JP5391783B2 - Granular conductive resin composite particles for fuel cell separators - Google Patents

Granular conductive resin composite particles for fuel cell separators Download PDF

Info

Publication number
JP5391783B2
JP5391783B2 JP2009086837A JP2009086837A JP5391783B2 JP 5391783 B2 JP5391783 B2 JP 5391783B2 JP 2009086837 A JP2009086837 A JP 2009086837A JP 2009086837 A JP2009086837 A JP 2009086837A JP 5391783 B2 JP5391783 B2 JP 5391783B2
Authority
JP
Japan
Prior art keywords
composite particles
particle size
fuel cell
conductive resin
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009086837A
Other languages
Japanese (ja)
Other versions
JP2010238602A (en
Inventor
俊之 博多
浩史 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009086837A priority Critical patent/JP5391783B2/en
Publication of JP2010238602A publication Critical patent/JP2010238602A/en
Application granted granted Critical
Publication of JP5391783B2 publication Critical patent/JP5391783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池セパレータ用導電性樹脂複合体粒子に関するものである。
また、流動性に優れ、特定のかさ密度を有することから成形性にも優れ、電気的特性や機械的強度に優れた燃料電池セパレータ用導電性樹脂複合体粒子に関するものである。
The present invention relates to conductive resin composite particles for fuel cell separators.
In addition, the present invention relates to a conductive resin composite particle for a fuel cell separator that has excellent fluidity, has a specific bulk density, is excellent in moldability, and has excellent electrical characteristics and mechanical strength.

一般に燃料電池は、環境に優しい未来型のエネルギーとして注目されている。その構造は、複数の単位セルを直列に重ねて構成されるセルスタックからなっている。この単位セルを構成するのが、正極、セパレータ、電解質、負極である。   In general, fuel cells are attracting attention as environmentally friendly future-type energy. The structure is composed of a cell stack formed by stacking a plurality of unit cells in series. The unit cell is composed of a positive electrode, a separator, an electrolyte, and a negative electrode.

正極に供給された水素は、触媒の作用でイオン化され、水素イオンと電子とに分離する。水素イオンは、電解質を通して負極に移動し、同時に、電子は外部回路を通して負極に移動し、そこで水素イオン、酸素および電子が反応して水が生成する、というメカニズムである。   The hydrogen supplied to the positive electrode is ionized by the action of the catalyst and separated into hydrogen ions and electrons. The hydrogen ions move to the negative electrode through the electrolyte, and at the same time, the electrons move to the negative electrode through an external circuit, where hydrogen ions, oxygen and electrons react to produce water.

セパレータに要求される項目としては、高い電導性、電解質による耐腐食性、燃料ガスと空気の遮断性、曲げ強度等の機械的強度、耐クリープ性、耐熱性、耐膨潤性、成形性、低コスト等のさまざまな項目がある。   Items required for the separator include high electrical conductivity, corrosion resistance due to electrolytes, fuel gas and air barrier properties, mechanical strength such as bending strength, creep resistance, heat resistance, swelling resistance, moldability, low There are various items such as cost.

このようなセパレータには、大きく分けて金属系セパレータと炭素系セパレータの二つのタイプがある。前者は、機械的強度、ガス不透過性、寸法安定性において、一方、後者は、耐腐食性、軽量さにおいて有利である。   Such separators are roughly classified into two types: metal separators and carbon separators. The former is advantageous in mechanical strength, gas impermeability, and dimensional stability, while the latter is advantageous in corrosion resistance and light weight.

一般に、炭素系セパレータは、導電性炭素材と熱硬化性樹脂を混合・混錬して成形し、切削により溝パターンを形成させる方法により作製される。最近は、金型による圧縮成形に変えて量産性の向上とコストダウンを図っている。特に、導電性炭素材としての粒度を規定することで、成形性と導電性を両立させている(特許文献1)。   In general, a carbon-based separator is manufactured by a method in which a conductive carbon material and a thermosetting resin are mixed and kneaded and formed, and a groove pattern is formed by cutting. Recently, in place of compression molding with a mold, mass production is improved and costs are reduced. In particular, by defining the particle size as a conductive carbon material, both formability and conductivity are achieved (Patent Document 1).

