JP5391160B2 - Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system - Google Patents

Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system Download PDF

Info

Publication number
JP5391160B2
JP5391160B2 JP2010161453A JP2010161453A JP5391160B2 JP 5391160 B2 JP5391160 B2 JP 5391160B2 JP 2010161453 A JP2010161453 A JP 2010161453A JP 2010161453 A JP2010161453 A JP 2010161453A JP 5391160 B2 JP5391160 B2 JP 5391160B2
Authority
JP
Japan
Prior art keywords
light
wavelength
deviation
intensity
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010161453A
Other languages
Japanese (ja)
Other versions
JP2012022233A (en
Inventor
勇治 佐藤
健治 河野
雅也 名波
信弘 五十嵐
中平  徹
英司 川面
靖二 内田
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010161453A priority Critical patent/JP5391160B2/en
Publication of JP2012022233A publication Critical patent/JP2012022233A/en
Application granted granted Critical
Publication of JP5391160B2 publication Critical patent/JP5391160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、電気光学効果を利用したマッハツェンダー干渉計を有する光導波路型の光変調器の初期動作点を設定する技術に関し、特に、複数の異なる波長の光に対する光変調を行う光変調器の初期動作点の設定を可能にする技術に関する。   The present invention relates to a technique for setting an initial operating point of an optical waveguide type optical modulator having a Mach-Zehnder interferometer using an electro-optic effect, and more particularly to an optical modulator that performs optical modulation on light of a plurality of different wavelengths. The present invention relates to a technique that enables setting of an initial operating point.

近年要求されている高速データを実現する手段として光通信が普及しつつある。これまで通信速度10Gb/s程度の光通信が実用化されているが、昨今の通信データ量の急速的な増加に伴い、更なる通信容量の向上が切望されている。   Optical communication is spreading as a means for realizing high-speed data requested in recent years. Optical communication with a communication speed of about 10 Gb / s has been put into practical use, but with the recent rapid increase in the amount of communication data, further improvement in communication capacity is eagerly desired.

この要望に応える方法として、これまでの光の強度をデータ信号で変調する強度変調方式(NRZ、RZ通信方式)に代わり、光の位相をデータ信号で変調する位相変調方式(ODB、DPSK、DQPSK等)が注目され、実用化されようとしている。   In response to this demand, phase modulation methods (ODB, DPSK, DQPSK) that modulate the phase of light with a data signal instead of the conventional intensity modulation method (NRZ, RZ communication method) that modulates the light intensity with a data signal. Etc.) are attracting attention and are being put to practical use.

また、上記のような変調方式の採用とともに、1本の光ファイバで伝送する情報を多重化する方法として、異なる複数の波長の光を用いた波長多重方式(WDM、DWDM)等が実用化されている。   In addition to the above-described modulation schemes, wavelength multiplexing schemes (WDM, DWDM), etc. using light of a plurality of different wavelengths have been put to practical use as methods for multiplexing information transmitted over a single optical fiber. ing.

したがって、今後、上記のような通信方式で用いられる光変調器として、異なる波長の光に対する変調に対応できる必要がある。   Therefore, in the future, as an optical modulator used in the above communication method, it is necessary to be able to cope with modulation with respect to light of different wavelengths.

高速変調が可能な光変調器としては、電気光学効果を利用したマッハツェンダー干渉計を有する光導波路型光変調器が知られている。   As an optical modulator capable of high-speed modulation, an optical waveguide type optical modulator having a Mach-Zehnder interferometer utilizing an electro-optic effect is known.

この光導波路型光変調器は、例えば図6に示すように、印加する電界の大きさに応じて光に対する屈折率が変化する特性(電気光学効果)を有する基板10(LiNbO3基板等)に、光入射用の第1導波路11、その第1導波路11に導かれた光を2分岐する光分岐路12、分岐された光をそれぞれ等距離伝搬させる第2導波路13、第3導波路14、第2導波路13を伝搬した光と第3導波路14を伝搬した光を合波する光合波路15、合波された光を外部へ出射するための第4導波路16が形成されている。 For example, as shown in FIG. 6, the optical waveguide type optical modulator is provided on a substrate 10 (LiNbO 3 substrate or the like) having a characteristic (electro-optic effect) in which a refractive index with respect to light changes according to the magnitude of an applied electric field. , A first waveguide 11 for light incidence, an optical branch 12 for branching the light guided to the first waveguide 11, a second waveguide 13 for propagating the branched light at equal distances, and a third guide The optical waveguide 15 for combining the light propagated through the waveguide 14 and the second waveguide 13 and the light propagated through the third waveguide 14 and the fourth waveguide 16 for emitting the combined light to the outside are formed. ing.

ここで、第2導波路13と第3導波路14の長さが等しければ、光合波路15に入射される光の位相は等しく、同相合波されて元の入射光と同等の光となって第4導波路16から出射されるが、例えば第2導波路13と第3導波路14に逆向きの一定強さの電界を印加して(電界印加用の電極は図示せず)、両導波路13、14の屈折率を逆方向に変化させ、第2導波路13と第3導波路14から光合波路15に入射される光の位相を逆相にすると、両者が互いにその光を弱め合うことになり、第4導波路16にはその光成分は殆ど出射されなくなる。   Here, if the lengths of the second waveguide 13 and the third waveguide 14 are equal, the phases of the light incident on the optical waveguide 15 are equal, and are combined in phase and become light equivalent to the original incident light. The light is emitted from the fourth waveguide 16. For example, by applying an electric field of constant strength in the opposite direction to the second waveguide 13 and the third waveguide 14 (electric field application electrodes are not shown), When the refractive indexes of the waveguides 13 and 14 are changed in the opposite directions and the phases of the light incident on the optical waveguide 15 from the second waveguide 13 and the third waveguide 14 are reversed, the two mutually weaken the light. That is, the light component is hardly emitted to the fourth waveguide 16.

つまり、両導波路13、14に与える電界をデータ信号のレベルに応じて変化させれば、そのデータ信号によって強度変調された光を得ることができる。   That is, if the electric field applied to both the waveguides 13 and 14 is changed according to the level of the data signal, light whose intensity is modulated by the data signal can be obtained.

上記例は、データ信号による強度変調の場合であるが、電界によって導波路の屈折率が変化する電気光学効果を用いた光変調技術は位相変調にも適用されている。   The above example is a case of intensity modulation by a data signal. However, an optical modulation technique using an electro-optic effect in which the refractive index of a waveguide is changed by an electric field is also applied to phase modulation.

位相変調方式としては、位相差を信号にした差動位相変調方式(DPSK:
Differential Phase Shift Keying)や、40Gbs以上の変調速度を実現可能な方式として期待されている差動4値位相変調方式(DQPSK:
Differential Quadrature Phase Shift Keying)が着目されているが、これらの差動型の位相変調方式においても、その入力データに対する加工技術が異なるだけで、基本的には前記電気光学効果を用いたマッハツェンダー型干渉計を構成要素とする変調技術である。
The phase modulation method is a differential phase modulation method (DPSK:
Differential Phase Shift Keying) and differential quaternary phase modulation (DQPSK), which is expected as a method capable of realizing a modulation speed of 40 Gbs or more.
Differential Quadrature Phase Shift Keying) is attracting attention, but these differential phase modulation systems are basically Mach-Zehnder type using the electro-optic effect, except that the processing technique for the input data is different. This is a modulation technique using an interferometer as a component.

このようなマッハツェンダー型干渉計による光変調器の良く知られた特性として、印加する電界、即ち、印加電圧の増減変化に対して合波光の強度が、図7のように、周期的(cos2 x)に変化する。 As a well-known characteristic of an optical modulator using such a Mach-Zehnder interferometer, the intensity of the combined light with respect to the applied electric field, that is, the change in applied voltage is periodically (cos 2 x).

