如く、他の配置間隔と比較して熱交換器(20)を通過した管内流体の低下温度を高いものとすることが可能となり、熱交換性能に優れた熱交換器(20)を得ることができる。また、図11に示す隣接するフィン部材(3)の管部材(1)表面からの突出部分(16)における湾曲頂部(15)の対向間隔(17)tを2mmとしている。そして、図10に示す管部材(1)表面からのフィン部材(3)の幅方向の突出高さLは4mmであって、湾曲頂部(15)の対向間隔(17)t=2mmとの関係においてy≧2.46x-0.29 (y:管部材(1)表面からのフィン部材(3)の幅方向の突出高さL/湾曲頂部(15)の対向間隔(17)t、x:湾曲頂部(15)の対向間隔(17)t)の数式が成立するものである。 Further, since the arrangement interval (18) q of the fins (7) is set to 2.0 mm, as shown in FIG. 8, the lowered temperature of the fluid in the pipe that has passed through the heat exchanger (20) is higher than that of other arrangement intervals. Therefore, the heat exchanger (20) having excellent heat exchange performance can be obtained. Moreover, the opposing space | interval (17) t of the curved top part (15) in the protrusion part (16) from the pipe member (1) surface of the adjacent fin member (3) shown in FIG. 11 is 2 mm. And the protrusion height L of the fin member (3) in the width direction from the surface of the pipe member (1) shown in FIG. 10 is 4 mm, and the relationship with the facing interval (17) t = 2 mm of the curved top (15). Y ≧ 2.46x− 0.29 (y: protrusion height L of the fin member (3) in the width direction from the surface of the pipe member (1) / opposite distance (17) t of the curved top (15), x: curved top The formula of (15) facing interval (17) t) is established.

上記の如く作成した本実施例の熱交換器(20)において、飛石試験を行った。この飛石試験は、自動車の走行中に車輪により路面の石が巻き上げられ飛来して当接することを想定した、自動車規格JASO M 104「ブレーキチューブ試験方法」に準じて実施した。本実施例の飛石試験の試験条件は、下記の通りである。
(1)空気圧力;0.4±0.03MPa
(2)吹付角度;直角
(3)吹付距離;350mm
(4)飛石量;850g
(5)回数;5回
(6)試験装置;グラベロメータ(スガ試験機株式会社製、JA400飛石試験機)
(7)飛石;品名「GT」型番「4」(株式会社チップトン製:エッジ部を有し、研磨作業で使用される一辺の長さ約10mmで高さ約8mmの略正三角柱状若しくは略正三角錐台状の研磨石)
The stepping stone test was conducted in the heat exchanger (20) of the present example prepared as described above. This stepping stone test was carried out in accordance with the automobile standard JASO M 104 “Brake tube test method”, assuming that road stones are rolled up by wheels and come in contact with the vehicle while the vehicle is running. The test conditions of the stepping stone test of this example are as follows.
(1) Air pressure; 0.4 ± 0.03MPa
(2) Spray angle; right angle
(3) Spraying distance: 350mm
(4) Amount of stepping stones; 850g
(5) Number of times: 5 times
(6) Test equipment: Gravelometer (Suga Test Instruments Co., Ltd., JA400 Stepping Stone Tester)
(7) Stepping stone: Product name “GT” Model No. “4” (Chipton Co., Ltd .: with an edge, approximately 10 mm on a side and approximately 8 mm in height, used for polishing work) (Plate pyramid shaped grinding stone)

そして、上記飛石試験を行った後のフィン部材(3)及び管部材(1)の表面状態について、目視にて確認した。上記試験後のフィン部材(3)及び管部材(1)の表面状態を、図3の写真にて示す。図3(b)より、フィン部材(3)は、飛石が直接当たることによって各フィン(7)がゆがんだ状態となっていることから、飛石によって大きなダメージを受けていることが確認できた。しかしながら、管部材(1)の表面については飛石の接触により生じたとみられる傷は殆ど確認できなかった。このような結果から、本実施例の寸法にて熱交換器(20)を作成することにより、良好な熱交換性能を損なうことなく、飛石による管部材(1)へのダメージを防ぐことが可能となり、製品寿命を長く保つことができるものである。   Then, the surface condition of the fin member (3) and the pipe member (1) after the stepping stone test was visually confirmed. The surface state of the fin member (3) and the pipe member (1) after the test is shown in the photograph of FIG. From FIG.3 (b), since the fin member (3) was in the state which each fin (7) was distorted by directly hitting a stepping stone, it has confirmed that it received the big damage by a stepping stone. However, on the surface of the pipe member (1), scars that were considered to be caused by contact with stepping stones were hardly confirmed. From these results, by creating the heat exchanger (20) with the dimensions of the present embodiment, it is possible to prevent damage to the pipe member (1) due to stepping stones without impairing good heat exchange performance. Thus, the product life can be kept long.

尚、本実施例において、フィン部材(3)と管部材(1)との係合部(22)をろう付けや接着、塗装等は行っていないが、他の異なる実施例においては、上記係合部(22)及び/又はその近傍をろう付けや接着、塗装等の手段により、上記係合部(22)におけるフィン部材(3)と管部材(1)との間を密着させるものであっても良い。このように上記手段によって係合部(22)のフィン部材(3)と管部材(1)とを密着させることにより、係合部(22)に隙間が発生し、この隙間に水分が入り込んでフィン部材(3)や管部材(1)が腐食するという事態を防ぐことができるため、この係合部(22)において優れた耐食性を得ることが可能となる。また、管部材(1)とフィン部材(3)とは常に密着した状態を保つことから、管部材(1)とフィン部材(3)との間の熱交換を効率よく行うことができ、熱交換性能を更に向上させることが可能となる。   In this embodiment, the engaging portion (22) between the fin member (3) and the pipe member (1) is not brazed, bonded, or painted, but in other different embodiments, The joint portion (22) and / or the vicinity thereof are brought into close contact with the fin member (3) and the pipe member (1) in the engagement portion (22) by means such as brazing, adhesion, or painting. May be. As described above, when the fin member (3) of the engaging portion (22) and the pipe member (1) are brought into close contact with each other by the above means, a gap is generated in the engaging portion (22), and moisture enters the gap. Since it is possible to prevent the fin member (3) and the pipe member (1) from corroding, it is possible to obtain excellent corrosion resistance in the engaging portion (22). Further, since the pipe member (1) and the fin member (3) are always kept in close contact with each other, heat exchange between the pipe member (1) and the fin member (3) can be performed efficiently, The exchange performance can be further improved.

1 管部材
2 直管部
3 フィン部材
5 折返し部
6 湾曲部
7 フィン
8 係合凹部
15 湾曲頂部
16 突出部分
17 対向間隔
18 配置間隔
DESCRIPTION OF SYMBOLS 1 Pipe member 2 Straight pipe part 3 Fin member 5 Folding part 6 Curved part 7 Fin 8 Engagement recessed part 15 Curved top part 16 Projection part 17 Opposite space | interval 18 Arrangement | positioning space | interval

Claims (3)

板材をコルゲート状に折曲加工してコルゲートフィンとするとともに、折曲加工により形成された湾曲部を凹状に押圧変形して係合凹部を形成した複数のフィン部材と、このフィン部材を介して複数の直管部を平行に配置するとともにこの直管部をU字状の折返し部で連結した蛇行状の管部材とから成り、この管部材の複数の直管部を、上記複数のフィン部材の係合凹部に係合した状態において、管部材の外径を8mm〜12mmとし、隣接するフィン部材の湾曲部において最も外方に張り出した湾曲頂部の対向間隔を0.5〜5.0mmとするとともに、上記直管部の表面からのフィン部材の突出高さを、11mm以下であって、且つ、上記対向間隔が0.5〜5.0mmの範囲内において、y≧2.46x-0.29 (y:管部材表面からのフィン部材の幅方向の突出高さ/湾曲頂部における対向間隔、x:湾曲頂部における対向間隔)の数式が成立する値としたことを特徴とする熱交換器。 A plate material is bent into a corrugated shape to form a corrugated fin, and a plurality of fin members in which a curved portion formed by bending is pressed and deformed into a concave shape to form an engaging concave portion, and the fin member is interposed therebetween. A plurality of straight pipe portions are arranged in parallel, and the straight pipe portions are composed of meandering pipe members connected by U-shaped folded portions, and the plurality of straight pipe portions are connected to the plurality of fin members. In the state engaged with the engaging recess of the tube member, the outer diameter of the tube member is 8 mm to 12 mm, and the facing interval of the curved top portion that protrudes most outward in the curved portion of the adjacent fin member is 0.5 to 5.0 mm, and When the protrusion height of the fin member from the surface of the straight pipe portion is 11 mm or less and the facing interval is in the range of 0.5 to 5.0 mm, y ≧ 2.46x −0.29 (y: pipe member surface From the height of the fin member in the width direction / curved top Kicking opposing distance, x: the heat exchanger, characterized in that the formula of the facing distance) of the curved top portion is a value which satisfies. フィン部材は、板厚を0.2mm〜0.5mmとしたことを特徴とする請求項1の熱交換器。 The heat exchanger according to claim 1, wherein the fin member has a thickness of 0.2 mm to 0.5 mm. フィン部材は、フィンの配置間隔を、1.6mm〜2.2mmとしたことを特徴とする請求項1、または2の熱交換器。
The heat exchanger according to claim 1 or 2, wherein the fin member has an interval between fins of 1.6 mm to 2.2 mm.
JP2010022997A 2010-02-04 2010-02-04 Heat exchanger Active JP5393514B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010022997A JP5393514B2 (en) 2010-02-04 2010-02-04 Heat exchanger
KR1020127015384A KR101698966B1 (en) 2010-02-04 2010-10-29 Heat exchanger
EP10845251.7A EP2532998B1 (en) 2010-02-04 2010-10-29 Heat exchanger
US13/577,343 US20130118724A1 (en) 2010-02-04 2010-10-29 Heat exchanger
PCT/JP2010/069768 WO2011096120A1 (en) 2010-02-04 2010-10-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022997A JP5393514B2 (en) 2010-02-04 2010-02-04 Heat exchanger

Publications (3)

Publication Number Publication Date
JP2011163567A JP2011163567A (en) 2011-08-25
JP2011163567A5 JP2011163567A5 (en) 2013-01-17
JP5393514B2 true JP5393514B2 (en) 2014-01-22

Family

ID=44355142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022997A Active JP5393514B2 (en) 2010-02-04 2010-02-04 Heat exchanger

Country Status (5)

Country Link
US (1) US20130118724A1 (en)
EP (1) EP2532998B1 (en)
JP (1) JP5393514B2 (en)
KR (1) KR101698966B1 (en)
WO (1) WO2011096120A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301801B1 (en) * 2011-10-18 2013-08-29 함승진 Heat exchanger for having a simple assembly process
JP6276539B2 (en) * 2013-08-26 2018-02-07 三菱重工業株式会社 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
CN104089517B (en) * 2014-07-18 2016-08-17 丹佛斯微通道换热器(嘉兴)有限公司 Fin and the heat exchanger with this fin for heat exchanger
US10563930B2 (en) * 2016-01-12 2020-02-18 Hussmann Corporation Heat exchanger including coil end close-off cover
MX2019003589A (en) 2016-09-29 2019-06-10 Jfe Steel Corp Heat exchanger, radiant tube heating device, and method for manufacturing heat exchanger.
DE102017125054B4 (en) * 2017-10-26 2019-10-10 Miele & Cie. Kg Heat exchanger for a household appliance, such as a tumble dryer, a dishwasher or a washer-dryer with a heat pump device
CN109708340B (en) * 2018-09-30 2021-01-05 合肥海尔电冰箱有限公司 Evaporator using method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119761A (en) * 1935-06-18 1938-06-07 Clinton H Wentworth Heat interchange device
US3275072A (en) * 1964-08-14 1966-09-27 Int Harvester Co Radiator core guard
US3407874A (en) * 1966-05-19 1968-10-29 John R. Gier Jr. Fin tube assemblage for heat exchangers
US4778004A (en) * 1986-12-10 1988-10-18 Peerless Of America Incorporated Heat exchanger assembly with integral fin unit
JPH01181092A (en) * 1988-01-14 1989-07-19 Nippon Denso Co Ltd Heat exchanger
JP3203606B2 (en) * 1992-09-18 2001-08-27 昭和電工株式会社 Heat exchanger
JPH1144498A (en) * 1997-05-30 1999-02-16 Showa Alum Corp Flat porous tube for heat exchanger and heat exchanger using the tube
JP2000130977A (en) * 1998-10-22 2000-05-12 Hitachi Ltd Refrigerator
JP2000220982A (en) * 1999-01-27 2000-08-08 Zexel Corp Heat exchanger
US6688380B2 (en) * 2002-06-28 2004-02-10 Aavid Thermally, Llc Corrugated fin heat exchanger and method of manufacture
JP4520774B2 (en) * 2003-12-15 2010-08-11 臼井国際産業株式会社 Heat exchanger
JP5276807B2 (en) * 2007-07-17 2013-08-28 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP5205095B2 (en) * 2008-03-25 2013-06-05 昭和電工株式会社 Oil cooler

Also Published As

Publication number Publication date
US20130118724A1 (en) 2013-05-16
KR20120115267A (en) 2012-10-17
EP2532998B1 (en) 2016-03-30
KR101698966B1 (en) 2017-01-23
EP2532998A4 (en) 2015-01-07
WO2011096120A1 (en) 2011-08-11
JP2011163567A (en) 2011-08-25
EP2532998A1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5393514B2 (en) Heat exchanger
EP2645041A2 (en) Heat exchanger tube and heat exchanger
US20070287334A1 (en) Flat tube adapted for heat exchanger
WO2006028253A1 (en) Heat exchanger
JP5970924B2 (en) Heat exchanger with tubes
JP2009063228A (en) Flat heat transfer tube
US20080264620A1 (en) Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger
JP2008121934A (en) Plate fin tube heat exchanger and its manufacturing method
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
JP4483536B2 (en) Heat exchanger
CN110017703B (en) Heat exchanger
JP2009270792A (en) Heat exchanger
US20070289728A1 (en) Heat exchanger and mounting structure of the same
WO2006132037A1 (en) Tube for heat exchanger
JP5187047B2 (en) Tube for heat exchanger
KR101016696B1 (en) turn fin type heat exchanger and manufacturing method for turn fin type heat exchanger
KR20090010308A (en) Fin for heat exchanger
JP7262586B2 (en) Heat transfer tube and heat exchanger using the same
JP5322631B2 (en) Plate for flat tube production, flat tube and heat exchanger
JP2006017429A (en) Side plate for heat exchanger, and heat exchanger using it
JPWO2006073135A1 (en) Heat exchange tube, heat exchanger, and refrigeration cycle
JP2020143864A (en) Heat exchanger
JP6071711B2 (en) Cylindrical fin unit manufacturing method for heat exchanger and heat exchanger using the manufacturing method
JP2003240470A (en) Heat exchanger
JP5066708B2 (en) Plate for flat tube manufacturing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150