また、導電性炭素材と熱硬化性樹脂とを流動層のような処理機を用いて無加圧状態で混合し、かつ造粒して得られたセパレータ用成形材料の製造方法が提案されている(特許文献2)。   In addition, a method for producing a molding material for a separator obtained by mixing and granulating a conductive carbon material and a thermosetting resin in a non-pressurized state using a processing machine such as a fluidized bed has been proposed. (Patent Document 2).

さらに、フェノール核結合官能基がメチレン基、メチロール基、およびジメチレンエーテル基より構成され、各官能基の比率を特定することで、成形性と電気的な耐久性および導電性に優れたセパレータ用樹脂組成物が提案されている(特許文献3)。   Furthermore, the phenol nucleus-bonding functional group is composed of a methylene group, a methylol group, and a dimethylene ether group, and by specifying the ratio of each functional group, for separators with excellent moldability, electrical durability, and conductivity A resin composition has been proposed (Patent Document 3).

また、熱硬化性樹脂と黒鉛粒子成分を混練して得られる樹脂組成物に関して、混練前の黒鉛粒子の平均粒径が1〜150μmの範囲にあり、混練前に対する混練後の平均粒径の変化率が30%未満にすることで、成形性の悪化や電気特性の低下を抑制できることを報告している(特許文献4)。   Further, regarding the resin composition obtained by kneading the thermosetting resin and the graphite particle component, the average particle size of the graphite particles before kneading is in the range of 1 to 150 μm, and the change in the average particle size after kneading with respect to before kneading It has been reported that when the rate is less than 30%, it is possible to suppress the deterioration of moldability and the deterioration of electrical characteristics (Patent Document 4).

特開2003−203643号公報Japanese Patent Laid-Open No. 2003-203643 特開2003−086198号公報JP 2003-086198 A 特開2003−049049号公報JP 2003-049049 A 特開2005−339899号公報JP 2005-339899 A

本発明は、燃料電池セパレータ用炭素材料に関するものであり、成形性を損なうことなく、電気的特性や機械的特性に優れた燃料電池セパレータ用成形材料を提供する。さらに、短時間で成形でき、燃料電池セパレータとしてのコストダウンに大きく貢献できる燃料電池セパレータ用成形材料は強く求められている。   The present invention relates to a carbon material for a fuel cell separator, and provides a molding material for a fuel cell separator excellent in electrical characteristics and mechanical characteristics without impairing moldability. Furthermore, a molding material for a fuel cell separator that can be molded in a short time and can greatly contribute to cost reduction as a fuel cell separator is strongly demanded.

即ち、前記特許文献1(特開2003−203643号公報)には、成形材料化された段階での成形材料中の炭素系基材が、平均粒径が50μm以上、100μm以下の範囲内にあり、かつ、全粒子中の85%以上が粒径10μm以上、200μm以下の範囲内にあることが記載されているが、これらは成形体を作製する上で重要な成形材料としての粒度に関するものではなく、成形に際してその作業性を向上させる効果は見られない。   That is, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-203643), the carbon-based substrate in the molding material at the stage of forming the molding material has an average particle size in the range of 50 μm or more and 100 μm or less. In addition, it is described that 85% or more of all particles are in the range of particle size of 10 μm or more and 200 μm or less, but these are not related to the particle size as an important molding material for producing a molded body. There is no effect of improving the workability during molding.

また、特許文献2(特開2003−086198号公報)に記載されている成形材料は、炭素系素材と熱硬化性樹脂を無加圧状態で、混合しつつ造粒ないし混合した後造粒されたものであり、炭素系基材のへき開や小径化が起こりにくく、流動性にも優れると記載されているが、得られた造粒物の粒度に関する記載がなく、さらに、市販のフェノール樹脂あるいは一旦別の容器で合成したフェノール樹脂を用いることから、炭素素材とフェノール樹脂の濡れ性の悪さに基づく空隙が存在し、結果として成形体としての空隙を残さないために成形時の圧力を高める必要があり生産性の面で好ましくない。   Further, the molding material described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-086198) is granulated or granulated after mixing or mixing the carbon-based material and the thermosetting resin in a non-pressurized state. It is described that the carbon-based substrate is not easily cleaved or reduced in diameter and has excellent fluidity, but there is no description regarding the particle size of the obtained granulated product, and further, a commercially available phenolic resin or Since the phenol resin once synthesized in a separate container is used, there is a gap based on poor wettability between the carbon material and the phenol resin, and as a result, it is necessary to increase the pressure during molding in order not to leave a void as a molded body. Is not preferable in terms of productivity.