この変調特性の半周期分に相当する電圧は半波長電圧Vπと呼ばれ、例えば、この変調特性で強度が最大の1/2となる点Aの電圧Vbを基準にして、振幅Vπのデータ信号Dを重畳すれば、データに応じて変調された最大振幅の変調光を得ることができる。   A voltage corresponding to the half period of this modulation characteristic is called a half-wave voltage Vπ. For example, a data signal having an amplitude Vπ with reference to the voltage Vb at point A at which the intensity is ½ of the maximum in the modulation characteristic. By superimposing D, it is possible to obtain modulated light having the maximum amplitude modulated according to the data.

ここで、点Aを光変調器の動作点と呼び、この動作点Aを与える基準の電圧Vbをバイアス電圧と呼ぶ。なお、この例では動作点を変調特性の強度1/2の位置に設定しているが、変調特性の強度0(ボトム)の点を動作点とする場合もある。   Here, the point A is called the operating point of the optical modulator, and the reference voltage Vb that gives this operating point A is called the bias voltage. In this example, the operating point is set at a position where the modulation characteristic strength is ½, but there may be a case where the modulation characteristic strength is 0 (bottom).

上記のようなマッハツェンダー型干渉計による光変調器に関して、最も単純な強度変調方式の技術について以下の特許文献1に記載され、位相変調に関する技術としては特許文献2に記載されている。   Regarding the optical modulator using the Mach-Zehnder interferometer as described above, the simplest intensity modulation technique is described in Patent Document 1 below, and the technique relating to phase modulation is described in Patent Document 2.

特開平03−251815号公報Japanese Patent Laid-Open No. 03-251815 特開2000−162563号公報JP 2000-162563 A

上記した光変調器では変調特性が周期変化するから、同一の変調作用を与える動作点は、2Vπの間隔で存在するが、光変調器は、印加される直流電圧、温度変化および経年変化により、その入出力特性に変化(動作点ドリフト)が生じる。この動作点ドリフトは、図7の変調特性が左右方向(電圧軸方向)に移動するものであり、この動作点ドリフトによって所望の変調動作が得られなくなる。   In the optical modulator described above, since the modulation characteristics change periodically, there are operating points that give the same modulation action at intervals of 2Vπ. However, the optical modulator is affected by the applied DC voltage, temperature change, and secular change. A change (operating point drift) occurs in the input / output characteristics. This operating point drift is one in which the modulation characteristic of FIG. 7 moves in the left-right direction (voltage axis direction), and a desired modulation operation cannot be obtained by this operating point drift.

このため、従来では、変調特性の複数ある動作点候補のうち、消費電力が最も小さくなる、即ち、ゼロボルトに最も近い点を最適動作点に設定し、さらに、動作点ドリフトを抑制するためのフィードバック制御手段を設けていた。   For this reason, conventionally, among the operating point candidates having a plurality of modulation characteristics, the power consumption is the smallest, that is, the point closest to zero volts is set as the optimal operating point, and further feedback for suppressing the operating point drift Control means were provided.

上記特許文献1、2にも、データ信号に低周波信号を重畳し、光変調器の出射光からその低周波信号成分を取り出して動作点変動を検出して、これを抑制する技術が開示されている。   Patent Documents 1 and 2 also disclose a technique for superimposing a low-frequency signal on a data signal, extracting the low-frequency signal component from the light emitted from the optical modulator, detecting an operating point variation, and suppressing this. ing.

ところで、従来の光変調器において、多波長光を扱う光変調器における波長の違いによる最適動作点の変化に関する考察がなされておらず、多波長型光変調システムを実現するための重要な課題の一つとなっている。   By the way, in the conventional optical modulator, the consideration about the change of the optimum operating point due to the difference in wavelength in the optical modulator that handles multi-wavelength light has not been made, and it is an important issue for realizing the multi-wavelength optical modulation system. It has become one.

つまり、光変調器の一定長さの導波路を通過する光の位相変化は波長依存性があり、このことから光波長が異なると変調特性の周期(つまり半波長電圧Vπ)も異なる。また、前記した光変調器10の第2導波路13と第3導波路14の光路長に差があれば、その差分に応じて各波長についての変調特性にずれが生じる。   That is, the phase change of the light passing through the waveguide having a certain length of the optical modulator is wavelength-dependent, and therefore the period of the modulation characteristic (that is, the half-wave voltage Vπ) is different when the optical wavelength is different. Further, if there is a difference in the optical path length between the second waveguide 13 and the third waveguide 14 of the optical modulator 10 described above, a deviation occurs in the modulation characteristics for each wavelength according to the difference.

このため、従来の技術でこの多波長型光変調システムに対応するためには、予め各波長についてそれぞれ最適な初期動作点を見付けておき、光変調器に入射する光の波長毎にその初期動作点を切替る方法しかなく、複数波長同時変調等に全く対応できなかった。   For this reason, in order to support this multi-wavelength optical modulation system with the conventional technology, an optimum initial operating point is found in advance for each wavelength, and the initial operation is performed for each wavelength of light incident on the optical modulator. There was only a method of switching points, and it could not cope with simultaneous modulation of a plurality of wavelengths.

本発明は、この問題を解決し、多波長型光変調システムにおいて、高速な波長切替や複数波長同時変調に対応できる初期動作点設定方法および多波長型光変調システムを提供することを目的としている。   An object of the present invention is to solve this problem and to provide an initial operating point setting method and a multi-wavelength light modulation system that can handle high-speed wavelength switching and simultaneous modulation of a plurality of wavelengths in a multi-wavelength light modulation system. .

前記目的を達成するために、本発明の請求項1の光変調器の初期動作点設定方法は、
電気光学効果を用いたマッハツェンダー干渉計を含み、印加されるバイアス電圧の変化に対して出射光強度が周期的に変化する変調特性を有する光変調器に対して、複数の異なる波長のうちの特定波長の光を入射させ、該光変調器の出射光強度を監視しつつ、該光変調器に供給するバイアス電圧を可変制御して、該特定波長に対して前記光変調器の動作点候補の一つを基準点として求め、その時の強度を記憶する段階(S1〜S4)と、
前記光変調器の動作点を前記基準点に保持したまま、前記特定波長以外の他波長光を順次入射させ、波長毎の強度を調べる段階(S5〜S8)と、
前記特定波長光の入射時に求めた強度を基準強度とし、特定波長以外の他波長光の入射で得られた強度の前記基準強度に対する偏差をそれぞれ調べる段階(S9)と、
前記各他波長光について得られた全ての偏差が、予め設定された許容範囲内にあるか否かを判定する段階(S10)と、
前記他波長光について得られた偏差のいずれかが前記許容範囲内に無いと判定されたときに、前記基準点を+方向または−方向のいずれか一方方向の隣の動作点候補に変更して、前記各他波長光を入射させ、該他波長毎の前記基準強度に対する偏差を求める段階(S12〜S18)と、
前記基準点の変更後に求めた偏差が前記許容範囲内にあるか否かを判定する段階(S19)と、
前記基準点の変更後に求めた偏差が前記許容範囲内に無いと判定されたとき、その変更後の偏差と変更前の偏差とを比較する段階(S20)と、
前記基準点変更後の偏差が変更前の偏差より小さい場合には、前記基準点の変更方向が正しいと判断し、該基準点を前記一方方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行い、前記変更後の偏差が変更前の偏差より大きい場合には、前記基準点の変更方向が誤っていると判断して該基準点を前記一方方向と逆方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行なう段階(S12〜S18、S21〜S27)とを含み、
前記他波長光について得られた偏差が前記許容範囲内に入った時の前記光変調器の動作点を、各波長についての共通動作点と決定し、該共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定することを特徴とする。
In order to achieve the above object, an initial operating point setting method for an optical modulator according to claim 1 of the present invention is as follows.
A light modulator including a Mach-Zehnder interferometer using an electro-optic effect and having a modulation characteristic in which the intensity of emitted light periodically changes with a change in applied bias voltage . A light of a specific wavelength is incident, and the bias voltage supplied to the optical modulator is variably controlled while monitoring the intensity of light emitted from the optical modulator, and the operating point candidate of the optical modulator for the specific wavelength One of these as a reference point and storing the intensity at that time (S1 to S4),
While keeping the operating point of the optical modulator at the reference point, sequentially entering light of wavelengths other than the specific wavelength and examining the intensity for each wavelength (S5 to S8);
Inspecting a deviation from the reference intensity of the intensity obtained by the incidence of light having a wavelength other than the specific wavelength as the reference intensity, which is obtained when the specific wavelength light is incident (S9),
Determining whether all the deviations obtained for each of the other wavelength lights are within a preset allowable range (S10);
When it is determined that any of the deviations obtained for the other wavelength light is not within the allowable range, the reference point is changed to an operation point candidate next to either the + direction or the − direction. , Making each other wavelength light incident, and obtaining a deviation from the reference intensity for each other wavelength (S12 to S18);
Determining whether the deviation obtained after the change of the reference point is within the allowable range (S19);
When it is determined that the deviation obtained after the change of the reference point is not within the allowable range, comparing the deviation after the change with the deviation before the change (S20);
If the deviation after the change of the reference point is smaller than the deviation before the change, it is determined that the change direction of the reference point is correct, and the reference point is changed to the next operation point candidate in the one direction to obtain a new deviation. Is performed until the deviation falls within the allowable range. If the deviation after the change is larger than the deviation before the change, it is determined that the change direction of the reference point is incorrect and the reference point is determined. Including changing the operation point candidate next to the one direction opposite to the one direction to obtain a new deviation until the deviation falls within the allowable range (S12 to S18, S21 to S27),
The operating point of the optical modulator when the deviation obtained for the other wavelength light falls within the allowable range is determined as a common operating point for each wavelength, and a bias voltage corresponding to the common operating point is set as the bias voltage. The initial operating point of the optical modulator is set.

