JPH03284131A - Quick charging circuit - Google Patents

Quick charging circuit

Info

Publication number
JPH03284131A
JPH03284131A JP8318090A JP8318090A JPH03284131A JP H03284131 A JPH03284131 A JP H03284131A JP 8318090 A JP8318090 A JP 8318090A JP 8318090 A JP8318090 A JP 8318090A JP H03284131 A JPH03284131 A JP H03284131A
Authority
JP
Japan
Prior art keywords
charging
voltage
current
charge
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8318090A
Other languages
Japanese (ja)
Inventor
Toshio Maruyama
丸山 敏雄
Momoki Watanabe
渡辺 百樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8318090A priority Critical patent/JPH03284131A/en
Publication of JPH03284131A publication Critical patent/JPH03284131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To do charge without excess and deficiency in a short time by lowering the charge voltage when the charge current has decreased to the specified value so that it may be charged slowly. CONSTITUTION:At the start of charge, it is charged with large currents, and the charge currents decrease with the passage of time. When the storage battery nears complete charge, the charge currents fall to the specified current value. At this time (t), the charge currents are dropped to the trickle charge voltage, Hereby, the charge currents become smaller, and the trickle charge is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、充電初期に大電流による急速な充電を行う
とともに、充電完了が近づいたときもある程度の充電を
続け、はぼ完全充電までの充電を行った後に微弱電流に
よる充電状態または充電停止状態に切替えるようにした
充電回路に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention performs rapid charging with a large current at the initial stage of charging, and continues charging to a certain extent even when charging is nearing completion, until almost completely charged. The present invention relates to a charging circuit that switches to a charging state using a weak current or a charging stop state after charging.

[従来の技術] 従来、この種の蓄電池の充電制御回路は第8図に示すよ
うに、直流電源1から制御回路20を介して、蓄電池3
に充電電流を供給する方式を用いており、電圧検出回路
50により蓄電池3の端子電圧を検出して制御回路20
に信号を送って、充電電流を制御するとともに、電流検
出回路60により電流値をモニタし、その信号を制御回
路20に供給して、制御回路20から所定の充電電流が
蓄電池3に供給されるようになっている。
[Prior Art] Conventionally, as shown in FIG. 8, a charging control circuit for a storage battery of this type connects a storage battery 3 from a DC power source 1 via a control circuit 20.
The terminal voltage of the storage battery 3 is detected by the voltage detection circuit 50 and the control circuit 20
A signal is sent to control the charging current, the current value is monitored by the current detection circuit 60, and the signal is supplied to the control circuit 20, which supplies a predetermined charging current to the storage battery 3. It looks like this.

たとえば、従来からよく用いられている定電圧定電流方
式は、第9図に示すように、充電電流を一定にして充電
し、端子電圧が設定値に達したところで、電圧の上昇を
押さえ、それによって、電流値を減少することにより過
充電を防止する方式また、第10図に示すように、電圧
検出回路50により蓄電池3の端子電圧を検出し、電圧
の上昇に応じて制御回路20に信号を送り、充電電流を
段階的に減少させる制御方式がある。上述の充電方式で
は、充電電圧を最初から低めに設定し、充電終了を検出
することなく充電を継続して行う方法や、最初充電電流
を比較的高めに設定しておいて、定電圧状態に移行して
から一定時間の後、あるいは蓄電池の温度が上昇したと
き、充電停止またはトリクル充電状態に切り替える方法
が取られている。
For example, in the constant voltage constant current method that has been commonly used, as shown in Figure 9, charging is carried out at a constant charging current, and when the terminal voltage reaches the set value, the voltage rise is suppressed and the voltage rise is suppressed. In this method, overcharging is prevented by reducing the current value.Also, as shown in FIG. There is a control method that sends a charge current and reduces the charging current in stages. In the charging methods described above, there are two methods: one is to set the charging voltage low from the beginning and continue charging without detecting the end of charging, and the other is to set the charging current relatively high initially and then reach a constant voltage state. A method is used to stop charging or switch to trickle charging after a certain period of time or when the temperature of the storage battery rises.