また、特許文献3(特開2003−049049号公報)に記載されている燃料電池セパレータ用樹脂組成物は、フェノール樹脂のメチレン基、メチロール基、及びジメチレンエーテル基を規定することで、成形性や成形体の強度を向上させられると記載されている。ただし、炭素素材とフェノール樹脂との濡れ性に関しては上記特許と同様に優れているとはいえず、結果として成形圧力を高める必要があることから生産性の面で好ましくない。   In addition, the resin composition for a fuel cell separator described in Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-049049) has a moldability by defining a methylene group, a methylol group, and a dimethylene ether group of a phenol resin. And that the strength of the molded body can be improved. However, it cannot be said that the wettability between the carbon material and the phenol resin is excellent as in the above patent, and as a result, it is necessary to increase the molding pressure, which is not preferable in terms of productivity.

また、特許文献4(特開2005−339899号公報)に記載されている燃料電池セパレータ用樹脂組成物は、黒鉛粒子の平均粒径が1〜150μmの範囲にあり、且つ、熱硬化性樹脂との混練による黒鉛粒子の平均粒径の変化率が30%未満であることにより、電気特性の低下を防止している旨の記載があるが、これは原料としての炭素素材の粒度の変化を防止しているだけであり、成形材料としての粒度には言及しておらず、成形性への効果は期待できない。   Moreover, the resin composition for a fuel cell separator described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2005-339899) has an average particle size of graphite particles in the range of 1 to 150 μm, and a thermosetting resin. There is a description that the change rate of the average particle size of the graphite particles by kneading is less than 30%, thereby preventing the deterioration of the electrical characteristics, but this prevents the change of the particle size of the carbon material as a raw material. However, the particle size as a molding material is not mentioned, and an effect on moldability cannot be expected.

そこで、本発明は、燃料電池セパレータ用成形材料として、成形性に優れ、且つ、電気的特性や機械的特性においても優れた材料を提供することを技術的課題とする。   Therefore, the present invention has a technical problem to provide a material excellent in moldability and excellent in electrical characteristics and mechanical characteristics as a molding material for a fuel cell separator.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、導電性炭素を含む水性媒体中でフェノール類およびホルマリン類とアンモニアを重合させることにより得られる複合体粒子であって、当該複合体粒子の平均粒子径が10〜100μmであり、複合体粒子の粒度分布において、50%粒度に対する90%粒度の比率(D90/D50)及び、10%粒度に対する50%粒度の比率(D50/D10)が、いずれも3.0以下であり、かさ密度が0.3g/ml以上0.8g/ml以下であり、さらに体積固有抵抗が100mΩcm以下であり、導電性炭素の含有量が複合体粒子に対して60〜90重量%である燃料電池セパレータ用粒状導電性樹脂複合体粒子である(本発明1)。 That is, the present invention relates to composite particles obtained by polymerizing phenols and formalins and ammonia in an aqueous medium containing conductive carbon, and the average particle diameter of the composite particles is 10 to 100 μm. In the particle size distribution of the composite particles, the ratio of 90% particle size to 50% particle size (D90 / D50) and the ratio of 50% particle size to 10% particle size (D50 / D10) are both 3.0 or less, A fuel cell having a bulk density of 0.3 g / ml to 0.8 g / ml, a volume resistivity of 100 mΩcm or less, and a conductive carbon content of 60 to 90% by weight with respect to the composite particles. It is a granular conductive resin composite particle for a separator (Invention 1).

また、本発明は、導電性炭素として、カーボンブラック粉末あるいは黒鉛粉末を用いることを特徴とする本発明1記載の燃料電池セパレータ用粒状導電性樹脂複合体粒子である(本発明)。
The present invention provides a conductive carbon is carbon black powder or the present invention 1 Symbol placement of the fuel cell granular conductive resin composite particle separator, which comprises using a graphite powder (present invention 2).

本発明に係る燃料電池セパレータ用導電性樹脂複合体粒子は、流動性に優れ、特定のかさ密度を有することから成形性にも優れ、電気的特性や機械的強度に優れた燃料電池セパレータ用導電性樹脂複合体粒子に関するものである。   The conductive resin composite particles for a fuel cell separator according to the present invention are excellent in fluidity, have a specific bulk density, have excellent moldability, and have excellent electrical characteristics and mechanical strength. It relates to a conductive resin composite particle.

本発明の構成をより詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の平均粒子径(D50)は10〜100μmである。平均粒子径が10μm未満の場合、成形材料として流動性が悪く成形性に影響を与える。一方、100μmを越える場合には、セパレータの薄厚化が難しくなる。好ましい平均粒子径は10〜90μm、より好ましくは15〜80μmである。   The average particle diameter (D50) of the granular conductive resin composite particles for a fuel cell separator according to the present invention is 10 to 100 μm. When the average particle diameter is less than 10 μm, the flowability as a molding material is poor and the moldability is affected. On the other hand, when the thickness exceeds 100 μm, it is difficult to reduce the thickness of the separator. The average particle diameter is preferably 10 to 90 μm, more preferably 15 to 80 μm.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子のかさ密度は0.3g/ml以上0.8g/ml以下である。かさ密度が0.3g/ml未満の場合、成形材料としての流動性が悪く、さらに成形前と成形後の厚みの変化率が大きく、金型の設計が難しくなる。一方、0.8g/mlを越える場合には、成形後の表面の平滑性に影響が生じる。好ましいかさ密度は0.32g/ml以上0.7g/ml以下であり、より好ましくは0.35g/ml以上0.6g/ml以下である。   The bulk density of the granular conductive resin composite particles for a fuel cell separator according to the present invention is 0.3 g / ml or more and 0.8 g / ml or less. When the bulk density is less than 0.3 g / ml, the fluidity as a molding material is poor, the thickness change rate before and after molding is large, and the mold design becomes difficult. On the other hand, when it exceeds 0.8 g / ml, the smoothness of the surface after molding is affected. The preferred bulk density is 0.32 g / ml or more and 0.7 g / ml or less, more preferably 0.35 g / ml or more and 0.6 g / ml or less.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の体積固有抵抗は100mΩcm以下である。体積固有抵抗が100mΩcmを越えるとセパレータにした際の導電性が不十分となる。好ましい体積固有抵抗は1〜50mΩcmであり、より好ましくは、2〜20mΩcmである。   The volume specific resistance of the granular conductive resin composite particles for a fuel cell separator according to the present invention is 100 mΩcm or less. If the volume resistivity exceeds 100 mΩcm, the conductivity when the separator is made becomes insufficient. A preferable volume resistivity is 1 to 50 mΩcm, and more preferably 2 to 20 mΩcm.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の導電性炭素の含有量が複合体粒子に対して60〜90重量%である。導電性炭素の含有量が60重量%未満の場合には、セパレータとしての電気的特性が不十分であり、一方、90重量%を越える場合には、機械的強度において不十分である。好ましくは70〜90重量%、より好ましくは80〜90重量%である。   The conductive carbon content of the granular conductive resin composite particles for a fuel cell separator according to the present invention is 60 to 90% by weight with respect to the composite particles. When the conductive carbon content is less than 60% by weight, the electrical characteristics as a separator are insufficient, while when it exceeds 90% by weight, the mechanical strength is insufficient. Preferably it is 70 to 90 weight%, More preferably, it is 80 to 90 weight%.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の粒度分布において、50%粒度に対する90%粒度の比率(D90/D50)及び、10%粒度に対する50%粒度の比率(D50/D10)が、いずれも3.0以下であることが好ましい。3.0を越える場合には、充填性に影響が生じ、セパレータとして機械的強度およびガス透過性において不十分となる。より好ましい粒度分布の範囲は1.0〜2.0である。   In the particle size distribution of the granular conductive resin composite particles for a fuel cell separator according to the present invention, the ratio of 90% particle size to 50% particle size (D90 / D50) and the ratio of 50% particle size to 10% particle size (D50 / D10) However, it is preferable that all are 3.0 or less. If it exceeds 3.0, the filling property is affected, and the separator is insufficient in mechanical strength and gas permeability. A more preferable range of the particle size distribution is 1.0 to 2.0.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子のBET比表面積は0.1m/g以上10m/g以下であることが好ましい。 The BET specific surface area of the granular conductive resin composite particles for a fuel cell separator according to the present invention is preferably 0.1 m 2 / g or more and 10 m 2 / g or less.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の流動率は30〜100secであることが好ましい。   The fluidity of the granular conductive resin composite particles for a fuel cell separator according to the present invention is preferably 30 to 100 sec.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の粒子形状は粒状である。   The particle shape of the granular conductive resin composite particles for a fuel cell separator according to the present invention is granular.