また、本発明の請求項の多波長型光変調システムは、
複数の異なる波長の光を出射する多波長光源(21)と、
電気光学効果を用いたマッハツェンダー干渉計を含み、印加されるバイアス電圧の変化に対して出射光強度が周期的に変化する変調特性を有し、前記多波長光源から出射された光、前記バイアス電圧および変調信号を受けて、該変調信号によって変調された変調光を出射する光変調器(22)と、
前記光変調器の出射光強度を検出する出射光強度検出手段(23、24)と、
前記光変調器に与えるバイアス電圧を発生するバイアス電圧発生器(25)と、
前記バイアス電圧発生器が出力するバアイス電圧を制御する制御部(30)とを有する多波長型光変調システムであって、
前記制御部には、前記光源から前記光変調器に対して前記複数の異なる波長の光を順次入射させ、前記出射光強度検出手段の出力により前記光変調器の出射光強度を監視しつつ、該光変調器に供給するバイアス電圧を可変制御して、各波長について出射光強度が所定の許容範囲内となる共通動作点を見付け、該共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定する初期動作点設定部(31)が設けられており、
該初期動作点設定部は、
前記光変調器に対して、複数の異なる波長のうちの特定波長の光を入射させ、該光変調器の出射光強度を監視しつつ、該光変調器に供給するバイアス電圧を可変制御して、該特定波長に対して前記光変調器の動作点候補の一つを基準点として求め、その時の強度を記憶する手段と、
前記光変調器の動作点を前記基準点に保持したまま、前記特定波長以外の他波長光を順次入射させ、波長毎の強度を調べる手段と、
前記特定波長光の入射時に求めた強度を基準強度とし、特定波長以外の他波長光の入射で得られた強度の前記基準強度に対する偏差をそれぞれ調べる手段と、
前記各他波長光について得られた全ての偏差が、予め設定された許容範囲内にあるか否かを判定する手段と、
前記他波長光について得られた偏差のいずれかが前記許容範囲内に無いと判定されたときに、前記基準点を+方向または−方向のいずれか一方方向の隣の動作点候補に変更して、前記各他波長光を入射させ、該他波長毎の前記基準強度に対する偏差を求める手段と、
前記基準点の変更後に求めた偏差が前記許容範囲内にあるか否かを判定する手段と、
前記基準点の変更後に求めた偏差が前記許容範囲内に無いと判定されたとき、その変更後の偏差と変更前の偏差とを比較する手段と、
前記基準点変更後の偏差が変更前の偏差より小さい場合には、前記基準点の変更方向が正しいと判断し、該基準点を前記一方方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行い、前記変更後の偏差が変更前の偏差より大きい場合には、前記基準点の変更方向が誤っていると判断して該基準点を前記一方方向と逆方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行なう手段とを有し、
前記他波長光について得られた偏差が前記許容範囲内に入った時の前記光変調器の動作点を、各波長についての共通動作点と決定し、該共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定することを特徴とする。
The multi-wavelength optical modulation system according to claim 2 of the present invention is
A multi-wavelength light source (21) that emits light of a plurality of different wavelengths;
Including a Mach-Zehnder interferometer using an electro-optic effect, having a modulation characteristic in which emitted light intensity changes periodically with respect to a change in applied bias voltage, light emitted from the multi-wavelength light source, and the bias An optical modulator (22) for receiving a voltage and a modulation signal and emitting modulated light modulated by the modulation signal;
Outgoing light intensity detection means (23, 24) for detecting the outgoing light intensity of the light modulator;
A bias voltage generator (25) for generating a bias voltage to be applied to the optical modulator;
A multi-wavelength optical modulation system having a control unit (30) for controlling the baice voltage output from the bias voltage generator,
The control unit sequentially enters the light of the plurality of different wavelengths from the light source to the optical modulator, and monitors the output light intensity of the light modulator by the output of the output light intensity detection unit, The bias voltage supplied to the optical modulator is variably controlled to find a common operating point where the emitted light intensity is within a predetermined allowable range for each wavelength, and the bias voltage corresponding to the common operating point is set to the optical modulator. An initial operating point setting unit (31) for setting an initial operating point is provided ,
The initial operating point setting unit
A light having a specific wavelength out of a plurality of different wavelengths is incident on the optical modulator, and the bias voltage supplied to the optical modulator is variably controlled while monitoring the intensity of light emitted from the optical modulator. A means for obtaining one of the operating point candidates of the optical modulator as a reference point for the specific wavelength, and storing the intensity at that time;
Means for sequentially injecting light of other wavelengths other than the specific wavelength while maintaining the operating point of the optical modulator at the reference point,
Means for examining the deviation of the intensity obtained by the incidence of light of a wavelength other than the specific wavelength with respect to the reference intensity, with the intensity determined when the specific wavelength of light is incident as a reference intensity;
Means for determining whether or not all deviations obtained for each of the other wavelength lights are within a preset allowable range;
When it is determined that any of the deviations obtained for the other wavelength light is not within the allowable range, the reference point is changed to an operation point candidate next to either the + direction or the − direction. Means for making each other wavelength light incident and calculating a deviation from the reference intensity for each other wavelength;
Means for determining whether the deviation obtained after the change of the reference point is within the allowable range;
Means for comparing the deviation after the change with the deviation before the change when it is determined that the deviation obtained after the change of the reference point is not within the allowable range;
If the deviation after the change of the reference point is smaller than the deviation before the change, it is determined that the change direction of the reference point is correct, and the reference point is changed to the next operation point candidate in the one direction to obtain a new deviation. Is performed until the deviation falls within the allowable range. If the deviation after the change is larger than the deviation before the change, it is determined that the change direction of the reference point is incorrect and the reference point is determined. Means for performing a process of obtaining a new deviation by changing to an operation point candidate adjacent to the one direction opposite to the one direction until the deviation falls within the allowable range;
The operating point of the optical modulator when the deviation obtained for the other wavelength light falls within the allowable range is determined as a common operating point for each wavelength, and a bias voltage corresponding to the common operating point is set as the bias voltage. The initial operating point of the optical modulator is set .

また、本発明の請求項の多波長型光変調システムは、請求項の多波長型光変調システムにおいて、
前記制御部には、前記初期動作点設定部により前記光変調器に初期設定された動作点のドリフトを検出して、抑制するドリフト抑制部(32)が設けられていることを特徴とする。
The multi-wavelength optical modulation system according to claim 3 of the present invention is the multi-wavelength optical modulation system according to claim 2 ,
The control unit is provided with a drift suppression unit (32) that detects and suppresses the drift of the operating point initially set in the optical modulator by the initial operating point setting unit.

このように本発明では、光変調器に対して、複数の異なる波長の光を順次入射させ、その光変調器の出射光強度を監視しつつ、バイアス電圧を可変制御して、各波長について出射光強度が所定の許容範囲内となる共通動作点を見付け、その共通動作点に対応したバイアス電圧を光変調器の初期動作点に設定している。   As described above, in the present invention, a plurality of light beams having different wavelengths are sequentially incident on the optical modulator, and the bias voltage is variably controlled while monitoring the emitted light intensity of the optical modulator, and the light is output for each wavelength. A common operating point where the light intensity falls within a predetermined allowable range is found, and a bias voltage corresponding to the common operating point is set as the initial operating point of the optical modulator.

このように各波長共通の動作点を見付けているため、波長切替の際の動作点切替が不要となり、高速な波長切替が可能となり、また、多波長同時変調に対応できる。   Thus, since the operating point common to each wavelength is found, it is not necessary to switch the operating point at the time of wavelength switching, high-speed wavelength switching is possible, and multi-wavelength simultaneous modulation can be supported.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 本発明の実施形態の要部の処理手順を示すフローチャートThe flowchart which shows the process sequence of the principal part of embodiment of this invention. 本発明の実施形態の要部の処理手順を示すフローチャートThe flowchart which shows the process sequence of the principal part of embodiment of this invention. 本発明の実施形態の要部の処理手順を示すフローチャートThe flowchart which shows the process sequence of the principal part of embodiment of this invention. 3波長の場合の処理を説明するための図The figure for demonstrating the process in the case of 3 wavelengths 従来の光変調器の概略構造を示す図The figure which shows the schematic structure of the conventional optical modulator 光変調器の変調特性と動作点の関係を示す図The figure which shows the relationship between the modulation characteristic and the operating point of the optical modulator

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した光変調システム20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an optical modulation system 20 to which the present invention is applied.

図1において、多波長光源21は、複数nの異なる波長λ1〜λnの光を出射するものであり、複数の固定波長光源の光を選択的にあるいは合波して出射させる構造や、可変波長光源の出射波長を切り換える構造であってもよいが、後述する光変調器22の動作点設定のために、少なくとも各波長λ1〜λnの光を選択的に出射する機能を有しているものとする。   In FIG. 1, a multi-wavelength light source 21 emits light having a plurality of n different wavelengths λ1 to λn, a structure for selectively or combining light of a plurality of fixed wavelength light sources, and a variable wavelength. Although the structure may be such that the emission wavelength of the light source is switched, it has a function of selectively emitting at least light of each wavelength λ1 to λn in order to set an operating point of the optical modulator 22 described later. To do.

光変調器22は、印加される電界の強さに応じて屈折率が変化する電気光学効果を有する基板(LiNbO3基板等)に、前記図6で示した導波路構造を有するマッハツェンダー干渉計を用いた導波路型の光変調器であって、多波長光源21から出射された光、バイアス電圧に変調信号が重畳された信号とを受けて、変調信号によって変調された変調光を出射する。この電気光学効果を用いたマッハツェンダー干渉計を含む光変調器22は、印加されるバイアス電圧の変化に対して出射光強度が周期的に変化する変調特性を有している。 The optical modulator 22 is a Mach-Zehnder interferometer having the waveguide structure shown in FIG. 6 on a substrate (LiNbO 3 substrate or the like) having an electro-optic effect whose refractive index changes according to the strength of an applied electric field. Is a waveguide type optical modulator that receives light emitted from the multi-wavelength light source 21 and a signal in which a modulation signal is superimposed on a bias voltage, and emits modulated light modulated by the modulation signal. . The optical modulator 22 including the Mach-Zehnder interferometer using the electro-optic effect has a modulation characteristic that the emitted light intensity changes periodically with respect to the change of the applied bias voltage.

光変調器22の出射光は光分岐器23によって分岐されて受光器24に入射する。受光器24は、光変調器22の出射光の強度に対応した信号を制御部30に出力する。   The light emitted from the light modulator 22 is branched by the light branching device 23 and enters the light receiver 24. The light receiver 24 outputs a signal corresponding to the intensity of the emitted light from the light modulator 22 to the control unit 30.

一方、バイアス電圧発生器25は、光変調器22に与えるバイアス電圧を発生するものであり、その出力されるバイアス電圧は制御部30によって可変制御される。   On the other hand, the bias voltage generator 25 generates a bias voltage to be applied to the optical modulator 22, and the output bias voltage is variably controlled by the control unit 30.

このバイアス電圧と多波長変調システム20の変調信号(データ信号)は、重畳器26によって重畳されて光変調器22に与えられる。変調信号は図示しない変調信号生成手段により生成されるが、その信号の位相、振幅は、変調方式に依存する。なお、ここではバイアス電圧と変調信号とを重畳器26により重畳しているが、バイアス電圧と変調信号をそれぞれ別々に光変調器に入力できる、所謂AC/DC分離入力構成としてもよい。   The bias voltage and the modulation signal (data signal) of the multi-wavelength modulation system 20 are superimposed by the superimposing unit 26 and supplied to the optical modulator 22. The modulation signal is generated by modulation signal generation means (not shown), but the phase and amplitude of the signal depend on the modulation method. Although the bias voltage and the modulation signal are superimposed by the superimposer 26 here, a so-called AC / DC separation input configuration in which the bias voltage and the modulation signal can be separately input to the optical modulator may be employed.

例えば前記したように単純な強度変調であれば、変調信号は振幅Vπのデータ信号(初期動作点設定用に単純な1、0の繰り返しデータでもよい)でよく、2値あるいは4値位相変調の場合には、前段でのエンコード処理や反転処理等を受けた複数系列の信号が入力されることになるが、前記したように、光変調器の基本的動作は同等であり、周期的な変調特性の強度中間値や変曲点(最大点や最小点)を動作点候補とする。   For example, in the case of simple intensity modulation as described above, the modulation signal may be a data signal having an amplitude Vπ (simple 1 or 0 repeated data for setting an initial operating point) may be used, and binary or quaternary phase modulation may be performed. In this case, multiple series of signals that have undergone the encoding process and inversion process in the previous stage are input, but as described above, the basic operation of the optical modulator is the same, and periodic modulation is performed. Characteristic intensity intermediate values and inflection points (maximum and minimum points) are used as operation point candidates.

制御部30は、初期動作点設定部31とドリフト抑制部32を有している。初期動作点設定部31は、多波長光源21から光変調器22に対して複数の異なる波長λ1〜λnの光を順次入射させ、受光器24の出力により光変調器22の出射光強度を監視しつつ、光変調器22に供給するバイアス電圧を可変制御して、各波長について出射光強度が所定の許容範囲内となる共通動作点を見付け、その共通動作点に対応したバイアス電圧を光変調器22の初期動作点に設定する。   The control unit 30 includes an initial operating point setting unit 31 and a drift suppression unit 32. The initial operating point setting unit 31 sequentially enters light having a plurality of different wavelengths λ1 to λn from the multi-wavelength light source 21 to the optical modulator 22 and monitors the intensity of light emitted from the optical modulator 22 based on the output of the light receiver 24. However, the bias voltage supplied to the optical modulator 22 is variably controlled to find a common operating point where the emitted light intensity is within a predetermined allowable range for each wavelength, and the bias voltage corresponding to the common operating point is optically modulated. Set to the initial operating point of the device 22.

また、ドリフト抑制部32は、初期動作点設定部31により光変調器22に設定された動作点のドリフトを検出して抑制するものであり、このドリフト抑制部32の構成および処理方法は、前述した特許文献1、2等に記載されているように、変調信号に低周波信号を重畳させ、出射光からその低周波信号成分を抽出して、その重畳した低周波信号と検出した低周波信号とを比較して温度などによる動作点ドリフトを検出し、そのドリフト分バイアス電圧を変化させることで、動作点ドリフトを抑制するものである。   The drift suppression unit 32 detects and suppresses the drift of the operating point set in the optical modulator 22 by the initial operating point setting unit 31, and the configuration and processing method of the drift suppression unit 32 are described above. As described in Patent Documents 1 and 2, etc., a low-frequency signal is superimposed on the modulation signal, the low-frequency signal component is extracted from the emitted light, and the superimposed low-frequency signal and the detected low-frequency signal , The operating point drift due to temperature or the like is detected, and the bias voltage is changed by the drift, thereby suppressing the operating point drift.

初期動作点設定部31の処理は、前記したように、光変調器22に対して、複数の異なる波長λ1〜λnの光を順次入射させ、光変調器22の出射光強度を監視しつつ、バイアス電圧を可変制御して、各波長について出射光強度が所定の許容範囲内となる共通動作点を見付け、その共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定するものであり、その具体的な処理については種々の方法が考えられる。   As described above, the processing of the initial operating point setting unit 31 sequentially enters the light having a plurality of different wavelengths λ1 to λn to the optical modulator 22 and monitors the emitted light intensity of the optical modulator 22, By variably controlling the bias voltage, finding a common operating point where the emitted light intensity is within a predetermined allowable range for each wavelength, and setting the bias voltage corresponding to the common operating point as the initial operating point of the optical modulator Various methods can be considered for the specific processing.

その一つは、全ての波長についての変調特性で変調方式によって決まる動作点候補(中間値、最大値、最小値の区別および特性の傾きで特定される)を全て求め、出射光強度が所定の許容範囲内となり、波長毎の各動作点候補が一定の誤差範囲内に存在し、さらに消費電力低減のためにバイアス電圧の絶対値が最小となる共通動作点を見付ける方法である。ただしこの方法は、各波長について動作点候補を全て見付ける必要があるので処理時間がかかる。   One of them is to obtain all the operating point candidates (specified by the distinction between intermediate value, maximum value and minimum value and the slope of the characteristic) determined by the modulation method with the modulation characteristics for all wavelengths, and the emitted light intensity is predetermined. This is a method for finding a common operating point that is within an allowable range, each operating point candidate for each wavelength is within a certain error range, and further the absolute value of the bias voltage is minimized to reduce power consumption. However, this method requires processing time because it is necessary to find all operating point candidates for each wavelength.

そこで、この処理時間を短縮した方法を、図2〜図4のフローチャートに基づいて説明する。図2に示しているように、始めに、複数の異なる波長λ1〜λnのうちの特定波長(λ1)の光を光変調器22に入射させ、その出射光強度を監視しつつ、バイアス電圧を可変制御して、特定波長λ1に対して光変調器22の動作点候補の一つ、即ち、消費電力低減の目的で絶対値最小のものを基準点として求め、その時の強度を記憶する(S1〜S4)。   Therefore, a method of shortening the processing time will be described based on the flowcharts of FIGS. As shown in FIG. 2, first, light having a specific wavelength (λ1) out of a plurality of different wavelengths λ1 to λn is incident on the optical modulator 22, and the intensity of the emitted light is monitored while the bias voltage is set. By variably controlling, one of the operating point candidates of the optical modulator 22 for the specific wavelength λ1, that is, the one having the minimum absolute value for the purpose of reducing power consumption is obtained as a reference point, and the intensity at that time is stored (S1). ~ S4).

なお、ここでは説明を簡単にするために、動作点候補を傾き正の強度中間点とし、その時検出する出射光強度はデータ信号を与えない無変調状態で検出されるものとするが、波長λ1〜λnのうちの最短波長に対応したVπの振幅の基準データを与えて変調を掛けたときの出射光強度を用いてもよい。   Here, for the sake of simplicity of explanation, it is assumed that the operating point candidate is an intermediate point with a positive slope of intensity, and the emitted light intensity detected at that time is detected in an unmodulated state where no data signal is given. The intensity of the emitted light when modulation is performed by giving reference data of the amplitude of Vπ corresponding to the shortest wavelength among ˜λn may be used.

図5は、n=3の場合の各波長の変調特性を示すものであり、実線で示した特定波長λ1の変調特性M1の変調方式によって決まる動作点候補(A1、A2、…、B1、B2、…)が、傾き正の強度中間点とし、最初の基準点を+極性で0ボルトに近いA1点とし、その時の出射光強度P1を基準値として求める。   FIG. 5 shows the modulation characteristics of each wavelength when n = 3, and the operating point candidates (A1, A2,..., B1, B2 determined by the modulation method of the modulation characteristic M1 of the specific wavelength λ1 indicated by the solid line. ,..., Is an intermediate point with positive slope, the first reference point is the A1 point with + polarity and close to 0 volts, and the emitted light intensity P1 at that time is obtained as a reference value.

次に、光変調器22の動作点を基準点(A1)に保持したまま、特定波長以外の他波長光λ2〜λnを順次入射させ、波長毎の出射光強度を傾きも含めて調べる(S5〜S8)。なお、傾きの検出はバイアス電圧を微増減させ、それに対する光強度の変化から判定するが、以下の説明では、出射光強度の情報にその傾き情報が正負の記号で含まれているものとする。つまり、傾きが正で強度の絶対値がPであれば+P、傾きが負で強度Pであれば−Pとする。   Next, with the operating point of the optical modulator 22 held at the reference point (A1), other wavelength light λ2 to λn other than the specific wavelength are sequentially incident, and the emitted light intensity for each wavelength including the inclination is examined (S5). ~ S8). The inclination is detected by slightly increasing / decreasing the bias voltage and determining the change in the light intensity. In the following explanation, it is assumed that the information on the intensity of the emitted light includes the positive / negative symbols. . That is, if the slope is positive and the absolute value of the intensity is P, it is + P, and if the slope is negative and the intensity is P, it is -P.

図5の例では波長λ2の変調特性M2を点線で示し、波長λ3の変調特性M3を破線で示しているが、バイアス電圧は基準点A1に対応したVb1であり、このバイアス電圧Vb1における各特性M2、M3の出射強度+P2、−P3は、波長差や光路差などにより特性M1から大きく離間していて、特定波長λ1の時の強度+P1との差が大きい。しかも、特性M3の傾きは負となっていて、特定波長λ1の場合と異なっている。   In the example of FIG. 5, the modulation characteristic M2 of wavelength λ2 is indicated by a dotted line, and the modulation characteristic M3 of wavelength λ3 is indicated by a broken line. The bias voltage is Vb1 corresponding to the reference point A1, and each characteristic at this bias voltage Vb1 The emission intensities + P2 and -P3 of M2 and M3 are greatly separated from the characteristic M1 due to a wavelength difference or an optical path difference, and the difference from the intensity + P1 at the specific wavelength λ1 is large. In addition, the slope of the characteristic M3 is negative, which is different from the case of the specific wavelength λ1.

そして、特定波長λ1の光の入射時に求めた強度P1を基準強度とし、特定波長以外の他波長光λ2〜λnの入射で得られた強度P2〜Pnの基準強度P1に対する偏差(P1−P2)、(P1−P3)、…、(P1−Pn)をそれぞれ調べ(S9)、各他波長光P2〜Pnについて得られた全ての偏差が、予め設定された許容範囲内にあるか否かを判定する(S10)。この許容範囲はシステムに要求される精度によるが、例えば基準強度P1の±5パーセント等に設定される。   And the intensity | strength P1 calculated | required at the time of incidence | injection of the light of specific wavelength (lambda) 1 is made into reference | standard intensity | strength, and deviation (P1-P2) with respect to the reference | standard intensity | strength P1 of intensity | strength P2-Pn obtained by incidence | injection of light λ2-λn other than a specific wavelength. , (P1-P3),..., (P1-Pn) are examined (S9), and whether or not all the deviations obtained for the other wavelength lights P2 to Pn are within a preset allowable range. Determine (S10). This allowable range depends on the accuracy required for the system, but is set to ± 5% of the reference strength P1, for example.

前記したように検出される各強度には、特性の傾き情報も符号として含まれているので、傾きが一致しないもの同士の偏差の絶対値は、極端に大きくなる。   Since each intensity detected as described above includes characteristic inclination information as a sign, the absolute value of the deviation between the inconsistent inclinations becomes extremely large.

つまり、図5に示したように、特性M3の傾きが負になっている場合、その強度は(−P3)であるから、偏差は(+P1)−(−P3)=P1+P3となって非常に大きな値となって当然のことながら、前記した許容範囲には入らない。   That is, as shown in FIG. 5, when the slope of the characteristic M3 is negative, the intensity is (−P3), so the deviation is (+ P1) − (− P3) = P1 + P3, which is very high. As a matter of course, it becomes a large value and does not fall within the allowable range described above.

また、例え傾きが一致していても、特性M2の強度(+P2)のように、基準の強度(+P1)から大きく離間していれば、その偏差は許容範囲には入らない。   Even if the slopes match, the deviation does not fall within the allowable range if it is far away from the reference intensity (+ P1), such as the intensity (+ P2) of the characteristic M2.

このように偏差が許容範囲内に無いと判定されたときに、光変調器22の動作点の基準を、+方向の隣の動作点候補A2に変更して、前記同様に各他波長光を入射させ、それら他波長毎の基準強度P1に対する強度偏差を求める(S12〜S18)。   Thus, when it is determined that the deviation is not within the allowable range, the reference of the operating point of the optical modulator 22 is changed to the adjacent operating point candidate A2 in the + direction, and each other wavelength light is changed in the same manner as described above. Incident light is obtained and an intensity deviation with respect to the reference intensity P1 for each other wavelength is obtained (S12 to S18).

図5の例では、動作点候補A2におけるバイアス電圧Vb2は、変調特性M2、M3の強度中間点により近くなっていて特性の傾きも基準と一致しているが、依然としてその強度偏差が大きいので、許容偏差外と判定される(S19)。   In the example of FIG. 5, the bias voltage Vb2 in the operating point candidate A2 is closer to the intensity intermediate point of the modulation characteristics M2 and M3 and the characteristic inclination matches the reference, but the intensity deviation is still large. It is determined that the deviation is outside the allowable deviation (S19).

そして、今回のように傾きが一致したことで、今回の偏差の最大が前回の偏差の最大より小さくなるので(S20)、変更方向が正しいものとして、再び、光変調器22の動作点の基準を、+方向の隣の動作点候補A3に変更して、前記同様に各他波長光を入射させ、それら他波長毎の基準強度P1に対する強度偏差を求める(S12〜S18)。   Then, since the slopes coincide with each other as in this time, the maximum of the current deviation becomes smaller than the maximum of the previous deviation (S20), so that the change direction is assumed to be correct, and the reference of the operating point of the optical modulator 22 is again obtained. Is changed to the operating point candidate A3 adjacent to the + direction, each other wavelength light is incident in the same manner as described above, and an intensity deviation with respect to the reference intensity P1 for each other wavelength is obtained (S12 to S18).

図5の例では、動作点候補A3におけるバイアス電圧Vb3は、変調特性M2、M3の強度中間点にほぼ一致し、波長λ2、λ3における出射光強度+P2、+P3は、基準強度P1により近づいて、その偏差は許容範囲±W/2に入る。   In the example of FIG. 5, the bias voltage Vb3 at the operating point candidate A3 substantially matches the intensity intermediate point between the modulation characteristics M2 and M3, and the emitted light intensities + P2 and + P3 at the wavelengths λ2 and λ3 are closer to the reference intensity P1. The deviation falls within an allowable range ± W / 2.

このように、他波長光について得られた偏差が許容範囲内に入った場合(S19)、その時点の光変調器22の動作点を、各波長についての共通動作点と決定し、共通動作点に対応したバイアス電圧を光変調器22の初期動作点に設定する(S11)。また最初の動作点候補A1のときに他波長光について得られた偏差が許容範囲内に入った場合(S10)にも、その時点の光変調器22の動作点を、各波長についての共通動作点と決定し、共通動作点に対応したバイアス電圧を光変調器22の初期動作点に設定する。   In this way, when the deviation obtained for the other wavelength light falls within the allowable range (S19), the operating point of the optical modulator 22 at that time is determined as the common operating point for each wavelength, and the common operating point is determined. Is set as the initial operating point of the optical modulator 22 (S11). Further, even when the deviation obtained for the other wavelength light within the first operation point candidate A1 falls within the allowable range (S10), the operation point of the optical modulator 22 at that time is set as the common operation for each wavelength. The bias voltage corresponding to the common operating point is set as the initial operating point of the optical modulator 22.

一方、上記S19の判定処理で、偏差が許容範囲内に入らない場合には、前記したように、前回の偏差の最大と今回の偏差の最大を比較し、今回の偏差の方が少ない場合には、動作点の変更方向が正しいものとして、動作点候補を同じ方向(この場合+側)に変更して同一処理を行う(S20)。   On the other hand, when the deviation does not fall within the allowable range in the determination process of S19, as described above, the maximum of the previous deviation is compared with the maximum of the current deviation, and the current deviation is smaller. Performs the same process by changing the operating point candidate to the same direction (in this case, the + side) assuming that the operating point change direction is correct (S20).

また、処理S20で今回の偏差の方が大きいと判定された場合には、動作点の変更方向が誤っているものとして、図4に示すように、動作点候補を逆方向(この場合−側のB1、B2、…)に変更して、処理S13〜S19と同一処理を行う(S21〜S28)。   If it is determined in step S20 that the current deviation is larger, it is determined that the operating point change direction is incorrect, and the operating point candidate is displayed in the reverse direction (in this case, the-side) as shown in FIG. (B1, B2,...) And the same processes as S13 to S19 are performed (S21 to S28).

以上の処理を、偏差が許容範囲内に入るまで行うことで、各波長に共通の動作点を効率よく見付けることができる。   By performing the above processing until the deviation falls within the allowable range, an operating point common to each wavelength can be found efficiently.

なお、上記実施形態では、動作点における特性の傾きを意識し、それらが各波長について一致するような共通動作点を求めていたが、傾きを意識しないでもよい変調方式であれば、上記処理における傾き情報を無視して共通動作点を求めればよい。   In the above-described embodiment, the inclination of the characteristic at the operating point is conscious and a common operating point is obtained such that they match for each wavelength. The common operating point may be obtained by ignoring the tilt information.

また、前記実施形態では、傾きの情報を強度の符号に割り当てることで、偏差演算で傾きが一致していないものが許容範囲を大きく越えるようにしていたが、強度の偏差算出と傾きの一致不一致の判定を別々に行うようにしてもよい。   In the above embodiment, the slope information is assigned to the intensity code so that the deviation does not match in the deviation calculation greatly exceeds the allowable range. However, the intensity deviation calculation and the slope mismatch do not match. These determinations may be performed separately.

また、前記実施形態では、最初の動作点候補における強度偏差が許容範囲に入らないと判定されたときに、その動作点候補を+側(現状より高い方)の次の動作点候補に変更していたが、逆に−側(現状より低い方)の次の動作点候補に変更してもよい。   Further, in the embodiment, when it is determined that the intensity deviation in the first operation point candidate is not within the allowable range, the operation point candidate is changed to the next operation point candidate on the + side (which is higher than the current state). However, it may be changed to the next operating point candidate on the negative side (lower than the current level).

このようにして、初期動作点の設定が終了した後に、この多波長型光変調システム20は、予め決められたスケジュール等にしたがって、各波長の光にデータ信号による変調を施して出射させることになるが、その間、制御部30は、光変調器22の動作点のドリフトを抑制するためのフィードバック制御を行う。ここで、動作点ドリフトは各波長の変調特性に対してほぼ同等に作用する、つまり、図5のような各波長の変調特性M1〜M3が同一方向にほぼ同一量変化するので、ドリフト制御はいずれの波長についても同等に作用する。   In this way, after the setting of the initial operating point is completed, the multi-wavelength optical modulation system 20 modulates the light of each wavelength with the data signal according to a predetermined schedule or the like and emits it. In the meantime, the control unit 30 performs feedback control for suppressing drift of the operating point of the optical modulator 22. Here, the operating point drift acts almost equally on the modulation characteristics of each wavelength, that is, the modulation characteristics M1 to M3 of each wavelength as shown in FIG. It works equally for all wavelengths.

また、複数の波長の光を光変調器22に同時に入射して、同一データ信号で変調をかける場合には、そのうちの一つの波長の光を選択して、その選択した光から低周波信号成分を抽出してドリフト抑制制御を行えばよい。   In addition, when light of a plurality of wavelengths is simultaneously incident on the optical modulator 22 and is modulated with the same data signal, light of one wavelength is selected and a low frequency signal component is selected from the selected light. And the drift suppression control may be performed.

なお、上記実施形態では、光変調器22から出射された光の強度を検出するための光分岐器23と受光器24を光変調器22と別に示していたが、現在ではこの強度検出機能(モニタ機能)が付加された光変調器が実現されており、そのような光変調器を用いる場合には、モニタ出力を制御部30に入力する構成でよい。   In the above embodiment, the optical branching device 23 and the light receiving device 24 for detecting the intensity of the light emitted from the optical modulator 22 are shown separately from the optical modulator 22. An optical modulator to which a monitor function) is added is realized, and when such an optical modulator is used, the monitor output may be input to the control unit 30.

20……多波長型光変調システム、21……多波長光源、22……光変調器、23……光分岐器、24……受光器、25……バイアス電圧発生器、26……重畳器、30……制御部、31……初期動作点設定部、32……ドリフト抑制部   DESCRIPTION OF SYMBOLS 20 ... Multi-wavelength type optical modulation system, 21 ... Multi-wavelength light source, 22 ... Optical modulator, 23 ... Optical splitter, 24 ... Light receiver, 25 ... Bias voltage generator, 26 ... Superimposer , 30 ... Control unit, 31 ... Initial operating point setting unit, 32 ... Drift suppression unit

Claims (3)

電気光学効果を用いたマッハツェンダー干渉計を含み、印加されるバイアス電圧の変化に対して出射光強度が周期的に変化する変調特性を有する光変調器に対して、複数の異なる波長のうちの特定波長の光を入射させ、該光変調器の出射光強度を監視しつつ、該光変調器に供給するバイアス電圧を可変制御して、該特定波長に対して前記光変調器の動作点候補の一つを基準点として求め、その時の強度を記憶する段階(S1〜S4)と、
前記光変調器の動作点を前記基準点に保持したまま、前記特定波長以外の他波長光を順次入射させ、波長毎の強度を調べる段階(S5〜S8)と、
前記特定波長光の入射時に求めた強度を基準強度とし、特定波長以外の他波長光の入射で得られた強度の前記基準強度に対する偏差をそれぞれ調べる段階(S9)と、
前記各他波長光について得られた全ての偏差が、予め設定された許容範囲内にあるか否かを判定する段階(S10)と、
前記他波長光について得られた偏差のいずれかが前記許容範囲内に無いと判定されたときに、前記基準点を+方向または−方向のいずれか一方方向の隣の動作点候補に変更して、前記各他波長光を入射させ、該他波長毎の前記基準強度に対する偏差を求める段階(S12〜S18)と、
前記基準点の変更後に求めた偏差が前記許容範囲内にあるか否かを判定する段階(S19)と、
前記基準点の変更後に求めた偏差が前記許容範囲内に無いと判定されたとき、その変更後の偏差と変更前の偏差とを比較する段階(S20)と、
前記基準点変更後の偏差が変更前の偏差より小さい場合には、前記基準点の変更方向が正しいと判断し、該基準点を前記一方方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行い、前記変更後の偏差が変更前の偏差より大きい場合には、前記基準点の変更方向が誤っていると判断して該基準点を前記一方方向と逆方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行なう段階(S12〜S18、S21〜S27)とを含み、
前記他波長光について得られた偏差が前記許容範囲内に入った時の前記光変調器の動作点を、各波長についての共通動作点と決定し、該共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定することを特徴とする光変調器の初期動作点設定方法。
A light modulator including a Mach-Zehnder interferometer using an electro-optic effect and having a modulation characteristic in which the intensity of emitted light periodically changes with a change in applied bias voltage . A light of a specific wavelength is incident, and the bias voltage supplied to the optical modulator is variably controlled while monitoring the intensity of light emitted from the optical modulator, and the operating point candidate of the optical modulator for the specific wavelength One of these as a reference point and storing the intensity at that time (S1 to S4),
While keeping the operating point of the optical modulator at the reference point, sequentially entering light of wavelengths other than the specific wavelength and examining the intensity for each wavelength (S5 to S8);
Inspecting a deviation from the reference intensity of the intensity obtained by the incidence of light having a wavelength other than the specific wavelength as the reference intensity, which is obtained when the specific wavelength light is incident (S9),
Determining whether all the deviations obtained for each of the other wavelength lights are within a preset allowable range (S10);
When it is determined that any of the deviations obtained for the other wavelength light is not within the allowable range, the reference point is changed to an operation point candidate next to either the + direction or the − direction. , Making each other wavelength light incident, and obtaining a deviation from the reference intensity for each other wavelength (S12 to S18);
Determining whether the deviation obtained after the change of the reference point is within the allowable range (S19);
When it is determined that the deviation obtained after the change of the reference point is not within the allowable range, comparing the deviation after the change with the deviation before the change (S20);
If the deviation after the change of the reference point is smaller than the deviation before the change, it is determined that the change direction of the reference point is correct, and the reference point is changed to the next operation point candidate in the one direction to obtain a new deviation. Is performed until the deviation falls within the allowable range. If the deviation after the change is larger than the deviation before the change, it is determined that the change direction of the reference point is incorrect and the reference point is determined. Including changing the operation point candidate next to the one direction opposite to the one direction to obtain a new deviation until the deviation falls within the allowable range (S12 to S18, S21 to S27),
The operating point of the optical modulator when the deviation obtained for the other wavelength light falls within the allowable range is determined as a common operating point for each wavelength, and a bias voltage corresponding to the common operating point is set as the bias voltage. An initial operating point setting method for an optical modulator, wherein the initial operating point is set for the optical modulator.
複数の異なる波長の光を出射する多波長光源(21)と、A multi-wavelength light source (21) that emits light of a plurality of different wavelengths;
電気光学効果を用いたマッハツェンダー干渉計を含み、印加されるバイアス電圧の変化に対して出射光強度が周期的に変化する変調特性を有し、前記多波長光源から出射された光、前記バイアス電圧および変調信号を受けて、該変調信号によって変調された変調光を出射する光変調器(22)と、Including a Mach-Zehnder interferometer using an electro-optic effect, having a modulation characteristic in which emitted light intensity changes periodically with respect to a change in applied bias voltage, light emitted from the multi-wavelength light source, and the bias An optical modulator (22) for receiving a voltage and a modulation signal and emitting modulated light modulated by the modulation signal;
前記光変調器の出射光強度を検出する出射光強度検出手段(23、24)と、Outgoing light intensity detection means (23, 24) for detecting the outgoing light intensity of the light modulator;
前記光変調器に与えるバイアス電圧を発生するバイアス電圧発生器(25)と、A bias voltage generator (25) for generating a bias voltage to be applied to the optical modulator;
前記バイアス電圧発生器が出力するバアイス電圧を制御する制御部(30)とを有する多波長型光変調システムであって、A multi-wavelength optical modulation system having a control unit (30) for controlling the baice voltage output from the bias voltage generator,
前記制御部には、前記光源から前記光変調器に対して前記複数の異なる波長の光を順次入射させ、前記出射光強度検出手段の出力により前記光変調器の出射光強度を監視しつつ、該光変調器に供給するバイアス電圧を可変制御して、各波長について出射光強度が所定の許容範囲内となる共通動作点を見付け、該共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定する初期動作点設定部(31)が設けられており、The control unit sequentially enters the light of the plurality of different wavelengths from the light source to the optical modulator, and monitors the output light intensity of the light modulator by the output of the output light intensity detection unit, The bias voltage supplied to the optical modulator is variably controlled to find a common operating point where the emitted light intensity is within a predetermined allowable range for each wavelength, and the bias voltage corresponding to the common operating point is set to the optical modulator. An initial operating point setting unit (31) for setting an initial operating point is provided,
該初期動作点設定部は、The initial operating point setting unit
前記光変調器に対して、複数の異なる波長のうちの特定波長の光を入射させ、該光変調器の出射光強度を監視しつつ、該光変調器に供給するバイアス電圧を可変制御して、該特定波長に対して前記光変調器の動作点候補の一つを基準点として求め、その時の強度を記憶する手段と、A light having a specific wavelength out of a plurality of different wavelengths is incident on the optical modulator, and the bias voltage supplied to the optical modulator is variably controlled while monitoring the intensity of light emitted from the optical modulator. A means for obtaining one of the operating point candidates of the optical modulator as a reference point for the specific wavelength, and storing the intensity at that time;
前記光変調器の動作点を前記基準点に保持したまま、前記特定波長以外の他波長光を順次入射させ、波長毎の強度を調べる手段と、Means for sequentially injecting light of wavelengths other than the specific wavelength while maintaining the operating point of the optical modulator at the reference point, and checking the intensity for each wavelength;
前記特定波長光の入射時に求めた強度を基準強度とし、特定波長以外の他波長光の入射で得られた強度の前記基準強度に対する偏差をそれぞれ調べる手段と、Means for examining the deviation of the intensity obtained by the incidence of light of a wavelength other than the specific wavelength with respect to the reference intensity, with the intensity determined when the specific wavelength of light is incident as a reference intensity;
前記各他波長光について得られた全ての偏差が、予め設定された許容範囲内にあるか否かを判定する手段と、Means for determining whether or not all deviations obtained for each of the other wavelength lights are within a preset allowable range;
前記他波長光について得られた偏差のいずれかが前記許容範囲内に無いと判定されたときに、前記基準点を+方向または−方向のいずれか一方方向の隣の動作点候補に変更して、前記各他波長光を入射させ、該他波長毎の前記基準強度に対する偏差を求める手段と、When it is determined that any of the deviations obtained for the other wavelength light is not within the allowable range, the reference point is changed to an operation point candidate next to either the + direction or the − direction. Means for making each other wavelength light incident and calculating a deviation from the reference intensity for each other wavelength;
前記基準点の変更後に求めた偏差が前記許容範囲内にあるか否かを判定する手段と、Means for determining whether the deviation obtained after the change of the reference point is within the allowable range;
前記基準点の変更後に求めた偏差が前記許容範囲内に無いと判定されたとき、その変更後の偏差と変更前の偏差とを比較する手段と、Means for comparing the deviation after the change with the deviation before the change when it is determined that the deviation obtained after the change of the reference point is not within the allowable range;
前記基準点変更後の偏差が変更前の偏差より小さい場合には、前記基準点の変更方向が正しいと判断し、該基準点を前記一方方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行い、前記変更後の偏差が変更前の偏差より大きい場合には、前記基準点の変更方向が誤っていると判断して該基準点を前記一方方向と逆方向の隣の動作点候補に変更して新たな偏差を求める処理を該偏差が前記許容範囲内に入るまで行なう手段とを有し、If the deviation after the change of the reference point is smaller than the deviation before the change, it is determined that the change direction of the reference point is correct, and the reference point is changed to the next operation point candidate in the one direction to obtain a new deviation. Is performed until the deviation falls within the allowable range. If the deviation after the change is larger than the deviation before the change, it is determined that the change direction of the reference point is incorrect and the reference point is determined. Means for performing a process of obtaining a new deviation by changing to an operation point candidate adjacent to the one direction opposite to the one direction until the deviation falls within the allowable range;
前記他波長光について得られた偏差が前記許容範囲内に入った時の前記光変調器の動作点を、各波長についての共通動作点と決定し、該共通動作点に対応したバイアス電圧を前記光変調器の初期動作点に設定することを特徴とする多波長型光変調システム。The operating point of the optical modulator when the deviation obtained for the other wavelength light falls within the allowable range is determined as a common operating point for each wavelength, and a bias voltage corresponding to the common operating point is set as the bias voltage. A multi-wavelength optical modulation system, characterized by being set to an initial operating point of an optical modulator.
前記制御部には、前記初期動作点設定部により前記光変調器に初期設定された動作点のドリフトを検出して、抑制するドリフト抑制部(32)が設けられていることを特徴とする請求項2記載の多波長型光変調システム。 According to the control unit, which detects drift of the initial set operating point on the optical modulator by the initial operating point setting unit, wherein the suppressing drift suppressing portion (32) is provided Item 3. The multi-wavelength optical modulation system according to Item 2 .
JP2010161453A 2010-07-16 2010-07-16 Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system Expired - Fee Related JP5391160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161453A JP5391160B2 (en) 2010-07-16 2010-07-16 Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161453A JP5391160B2 (en) 2010-07-16 2010-07-16 Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system

Publications (2)

Publication Number Publication Date
JP2012022233A JP2012022233A (en) 2012-02-02
JP5391160B2 true JP5391160B2 (en) 2014-01-15

Family

ID=45776551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161453A Expired - Fee Related JP5391160B2 (en) 2010-07-16 2010-07-16 Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system

Country Status (1)

Country Link
JP (1) JP5391160B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908213A (en) * 2019-12-10 2020-03-24 电子科技大学 Mach-Zehnder optical waveguide interferometer for realizing working point control based on wavelength tuning

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4246074B2 (en) * 2004-01-20 2009-04-02 Nttエレクトロニクス株式会社 Optical modulator and optical modulator control method

Also Published As

Publication number Publication date
JP2012022233A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP6120761B2 (en) Optical transmitter and method for controlling optical transmitter
US7876491B2 (en) Multilevel optical phase modulator
EP1764935B1 (en) Optical transmission system
US9069224B2 (en) Optical modulator and optical modulation control method
JP5669674B2 (en) Drive control device for semiconductor optical modulator
US10498457B2 (en) Optical carrier-suppressed signal generator
JP2004318052A (en) Method for bias control over optical modulator and device therefor
JP2004294883A (en) Control apparatus for optical modulator
EP3136165B1 (en) Electro-optic (e/o) device with an e/o amplitude modulator and associated methods
JPWO2012165656A1 (en) Optical waveguide device, optical interferometer, and optical waveguide device control method
US9762331B2 (en) Optical communication apparatus and method of controlling optical modulator
JP2023031312A (en) Coupling devices and methods, wavelength locking systems and methods, and phase unwrapping systems and methods
JP5391160B2 (en) Method for setting initial operating point of optical modulator and multi-wavelength optical modulation system
JP2004080305A (en) Optical transmitter
JP2022191807A (en) Optical transmitter, optical transceiver, and bias control method for optical modulator
US20190339055A1 (en) Illumination apparatus
KR101219168B1 (en) Optical transmitting apparatus for stable optical signal output
JP2020134602A (en) Wavelength variable light source device and control method of wavelength variable light source device
JP2008288389A (en) Wavelength stabilizing unit
JP4542422B2 (en) Optical device and drive voltage supply apparatus
JP4316212B2 (en) Light intensity modulator
Bhowmik et al. Proposal for an optical multicarrier generator based on single silicon micro-ring modulator
JP2002258227A (en) Light modulating apparatus
JP2015191130A (en) Light generating device, and control method of light generating device
KR101451784B1 (en) Dual-mode raman laser system and operational method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees