JP5389681B2 - Charging device and method using constant pressure power source for interference wave therapy device, etc. - Google Patents

Charging device and method using constant pressure power source for interference wave therapy device, etc. Download PDF

Info

Publication number
JP5389681B2
JP5389681B2 JP2010002049A JP2010002049A JP5389681B2 JP 5389681 B2 JP5389681 B2 JP 5389681B2 JP 2010002049 A JP2010002049 A JP 2010002049A JP 2010002049 A JP2010002049 A JP 2010002049A JP 5389681 B2 JP5389681 B2 JP 5389681B2
Authority
JP
Japan
Prior art keywords
charging
path
rechargeable battery
predetermined value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010002049A
Other languages
Japanese (ja)
Other versions
JP2011142743A (en
Inventor
薫 関
博次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirose Electric Co Ltd
Original Assignee
Hirose Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Electric Co Ltd filed Critical Hirose Electric Co Ltd
Priority to JP2010002049A priority Critical patent/JP5389681B2/en
Publication of JP2011142743A publication Critical patent/JP2011142743A/en
Application granted granted Critical
Publication of JP5389681B2 publication Critical patent/JP5389681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrotherapy Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電式電池のための充電装置及び充電方法、特に、干渉波治療器等のための、定圧電源を用いた充電装置及び充電方法に関する。   The present invention relates to a charging device and a charging method for a rechargeable battery, and more particularly to a charging device and a charging method using a constant pressure power source for an interference wave therapy device and the like.

例えば、特開2004−267325号に開示されているような小型干渉波治療器では、電源として、使い捨て乾電池の使用をも意図したものとなっている。このような使い捨て乾電池は、体積当たりのエネルギー密度が低く、干渉波治療器で使用するには、たとえそれが小型のものであっても単三型電池4本分程度の電力は必要となる。   For example, in a small interference wave treatment device as disclosed in Japanese Patent Application Laid-Open No. 2004-267325, it is intended to use a disposable dry battery as a power source. Such a disposable battery has a low energy density per volume, and requires about four AA batteries to be used in an interference wave therapy device, even if it is small.

このような使い捨て乾電池に対して、昨今市販されている充電式電池(NiMH電池等の二次電池)は、体積当りのエネルギー密度が高く、また、使い捨て乾電池との電気的及び機械的接触のために機器本体等に設けられるコイルバネが、それら充電式電池では不要であるため、使い捨て乾電池の場合のような電力損失も少なく、この結果、使い捨て乾電池よりもより少ない本数、例えば上の例で言えば、単三型電池3本程度で、使い捨て電池4本分と同等の電力が得られるといった利点がある。更に、電池本数が少なくなる分、機器本体のサイズダウンが図られ、また、充電式電池は、繰り返しの使用が可能であることから環境性にも優れ、使い捨て乾電池に代わる電源として非常に有望視されている。   In contrast to such disposable dry batteries, rechargeable batteries (secondary batteries such as NiMH batteries) currently on the market have a high energy density per volume, and because of electrical and mechanical contact with the disposable dry batteries. Since the coil spring provided in the device main body is not required for those rechargeable batteries, there is less power loss as in the case of a disposable dry battery, and as a result, a smaller number than the disposable dry battery, for example, in the above example There is an advantage that about three AA batteries can provide the same power as four disposable batteries. In addition, as the number of batteries decreases, the size of the device body can be reduced, and the rechargeable battery can be used repeatedly, so it is environmentally friendly and very promising as a power source to replace disposable dry batteries. Has been.

特開2004−267325号JP 2004-267325 A

しかしながら、以下に説明するように、これら充電式電池の使用は、充電作業やICチップの使用を要求するものである。   However, as will be described below, the use of these rechargeable batteries requires a charging operation or the use of an IC chip.

これら充電式電池を充電するために使用されている充電方式の一例を図5に示す。よく知られているように、これら充電式電池の充電方式としては、一般に、定電流方式が採用されている。図5は、特に、定電流方式で充電式電池を充電した場合の充電特性の一例を示したものである。図において、横軸は時間(t)を、縦軸は、電流(I)と電圧(V)を、それぞれ示している。   An example of the charging method used to charge these rechargeable batteries is shown in FIG. As is well known, a constant current method is generally adopted as a charging method for these rechargeable batteries. FIG. 5 shows an example of charging characteristics when a rechargeable battery is charged by the constant current method. In the figure, the horizontal axis represents time (t), and the vertical axis represents current (I) and voltage (V).

充電が始まると、電流は一定のまま、電池電圧は時間の経過に伴って上昇する。充電完了期には、ピーク値(図示矢印「ア」)を示し、その後、電池電圧は降下する。充電の終了時機は、例えば、ピーク値から所定電圧降下したとき、つまり、図5の「−ΔV」を検出することによって知ることができる。   When charging begins, the current remains constant and the battery voltage increases with time. In the charge completion period, a peak value (arrow “A” in the figure) is shown, and then the battery voltage drops. The end timing of charging can be known, for example, when a predetermined voltage drops from the peak value, that is, by detecting “−ΔV” in FIG. 5.

この「−ΔV」の検出は、一般に、ICチップを用いたソフトウェア制御で行われている。つまり、充電式電池の使用は、干渉波治療器に、充電制御用の専用ICチップの使用や、このような専用ICチップを用いたソフト制御された充電作業を要求するものである。更に、この充電作業中には、ジュール熱が発生することになるが、ジュール熱があまりに大きいと、機器や電池にダメージを与えるといった危険もある。   The detection of “−ΔV” is generally performed by software control using an IC chip. In other words, the use of the rechargeable battery requires the interference wave treatment device to use a dedicated IC chip for charge control or a soft-controlled charging operation using such a dedicated IC chip. Furthermore, Joule heat is generated during this charging operation. However, if the Joule heat is too large, there is a risk of damaging the device and the battery.

本願発明はこれら従来技術における問題点を解決するためになされたものであり、ジュール熱の発生を抑制しつつ、充電制御用の専用ICチップ等の使用を必要とせずに、より簡易な構成で充電式電池を充電することができる充電装置及び充電方法を提供することを目的とする。   The present invention has been made to solve these problems in the prior art, and while suppressing the generation of Joule heat, it does not require the use of a dedicated IC chip for charging control, etc., and has a simpler configuration. It is an object of the present invention to provide a charging device and a charging method capable of charging a rechargeable battery.

本発明は、充電式電池のための充電装置であって、前記充電装置に接続された前記充電式電池を定圧電源に接続するための、第一及び第二の充電経路を含む少なくとも2つの充電経路と、前記少なくとも2つの充電経路のうちの1つを選択する経路選択手段と、を備え、前記第二の充電経路における抵抗値よりも大きな抵抗値を前記第一の充電経路に設定して、該第一の充電経路を通じて前記充電式電池に供給される第一の充電電流を、前記第二の充電経路を通じて前記充電式電池に供給される第二の充電電流よりも小さくし、前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電することを特徴としている。   The present invention is a charging device for a rechargeable battery, comprising at least two charging paths including first and second charging paths for connecting the rechargeable battery connected to the charging device to a constant pressure power source. A path selection means for selecting one of the at least two charging paths, and setting a resistance value larger than a resistance value in the second charging path to the first charging path. The charging current supplied to the rechargeable battery through the first charging path is smaller than the second charging current supplied to the rechargeable battery through the second charging path, and Before the storage amount of the battery reaches the first predetermined value, the rechargeable battery is charged with the first charging current through the first charging path selected by the path selecting means, and the rechargeable battery Is the first Charging the rechargeable battery with the second charging current through the second charging path selected by the path selection means after reaching the predetermined value and until reaching the second predetermined value. It is a feature.

上記充電装置において、前記充電装置に接続された前記充電式電池を定圧電源に接続するための、第三の充電経路を更に設け、前記経路選択手段は、前記第一、第二、及び第三の充電経路を含む少なくとも3つの充電経路のうちの1つを選択するものであり、前記第二の充電経路における抵抗値よりは大きいが前記第一の充電経路における抵抗値よりは小さい抵抗値を前記第三の充電経路に設定して、該第三の充電経路を通じて前記充電式電池に供給される第三の充電電流を、前記第一の充電電流よりは小さいが前記第二の充電電流よりは大きくし、前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達する前は、前記経路選択手段によって選択された前記第三の充電経路を通じて前記第三の充電電流によって前記充電式電池を充電し、前記充電式電池の蓄電量が前記第二の所定値に達した後であって第三の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電してもよい。   The charging device further includes a third charging path for connecting the rechargeable battery connected to the charging apparatus to a constant pressure power source, and the path selection means includes the first, second, and third charging paths. One of at least three charging paths including the charging path is selected, and a resistance value larger than the resistance value in the second charging path but smaller than the resistance value in the first charging path is selected. Set to the third charging path, the third charging current supplied to the rechargeable battery through the third charging path is smaller than the first charging current but less than the second charging current. The rechargeable battery is charged with the first charging current through the first charging path selected by the path selection means before the charged amount of the rechargeable battery reaches a first predetermined value. And the rechargeable battery After the storage amount reaches the first predetermined value and before the second predetermined value, the third charging current passes through the third charging path selected by the path selection means. The rechargeable battery is charged, and after the amount of electricity stored in the rechargeable battery reaches the second predetermined value, until the third predetermined value is reached, the second selected by the route selection means The rechargeable battery may be charged with the second charging current through a charging path.

また、上記充電装置において、前記第二の充電経路における抵抗値は、複数の抵抗を組み合わせることによって得られるようにしてもよい。
更に、上記充電装置において、前記充電装置に接続された前記充電式電池の電圧を測定する電池電圧測定手段を設けてもよい。
In the charging device, the resistance value in the second charging path may be obtained by combining a plurality of resistors.
Furthermore, in the charging device, battery voltage measuring means for measuring the voltage of the rechargeable battery connected to the charging device may be provided.

上記充電装置において、前記充電装置に接続された前記定圧電源の電圧を測定する電源電圧測定手段を設けた、測定された電圧が所定以上のときは、前記定圧電源からの電流の供給を停止してもよい。   In the charging device, a power supply voltage measuring means for measuring a voltage of the constant pressure power source connected to the charging device is provided. When the measured voltage is equal to or higher than a predetermined value, supply of current from the constant pressure power source is stopped. May be.

また、上記充電装置において、前記充電装置に前記定圧電源が接続されているか否かを判定する電源接続判定手段を設けてもよい。   Further, in the charging device, a power connection determination unit that determines whether or not the constant pressure power source is connected to the charging device may be provided.

また、上記充電装置において、前記充電式電池の温度を測定する電池温度測定手段を設け、測定された温度が所定以上のときは、前記定圧電源からの電流の供給を停止してもよい。
更に、上記充電装置を利用した干渉波治療器を提供することもできる。
In the charging device, battery temperature measuring means for measuring the temperature of the rechargeable battery may be provided, and supply of current from the constant pressure power source may be stopped when the measured temperature is equal to or higher than a predetermined value.
Furthermore, an interference wave treatment device using the charging device can be provided.

また、本発明は、充電式電池のための充電方法であって、前記充電装置に接続された前記充電式電池を定圧電源に接続するための第一及び第二の充電経路を含む少なくとも2つの充電経路のうちの1つを経路選択手段によって選択し、前記第二の充電経路における抵抗値よりも大きな抵抗値を前記第一の充電経路に設定して、該第一の充電経路を通じて前記充電式電池に供給される第一の充電電流を、前記第二の充電経路を通じて前記充電式電池に供給される第二の充電電流よりも小さくし、前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電する、ことを特徴としている。   The present invention is also a charging method for a rechargeable battery, comprising at least two first and second charging paths for connecting the rechargeable battery connected to the charging device to a constant pressure power source. One of the charging paths is selected by path selection means, a resistance value larger than the resistance value in the second charging path is set in the first charging path, and the charging is performed through the first charging path. A first charging current supplied to the rechargeable battery is smaller than a second charging current supplied to the rechargeable battery through the second charging path, and a charge amount of the rechargeable battery is a first predetermined amount. Before reaching the value, the rechargeable battery is charged with the first charging current through the first charging path selected by the path selection means, and the charged amount of the rechargeable battery is the first predetermined value. After reaching the second Until a value is to charge the rechargeable battery by the second charging current through the second charging path selected by the path selection unit is characterized in that.

上記充電方法において、前記充電装置に接続された前記充電式電池を定圧電源に接続するための第三の充電経路を更に設け、前記充電装置に接続された前記充電式電池を定圧電源に接続する前記第一、第二、及び第三の充電経路を含む少なくとも3つの充電経路のうちの1つを経路選択手段によって選択し、前記第二の充電経路における抵抗値よりは大きいが前記第一の充電経路における抵抗値よりは小さい抵抗値を前記第三の充電経路に設定して、該第三の充電経路を通じて前記充電式電池に供給される第三の充電電流を、前記第一の充電電流よりは小さいが前記第二の充電電流よりは大きくし、前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達する前は、前記経路選択手段によって選択された前記第三の充電経路を通じて前記第三の充電電流によって前記充電式電池を充電し、前記充電式電池の蓄電量が前記第二の所定値に達した後であって第三の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電するようにしてもよい。   In the above charging method, a third charging path for connecting the rechargeable battery connected to the charging device to a constant pressure power supply is further provided, and the rechargeable battery connected to the charging device is connected to the constant pressure power supply. One of at least three charging paths including the first, second, and third charging paths is selected by path selection means, and the first charging path is larger than the resistance value in the second charging path, A resistance value smaller than a resistance value in the charging path is set in the third charging path, and a third charging current supplied to the rechargeable battery through the third charging path is set as the first charging current. Is smaller than the second charging current, and before the amount of charge of the rechargeable battery reaches a first predetermined value, the first charging path selected by the path selection means is used for the first charging path. One charging current Therefore, after charging the rechargeable battery and before the storage amount of the rechargeable battery reaches the first predetermined value and before the second predetermined value, the first selected by the route selection means Charging the rechargeable battery with the third charging current through a third charging path, and after the amount of power stored in the rechargeable battery reaches the second predetermined value until the third predetermined value is reached. The rechargeable battery may be charged with the second charging current through the second charging path selected by the path selection means.

ジュール熱の発生を抑制しつつ、簡易な構成で充電式電池を充電することができる充電装置が提供される。   Provided is a charging device capable of charging a rechargeable battery with a simple configuration while suppressing generation of Joule heat.

充電装置の回路構成のブロック図である。It is a block diagram of the circuit structure of a charging device. 図1のブロック図に対応する、より詳細な回路図の一例を示す図である。It is a figure which shows an example of the more detailed circuit diagram corresponding to the block diagram of FIG. 図2に示した実施例の変形例を示す図である。It is a figure which shows the modification of the Example shown in FIG. 二段階の定電圧方式で充電する際の充電特性の一例を示す図である。It is a figure which shows an example of the charge characteristic at the time of charging with a two-stage constant voltage system. 定電流方式で充電する際の充電特性の一例を示す図である。It is a figure which shows an example of the charge characteristic at the time of charging by a constant current system.

図1、図2を参照しつつ、本発明の好適な一実施形態による充電装置10を説明する。尚、本装置10は、例えば、干渉波治療器や、EMS(ダイエット機器)、筋肉トレーニング用の治療器等に使用することができるものであるが、これに限らず、充電装置を必要とする様々な機器に使用することができる。   A charging device 10 according to a preferred embodiment of the present invention will be described with reference to FIGS. 1 and 2. In addition, although this apparatus 10 can be used for an interference wave treatment device, EMS (diet equipment), a treatment device for muscle training, etc., it is not restricted to this, A charging device is required. It can be used for various devices.

図1は、充電装置10の回路構成のブロック図である。充電時には、この充電装置10に対して、充電式電池11と電源12の双方がそれぞれ接続される。   FIG. 1 is a block diagram of a circuit configuration of the charging apparatus 10. At the time of charging, both the rechargeable battery 11 and the power source 12 are connected to the charging device 10.

充電式電池11は、市販のものでよい。このような充電式電池は、使い捨て乾電池に比べ、安全性をより考慮する必要があるが、例えば、干渉波治療器を制御するマイクロコンピュータ(CPU)を用いてソフト制御することにより、安全性は充分に確保できる。   The rechargeable battery 11 may be a commercially available one. Such a rechargeable battery needs to consider safety more than a disposable dry battery. For example, the safety of the rechargeable battery can be controlled by software control using a microcomputer (CPU) that controls an interference wave therapy device. It can be secured sufficiently.

電源12の電源方式は、従来の急速充電器のような定電流方式ではなく、定電圧方式を使用する。定電圧方式とすることにより、電池のダメージを低減(電池の充電が進むと充電電流が減る)することができるとともに、汎用的で安価な部品で、充電回路を実現できる。更に、定電圧方式を採用することにより、必要最低限の仕様に絞って実現できるため、余分な部品がなくなり、コストダウンとサイズダウンの両方を実現することができる。   The power supply system of the power supply 12 uses a constant voltage system, not a constant current system as in the conventional quick charger. By using the constant voltage system, damage to the battery can be reduced (the charging current decreases as the battery is charged), and a charging circuit can be realized with general-purpose and inexpensive components. Furthermore, by adopting the constant voltage method, it can be realized by limiting to the minimum necessary specifications, so there are no extra parts, and both cost reduction and size reduction can be realized.

充電装置10の主要部には、複数の充電経路15、16と、これら複数の充電経路15、16のうちの1つを選択する経路選択手段18が含まれる。充電装置10に接続された充電式電池11は、充電経路15、16を通じて、定圧電源12に接続されることになる。   The main part of the charging device 10 includes a plurality of charging paths 15 and 16 and a path selection means 18 for selecting one of the plurality of charging paths 15 and 16. The rechargeable battery 11 connected to the charging device 10 is connected to the constant pressure power supply 12 through the charging paths 15 and 16.

充電経路は、少なくとも2つ存在すればよく、3つ以上であってもよい。充電装置10に接続された充電式電池11は、経路選択手段18によって選択された、いずれかの充電経路、例えば、第一の充電経路15又は第二の充電経路16を通じて、定圧電源12に接続される。   There may be at least two charging paths, and there may be three or more charging paths. The rechargeable battery 11 connected to the charging device 10 is connected to the constant pressure power source 12 through any one of the charging paths selected by the path selection unit 18, for example, the first charging path 15 or the second charging path 16. Is done.

第二の充電経路16における抵抗値(R2+R3)は、第一の充電経路15における抵抗値(R1)よりも小きく設定されている点に注意していただきたい。この結果、定電圧方式の下、第二の充電経路16を通じて供給される第二の充電電流は、第一の充電経路15を通じて充電式電池11に供給される第一の充電電流よりも大きくなっている。   It should be noted that the resistance value (R2 + R3) in the second charging path 16 is set smaller than the resistance value (R1) in the first charging path 15. As a result, under the constant voltage method, the second charging current supplied through the second charging path 16 is larger than the first charging current supplied to the rechargeable battery 11 through the first charging path 15. ing.

明らかなように、充電式電池11に供給される充電電流の大きさは、単に、第一の充電経路15又は第二の充電経路16のいずれかを選択するだけで、容易に変更することができる。この選択は、以下に詳細に説明するように、各充電経路、特に、それらの抵抗において発生され得るジュール熱、即ち、J=I2×R(Iは電流、Rは抵抗である)を考慮して決定される。 As can be seen, the magnitude of the charging current supplied to the rechargeable battery 11 can be easily changed by simply selecting either the first charging path 15 or the second charging path 16. it can. This selection takes into account the Joule heat that can be generated in each charging path, in particular their resistance, ie J = I 2 × R (I is current and R is resistance), as will be explained in detail below. To be determined.

上式から明らかなように、抵抗で発生され得るジュール熱は、たとえ抵抗が小さくとも、その分、電流が大きければ大きくなり、逆に、たとえ抵抗が大きくとも、その分、電流が小さければ小さくなる。ジュール熱が大きいと、抵抗、更には、機器自体が破壊される危険が高くなり、また、電池も劣化し易くなる。干渉波治療器等では、特に、大きな電圧が使用されることから、ジュール熱の問題は重大である。よって、この問題を解決し得るような方法で充電することが望まれる。   As is clear from the above equation, even if the resistance is small, the Joule heat that can be generated by the resistance increases as the current increases. Conversely, even if the resistance increases, the Joule heat decreases as the current decreases. Become. When the Joule heat is large, there is a high risk that the resistance, and further, the device itself is destroyed, and the battery is likely to be deteriorated. In the interference wave therapy device and the like, the problem of Joule heat is particularly serious because a large voltage is used. Therefore, it is desirable to charge the battery in such a way that this problem can be solved.

急速充電を行うには、一般に、蓄電量が不十分な充電初期は、なるべく大きな電流とし、蓄電量が略満杯となった充電終期は、電流を小さくするのが望ましい。しかしながら、より大きな電流はより大きなジュール熱を発生させるため、干渉波治療器等において、このような充電方法を用いるのは好ましくない。   In order to perform rapid charging, it is generally desirable to set the current as large as possible in the initial stage of charging when the charged amount is insufficient, and to reduce the current at the end of charging when the charged amount is almost full. However, since a larger current generates larger Joule heat, it is not preferable to use such a charging method in an interference wave therapy device or the like.

それ故、本装置10では、蓄電量の増加率が高い充電初期、更に詳細には、充電式電池11の蓄電量が第一の所定値に達する前は、経路選択手段18によって選択された第一の充電経路15を通じて、第一の充電電流、言い換えれば、比較的小さな電流、を用いて、ジュール熱を抑制し、これに対し、蓄電量の増加率が低下しはじめる充電終期、更に詳細には、充電式電池11の蓄電量が第一の所定値に達した後であって第二の所定値に達するまでは、経路選択手段18によって選択された第二の充電経路16を通じて、第二の充電電流、言い換えれば、比較的大きな電流、を用いて、充電時間を短縮するものとしている。   Therefore, in the present apparatus 10, at the initial stage of charging at which the rate of increase of the charged amount is high, more specifically, before the charged amount of the rechargeable battery 11 reaches the first predetermined value, the first selected by the route selection means 18. Through the one charging path 15, the first charging current, in other words, a relatively small current is used to suppress Joule heat. Is the second charge path 16 selected by the path selection means 18 after the storage amount of the rechargeable battery 11 reaches the first predetermined value and until the second predetermined value is reached. The charging time is shortened by using a charging current, in other words, a relatively large current.

以上の主要部に加え、充電装置10は、更に、充電式電池11を接続するための電池接続部14と、この電池接続部14に接続されて、充電装置10に接続された充電式電池11の電圧を測定する電池電圧測定手段20と、定圧電源12を接続するための電源接続部13と、この電源接続部13に接続されて、充電装置10に接続された定圧電源12の電圧を測定する電源電圧測定手段23と、同様に電源接続部13に接続されて、充電装置10に定圧電源12が接続されているか否かを判定する電源接続判定手段25と、充電式電池11の近傍に設置されて、充電式電池11の温度を測定する電池温度測定手段30とを含む。   In addition to the main parts described above, the charging device 10 further includes a battery connection unit 14 for connecting the rechargeable battery 11, and the rechargeable battery 11 connected to the battery connection unit 14 and connected to the charging device 10. The battery voltage measuring means 20 for measuring the voltage of the battery, the power supply connection part 13 for connecting the constant pressure power supply 12, and the voltage of the constant pressure power supply 12 connected to the power supply connection part 13 and connected to the charging device 10 are measured. The power supply voltage measuring means 23, the power supply connection determining means 25 which is connected to the power supply connection portion 13 in the same manner and determines whether or not the constant pressure power supply 12 is connected to the charging device 10, and the rechargeable battery 11. And battery temperature measuring means 30 that is installed and measures the temperature of the rechargeable battery 11.

図2は、図1のブロック図に対応する、より詳細な回路図の一例を示す図である。   FIG. 2 is a diagram showing an example of a more detailed circuit diagram corresponding to the block diagram of FIG.

充電式電池11として、一体に束ねられた3本のNiMH電池を使用している。1本の電池で1.2Vの電圧を蓄電できるため、3本で3.6Vの蓄電量を有する。これらの電池11は、コネクタCN2を有する電池接続部14を通じて主要部に接続され得る。   As the rechargeable battery 11, three NiMH batteries bundled together are used. Since one battery can store a voltage of 1.2 V, three batteries have a storage amount of 3.6 V. These batteries 11 can be connected to the main part through a battery connection part 14 having a connector CN2.

定圧電源12として、ACアダプタ電源を使用している。ACアダプタ電源は、電源接続部13を通じて主要部に接続され得る。定圧電源12と電源接続部13を接続するため、定圧電源12側にCN3を、これに対応して、電源接続部13側にコネクタCN1を、それぞれ設けている。尚、充電装置10への負荷を考慮して、充電装置10に対する接続は、定圧電源12を充電式電池11よりも後に行うものとする。万が一、定圧電源12が先に接続された場合は、充電を行わない。この制御は、ICチップやCPUを用いたソフトウェア処理により行う。   An AC adapter power supply is used as the constant pressure power supply 12. The AC adapter power supply can be connected to the main part through the power supply connection part 13. In order to connect the constant pressure power supply 12 and the power supply connection portion 13, CN3 is provided on the constant pressure power supply 12 side, and a connector CN1 is provided on the power supply connection portion 13 side correspondingly. In consideration of the load on the charging device 10, the connection to the charging device 10 is performed after the constant pressure power source 12 after the rechargeable battery 11. If the constant pressure power supply 12 is connected first, charging is not performed. This control is performed by software processing using an IC chip or CPU.

電源接続部13と電池接続部14の間に、第一の充電経路15と第二の充電経路16を設けている。電源接続部13に接続された定圧電源12と電池接続部14に接続された充電式電池11は、これら第一の充電経路15及び第二の充電経路16を通じて互いに電気的に接続される。実際の使用時には、経路選択手段18によって、充電経路15、16のうちの一方のみが選択される。尚、双方が同時に選択されることはない。第一の充電経路15は、抵抗R1(33Ω、1W)を含み、第二の充電経路16は、抵抗R2(1.5Ω、1W)とR3(1.8Ω、1W)を含む。ここで、第一の充電経路15における抵抗R1の抵抗値、即ち、33Ωは、第二の充電経路16における抵抗R2、R3の抵抗値、即ち、R2+R3=1.5Ω+1.8Ω=3.3Ωよりも大きな値に設定されている点に注意していただきたい。この結果、第一の充電経路15を通じて充電式電池11に供給される第一の充電電流は、第二の充電経路16を通じて供給される第二の充電電流よりも小さく設定されることになる。尚、第二の充電経路16では、抵抗R2と抵抗R3がそれぞれ1Wの電力を有することから、全体として、2Wの電力を有する。このように、第二の充電経路16において、抵抗を2つに分けたのは、装置の大型化を避けるためである。例えば、R2+R3に相当する抵抗(3.3Ω、2W)は、大型となるため、これを2つに分けることによって、装置の小型化も図られることになる。   A first charging path 15 and a second charging path 16 are provided between the power supply connection portion 13 and the battery connection portion 14. The constant pressure power supply 12 connected to the power supply connection unit 13 and the rechargeable battery 11 connected to the battery connection unit 14 are electrically connected to each other through the first charging path 15 and the second charging path 16. During actual use, only one of the charging paths 15 and 16 is selected by the path selection means 18. Both are not selected at the same time. The first charging path 15 includes a resistor R1 (33Ω, 1W), and the second charging path 16 includes resistors R2 (1.5Ω, 1W) and R3 (1.8Ω, 1W). Here, the resistance value of the resistor R1 in the first charging path 15, that is, 33Ω, is obtained from the resistance values of the resistors R2 and R3 in the second charging path 16, that is, R2 + R3 = 1.5Ω + 1.8Ω = 3.3Ω. Note that the value is also set to a large value. As a result, the first charging current supplied to the rechargeable battery 11 through the first charging path 15 is set to be smaller than the second charging current supplied through the second charging path 16. In addition, in the 2nd charge path | route 16, since resistance R2 and resistance R3 each have 1W electric power, they have 2W electric power as a whole. Thus, the reason why the resistance is divided into two in the second charging path 16 is to avoid an increase in the size of the apparatus. For example, since the resistance (3.3Ω, 2W) corresponding to R2 + R3 is large, the device can be miniaturized by dividing the resistance into two.

第一の充電経路15を選択するための経路選択手段18は、PNPトランジスタQ1と抵抗R11を含む。一方、第二の充電経路16を選択するための経路選択手段18は、PNPトランジスタQ2と抵抗R12を含む。各トランジスタQ1、Q2のエミッタは、電源接続部13に接続され、コレクタは、電池接続部14に接続される。一方、ベースは、それぞれ、抵抗R11、R12に接続され、これらは更に、CPUポートへ接続される。CPUポートに接続されたベースのいずれか一方を、ソフトウェアの働きによってトリガすることにより、いずれかの充電経路15、16を容易に選択することができるようになっている。   The path selection means 18 for selecting the first charging path 15 includes a PNP transistor Q1 and a resistor R11. On the other hand, the path selection means 18 for selecting the second charging path 16 includes a PNP transistor Q2 and a resistor R12. The emitters of the transistors Q1 and Q2 are connected to the power supply connection unit 13, and the collectors are connected to the battery connection unit 14. On the other hand, the base is connected to resistors R11 and R12, respectively, which are further connected to the CPU port. Any one of the charging paths 15 and 16 can be easily selected by triggering any one of the bases connected to the CPU port by the action of software.

経路選択手段18による選択は、例えば、充電式電池11における蓄電量を基準に行うことができる。尚、充電式電池11における電圧は、上述した電源電圧測定手段23によって測定される。蓄電量が、第一の所定値(例えば、公称値1.2Vの電池を3本使用する場合の充電式電池11は、3.3V)に達する前であるとき、更に言えば、蓄電量が0.0〜3.3Vの充電初期の場合は、第一の充電経路15が選択され、一方、公称値に達した後であって上述した第二の所定値(例えば、公称値1.2Vの電池を3本使用する場合に実際に必要とされる電圧値である4.5V程度)に達するまで、更に言えば、蓄電量が3.3V〜4.5Vの充電終期の場合は、第二の充電経路16が選択される。このとき定圧電源12の電圧を5.5Vに設定したとすると、第一の充電経路15を通じて供給される第一の充電電流は、定圧電源12の電圧と、蓄電量の電位差、及び抵抗R1の抵抗値(33Ω)の関係で、約0.17〜0.07Aとなり、一方、第二の充電経路16を通じて供給される第二の充電電流は、同様に、定圧電源12の電圧と、蓄電量の電位差、及び抵抗R2やR3の抵抗値の関係で、約0.67〜0.30Aとなる。   The selection by the route selection means 18 can be performed based on the amount of power stored in the rechargeable battery 11, for example. The voltage in the rechargeable battery 11 is measured by the power supply voltage measuring means 23 described above. When the storage amount is before reaching a first predetermined value (for example, 3.3 V for the rechargeable battery 11 when three batteries having a nominal value of 1.2V are used), the storage amount is In the case of an initial charge of 0.0 to 3.3 V, the first charging path 15 is selected, while the second predetermined value described above (for example, a nominal value of 1.2 V) is reached after reaching the nominal value. In other words, in the case of the end of charging of 3.3V to 4.5V, the voltage is about 4.5V which is actually required when using three batteries. The second charging path 16 is selected. Assuming that the voltage of the constant pressure power supply 12 is set to 5.5 V at this time, the first charging current supplied through the first charging path 15 is the voltage of the constant pressure power supply 12, the potential difference between the charged amounts, and the resistance R1. The resistance value (33Ω) is about 0.17 to 0.07 A. On the other hand, the second charging current supplied through the second charging path 16 is the same as the voltage of the constant-voltage power supply 12 and the charged amount. Is approximately 0.67 to 0.30 A in relation to the potential difference between the resistor R2 and the resistor R3.

電源電圧測定手段23は、電源接続部13のCN1に接続されたライン40上に設けられる。電源電圧測定手段23は、抵抗R6と抵抗R7を含んでおり、これらの抵抗の間から取り出した電流をCPUポート(ADコンバータ)へ伝達して、定圧電源12の電圧を測定することができる。電源電圧測定手段23を利用すれば、例えば、定圧電源12の電圧が6.0V以上のときは、定圧電源12からの電流の供給を停止するとともに、出力表示部に異常表示をすることができ、ユーザに装置電源の切断を促すことができる。また、例えば、測定電圧が5.0V以下のときは、危険防止や、ACアダプタの100V側が抜けていたり、電池が接続されているかいないかの判定を誤らないため、充電動作を自動停止させる等の操作を行うこともできる。   The power supply voltage measuring means 23 is provided on a line 40 connected to CN1 of the power supply connection unit 13. The power supply voltage measuring means 23 includes a resistor R6 and a resistor R7, and can transmit the current taken out between these resistors to the CPU port (AD converter) to measure the voltage of the constant voltage power supply 12. If the power supply voltage measuring means 23 is used, for example, when the voltage of the constant pressure power supply 12 is 6.0 V or more, the supply of current from the constant pressure power supply 12 can be stopped and an abnormal display can be displayed on the output display section. The user can be prompted to turn off the apparatus power. In addition, for example, when the measured voltage is 5.0 V or less, there is no danger prevention, and it is not erroneously determined whether the 100 V side of the AC adapter is disconnected or the battery is connected, so the charging operation is automatically stopped, etc. It is also possible to perform the operation.

定圧電源12(ACアダプタ電源)が、正常に本装置10に接続されているか否かを判断するため、電源接続判定手段25を設けている。例えば、電流が得られないにも関わらず、ACアダプタを電源接続部13に接続し続けることがあり(この接続は、電池の消耗を早まらせる)、また、仕様を満たさないACアダプタを使用したり、ACアダプタは正常に接続されているが、それを商用電源に接続していない等といったことも考えられるためである。電源接続判定手段25は、NPNトランジスタQ3と抵抗R8、R9を含む。CN3とCN1が接続されると、CN1のスイッチ13Aの働きによって、ライン41に電流が流れる。このライン41は、電源接続判定手段25を構成するNPNトランジスタQ3のベースに接続されていることから、電源接続判定手段25を構成する抵抗R9及び抵抗R8の働きにより、トランジスタQ3のベースがトリガされる。この結果、コレクタに電流が流れ、この電流をCPUポートへ伝達して、定圧電源12の接続の有無の判定を行うことができる。   In order to determine whether or not the constant pressure power supply 12 (AC adapter power supply) is normally connected to the apparatus 10, a power connection determination means 25 is provided. For example, the AC adapter may continue to be connected to the power supply connection unit 13 even though no current can be obtained (this connection accelerates battery consumption), and an AC adapter that does not meet the specifications is used. This is because the AC adapter is normally connected but not connected to a commercial power source. Power connection determination means 25 includes an NPN transistor Q3 and resistors R8 and R9. When CN3 and CN1 are connected, a current flows through the line 41 by the action of the switch 13A of CN1. Since this line 41 is connected to the base of the NPN transistor Q3 constituting the power connection determination unit 25, the base of the transistor Q3 is triggered by the action of the resistor R9 and the resistor R8 constituting the power connection determination unit 25. The As a result, a current flows through the collector, and this current can be transmitted to the CPU port to determine whether or not the constant pressure power supply 12 is connected.

充電式電池11の電池電圧を測定するため、電池電圧測定手段20を設けることもできる。電池電圧測定手段20は、抵抗R4、R5を含む。これらの抵抗R4、R5は、ライン43を介して、充電式電池11に接続されており、抵抗R4とR5の間から取り出した電流をCPUポート(ADコンバータ)へ伝達して、充電式電池11の電圧を測定することができる。電池電圧測定手段20を設けることにより、例えば、測定された電池電圧が、4.9V以上のときは、電池が接続されていないものとみなしたり、また、電池電圧が、4.5V以上に達したときは、充電完了とみなす等といったことも可能である。   In order to measure the battery voltage of the rechargeable battery 11, battery voltage measuring means 20 can be provided. Battery voltage measuring means 20 includes resistors R4 and R5. These resistors R4 and R5 are connected to the rechargeable battery 11 via the line 43, and the current taken out between the resistors R4 and R5 is transmitted to the CPU port (AD converter) to recharge the battery 11. Can be measured. By providing the battery voltage measuring means 20, for example, when the measured battery voltage is 4.9V or more, it is considered that the battery is not connected, or the battery voltage reaches 4.5V or more. In such a case, it can be considered that the charging is completed.

充電式電池11の温度を測定するため、充電式電池11の配置付近に、電池温度測定手段30を設けている。電池温度測定手段30は、抵抗R10とサーミスタTH1から構成される。例えば、NiMH電池のような充電式電池は、エネルギー密度が大変高いことから、過充電や電池の故障などによって事故が発生すると大変重篤な現象が起きてしまう。故に、安全性を考慮して、電池温度を測定する手段を設けるのが好ましい。抵抗R10とサーミスタTH1の間から取り出した電圧は、CPUポート(ADコンバータ)へ伝達され、CPUにて充電式電池11の温度が測定される。測定値が所定以上のときは、CPUポートから経路選択手段18へ信号を送って、定圧電源12からの電流の供給を停止することができる。例えば、充電式電池11の電圧は3.3V未満であるが、充電式電池11の温度が約80℃以上であるときは、電池故障とみなし、動作を停止するとともに出力表示部に異常表示をし、ユーザにスイッチの切断を促すことができる。また、例えば、充電式電池11の電圧が3.3V以上のときに、充電式電池11の温度が約80℃以上になったときは、充電完了とみなす等としてもよい。   In order to measure the temperature of the rechargeable battery 11, battery temperature measuring means 30 is provided near the arrangement of the rechargeable battery 11. The battery temperature measuring means 30 includes a resistor R10 and a thermistor TH1. For example, a rechargeable battery such as a NiMH battery has a very high energy density. Therefore, if an accident occurs due to overcharge or battery failure, a very serious phenomenon occurs. Therefore, in consideration of safety, it is preferable to provide means for measuring the battery temperature. The voltage extracted from between the resistor R10 and the thermistor TH1 is transmitted to the CPU port (AD converter), and the temperature of the rechargeable battery 11 is measured by the CPU. When the measured value is equal to or greater than a predetermined value, a signal can be sent from the CPU port to the path selecting means 18 to stop the supply of current from the constant pressure power supply 12. For example, if the voltage of the rechargeable battery 11 is less than 3.3V, but the temperature of the rechargeable battery 11 is about 80 ° C. or more, it is considered as a battery failure, and the operation is stopped and an abnormal display is displayed on the output display unit. The user can be prompted to disconnect the switch. Further, for example, when the voltage of the rechargeable battery 11 is 3.3 V or higher and the temperature of the rechargeable battery 11 is about 80 ° C. or higher, the charging may be regarded as being completed.

更に、特に図示はしないが、CPUによるタイマー制御を併せて行ってもよい。タイマー制御を併用することにより、より効率的な制御を行うことができる。例えば、充電開始後、2分経過しても電池電圧が1.0V以上に達しない場合、或いは、10分経過しても電池電圧が3.3V以上に達しない場合は、電池故障とみなし、動作を停止するとともに異常表示をすることができる。また、充電開始後出力表示部に、電池電圧が3.3V以上3.9V未満のときであって、1時間経過しても電池電圧が0.03V以上増加しない場合、或いは、3.9V以上4.2V未満のときであって、3時間以上経過しても電池電圧が0.03V以上増加しない場合、或いはまた、4.2V以上のときであって、4時間経過しても電池電圧が0.03V以上増加しない場合には、充電完了とみなすこともできる。更に、電池電圧が、4.5V以上に達しない場合であっても、3.3V以上で充電開始から7時間経過した場合には、充電完了とみなしてもよい。   Further, although not specifically shown, timer control by the CPU may be performed together. By using timer control together, more efficient control can be performed. For example, if the battery voltage does not reach 1.0V or more after 2 minutes from the start of charging, or if the battery voltage does not reach 3.3V or more after 10 minutes, it is considered as a battery failure. The operation can be stopped and an abnormality can be displayed. In addition, when the battery voltage is 3.3 V or more and less than 3.9 V on the output display section after the start of charging and the battery voltage does not increase by 0.03 V or more even after one hour has passed, or 3.9 V or more When the battery voltage is less than 4.2 V and the battery voltage does not increase by 0.03 V or more even after 3 hours or more, or when the battery voltage is 4.2 V or more and 4 hours have elapsed, the battery voltage does not increase. If the voltage does not increase by 0.03 V or more, it can be considered that the charging is completed. Furthermore, even when the battery voltage does not reach 4.5V or higher, charging may be regarded as being completed when 3.3 hours or higher and 7 hours have elapsed from the start of charging.

CPUによるソフト制御を用いて、他の制御を行うこともできる。例えば、充電中は、常に出力表示分の電池マークを点滅させ、充電が完了した場合には、電池マークを点灯に変更し、CPUや周辺回路の電源がOFFのときは、LCD表示を全て消灯する等してもよい。尚、電池が接続されていない場合、電池マークは消灯させるものとする。   Other control can also be performed using software control by the CPU. For example, during charging, the battery mark for the output display is always blinked. When charging is completed, the battery mark is changed to lighting. When the power to the CPU and peripheral circuits is off, all LCD displays are turned off. You may do it. When the battery is not connected, the battery mark is turned off.

更に、充電完了後に、ACアダプターを抜き差ししても再充電は行わないものとすることもできる。尚、この場合、電池の自己放電や、ACアダプターを外した状態で放置したり、ACアダプターが接続された状態で電池を交換するなどして、電池電圧が低下しても、ACアダプターの抜き差しに応答した再充電は行わないこととする。但し、充電完了時より、0.4V以上電池電圧が低下した場合は、一度、電源を入れることにより、充電を開始するようにしてもよい。また、電源投入状態で、充電が完了した場合、電池交換などで電池電圧が低下してもACアダプターが接続され、かつ電源が入っている限り、3.3V以下にならなければ充電を再開しないものとすることもできる。更にまた、電源投入状態で、充電が完了した場合、ACアダプターの抜き差しにより充電を行おうとしても充電完了時より、0.4V以上電池電圧が低下していない場合は、充電は行われないとすることもできる。更に、電池電圧の測定を、電池が接続されていて、充電停止中のみ行い、例えば、3.8V以上のとき、3.6V以上のとき、3.0以上のとき、3.0V未満のとき、の四段階のレベル表示を出力表示部に表示するようにしてもよい。   Further, after charging is completed, recharging may not be performed even if the AC adapter is connected or disconnected. In this case, even if the battery voltage drops, such as when the battery is self-discharged or left with the AC adapter removed, or when the battery is replaced with the AC adapter connected, the AC adapter can be removed and inserted. Recharging in response to is not performed. However, when the battery voltage decreases by 0.4 V or more since the completion of charging, charging may be started by turning on the power once. In addition, when charging is completed with the power turned on, charging will not resume unless 3.3V or less as long as the AC adapter is connected and the power is on even if the battery voltage drops due to battery replacement. It can also be. Furthermore, when charging is completed with the power turned on, charging is not performed if the battery voltage has not decreased by 0.4 V or more from the completion of charging even if charging is performed by connecting / disconnecting the AC adapter. You can also Furthermore, the battery voltage is measured only when the battery is connected and charging is stopped. For example, when it is 3.8 V or higher, 3.6 V or higher, 3.0 or higher, or less than 3.0 V These four levels may be displayed on the output display unit.

図3を参照して、図2に示した実施例の変形例を説明する。尚、図3においては、図2と同様の部材には同様の番号を付し、更に、番号の後に「’」を付すことととする。   A modification of the embodiment shown in FIG. 2 will be described with reference to FIG. In FIG. 3, the same members as those in FIG. 2 are given the same numbers, and “′” is added after the numbers.

図3の変形例と図2の実施例の主な相違は、図3の変形例では、第一及び第二の充電経路15’、16’に加えて、第三の充電経路17’が設けられ、これに対応して、経路選択手段18’に、第三の充電経路17’を選択する回路が追加されている点にある。   The main difference between the modification of FIG. 3 and the embodiment of FIG. 2 is that, in the modification of FIG. 3, a third charging path 17 ′ is provided in addition to the first and second charging paths 15 ′ and 16 ′. Correspondingly, a circuit for selecting the third charging path 17 ′ is added to the path selecting means 18 ′.

第一及び第二の充電経路15’、16’と同様に、第三の充電経路17’は、抵抗R14(15Ω、0.5W)を含む。また、この第三の充電経路17’を選択するための経路選択手段18’は、PNPトランジスタQ4と抵抗R13を含む。これらの抵抗及びトランジスタの接続方法は、第一及び第二の充電経路15’、16’におけるものと同様である。ここで、第三の充電経路17’における抵抗R14の抵抗値、即ち、15Ωは、第二の充電経路16’における抵抗R2+R3の抵抗値、即ち、R2+R3=1.5Ω+1.8Ω=3.3Ωよりは大きな値に設定されているが、第一の充電経路15’における抵抗R1の抵抗値、即ち、68Ωよりは小さな値に設定されている。この結果、第三の充電経路17’を通じて充電式電池11’に供給される第三の充電電流は、第一の充電経路15’を通じて供給される第一の充電電流よりは大きいが、第二の充電経路16’を通じて供給される第二の充電電流よりは小さくなっている。   Similar to the first and second charging paths 15 ′ and 16 ′, the third charging path 17 ′ includes a resistor R <b> 14 (15Ω, 0.5 W). The path selection means 18 'for selecting the third charging path 17' includes a PNP transistor Q4 and a resistor R13. The connection method of these resistors and transistors is the same as that in the first and second charging paths 15 'and 16'. Here, the resistance value of the resistor R14 in the third charging path 17 ′, that is, 15Ω, is the resistance value of the resistor R2 + R3 in the second charging path 16 ′, that is, R2 + R3 = 1.5Ω + 1.8Ω = 3.3Ω. Is set to a large value, but is set to a resistance value of the resistor R1 in the first charging path 15 ′, that is, a value smaller than 68Ω. As a result, the third charging current supplied to the rechargeable battery 11 ′ through the third charging path 17 ′ is larger than the first charging current supplied through the first charging path 15 ′. Is smaller than the second charging current supplied through the charging path 16 '.

経路選択手段18’による選択は、例えば、充電式電池11’における蓄電量を基準に行うことができる。蓄電量が、第一の所定値(例えば、上述した公称値1.2Vの電池を3本使用する場合の充電式電池11’であれば3.0V)に達する前であるとき、更に言えば、蓄電量が0.0〜3.0Vの場合には、第一の充電経路15’が選択され、また、第一の所定値に達した後であって第二の所定値(例えば、上述した第二の所定値付近である4.0V)に達するまで、更に言えば、蓄電量が3.0V〜4.0Vの場合には、第三の充電経路17’が選択され、また、第二の所定値に達した後であって第三の所定値(例えば、上述した第二の所定値4.5V)に達するまで、更に言えば、4.0〜4.5Vの場合には、第二の充電経路16’が選択される。このとき、第一の充電経路15’を通じて供給される第一の充電電流は、抵抗R1(68Ω)の抵抗値との関係で、約0.08〜0.04Aとなり、第三の充電経路17’を通じて供給される第三の充電電流は、抵抗R14(15Ω)の抵抗値との関係で、約0.17〜0.10Aとなり、第二の充電経路16’を通じて供給される第二の充電電流は、抵抗R2やR3の抵抗値との関係で、約0.45〜0.30Aとなる。   The selection by the route selection means 18 'can be performed based on, for example, the amount of power stored in the rechargeable battery 11'. When the storage amount is before reaching the first predetermined value (for example, 3.0 V if the rechargeable battery 11 ′ when using the three batteries having the nominal value of 1.2 V described above) is used. When the charged amount is 0.0 to 3.0 V, the first charging path 15 ′ is selected, and after reaching the first predetermined value, the second predetermined value (for example, the above-mentioned In other words, when the charged amount is 3.0V to 4.0V, the third charging path 17 'is selected until the second predetermined value is reached (4.0V). After reaching a predetermined value of 2 and until reaching a third predetermined value (for example, the above-mentioned second predetermined value 4.5V), more specifically, in the case of 4.0 to 4.5V, The second charging path 16 ′ is selected. At this time, the first charging current supplied through the first charging path 15 ′ is about 0.08 to 0.04 A in relation to the resistance value of the resistor R1 (68Ω), and the third charging path 17 The third charging current supplied through 'is approximately 0.17 to 0.10 A in relation to the resistance value of the resistor R14 (15Ω), and the second charging current supplied through the second charging path 16'. The current is about 0.45 to 0.30 A in relation to the resistance values of the resistors R2 and R3.

その他、特に説明しないが、充電経路を4つ以上設けて、より細かに電流を設定することによってジュール熱の問題を解消することができる。   In addition, although not specifically described, the Joule heat problem can be solved by providing four or more charging paths and finely setting the current.

最後に、図4を参照し、図2に示した実施例、即ち、二段階の定電圧方式で充電する際の充電特性の一例を説明する。図において、横軸は時間(t)を、縦軸は、蓄電式電池に蓄電された電圧の大きさ(V)を、それぞれ示している。電流の供給が開始されると、蓄電量は、第一の所定値(3.3V)に達するまでの間(図示矢印「イ」区間であって、例えば、約5分程度)は急速に増加する。この間、経路選択手段18は、抵抗R1(33Ω)を含む第一の充電経路15(図2参照)を選択し、これによって、ジュール熱の発生を効果的に抑制する。
一方、第一の所定値を過ぎ、第二の所定値(4.5V)に向かう間(図示矢印「ウ」及び「エ」区間、例えば、約10時間程度)、更に詳細には、蓄電量の増加率が低下し緩やかな増加傾向が続く間(図示矢印「ウ」区間)と、更に、第二の所定値に到達する直前の急増傾向を示す間(図示矢印「エ」区間)は、経路選択手段18によって、抵抗R2、R3(3.3Ω)を含む第二の充電経路16(図2参照)を選択し、これによって、急速充電を可能とする。尚、第二の所定値に達した場合は、電流の供給を停止する。電流の供給を停止した場合でも、蓄電量は、第二の所定値に到達したときよりは若干減少するものの、その後は略一定の大きさを保つ(図示矢印「オ」区間)。このように、本発明によれば、充電特性に応じた最適な充電を行うことができる。
Finally, with reference to FIG. 4, the embodiment shown in FIG. 2, that is, an example of charging characteristics when charging is performed in a two-stage constant voltage method will be described. In the figure, the horizontal axis represents time (t), and the vertical axis represents the magnitude (V) of the voltage stored in the storage battery. When the current supply is started, the amount of stored electricity rapidly increases until it reaches the first predetermined value (3.3 V) (indicated by the arrow “I” in the figure, for example, about 5 minutes). To do. During this time, the path selection means 18 selects the first charging path 15 (see FIG. 2) including the resistor R1 (33Ω), thereby effectively suppressing the generation of Joule heat.
On the other hand, while passing the first predetermined value and moving toward the second predetermined value (4.5V) (arrows “c” and “d” shown in the figure, for example, about 10 hours), more specifically, the storage amount While the rate of increase is decreasing and a moderate increasing trend continues (indicated by the arrow “U” in the figure) and during the period of rapid increase immediately before reaching the second predetermined value (indicated by the arrow “D” in the figure) The path selection means 18 selects the second charging path 16 (see FIG. 2) including the resistors R2 and R3 (3.3Ω), thereby enabling rapid charging. When the second predetermined value is reached, the supply of current is stopped. Even when the supply of current is stopped, the amount of power storage is slightly reduced from when it reaches the second predetermined value, but thereafter remains substantially constant (indicated by the arrow “o” in the figure). Thus, according to the present invention, it is possible to perform optimum charging according to the charging characteristics.

充電式電池に幅広く用いることができる。   It can be widely used for rechargeable batteries.

10 充電装置
11 充電式電池
12 定圧電源
13 電源接続部
14 電池接続部
15 第一の充電経路
16 第二の充電経路
17’ 第三の充電経路
18 経路選択手段
20 電池電圧測定手段
23 電源電圧測定手段
25 電源接続判定手段
30 電池温度測定手段
DESCRIPTION OF SYMBOLS 10 Charger 11 Rechargeable battery 12 Constant pressure power supply 13 Power supply connection part 14 Battery connection part 15 1st charge path 16 2nd charge path 17 '3rd charge path 18 Path selection means 20 Battery voltage measurement means 23 Power supply voltage measurement Means 25 Power connection determination means 30 Battery temperature measurement means

Claims (10)

充電式電池のための定電圧方式の充電装置であって、
前記充電装置に接続された前記充電式電池を定圧電源に接続するための、第一及び第二の充電経路を含む少なくとも2つの充電経路と、
前記少なくとも2つの充電経路のうちの1つを選択する経路選択手段と、
を備え、
前記第二の充電経路における抵抗値よりも大きな抵抗値を前記第一の充電経路に設定して、該第一の充電経路を通じて前記充電式電池に供給される第一の充電電流を、前記第二の充電経路を通じて前記充電式電池に供給される第二の充電電流よりも小さくし、
前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、
前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電することを特徴とする充電装置。
A constant voltage charging device for a rechargeable battery,
At least two charging paths including first and second charging paths for connecting the rechargeable battery connected to the charging device to a constant pressure power source;
Path selection means for selecting one of the at least two charging paths;
With
A resistance value larger than a resistance value in the second charging path is set in the first charging path, and a first charging current supplied to the rechargeable battery through the first charging path is set to the first charging path. Less than a second charging current supplied to the rechargeable battery through a second charging path;
Before the charged amount of the rechargeable battery reaches a first predetermined value, the rechargeable battery is charged with the first charging current through the first charging path selected by the path selecting means,
After the amount of electricity stored in the rechargeable battery reaches the first predetermined value and until the second predetermined value is reached, the second charging path selected by the path selection unit is used to select the second charging path. A charging device for charging the rechargeable battery with a charging current.
前記充電装置に接続された前記充電式電池を定圧電源に接続するための、第三の充電経路を更に設け、
前記経路選択手段は、前記第一、第二、及び第三の充電経路を含む少なくとも3つの充電経路のうちの1つを選択するものであり、
前記第二の充電経路における抵抗値よりは大きいが前記第一の充電経路における抵抗値よりは小さい抵抗値を前記第三の充電経路に設定して、該第三の充電経路を通じて前記充電式電池に供給される第三の充電電流を、前記第一の充電電流よりは小さいが前記第二の充電電流よりは大きくし、
前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、
前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達する前は、前記経路選択手段によって選択された前記第三の充電経路を通じて前記第三の充電電流によって前記充電式電池を充電し、
前記充電式電池の蓄電量が前記第二の所定値に達した後であって第三の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電する請求項1に記載の充電装置。
Further providing a third charging path for connecting the rechargeable battery connected to the charging device to a constant pressure power source;
The path selection means selects one of at least three charging paths including the first, second, and third charging paths;
A resistance value larger than a resistance value in the second charging path but smaller than a resistance value in the first charging path is set in the third charging path, and the rechargeable battery is passed through the third charging path. A third charging current supplied to the second charging current is smaller than the first charging current but larger than the second charging current;
Before the charged amount of the rechargeable battery reaches a first predetermined value, the rechargeable battery is charged with the first charging current through the first charging path selected by the path selecting means,
After the amount of electricity stored in the rechargeable battery reaches the first predetermined value and before the second predetermined value, the third charging path selected by the path selecting means passes through the third charging path. Charging the rechargeable battery with a charging current;
After the amount of electricity stored in the rechargeable battery reaches the second predetermined value and until the third predetermined value is reached, the second charging path selected by the path selection means is used for the second charging path. The charging device according to claim 1, wherein the rechargeable battery is charged with a charging current.
前記第二の充電経路における抵抗値は、複数の抵抗を組み合わせることによって得られる請求項1又は2に記載の充電装置。   The charging device according to claim 1, wherein the resistance value in the second charging path is obtained by combining a plurality of resistors. 前記充電装置に接続された前記充電式電池の電圧を測定する電池電圧測定手段を設けた請求項1乃至3のいずれかに記載の充電装置。   The charging device according to claim 1, further comprising a battery voltage measuring unit that measures a voltage of the rechargeable battery connected to the charging device. 前記充電装置に接続された前記定圧電源の電圧を測定する電源電圧測定手段を設けた、測定された電圧が所定以上のときは、前記定圧電源からの電流の供給を停止する請求項1乃至4のいずれかに記載の充電装置。   5. The supply of current from the constant pressure power supply is stopped when the measured voltage is provided with power supply voltage measuring means for measuring the voltage of the constant pressure power supply connected to the charging device. The charging apparatus in any one of. 前記充電装置に前記定圧電源が接続されているか否かを判定する電源接続判定手段を設けた請求項1乃至5のいずれかに記載の充電装置。   The charging device according to any one of claims 1 to 5, further comprising power connection determination means for determining whether or not the constant-voltage power source is connected to the charging device. 前記充電式電池の温度を測定する電池温度測定手段を設け、測定された温度が所定以上のときは、前記定圧電源からの電流の供給を停止する請求項1乃至6のいずれかに記載の充電装置。   7. The charging according to claim 1, further comprising a battery temperature measuring unit configured to measure a temperature of the rechargeable battery, and stopping supply of current from the constant pressure power source when the measured temperature is equal to or higher than a predetermined value. apparatus. 請求項1乃至7のいずれかに記載の充電装置を利用した低周波治療器、干渉波治療器その他の電子治療器。   A low frequency treatment device, an interference wave treatment device, or other electronic treatment device using the charging device according to claim 1. 充電式電池のための定電圧方式の充電方法であって、
前記充電装置に接続された前記充電式電池を定圧電源に接続するための第一及び第二の充電経路を含む少なくとも2つの充電経路のうちの1つを経路選択手段によって選択し、
前記第二の充電経路における抵抗値よりも大きな抵抗値を前記第一の充電経路に設定して、該第一の充電経路を通じて前記充電式電池に供給される第一の充電電流を、前記第二の充電経路を通じて前記充電式電池に供給される第二の充電電流よりも小さくし、
前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、
前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電する、
ことを特徴とする充電方法。
A constant voltage charging method for a rechargeable battery,
Selecting one of at least two charging paths including a first charging path and a second charging path for connecting the rechargeable battery connected to the charging device to a constant pressure power source by path selection means;
A resistance value larger than a resistance value in the second charging path is set in the first charging path, and a first charging current supplied to the rechargeable battery through the first charging path is set to the first charging path. Less than a second charging current supplied to the rechargeable battery through a second charging path;
Before the charged amount of the rechargeable battery reaches a first predetermined value, the rechargeable battery is charged with the first charging current through the first charging path selected by the path selecting means,
After the amount of electricity stored in the rechargeable battery reaches the first predetermined value and until the second predetermined value is reached, the second charging path selected by the path selection unit is used to select the second charging path. Charging the rechargeable battery with a charging current;
A charging method characterized by that.
前記充電装置に接続された前記充電式電池を定圧電源に接続するための第三の充電経路を更に設け、
前記充電装置に接続された前記充電式電池を定圧電源に接続する前記第一、第二、及び第三の充電経路を含む少なくとも3つの充電経路のうちの1つを経路選択手段によって選択し、
前記第二の充電経路における抵抗値よりは大きいが前記第一の充電経路における抵抗値よりは小さい抵抗値を前記第三の充電経路に設定して、該第三の充電経路を通じて前記充電式電池に供給される第三の充電電流を、前記第一の充電電流よりは小さいが前記第二の充電電流よりは大きくし、
前記充電式電池の蓄電量が第一の所定値に達する前は、前記経路選択手段によって選択された前記第一の充電経路を通じて前記第一の充電電流によって前記充電式電池を充電し、
前記充電式電池の蓄電量が前記第一の所定値に達した後であって第二の所定値に達する前は、前記経路選択手段によって選択された前記第三の充電経路を通じて前記第三の充電電流によって前記充電式電池を充電し、
前記充電式電池の蓄電量が前記第二の所定値に達した後であって第三の所定値に達するまでは、前記経路選択手段によって選択された前記第二の充電経路を通じて前記第二の充電電流によって前記充電式電池を充電する、
請求項9に記載の充電方法。
Further providing a third charging path for connecting the rechargeable battery connected to the charging device to a constant pressure power source;
The path selection means selects one of at least three charging paths including the first, second, and third charging paths for connecting the rechargeable battery connected to the charging device to a constant pressure power source,
A resistance value larger than a resistance value in the second charging path but smaller than a resistance value in the first charging path is set in the third charging path, and the rechargeable battery is passed through the third charging path. A third charging current supplied to the second charging current is smaller than the first charging current but larger than the second charging current;
Before the charged amount of the rechargeable battery reaches a first predetermined value, the rechargeable battery is charged with the first charging current through the first charging path selected by the path selecting means,
After the amount of electricity stored in the rechargeable battery reaches the first predetermined value and before the second predetermined value, the third charging path selected by the path selecting means passes through the third charging path. Charging the rechargeable battery with a charging current;
After the amount of electricity stored in the rechargeable battery reaches the second predetermined value and until the third predetermined value is reached, the second charging path selected by the path selection means is used for the second charging path. Charging the rechargeable battery with a charging current;
The charging method according to claim 9.
JP2010002049A 2010-01-07 2010-01-07 Charging device and method using constant pressure power source for interference wave therapy device, etc. Active JP5389681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002049A JP5389681B2 (en) 2010-01-07 2010-01-07 Charging device and method using constant pressure power source for interference wave therapy device, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002049A JP5389681B2 (en) 2010-01-07 2010-01-07 Charging device and method using constant pressure power source for interference wave therapy device, etc.

Publications (2)

Publication Number Publication Date
JP2011142743A JP2011142743A (en) 2011-07-21
JP5389681B2 true JP5389681B2 (en) 2014-01-15

Family

ID=44458184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002049A Active JP5389681B2 (en) 2010-01-07 2010-01-07 Charging device and method using constant pressure power source for interference wave therapy device, etc.

Country Status (1)

Country Link
JP (1) JP5389681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301335A (en) * 2018-09-12 2019-02-01 风帆有限责任公司 A kind of chemical synthesizing method of flexible packing lithium ion battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045290B2 (en) * 2012-10-16 2016-12-14 京セラ株式会社 Electronic device and control method
JP2015122843A (en) * 2013-12-20 2015-07-02 株式会社日本セラテック Auxiliary power unit, antitheft device and power supply method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284131A (en) * 1990-03-29 1991-12-13 Sharp Corp Quick charging circuit
JP3498390B2 (en) * 1994-12-01 2004-02-16 ソニー株式会社 Charging method and charging device
JP3449112B2 (en) * 1995-11-01 2003-09-22 ソニー株式会社 Low power consumption device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301335A (en) * 2018-09-12 2019-02-01 风帆有限责任公司 A kind of chemical synthesizing method of flexible packing lithium ion battery

Also Published As

Publication number Publication date
JP2011142743A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
AU2021290267B2 (en) Portable or hand held vehicle battery jump starting apparatus with battery cell equalization circuit
JP4831179B2 (en) Charge control device
US6204639B1 (en) Battery charger determining charging conditions depending upon whether a cooling device is provided
JP5275176B2 (en) Battery pack and its function stop method
US20050077878A1 (en) Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack
JP2013097901A (en) Temperature detection device and battery pack
JPS60241736A (en) Battery charger
WO2013042293A1 (en) Rechargeable electrical device
CN103460547A (en) Charger and power supply system
JP2004312789A (en) Secondary battery apparatus
JP2009142135A (en) Charger
JP5389681B2 (en) Charging device and method using constant pressure power source for interference wave therapy device, etc.
US7619389B2 (en) Charge control device for a secondary battery
WO2019190588A1 (en) Portable or hand held vehicle battery jump starting apparatus with battery cell equalization circuit
JP2004064861A (en) Charging type electrical apparatus and electric cleaner
JP3202196U (en) Charging cable and charger
JP2014018022A (en) Charger, control program thereof, information terminal, charging method, and battery pack
CN114868027A (en) Battery charging device with temperature sensor for providing temperature compensation during charging and method of measuring depleted or discharged battery temperature to compensate for charging of battery charging device
TW201701562A (en) Mobile charge-discharge device
JP2004247322A (en) Battery pack and battery protection device
JP2017017806A (en) Protection circuit and battery pack
JP2018050469A (en) Charge cable and charger
CN103986125A (en) A method for overcharge protection of lead-acid batteries
JP2004015960A (en) Electronic apparatus and charging method therefor
JP2013230038A (en) Battery pack module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5389681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250