次に、本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子の製造法について述べる。   Next, a method for producing granular conductive resin composite particles for a fuel cell separator according to the present invention will be described.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子は、フェノール類、アルデヒド類及び導電性炭素を、塩基性触媒を開始剤として水性媒体中で重合反応させてフェノール樹脂を結合樹脂とする炭素とフェノール樹脂からなる複合体粒子を生成させた後、該複合体粒子を固液分離し、次いで、乾燥することで得られる。   The granular conductive resin composite particles for a fuel cell separator according to the present invention are obtained by polymerizing phenols, aldehydes, and conductive carbon in an aqueous medium using a basic catalyst as an initiator to obtain a phenol resin as a binder resin. After producing composite particles composed of carbon and phenolic resin, the composite particles are obtained by solid-liquid separation and then drying.

本発明に係る燃料電池セパレータ用粒状導電性樹脂複合体粒子は、導電性炭素とフェノール類とホルマリンおよび重合開始剤としてのアンモニア水を水媒体中で、80〜90℃の温度範囲で反応させた後、40℃以下に冷却すると、粒状複合体粒子粉末を含む水分散液が得られる。   The granular conductive resin composite particles for a fuel cell separator according to the present invention are obtained by reacting conductive carbon, phenols, formalin, and ammonia water as a polymerization initiator in an aqueous medium in a temperature range of 80 to 90 ° C. Then, when it cools to 40 degrees C or less, the aqueous dispersion containing granular composite particle powder is obtained.

本発明における導電性炭素として、カーボンブラック粉末か黒鉛粉末を用いることを特徴とする。黒鉛粉末のほうが好ましい。黒鉛粉末として人造黒鉛でも天然黒鉛のいずれでも構わない。本発明においては、導電性炭素に対して親油化処理は行わずに用いる。   Carbon black powder or graphite powder is used as the conductive carbon in the present invention. Graphite powder is preferred. The graphite powder may be either artificial graphite or natural graphite. In the present invention, the conductive carbon is used without performing a lipophilic treatment.

本発明における導電性炭素のBET比表面積は、2〜120m/gが好ましく、より好ましくは2〜20m/gである。2m/g未満でも特に問題はないが、導電性炭素の粒径が大きく、得られた粒状複合体粒子の粒径も100μmを超えてしまう。一方、120m/gを超える場合には、フェノール、ホルマリン等の使用量が多くなることにより、結果として複合体粒子中の導電性炭素の含有量が低くなってしまう。 The BET specific surface area of the conductive carbon in the present invention is preferably 2 to 120 m 2 / g, more preferably 2 to 20 m 2 / g. Even if it is less than 2 m 2 / g, there is no particular problem, but the particle size of the conductive carbon is large, and the particle size of the obtained granular composite particles also exceeds 100 μm. On the other hand, when exceeding 120 m < 2 > / g, the usage-amount of phenol, formalin, etc. increases, As a result, content of the conductive carbon in composite particle | grains will become low.

次に、この水分散液を濾過、遠心分離等の常法に従って固液を分離した後、乾燥することにより、粒状複合体粒子粉末が得られる。この際、水による洗浄を十分に行うことで、セパレータとしての特性を安定化させることが可能となる。   Next, the solid dispersion is separated from the aqueous dispersion by a conventional method such as filtration and centrifugation, and then dried to obtain a granular composite particle powder. At this time, it is possible to stabilize the characteristics as a separator by sufficiently washing with water.

本発明においては、フェノール樹脂の代わりに、エポキシ樹脂を用いることもできる。その製造方法としては、例えば、水性媒体中にビスフェノール類とエピハロヒドリンと導電性炭素を分散させ、アルカリ水性媒体中で反応させる方法が挙げられる。   In the present invention, an epoxy resin can be used instead of the phenol resin. Examples of the production method include a method in which bisphenols, epihalohydrin and conductive carbon are dispersed in an aqueous medium and reacted in an alkaline aqueous medium.

<作用>
本発明に係る複合体粒子は、主に、重合して得られるフェノール樹脂−導電性炭素の複合体粒子に起因し、成形性の優れた粒状導電性樹脂複合体粒子である。
<Action>
The composite particles according to the present invention are granular conductive resin composite particles having excellent moldability due mainly to the composite particles of phenol resin and conductive carbon obtained by polymerization.

本発明に係る複合体粒子は、平均粒子径が10〜100μmであり、かさ密度が0.3g/ml以上0.8g/ml未満であり、導電性炭素の含有量が複合体粒子に対して60〜90重量%であり、さらに体積固有抵抗が100mΩcm以下であるために、成形性に優れ、電気的特性や機械的強度にも優れた燃料電池セパレータ用粒状導電性樹脂複合体粒子である。   The composite particles according to the present invention have an average particle diameter of 10 to 100 μm, a bulk density of 0.3 g / ml or more and less than 0.8 g / ml, and a conductive carbon content relative to the composite particles. Since it is 60 to 90% by weight and the volume resistivity is 100 mΩcm or less, it is a granular conductive resin composite particle for a fuel cell separator that is excellent in moldability and excellent in electrical characteristics and mechanical strength.

本発明の代表的な実施例は次の通りである。   Representative examples of the present invention are as follows.

複合体粒子及び導電性炭素の平均粒子径(D50)はレーザー回折式粒度分布計(堀場製作所製)により計測した値で示した。また、粒子の粒子形態は、走査型電子顕微鏡(株式会社日立製作所製、S−800)で観察したものである。   The average particle diameter (D50) of the composite particles and the conductive carbon was indicated by a value measured by a laser diffraction particle size distribution meter (manufactured by Horiba, Ltd.). Moreover, the particle | grain form of particle | grains is observed with the scanning electron microscope (the Hitachi Ltd. make, S-800).

50%粒度に対する90%粒度の比率(D90/D50)及び、10%粒度に対する50%粒度の比率(D50/D10)の測定も、上記レーザー回折式粒度分布計により測定した値から算出した。   The ratio of 90% particle size to 50% particle size (D90 / D50) and the ratio of 50% particle size to 10% particle size (D50 / D10) were also calculated from the values measured by the laser diffraction particle size distribution analyzer.

BET比表面積は、Tri Star3000(島津製作所製)を用いて25℃の条件で測定した。   The BET specific surface area was measured under conditions of 25 ° C. using Tri Star 3000 (manufactured by Shimadzu Corporation).

かさ密度及び流動率は、JIS Z2504およびZ2502 の方法に準じて、サンプル量10gで測定した値で示した。   The bulk density and flow rate are shown as values measured with a sample amount of 10 g according to the method of JIS Z2504 and Z2502.

導電性炭素含有量は、示差熱熱重量分析装置(TG/DTA6300;セイコーインスツルメント社製)を用いて200℃〜550℃の重量減少分からフェノール樹脂分を求めることで計算して得た。   The conductive carbon content was obtained by calculating the phenol resin content from the weight loss of 200 ° C. to 550 ° C. using a differential thermothermal gravimetric analyzer (TG / DTA6300; manufactured by Seiko Instruments Inc.).

体積固有抵抗値は、ハイレジスタンスメーター4329A(商品名、横河ヒュ−レットパッカード社製)で測定した値を用いた。   As the volume resistivity value, a value measured with a high resistance meter 4329A (trade name, manufactured by Yokogawa Hewlett-Packard Company) was used.

<複合体粒子の製造>
<実施例1>
3Lのフラスコに、フェノール82g、37%ホルマリン115g、黒鉛粉末(平均粒子径;14.1μm、BET比表面積;13.8m/g)400g、25%アンモニア水80g及び水1300gを仕込み、攪拌しながら60分間で85℃に上昇させた後、同温度で120分間反応させることにより、フェノール樹脂と黒鉛粒子からなる複合体粒子の生成を行った。
<Production of composite particles>
<Example 1>
A 3 L flask was charged with 82 g of phenol, 115 g of 37% formalin, graphite powder (average particle size: 14.1 μm, BET specific surface area: 13.8 m 2 / g), 400 g of 25% aqueous ammonia and 1300 g of water and stirred. Then, the temperature was raised to 85 ° C. over 60 minutes, and then reacted at the same temperature for 120 minutes to produce composite particles composed of phenol resin and graphite particles.