[発明が解決しようとする課題] 蓄電池を急速充電するためには、できるだけ高い電圧を
かけ、かつできるだけ多くの電流を流すことが必要であ
る。しかしながら、蓄電池に高い電圧を印加した場合、
短時間であれば蓄電池は傷むことはないが、高電圧を長
時間継続して印加すると過充電となり、充電電流の多く
は水の電気分解に費やされ、蓄電池の寿命を短縮させる
という問題があった。
[Problems to be Solved by the Invention] In order to rapidly charge a storage battery, it is necessary to apply as high a voltage as possible and to flow as much current as possible. However, when applying a high voltage to the storage battery,
A storage battery will not be damaged if used for a short period of time, but if high voltage is continuously applied for a long period of time, it will overcharge, and much of the charging current will be spent on water electrolysis, which will shorten the battery's lifespan. there were.

したがって、短時間で充電を行なうためには、充電初期
に、高電圧、大電流で充電を行ない、充電末期には低電
圧、微小電流により、充電することが望ましい。しかし
ながら、従来の充電方式では、充電初期において次のよ
うな問題点があった。
Therefore, in order to charge in a short time, it is desirable to charge with a high voltage and large current at the beginning of charging, and to charge with a low voltage and minute current at the end of charging. However, the conventional charging method has the following problems at the initial stage of charging.

すなわち、従来の定電圧定電流方式では、充電末期の検
出に蓄電池電圧が用いられているが、蓄電池の端子電圧
は、充電末期に水の電気分解が発生した場合に高くなる
ので、充電末期を検出するためには、充電初期にそれよ
りも十分低い電圧で充電しなければならない。
In other words, in the conventional constant voltage constant current method, the storage battery voltage is used to detect the end of charging, but since the terminal voltage of the storage battery increases when water electrolysis occurs at the end of charging, it is difficult to detect the end of charging. In order to detect this, the battery must be charged at a sufficiently lower voltage at the beginning of charging.

また、充電電流は充電電圧に比例して高くなるので、充
電電流が大きすぎると十分に充電されないうちに端子電
圧が上昇し、すぐに充電停止電圧になり、充電末期の電
圧上昇かまたは急速充電電流による電圧上昇かの区別が
つかず、完全充電にならずに充電が終″了する。したが
って、定電流充電時に大きな電流を流すことができない
Also, since the charging current increases in proportion to the charging voltage, if the charging current is too large, the terminal voltage will rise before it is fully charged, and the charging stop voltage will be reached immediately. It is not possible to distinguish whether the voltage is rising due to the current or not, and charging ends before being fully charged. Therefore, a large current cannot flow during constant current charging.

さらに、温度によっても充電電圧が変化するため、複雑
な補正回路をつけるか、余裕を持たすために、設定電圧
を下げなければならない。
Furthermore, since the charging voltage changes depending on the temperature, it is necessary to install a complicated correction circuit or lower the set voltage to provide some margin.

すなわち、従来の充電方式では、電圧設定値を蓄電池の
寿命に影響しない上限の電圧よりも必ず低く設定しなけ
ればならない。しかも、電圧の上昇を検出するために充
電初期の電流を押さえる必要から、充電初期にはさらに
低い電圧しかかけられない。よって、急速充電には不向
きである。
That is, in the conventional charging method, the voltage setting value must always be set lower than the upper limit voltage that does not affect the life of the storage battery. Moreover, since it is necessary to suppress the current at the initial stage of charging in order to detect a rise in voltage, only a lower voltage can be applied at the beginning of charging. Therefore, it is not suitable for rapid charging.

以上のように、蓄電池電圧によって、充電末期を検出す
る方法では、充電初期の電圧および電流をあまり大きく
することはできず、充電時間の短縮には限界がある。
As described above, with the method of detecting the end of charging based on the storage battery voltage, the voltage and current at the initial stage of charging cannot be increased very much, and there is a limit to the shortening of charging time.

次に、充電末期における問題点について説明する。蓄電
池端子電圧の変動範囲は、鉛蓄電池の場合で2.3〜2
.6V/eel化というわずかな範囲であり、さらに電
流、温度、充電状態などにより複雑に変化するため、完
全充電かどうかを蓄電池端子電圧のみで判定することは
難しい。
Next, problems at the end of charging will be explained. The fluctuation range of battery terminal voltage is 2.3 to 2 for lead-acid batteries.
.. The voltage is within a small range of 6V/eeel, and changes in a complicated manner depending on current, temperature, state of charge, etc., so it is difficult to determine whether the battery is fully charged or not based only on the terminal voltage of the storage battery.

たとえば蓄電池の場合、定電流充電時における充電末期
に蓄電池端子電圧が急上昇し始めるのは、80%充電状
態程度になったときであり、約90%充電時には蓄電池
端子電圧はほとんど最高値にまで上昇してしまうため、
100%充電を検出するためには端子電圧とは異なるパ
ラメータで判定しなければならない。そのため、従来は
時間や温度などによって充電停止の検出を行ない充電を
停止している。
For example, in the case of a storage battery, during constant current charging, the storage battery terminal voltage starts to rise rapidly at the end of charging when the state of charge is about 80%, and when the storage battery is charged to about 90%, the storage battery terminal voltage rises to almost the maximum value. Because of this,
In order to detect 100% charge, it is necessary to make a determination using a parameter different from the terminal voltage. Therefore, conventionally, charging has been stopped by detecting charging stoppage based on time, temperature, etc.

この場合、定電圧状態に移行してから充電完了するまで
の時間や温度上昇は、蓄電池の放電状態や環境の温度に
よって著しく変化するため、充電の過不足が起こりやす
い。
In this case, the time and temperature rise from transition to a constant voltage state to completion of charging vary significantly depending on the discharge state of the storage battery and the temperature of the environment, so overcharging or undercharging is likely to occur.

たとえば、はとんど完全充電状態にある電池を再度充電
する場合は、充電開始後ただちに充電を終了すべきであ
る。このような場合は、充電電圧がただちに上昇し定電
圧状態になるが、充電時間をタイマで規定した場合には
あらかじめ定める時間が経過するまで充電は継続して行
なわれることになる。また、蓄電池表面の温度によって
充電終了を規定することを考えると、蓄電池は熱容量が
大きく、また、熱伝導率が悪いプラスチックケースを使
用しているので、電極の温度が上昇しても、蓄電池表面
温度はすぐには上昇しないため、過充電になりやすいと
いう問題点がある。
For example, when recharging a battery that is almost fully charged, charging should be terminated immediately after charging begins. In such a case, the charging voltage immediately rises to a constant voltage state, but if the charging time is specified by a timer, charging will continue until the predetermined time elapses. Also, considering that the end of charging is determined by the temperature on the surface of the storage battery, storage batteries have a large heat capacity and are made of plastic cases with poor thermal conductivity, so even if the temperature of the electrodes rises, the surface of the storage battery Since the temperature does not rise quickly, there is a problem that overcharging is likely to occur.

それゆえに、この発明の主たる目的は、短時間で過不足
なく蓄電池の充電を行なうことのできる急速充電回路を
提供することである。
Therefore, the main object of the present invention is to provide a quick charging circuit that can charge a storage battery in a short period of time and without excess or deficiency.

[課題を解決するための手段] この発明にかかる急速充電回路は、蓄電池を充電するた
めの直流電源と、蓄電池への充電電流があらかじめ定め
る電流値にまで減少したことを検出する充電電流検出手
段と、検出手段の検出出力に応答して、蓄電池への充電
電圧を低下させる充電電圧制御手段とを備えて構成され
る。
[Means for Solving the Problems] A quick charging circuit according to the present invention includes a DC power source for charging a storage battery, and a charging current detection means for detecting that the charging current to the storage battery has decreased to a predetermined current value. and charging voltage control means for lowering the charging voltage to the storage battery in response to the detection output of the detection means.

[作用] この発明では、蓄電池の充電電圧設定を、短時間であれ
ば寿命に影響しない上限電圧に最初から設定する。それ
により、その蓄電池にとって最大限の充電電流を流すこ
とができ、最短時間で十分に充電することができる。こ
の発明では、さらに、充電電流の減少を検出して、完全
充電近くまで充電したところで電圧を下げ、その後ゆっ
くり充電することにより、急速かつ確実に充電できるよ
うにする。
[Operation] In the present invention, the charging voltage of the storage battery is set from the beginning to an upper limit voltage that does not affect the lifespan for a short time. This allows the maximum charging current to flow through the storage battery, allowing it to be fully charged in the shortest possible time. In the present invention, furthermore, by detecting a decrease in the charging current, lowering the voltage when the battery is nearly fully charged, and then slowly charging the battery, it is possible to quickly and reliably charge the battery.

これにより、最初は高電圧、大電流で充電を行ない、充
電末期は低電圧、微小電流による充電を行なうことがで
きる。
As a result, charging can be performed with high voltage and large current at the beginning, and charging can be performed with low voltage and minute current at the end of charging.

定電圧充電の場合、充電電流は充電状態に応じて著しく
変化するので、充電終了の検出が極めて容易である。す
なわち、充電電流が十分低下したということは、それ以
上充電できないということであり、はぼ完全充電になっ
たことの証明である。
In the case of constant voltage charging, the charging current changes significantly depending on the charging state, so it is extremely easy to detect the end of charging. In other words, the fact that the charging current has decreased sufficiently means that no more charging is possible, which proves that the battery is almost fully charged.

そのため、充電終了を検出するための蓄電池温度の検出
や、タイマなどの制御回路が不要となる。
Therefore, detection of the storage battery temperature for detecting the end of charging and a control circuit such as a timer are not required.

[発明の実施例] 実施例1 第1図はこの発明の一実施例の電気的構成を示す概略ブ
ロック図である。第1図に示すように、直流電源1から
、制御回路2を介して、蓄電池3に充電電流を供給する
。検出回路5は充電電流の低下を検出して制御回路2に
信号を送り、設定電圧を制御する。直流電源1は蓄電池
3を充電するための直流電源であり、制御回路2は充電
電圧を所定電圧に保つように制御するとともに、電流検
出回路5が検出した所定の充電電流値に基づく信号に応
じて設定電圧値を下げる回路である。
[Embodiments of the Invention] Embodiment 1 FIG. 1 is a schematic block diagram showing the electrical configuration of an embodiment of the invention. As shown in FIG. 1, a charging current is supplied from a DC power supply 1 to a storage battery 3 via a control circuit 2. The detection circuit 5 detects a decrease in the charging current and sends a signal to the control circuit 2 to control the set voltage. The DC power supply 1 is a DC power supply for charging the storage battery 3, and the control circuit 2 controls the charging voltage to be maintained at a predetermined voltage, and also controls the charging voltage according to a signal based on the predetermined charging current value detected by the current detection circuit 5. This circuit lowers the set voltage value.

好ましくは、充電初期に充電器が過負荷にならないよう
に抵抗やりアクドルを挿入して最大電流に制限を加えた
り、設定電圧の低下制御を多段階にしたり、充電電圧を
充電電流に逆比例させて低下させたりする。
Preferably, a resistor or accelerator is inserted to limit the maximum current so that the charger does not become overloaded in the early stages of charging, the set voltage is controlled in multiple stages, or the charging voltage is inversely proportional to the charging current. and lower it.

第2図はこの発明の一実施例の充電特性を示すグラフで
ある。第2図に示すように、充電開始時は定電圧充電に
より大電流で充電され、時間の経過とともに充電電流が
減少する。蓄電池が完全充電近くになると、充電電流が
所定の電流値にまで低下する。電流検出回路5はこの電
流の減少を検出し、制御回路2に充電完了の信号を供給
する。
FIG. 2 is a graph showing the charging characteristics of an embodiment of the present invention. As shown in FIG. 2, at the start of charging, the battery is charged with a large current by constant voltage charging, and the charging current decreases as time passes. When the storage battery is nearly fully charged, the charging current decreases to a predetermined current value. Current detection circuit 5 detects this decrease in current and supplies a signal indicating completion of charging to control circuit 2.

電流検出回路5としては、充電電流の変化率が所定の値
になったことに応じて充電完了の信号を出力するものを
用いてもよい。制御回路2は時間t1においてこの信号
を受は取ると、充電電圧をトリクル充電電圧に低減する
。これによって、充電電流はさらに小さくなり、微弱な
トリクル充電電流により自己放電分を補充するだけの充
電が行なわれる。
The current detection circuit 5 may be one that outputs a charging completion signal in response to the rate of change of the charging current reaching a predetermined value. When the control circuit 2 receives this signal at time t1, it reduces the charging voltage to a trickle charging voltage. As a result, the charging current becomes smaller, and the weak trickle charging current performs charging sufficient to replenish the self-discharge.

なお、第2図における破線は充電初期の充電器御電圧を
少し下げた場合、−点鎖線はさらに下げた場合の充電特
性曲線である。このように、充電電圧を下げると、初期
の充電電流が低下し、充電時間が増加する。
In addition, the broken line in FIG. 2 is a charging characteristic curve when the charger control voltage at the initial stage of charging is lowered a little, and the dashed-dotted line is a charging characteristic curve when it is further lowered. Thus, lowering the charging voltage reduces the initial charging current and increases the charging time.

第3図は制御回路をマイクロコンピュータとマイクロコ
ンピュータが出力する電圧設定値に応じた電圧になるよ
うに充電電圧を制御するためのトランジスタおよびトラ
ンジスタの駆動回路により構成した場合のブロック図で
ある。電流の検出はシャント抵抗5aで行ない、その両
端の電圧をA/D変換器2dでディジタル化し、マイク
ロコンピュータ2cに入力する。マイクロコンピュータ
2Cは第4図のフローチャートに従って、電圧設定値を
演算し、D/A変換器2bを通して、アナログ電圧に変
換し、その電圧を電圧制御用トランジスタ2aのベース
に印加する。蓄電池電圧(これは、トランジスタ2aの
エミッタ電圧に等しい)が上記ベース電圧とペースエミ
ッタ間飽和電圧(約IV)との電位差より低ければ、ト
ランジスタにベース電流が流れ、トランジスタのコレク
タ0 電流(蓄電池充電電流)が流れる。したがって、充電電
圧は常に、ベース電圧とペースエミッタ間飽和電圧との
電位差により制御される。
FIG. 3 is a block diagram in the case where the control circuit is constituted by a microcomputer, a transistor for controlling the charging voltage so that the voltage corresponds to the voltage setting value outputted by the microcomputer, and a drive circuit for the transistor. The current is detected by a shunt resistor 5a, and the voltage across it is digitized by an A/D converter 2d and input to the microcomputer 2c. The microcomputer 2C calculates the voltage setting value according to the flowchart in FIG. 4, converts it into an analog voltage through the D/A converter 2b, and applies the voltage to the base of the voltage control transistor 2a. If the battery voltage (which is equal to the emitter voltage of transistor 2a) is lower than the potential difference between the base voltage and the pace emitter saturation voltage (approximately IV), a base current flows through the transistor, and the collector current of the transistor (battery charging current) flows. Therefore, the charging voltage is always controlled by the potential difference between the base voltage and the pace emitter saturation voltage.

第4図は充電電圧を多段階に制御する場合のフローチャ
ートである。充電が開始すると、マイクロコンピュータ
は第4図のプログラムを呼び出し、充電制御を実行する
FIG. 4 is a flowchart for controlling the charging voltage in multiple stages. When charging starts, the microcomputer calls the program shown in FIG. 4 and executes charging control.

すなわち、マイクロコンピュータは、まず、充電電圧を
電圧設定値に設定するなどの初期設定を行なう(ステッ
プSL)。次に、設定電圧をD/A変換器に供給し、充
電を開始する(ステップS2)。次に、充電電流を測定
する(ステップS3)。充電電流はシャント抵抗5aの
両端電圧をその抵抗値で除算して得られる。次に、充電
電流と電流設定値とを比較して、充電電流が大きければ
ステップS2に戻る(ステップ84)。充電電流の方が
小さければ、電流設定値が最小値であるかを調べ(ステ
ップS5)、最小値以下であれば充電制御を終了する(
ステップS7)。一方、最小値より大きければ、電圧設
定値および電流設定値を1 下げ(ステップS6)、ステップS2へ戻る。
That is, the microcomputer first performs initial settings such as setting the charging voltage to a voltage setting value (step SL). Next, a set voltage is supplied to the D/A converter to start charging (step S2). Next, the charging current is measured (step S3). The charging current is obtained by dividing the voltage across the shunt resistor 5a by its resistance value. Next, the charging current is compared with the current setting value, and if the charging current is large, the process returns to step S2 (step 84). If the charging current is smaller, it is checked whether the current setting value is the minimum value (step S5), and if it is less than the minimum value, the charging control is ended (
Step S7). On the other hand, if it is larger than the minimum value, the voltage setting value and current setting value are lowered by 1 (step S6) and the process returns to step S2.

このようにして、最初は高電圧、大電流で充電を行ない
、充電末期は定電圧、微小電流による充電を行なうこと
ができる。
In this way, charging can be performed with high voltage and large current at the beginning, and charging can be performed with constant voltage and minute current at the end of charging.

実施例2 第5図は電圧の制御に抵抗を用いたものを示す。Example 2 FIG. 5 shows an example in which a resistor is used to control the voltage.

直流電源は必ずしも完全な定電圧である必要はなく、充
電器の過負荷防止という点では内部インピーダンスの大
きいものの方が望ましい。
The DC power supply does not necessarily have to have a completely constant voltage, and it is desirable to have a high internal impedance in order to prevent overloading of the charger.

トランジスタでアナログ的に充電電圧を制御する場合、
蓄電池の容量が大きくなると、充電電流も大きくなり、
制御部での発熱が大きくなるため不利である。そのよう
な場合、抵抗をオン/オフにすることによって、同様な
制御が可能となる。
When controlling the charging voltage analogously with a transistor,
As the capacity of the storage battery increases, the charging current also increases.
This is disadvantageous because the control section generates a large amount of heat. In such cases, similar control can be achieved by turning the resistor on and off.

−例として、急速充電1通常充電、トリプル充電の3段
階に制御する場合について説明する。この動作状況を第
6図に示す。
- As an example, a case will be explained in which control is performed in three stages: quick charging, normal charging, and triple charging. This operating situation is shown in FIG.

最初、急速充電電流制限抵抗6を通して大電流で充電し
、充電電流が第1の設定値以下になると、抵抗を切り替
え、通常充電電流制限抵抗7を通し2 て通常充電を行なう。さらに、充電が進み、電流が第2
の設定値まで減少すると、再度抵抗を切り替え、トリク
ル充電抵抗8を通して充電する。
Initially, charging is performed with a large current through the quick charging current limiting resistor 6, and when the charging current becomes less than the first set value, the resistor is switched and normal charging is performed through the normal charging current limiting resistor 7. Furthermore, charging progresses and the current increases to the second level.
When the voltage decreases to the set value, the resistance is switched again and charging is performed through the trickle charging resistor 8.

このようにして、初期には抵抗6を通して大電流が流れ
、急速充電が行なわれる。充電が進むにつれ、充電電流
が低下し、それを電流検出回路5が検出すると、該検出
回路は急速充電完了の制御信号を発生する。スイッチ9
はこの信号に応答して、接続をより大きい抵抗7に切り
替え、通常充電を行なう。この時、急速充電量は蓄電池
容量の70〜80%程度までで停止するように設定する
In this way, a large current initially flows through the resistor 6, and rapid charging is performed. As the charging progresses, the charging current decreases, and when the current detection circuit 5 detects this, it generates a control signal indicating the completion of rapid charging. switch 9
In response to this signal, switches the connection to a larger resistor 7 and performs normal charging. At this time, the rapid charging amount is set to stop at about 70 to 80% of the storage battery capacity.

充電末期には、さらに電流が減少すると、再び電流検出
回路5はそれを検出し、通常充電終了の制御信号を出力
する。スイッチ9はこの信号に応答してさらに大きい抵
抗8に切り替え、トリクル充電を行なう。
At the end of charging, when the current further decreases, the current detection circuit 5 detects this again and outputs a control signal to terminate normal charging. Switch 9 responds to this signal by switching to a larger resistor 8 for trickle charging.

電圧の制御に抵抗を用いる場合、第7図に示すように、
電流制限用抵抗を直列に接続して、段数を増やして急速
充電できるようにしてもよい。
When using a resistor to control the voltage, as shown in Figure 7,
Current limiting resistors may be connected in series to increase the number of stages to enable rapid charging.

上述の実施例1および2によれば、従来の定電3 圧定電流充電方式に比べ、蓄電池電圧を検出する必要が
ないため、回路がより簡単になる。
According to the first and second embodiments described above, compared to the conventional constant voltage 3 voltage constant current charging method, there is no need to detect the storage battery voltage, so the circuit becomes simpler.

[発明の効果] 以上のように、この発明によれば、充電電流の低下を検
出し充電電圧を制御することにより、簡単な構成でもっ
て、高電流で短時間に充電を行なうことができるため、
過不足のない充電状態を得ることができる。したがって
、確実かつ安価に急速充電を行なうことができる。
[Effects of the Invention] As described above, according to the present invention, by detecting a drop in the charging current and controlling the charging voltage, charging can be performed at a high current in a short time with a simple configuration. ,
It is possible to obtain a state of charge with no excess or deficiency. Therefore, rapid charging can be performed reliably and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の電気的構成を示す概
略ブロック図である。第2図はこの発明の第1の実施例
の充電特性を示すグラフである。 第3図はこの発明の第1の実施例の検出回路および制御
回路の構成を示すブロック図である。第4図は第3図に
示す制御回路の動作を説明するための図である。第5図
はこの発明の第2の実施例の電気的構成を示すブロック
図である。第6図はこの発明の第2の実施例の充電特性
を示すブロック図である。第7図は第2の実施例の変形
例を示す4 ブロック図である。第8図は従来の充電器の構成を示す
ブロック図である。第9図は従来の定電圧定電流充電時
の充電特性を示すグラフである。第10図は従来の電流
値を多段階に変化させた場合の充電特性を示すグラフで
ある。 図において、1は直流電源、2は制御回路、3は蓄電池
、5は電流検出回路、6.7および8は抵抗、9,10
および11はスイッチを示す。
FIG. 1 is a schematic block diagram showing the electrical configuration of a first embodiment of the present invention. FIG. 2 is a graph showing the charging characteristics of the first embodiment of the present invention. FIG. 3 is a block diagram showing the configuration of the detection circuit and control circuit of the first embodiment of the present invention. FIG. 4 is a diagram for explaining the operation of the control circuit shown in FIG. 3. FIG. 5 is a block diagram showing the electrical configuration of a second embodiment of the invention. FIG. 6 is a block diagram showing charging characteristics of a second embodiment of the present invention. FIG. 7 is a four block diagram showing a modification of the second embodiment. FIG. 8 is a block diagram showing the configuration of a conventional charger. FIG. 9 is a graph showing charging characteristics during conventional constant voltage constant current charging. FIG. 10 is a graph showing charging characteristics when the conventional current value is changed in multiple stages. In the figure, 1 is a DC power supply, 2 is a control circuit, 3 is a storage battery, 5 is a current detection circuit, 6.7 and 8 are resistors, 9, 10
and 11 indicate a switch.

Claims (1)

【特許請求の範囲】 蓄電池を充電するための直流電源と、 前記蓄電池への充電電流があらかじめ定める電流値にま
で減少したことを検出する充電電流検出手段と、 前記検出手段の検出出力に応答して、前記蓄電池への充
電電流を低下させる充電電流制御手段とを備えたことを
特徴とする、急速充電回路。
[Scope of Claims] A DC power supply for charging a storage battery; a charging current detection means for detecting that the charging current to the storage battery has decreased to a predetermined current value; and a charging current detection means responsive to a detection output of the detection means. and a charging current control means for reducing the charging current to the storage battery.
JP8318090A 1990-03-29 1990-03-29 Quick charging circuit Pending JPH03284131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8318090A JPH03284131A (en) 1990-03-29 1990-03-29 Quick charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318090A JPH03284131A (en) 1990-03-29 1990-03-29 Quick charging circuit

Publications (1)

Publication Number Publication Date
JPH03284131A true JPH03284131A (en) 1991-12-13

Family

ID=13795104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318090A Pending JPH03284131A (en) 1990-03-29 1990-03-29 Quick charging circuit

Country Status (1)

Country Link
JP (1) JPH03284131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105477A (en) * 1992-09-17 1994-04-15 Mitsubishi Electric Corp Charging circuit
JP2011142743A (en) * 2010-01-07 2011-07-21 Hirose Electric Co Ltd Device and method for charging interference wave therapeutic apparatus or the like by using constant-voltage power supply
JP2019004534A (en) * 2017-06-12 2019-01-10 カシオ計算機株式会社 Charge control device, charge control method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105477A (en) * 1992-09-17 1994-04-15 Mitsubishi Electric Corp Charging circuit
JP2011142743A (en) * 2010-01-07 2011-07-21 Hirose Electric Co Ltd Device and method for charging interference wave therapeutic apparatus or the like by using constant-voltage power supply
JP2019004534A (en) * 2017-06-12 2019-01-10 カシオ計算機株式会社 Charge control device, charge control method and program

Similar Documents

Publication Publication Date Title
US20010001533A1 (en) Method and apparatus for charging a rechargeable battery with monitoring of battery temperature rate of change
KR100355486B1 (en) Battery charging method and device
US5694023A (en) Control and termination of a battery charging process
US5656920A (en) Method and apparatus for charging a lead-acid battery
US5640079A (en) Battery charger for portable rechargeable batteries
US5710506A (en) Lead acid charger
US5670863A (en) Lead acid charger with ratioed time-out periods and current pulse mode of operation
JP3198439B2 (en) Method and apparatus for charging a rechargeable battery
JP3043808B2 (en) Method for charging rechargeable batteries particularly quickly
JPH07240235A (en) Charging method for secondary battery
US7180269B2 (en) Battery charging method
US5321347A (en) Battery charger device and method
AU710799B2 (en) Control and termination of a battery charging process
JP2002199605A (en) Charging method and charger
JP2010521949A (en) Fast battery charger apparatus and method
US20210384740A1 (en) Battery Charger With Automatic Battery Type Identification
JP3306188B2 (en) Rechargeable battery charging method
JPH03284131A (en) Quick charging circuit
JPH08103032A (en) Charging for secondary battery
JP3707636B2 (en) Charge control method and charge control device
JP2005027435A (en) Charging equipment
JP2002191136A (en) Battery charger
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery
JPH1092473A (en) Method and device for controlling charge of battery
JP2581679B2 (en) Battery monitoring method