次に、フラスコ内の内容物を30℃に冷却し、上澄み液を除去し、さらに下層の沈殿物を濾過し、通風乾燥機で80℃で7時間乾燥して複合体粒子を得た。得られた複合体粒子は、導電性炭素の含有量が80.5%、平均粒子径(D50)が38μm、かさ密度が0.38g/ml、体積固有抵抗が5mΩcm、50%粒度に対する90%粒度の比率(D90/D50)が1.8及び、10%粒度に対する50%粒度の比率(D50/D10)が1.4であった。   Next, the contents in the flask were cooled to 30 ° C., the supernatant liquid was removed, and the lower layer precipitate was filtered and dried with an air dryer at 80 ° C. for 7 hours to obtain composite particles. The obtained composite particles have a conductive carbon content of 80.5%, an average particle diameter (D50) of 38 μm, a bulk density of 0.38 g / ml, a volume resistivity of 5 mΩcm, and a 90% of 50% particle size. The ratio of particle size (D90 / D50) was 1.8 and the ratio of 50% particle size to 10% particle size (D50 / D10) was 1.4.

<実施例2〜5>
導電性炭素の種類及びその他反応条件を変えた以外は、実施例1と同様にして複合体粒子を得た。このときの製造条件を表1に、得られた複合体粒子の諸特性を表2に示す。
<Examples 2 to 5>
Composite particles were obtained in the same manner as in Example 1 except that the kind of conductive carbon and other reaction conditions were changed. The production conditions at this time are shown in Table 1, and the properties of the obtained composite particles are shown in Table 2.

Figure 0005391783
Figure 0005391783

Figure 0005391783
Figure 0005391783

<比較例1>
黒鉛粒子粉末(平均粒子径;16.8μm、BET比表面積26m/g)1kgをヘンシェルミキサー内に投入し、さらに市販されているレゾール型フェノール樹脂(フェノライトJ325;DIC社製)固形分として180gとエタノール250gを投入させ、80℃で2時間攪拌および造粒を行った。得られた造粒粒子は、導電性炭素の含有量は84.7%で、平均粒子径(D50)は112μm、かさ密度は0.36g/mlであった。さらに、体積固有抵抗は48mΩcm、(D90/D50)は5.1、(D50/D10)は4.0であった。
<Comparative Example 1>
1 kg of graphite particle powder (average particle size: 16.8 μm, BET specific surface area of 26 m 2 / g) was put into a Henschel mixer, and further commercially available resol type phenol resin (Phenolite J325; manufactured by DIC) as solid content 180 g and 250 g of ethanol were added, and stirring and granulation were performed at 80 ° C. for 2 hours. The obtained granulated particles had a conductive carbon content of 84.7%, an average particle size (D50) of 112 μm, and a bulk density of 0.36 g / ml. Further, the volume resistivity was 48 mΩcm, (D90 / D50) was 5.1, and (D50 / D10) was 4.0.

<比較例2>
結合樹脂原料の量を変えた以外は、実施例1と同様にして複合体粒子を得た。このときの製造条件を表1に、得られた複合体粒子の諸特性を表2に示す。
<Comparative example 2>
Composite particles were obtained in the same manner as in Example 1 except that the amount of the binder resin raw material was changed. The production conditions at this time are shown in Table 1, and the properties of the obtained composite particles are shown in Table 2.

本発明に係る燃料電池セパレータ用導電性樹脂複合体粒子は、流動性に優れ、特定のかさ密度を有することから成形性にも優れ、電気的特性や機械的強度に優れた燃料電池セパレータ用導電性樹脂複合体粒子に関するものである。
The conductive resin composite particles for a fuel cell separator according to the present invention are excellent in fluidity, have a specific bulk density, have excellent moldability, and have excellent electrical characteristics and mechanical strength. It relates to a conductive resin composite particle.

Claims (2)

導電性炭素を含む水性媒体中でフェノール類およびホルマリン類とアンモニアを重合させることにより得られる複合体粒子であって、当該複合体粒子の平均粒子径が10〜100μmであり、複合粒子の粒度分布において、50%粒度に対する90%粒度の比率(D90/D50)及び、10%粒度に対する50%粒度の比率(D50/D10)が、いずれも3.0以下であり、かさ密度が0.3g/ml以上0.8g/ml以下であり、さらに体積固有抵抗が100mΩcm以下であり、導電性炭素の含有量が複合体粒子に対して60〜90重量%であることを特徴とする燃料電池セパレータ用粒状導電性樹脂複合体粒子。 Phenols in an aqueous medium containing a conductive carbon and a composite particle obtained by polymerizing formaldehyde compound and ammonia, an average particle diameter of the composite particles is 10 to 100 [mu] m, the particle size of the composite particles In the distribution, the ratio of 90% particle size to 50% particle size (D90 / D50) and the ratio of 50% particle size to 10% particle size (D50 / D10) are both 3.0 or less and the bulk density is 0.3 g. A fuel cell separator characterized by having a volume resistivity of 100 mΩcm or less and a conductive carbon content of 60 to 90 wt% with respect to the composite particles. Granular conductive resin composite particles. 導電性炭素として、カーボンブラック粉末あるいは黒鉛粉末を用いることを特徴とする請求項1記載の燃料電池セパレータ用粒状導電性樹脂複合体粒子。 2. The granular conductive resin composite particles for a fuel cell separator according to claim 1, wherein carbon black powder or graphite powder is used as the conductive carbon.
JP2009086837A 2009-03-31 2009-03-31 Granular conductive resin composite particles for fuel cell separators Expired - Fee Related JP5391783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086837A JP5391783B2 (en) 2009-03-31 2009-03-31 Granular conductive resin composite particles for fuel cell separators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086837A JP5391783B2 (en) 2009-03-31 2009-03-31 Granular conductive resin composite particles for fuel cell separators

Publications (2)

Publication Number Publication Date
JP2010238602A JP2010238602A (en) 2010-10-21
JP5391783B2 true JP5391783B2 (en) 2014-01-15

Family

ID=43092741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086837A Expired - Fee Related JP5391783B2 (en) 2009-03-31 2009-03-31 Granular conductive resin composite particles for fuel cell separators

Country Status (1)

Country Link
JP (1) JP5391783B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537809B2 (en) * 2004-09-13 2010-09-08 リグナイト株式会社 Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
JP2008270133A (en) * 2007-04-25 2008-11-06 Jfe Chemical Corp Sheet for molding fuel cell separator, and fuel cell separator using the same

Also Published As

Publication number Publication date
JP2010238602A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4417886B2 (en) Manufacturing method of material for molding fuel cell separator
JP5548680B2 (en) Sheet press forming method and fuel cell separator manufacturing method
WO2001043217A1 (en) Fuel cell, fuel cell separator, and method of manufacture thereof
KR20070110531A (en) Electrically conducting curable resin composition, cured product thereof and molded article of the same
JP4537809B2 (en) Carbon / phenolic resin composite material, carbon / phenolic resin composite cured material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, battery electrode, electric double layer capacitor
WO2013047485A1 (en) Porous separator for fuel cells
JP5391783B2 (en) Granular conductive resin composite particles for fuel cell separators
JP5246729B2 (en) Manufacturing method of carbon / phenolic resin composite material, carbon / phenolic resin composite material, carbon / phenolic resin composite carbonized material, fuel cell separator, conductive resin composition, secondary battery electrode, electric double layer capacitor
KR20120000863A (en) Material for molding a fuel cell separator, process for preparing the same, a fual cell separator and a fuel cell
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
KR100660144B1 (en) Thermoplastic material for injection molding a fuel cell separator
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
JP4716649B2 (en) Conductive molding material, fuel cell separator using the same, and method for producing the same
AU2020405145A1 (en) Electrodes and process for reconditioning contaminated electrode materials for use in batteries
JP3925806B2 (en) Fuel cell separator material, fuel cell separator using the material, and fuel cell
JP2000331690A (en) Manufacture of separator for fuel cell
WO2024048654A1 (en) Composite conductive filler particles, conductive resin composition, and conductive resin molded article
JP2006155952A (en) Resin composition for fuel cell separator, and fuel cell separator
JP2001106831A (en) Thermosetting resin molding material and molded product using the same
JP2005089522A (en) Thermosetting resin composition
JP2005339899A (en) Resin composite for fuel cell separator
JP4989880B2 (en) Fuel cell separator, resin composition therefor and method for producing the same
JP3871546B2 (en) Conductive composition and method for producing the same
JP2005108591A (en) Molding material for fuel cell separator
JP2004281261A (en) Separator for fuel cells and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees