JP5384556B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5384556B2
JP5384556B2 JP2011103545A JP2011103545A JP5384556B2 JP 5384556 B2 JP5384556 B2 JP 5384556B2 JP 2011103545 A JP2011103545 A JP 2011103545A JP 2011103545 A JP2011103545 A JP 2011103545A JP 5384556 B2 JP5384556 B2 JP 5384556B2
Authority
JP
Japan
Prior art keywords
sidewall
semiconductor substrate
insulating film
gate electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011103545A
Other languages
Japanese (ja)
Other versions
JP2011176354A (en
Inventor
直 山口
慶一朗 柏原
智仁 奥平
聡明 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011103545A priority Critical patent/JP5384556B2/en
Publication of JP2011176354A publication Critical patent/JP2011176354A/en
Application granted granted Critical
Publication of JP5384556B2 publication Critical patent/JP5384556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

この発明は、シリサイドプロセス前にイオン注入を行う半導体装置に関する。   The present invention relates to a semiconductor device that performs ion implantation before a silicide process.

半導体基板上に形成されるMISFET(Metal Insulator Semiconductor Field Effect Transistor)のゲート、ソース、ドレインの各電極や、その他の配線のコンタクト領域等には、抵抗低減のためにシリサイド化処理が一般的に行われる。シリサイド化に用いられる金属としては、CoやNi等が採用される。   Silicide processing is generally performed on the gate, source, and drain electrodes of MISFETs (Metal Insulator Semiconductor Field Effect Transistors) formed on a semiconductor substrate and contact areas of other wirings to reduce resistance. Is called. As a metal used for silicidation, Co, Ni, or the like is employed.

例えば下記非特許文献1においては、シリサイド化しようとする領域に予めフッ素をイオン注入すれば、リーク電流を抑制可能なことが報告されている。   For example, in Non-Patent Document 1 below, it is reported that leakage current can be suppressed if fluorine is ion-implanted in advance into a region to be silicided.

M.Tsuchiaki et al.,「Suppression of Thermally Induced Leakage of NiSi-Silicided Shallow Junctions by Pre-Silicide Fluorine Implantation」Japanese Journal of Applied Physics Vol.44,No.4A,2005,pp.1673-1681M. Tsuchiaki et al., `` Suppression of Thermally Induced Leakage of NiSi-Silicided Shallow Junctions by Pre-Silicide Fluorine Implantation '' Japanese Journal of Applied Physics Vol.44, No.4A, 2005, pp.1673-1681

上記非特許文献1においては、シリサイド化しようとする領域へのフッ素注入は、CMOS(Complementary MOS)構造を形成する場合にも有効であり、リーク電流を抑制可能と報告されている。しかしながら、本願発明者らが実験を行ったところ、Nチャネル型MISFETにおいてはリーク電流抑制の効果が見られたものの、Pチャネル型MISFETにおいては、リーク電流が却って上昇することが確認された。   In Non-Patent Document 1, it is reported that fluorine implantation into a region to be silicided is effective even when a CMOS (Complementary MOS) structure is formed, and that leakage current can be suppressed. However, as a result of experiments by the inventors of the present application, it was confirmed that the leakage current was increased in the P-channel MISFET, although the leakage current suppression effect was observed in the N-channel MISFET.

この発明は上記の事情に鑑みてなされたもので、シリサイドプロセス前にイオン注入を行う半導体装置であって、より確実にMISFETにおけるリーク電流の抑制が図れるものを実現する。   The present invention has been made in view of the above circumstances, and realizes a semiconductor device that performs ion implantation before a silicide process and that can more reliably suppress leakage current in a MISFET.

本発明に係る半導体装置の態様は、半導体基板に形成されたPチャネル型MISFETとNチャネル型MISFETとからなるCMOS構造を有する半導体装置において、前記Pチャネル型MISFETは、前記半導体基板上に形成された第1ゲート絶縁膜と、前記第1ゲート絶縁膜上に形成された第1ゲート電極と、前記第1ゲート電極の側面上および前記半導体基板上に形成され、且つ、第1絶縁膜からなる第1サイドウォールと、前記第1ゲート電極の側面上および前記半導体基板上に前記第1サイドウォールを介して形成され、且つ、第2絶縁膜からなる第2サイドウォールと、前記半導体基板に形成されたP型ソース領域およびP型ドレイン領域と、前記P型ソース領域上および前記P型ドレイン領域上に形成された第1シリサイド化領域とを有し、前記Nチャネル型MISFETは、前記半導体基板上に形成された第2ゲート絶縁膜と、前記第2ゲート絶縁膜上に形成された第2ゲート電極と、前記第2ゲート電極の側面上および前記半導体基板上に形成され、且つ、前記第1絶縁膜からなる第3サイドウォールと、前記第2ゲート電極の側面上および前記半導体基板上に前記第3サイドウォールを介して形成され、且つ、前記第2絶縁膜からなる第4サイドウォールと、前記半導体基板に形成されたN型ソース領域およびN型ドレイン領域と、前記N型ソース領域上および前記N型ドレイン領域上に形成された第2シリサイド化領域とを有し、前記Nチャネル型MISFETにおいて、前記半導体基板からの前記第3サイドウォールの高さは、前記半導体基板からの前記第4サイドウォールの高さよりも低くなっており、前記Pチャネル型MISFETにおいて、前記半導体基板からの前記第1サイドウォールの高さは、前記半導体基板からの前記第2サイドウォールの高さよりも高くなっており、前記Nチャネル型MISFETにおいて、前記第2ゲート電極の側面からの前記第4サイドウォールの最大距離と、前記第2ゲート電極の側面からの前記第3サイドウォールの最大距離との差Bnは、前記半導体基板からの前記第3サイドウォールの高さと、前記半導体基板からの前記第4サイドウォールの高さとの差Anよりも小さくなっており、前記Pチャネル型MISFETにおいて、前記第1ゲート電極の側面からの前記第2サイドウォールの最大距離と、前記第1ゲート電極の側面からの前記第1サイドウォールの最大距離との差Bpは、前記半導体基板からの前記第1サイドウォールの高さと、前記半導体基板からの前記第2サイドウォールの高さとの差Apよりも小さい。

An aspect of the semiconductor device according to the present invention is a semiconductor device having a CMOS structure including a P-channel MISFET and an N-channel MISFET formed on a semiconductor substrate, wherein the P-channel MISFET is formed on the semiconductor substrate. A first gate insulating film; a first gate electrode formed on the first gate insulating film; and a first insulating film formed on a side surface of the first gate electrode and on the semiconductor substrate. A first sidewall, a second sidewall formed on the side surface of the first gate electrode and on the semiconductor substrate via the first sidewall and made of a second insulating film, and formed on the semiconductor substrate A P-type source region and a P-type drain region formed on the P-type source region and the P-type drain region; The N channel MISFET includes a second gate insulating film formed on the semiconductor substrate, a second gate electrode formed on the second gate insulating film, and the second gate. A third sidewall formed on the side surface of the electrode and on the semiconductor substrate and made of the first insulating film; and on the side surface of the second gate electrode and on the semiconductor substrate via the third sidewall. A fourth sidewall formed of the second insulating film, an N-type source region and an N-type drain region formed on the semiconductor substrate, and on the N-type source region and the N-type drain region. and a formed second silicide regions in said N-channel type MISFET, the height of the third side wall from the semiconductor substrate, from the semiconductor substrate The height of the first sidewall from the semiconductor substrate is higher than the height of the second sidewall from the semiconductor substrate in the P-channel MISFET. In the N-channel MISFET, the maximum distance of the fourth sidewall from the side surface of the second gate electrode and the maximum distance of the third sidewall from the side surface of the second gate electrode The difference Bn is smaller than the difference An between the height of the third sidewall from the semiconductor substrate and the height of the fourth sidewall from the semiconductor substrate. In the P-channel MISFET, the difference Bn is A maximum distance of the second sidewall from a side surface of the first gate electrode; and a first distance from the side surface of the first gate electrode. The difference Bp from the maximum distance of the idwall is smaller than the difference Ap between the height of the first sidewall from the semiconductor substrate and the height of the second sidewall from the semiconductor substrate.

本発明に係る半導体装置の態様によれば、シリサイド化を行う際に、N型ソース領域およびN型ドレイン領域におけるシリサイド化領域が、チャネル近くにまで入り込みにくく、より確実にMISFETにおけるリーク電流の抑制が図れる半導体装置が実現できる。   According to the aspect of the semiconductor device according to the present invention, when silicidation is performed, the silicidation regions in the N-type source region and the N-type drain region do not easily enter the vicinity of the channel, and the leakage current in the MISFET is more reliably suppressed. A semiconductor device capable of achieving the above can be realized.

本発明を適用可能な半導体装置の断面図である。It is sectional drawing of the semiconductor device which can apply this invention. 本発明を適用可能な半導体装置の上面図である。It is a top view of the semiconductor device which can apply this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the semiconductor device which concerns on embodiment of this invention. フッ素注入またはシリコン注入を予め行った上でソース領域およびドレイン領域をNiシリサイド化した多数のNチャネル型MISFETにつき、基板リーク電流の計測を行った結果を示すグラフである。It is a graph which shows the result of having measured the substrate leakage current about many N channel type MISFET which performed Ni silicide in the source region and the drain region after performing fluorine implantation or silicon implantation beforehand. 洗浄後の本発明に係る半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device based on this invention after washing | cleaning. イオン注入がない場合の洗浄後の半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device after washing | cleaning in case there is no ion implantation. フッ素イオンまたはシリコンイオンの注入量と、洗浄時のTEOS酸化膜およびシリコン窒化膜のエッチング量との関係を示すグラフである。It is a graph which shows the relationship between the implantation amount of a fluorine ion or a silicon ion, and the etching amount of the TEOS oxide film and silicon nitride film at the time of cleaning. フッ素注入を予め行った上でシリサイド化した多数のNチャネル型MISFETにつき、ゲート電極のシート抵抗の計測を行った結果を示すグラフである。It is a graph which shows the result of having measured the sheet resistance of the gate electrode about many N channel type MISFETs which performed silicidation after performing fluorine implantation beforehand. フッ素注入を予め行った上でソース領域およびドレイン領域をNiシリサイド化した多数のPチャネル型MISFETにつき、基板リーク電流の計測を行った結果を示すグラフである。It is a graph which shows the result of having measured the substrate leakage current about many P channel type MISFET which performed Ni silicide in the source region and drain region after performing fluorine implantation beforehand. ドレイン−ボディ間オフリーク電流Ioffbが劣化する場合のMISFET製造工程を示す図である。It is a figure which shows the MISFET manufacturing process in case drain-body off-leakage current Ioffb deteriorates. ドレイン−ボディ間オフリーク電流Ioffbが劣化する場合のMISFET製造工程を示す図である。It is a figure which shows the MISFET manufacturing process in case drain-body off-leakage current Ioffb deteriorates. ドレイン−ボディ間オフリーク電流Ioffbが劣化する場合のMISFET製造工程を示す図である。It is a figure which shows the MISFET manufacturing process in case drain-body off-leakage current Ioffb deteriorates.

図15は、フッ素注入を予め行った上でソース領域およびドレイン領域をNiシリサイド化した多数のPチャネル型MISFETにつき、ドレイン−ボディ間オフリーク電流(基板リーク電流)Ioffbの計測を行った結果を示すグラフである。   FIG. 15 shows the results of measurement of drain-body off-leakage current (substrate leakage current) Ioffb for a number of P-channel MISFETs in which the source region and the drain region were Ni-silicided after fluorine implantation was performed in advance. It is a graph.

図15において、縦軸は、全Pチャネル型MISFETの正規分布計測結果における分位点(値“0”が最頻値)を示し、横軸は基板リーク電流値(任意単位)を示している。また、グラフ中の三本の計測結果のうち真中のものは5[keV]および1×1015[cm-2]の条件下でフッ素注入を行った上でソース領域およびドレイン領域をNiシリサイド化した結果を、グラフ中の最右側のものは5[keV]および6×1014[cm-2]の条件下でフッ素注入を行った上でソース領域およびドレイン領域をNiシリサイド化した結果を、グラフ中の最左側のものはフッ素注入を行わずにソース領域およびドレイン領域をNiシリサイド化した場合の参照値を、それぞれ示している。 In FIG. 15, the vertical axis represents the quantile (value “0” is the mode value) in the normal distribution measurement result of all P-channel MISFETs, and the horizontal axis represents the substrate leakage current value (arbitrary unit). . In the middle of the three measurement results in the graph, the source region and the drain region are Ni-silicided after performing fluorine implantation under the conditions of 5 [keV] and 1 × 10 15 [cm −2 ]. The results on the right side of the graph are the results of Ni-silicidation of the source region and the drain region after fluorine implantation under the conditions of 5 [keV] and 6 × 10 14 [cm −2 ], The leftmost one in the graph shows reference values when the source region and the drain region are Ni-silicided without fluorine implantation.

図15から分かるように、ドレイン−ボディ間オフリーク電流(基板リーク電流)Ioffbの値は、フッ素注入を行わずにソース領域およびドレイン領域をNiシリサイド化した場合(グラフ中の最左側の計測結果)の方が低い。すなわち、Pチャネル型MISFETの場合は、シリサイド化しようとする領域への予めのフッ素注入は、リーク電流抑制には逆効果であると言える。   As can be seen from FIG. 15, the value of the drain-body off-leakage current (substrate leakage current) Ioffb is obtained when the source region and the drain region are Ni-silicided without performing fluorine implantation (the measurement result on the leftmost side in the graph). Is lower. That is, in the case of a P-channel type MISFET, it can be said that pre-implantation of fluorine into the region to be silicided has an adverse effect on leakage current suppression.

また、Nチャネル型MISFETにおいて、シリサイド化しようとする領域への予めのフッ素注入を行う場合であっても、MISFETの構造によっては、ドレイン−ボディ間オフリーク電流Ioffbが上昇してしまう場合がある。図16〜図18は、ドレイン−ボディ間オフリーク電流(基板リーク電流)Ioffbが劣化する場合のMISFET製造工程を示す図である。   Further, in the N-channel MISFET, even when fluorine is previously implanted into a region to be silicided, the drain-body off-leakage current Ioffb may increase depending on the structure of the MISFET. 16 to 18 are diagrams showing a MISFET manufacturing process when the drain-body off-leak current (substrate leak current) Ioffb deteriorates.

図16に示すように、半導体基板SB上に形成されたサイドウォール絶縁膜SW1,SW2のうち、第1サイドウォール絶縁膜SW1はTEOS(テトラエトキシシラン)酸化膜で、サイドウォール絶縁膜SW2はシリコン窒化膜で、それぞれ形成されることが多い。この構造の場合、シリサイド化直前に、シリサイド化領域表面付近をフッ酸等で洗浄(軽いウェットエッチング)すると、第1サイドウォール絶縁膜SW1がエッチングされてしまい、第1サイドウォール絶縁膜SW1の露出部AR1,AR2に後退が見られやすい。   As shown in FIG. 16, among the sidewall insulating films SW1 and SW2 formed on the semiconductor substrate SB, the first sidewall insulating film SW1 is a TEOS (tetraethoxysilane) oxide film, and the sidewall insulating film SW2 is silicon. Nitride films are often formed. In the case of this structure, if the vicinity of the silicidation region surface is cleaned with hydrofluoric acid or the like (light wet etching) immediately before silicidation, the first sidewall insulating film SW1 is etched, and the first sidewall insulating film SW1 is exposed. The parts AR1 and AR2 are easily retracted.

この後、図17に示すように、全面にNi等の金属膜MTを形成し、シリサイド化を行って、第1アニール処理、未反応部分の金属膜MTの除去、および、第2アニール処理を行えば、図18に示すようにシリサイド化領域SCs,SCdが形成される。このとき、図17に示すように、後退した露出部AR2に金属膜MTが回り込んで形成されるため、シリサイド領域SCs,SCdはよりチャネルの近くにまで形成されることとなる。   Thereafter, as shown in FIG. 17, a metal film MT of Ni or the like is formed on the entire surface, silicidation is performed, and the first annealing process, the removal of the unreacted portion of the metal film MT, and the second annealing process are performed. In this case, silicidation regions SCs and SCd are formed as shown in FIG. At this time, as shown in FIG. 17, since the metal film MT is formed around the recessed exposed portion AR2, the silicide regions SCs and SCd are formed closer to the channel.

これにより、ドレイン−ボディ間オフリーク電流Ioffbは、露出部AR2の後退量が増えるほど大きな値になってしまう。よって、図18のような構造であれば、Nチャネル型MISFETにおいて、シリサイド化しようとする領域へ予めフッ素注入を行ったとしても、リーク電流抑制の効果が薄れてしまうこととなる。   As a result, the drain-body off-leakage current Ioffb becomes larger as the retraction amount of the exposed portion AR2 increases. Therefore, with the structure as shown in FIG. 18, even if fluorine is previously implanted into the region to be silicided in the N channel MISFET, the effect of suppressing the leakage current is diminished.

本発明に係る実施の形態は、マスク層によりPチャネル型MISFETを覆いつつ、Nチャネル型MISFETのN型ソース領域およびN型ドレイン領域にイオンを注入し、その後、Nチャネル型MISFETおよびPチャネル型MISFETの各ゲート電極、ソース領域およびドレイン領域にシリサイド化を行う、半導体装置およびその製造方法である。   In the embodiment of the present invention, ions are implanted into the N-type source region and the N-type drain region of the N-channel MISFET while covering the P-channel MISFET with the mask layer, and then the N-channel MISFET and the P-channel type. A semiconductor device and a manufacturing method thereof for siliciding each gate electrode, source region, and drain region of a MISFET.

図1および図2は、本発明を適用可能な半導体装置の断面図および上面図である。なお図1は、図2中の切断線I−Iにおける断面図である。図2では、ゲート電極GE、ソース領域SEおよびドレイン領域DEを有する各MISFET(Metal Insulator Semiconductor Field Effect Transistor)が、シリコン酸化膜等の素子分離膜ISにより分離された半導体装置が示されている。   1 and 2 are a cross-sectional view and a top view of a semiconductor device to which the present invention can be applied. 1 is a cross-sectional view taken along a cutting line II in FIG. FIG. 2 shows a semiconductor device in which each MISFET (Metal Insulator Semiconductor Field Effect Transistor) having a gate electrode GE, a source region SE, and a drain region DE is separated by an element isolation film IS such as a silicon oxide film.

図1に示されているように、この半導体装置は、シリコン基板等の半導体基板SBと、ゲート絶縁膜(例えばシリコン酸化膜)GIおよびゲート電極(例えばポリシリコン膜)GEの積層構造、ソース領域SE、ドレイン領域DEを含む、半導体基板SB上に形成されたMISFETとを備える。なお、ソース領域SEおよびドレイン領域DEの外側には素子分離膜ISが形成されている。   As shown in FIG. 1, the semiconductor device includes a semiconductor substrate SB such as a silicon substrate, a stacked structure of a gate insulating film (for example, silicon oxide film) GI and a gate electrode (for example, polysilicon film) GE, and a source region. SE and MISFET formed on semiconductor substrate SB including drain region DE are provided. An element isolation film IS is formed outside the source region SE and the drain region DE.

ゲート電極GE、ソース領域SEおよびドレイン領域DEの各表面には、Ni(ニッケル)やCo(コバルト)等を含むシリサイド化領域SCg,SCs,SCdが、それぞれ形成されている。なお、ゲート絶縁膜GIおよびゲート電極GEの積層構造の側面、並びに、ソース領域SEおよびドレイン領域DEの表面の一部に面して、それぞれTEOS酸化膜等の第1サイドウォール絶縁膜SW1が形成されている。また、第1サイドウォール絶縁膜SW1を介しつつ、ゲート絶縁膜GIおよびゲート電極GEの積層構造の側面、並びに、ソース領域SEおよびドレイン領域DEの表面の一部に対向して、それぞれシリコン窒化膜等の第2サイドウォール絶縁膜SW2が形成されている。   Silicided regions SCg, SCs, and SCd containing Ni (nickel), Co (cobalt), and the like are formed on the surfaces of the gate electrode GE, the source region SE, and the drain region DE, respectively. A first sidewall insulating film SW1 such as a TEOS oxide film is formed on the side surface of the stacked structure of the gate insulating film GI and the gate electrode GE and on part of the surface of the source region SE and the drain region DE. Has been. In addition, the silicon nitride film faces the side surface of the stacked structure of the gate insulating film GI and the gate electrode GE and part of the surface of the source region SE and the drain region DE through the first sidewall insulating film SW1. A second sidewall insulating film SW2 is formed.

なお、図2に示した半導体装置はCMOS構造を有しており、Nチャネル型MISFETおよびPチャネル型MISFETの両者を備える。そして、図1に示すMISFETの構造は、Nチャネル型MISFETおよびPチャネル型MISFETに共通しており、両チャネル型MISFETは、半導体基板SBに形成されたウェル(図示せず)、ソース領域SE、ドレイン領域DEの各領域における導電型が異なる以外は、同一構造を有する。また、図1においては、ドレイン−ボディ間オフリーク電流(基板リーク電流)を符号Ioffbとして示している。   Note that the semiconductor device shown in FIG. 2 has a CMOS structure and includes both an N-channel MISFET and a P-channel MISFET. The structure of the MISFET shown in FIG. 1 is common to the N-channel MISFET and the P-channel MISFET, and both the channel MISFETs include a well (not shown) formed in the semiconductor substrate SB, a source region SE, The drain region DE has the same structure except that the conductivity type in each region is different. In FIG. 1, the drain-body off-leakage current (substrate leakage current) is indicated by a symbol Ioffb.

図3〜図9は、本発明の実施の形態に係る半導体装置の製造方法の各工程を示す図である。以下、各図を用いて本発明の実施の形態に係る半導体装置の製造方法を説明する。   3 to 9 are diagrams showing each step of the manufacturing method of the semiconductor device according to the embodiment of the present invention. A method for manufacturing a semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings.

まず、図3に示すように、半導体基板SB上に、ゲート絶縁膜GIおよびゲート電極GEの積層構造、第1サイドウォール絶縁膜SW1、第2サイドウォール絶縁膜SW2、ソース領域のLDD(Lightly Doped Drain)領域SE1、並びに、ドレイン領域のLDD領域DE1を含むMISFETを、Pチャネル型およびNチャネル型のそれぞれにつき、フォトリソグラフィ技術およびエッチング技術、イオン注入技術等を用いて形成する。   First, as shown in FIG. 3, on the semiconductor substrate SB, a stacked structure of the gate insulating film GI and the gate electrode GE, the first sidewall insulating film SW1, the second sidewall insulating film SW2, and the LDD (Lightly Doped) of the source region. The MISFET including the drain region SE1 and the drain region LDD region DE1 is formed by using a photolithography technique, an etching technique, an ion implantation technique, and the like for each of the P channel type and the N channel type.

次に、図4に示すように、イオン注入IP1を行って、ソース領域SE2およびドレイン領域DE2の形成を行う。なお、N型ソース領域およびN型ドレイン領域の形成に当たっては、例えばAs(砒素)イオンを5〜50[keV]および1×1015〜1×1016[cm-2]の条件下で半導体基板SBに注入することにより形成すればよい。また、P型ソース領域およびP型ドレイン領域の形成に当たっては、例えばB(ボロン)イオンを1〜5[keV]および1×1015〜1×1016[cm-2]の条件下で半導体基板SBに注入することにより形成すればよい。もちろん、本発明に係る半導体装置はCMOS構造を有するので、フォトレジストをマスクとして用いることにより、Nチャネル型MISFETのソース・ドレイン形成用のイオン注入と、Pチャネル型のソース・ドレイン形成用のイオン注入とを、選択的に打ち分ければよい。 Next, as shown in FIG. 4, ion implantation IP1 is performed to form the source region SE2 and the drain region DE2. In forming the N-type source region and the N-type drain region, for example, As (arsenic) ions are used under the conditions of 5 to 50 [keV] and 1 × 10 15 to 1 × 10 16 [cm −2 ]. What is necessary is just to form by inject | pouring into SB. In forming the P-type source region and the P-type drain region, for example, B (boron) ions are applied under the conditions of 1 to 5 [keV] and 1 × 10 15 to 1 × 10 16 [cm −2 ]. What is necessary is just to form by inject | pouring into SB. Of course, since the semiconductor device according to the present invention has a CMOS structure, by using a photoresist as a mask, ion implantation for forming a source / drain of an N-channel MISFET and ions for forming a P-channel source / drain are performed. The injection may be selectively divided.

次に、図5に示すように、半導体基板SBのうちシリサイド化を防止すべき部分を覆うためのシリサイド化防止膜BLを、Pチャネル型MISFET、Nチャネル型MISFETおよび半導体基板SBの表面を覆うように形成する。このシリサイド化防止膜BLとしては、CVD(Chemical Vapor Deposition)法により成膜温度400度で形成したUSG(Undoped Silicate Glass)膜を採用すればよい。   Next, as shown in FIG. 5, an anti-silicidation film BL for covering a portion of the semiconductor substrate SB that should be prevented from silicidization covers the surfaces of the P-channel MISFET, the N-channel MISFET, and the semiconductor substrate SB. To form. As this silicidation preventing film BL, a USG (Undoped Silicate Glass) film formed by a CVD (Chemical Vapor Deposition) method at a film forming temperature of 400 ° C. may be employed.

そして、フォトリソグラフィ技術およびエッチング技術を用いて、シリサイド化防止膜BLに対して選択的に異方性エッチング(ドライエッチング)を行い、シリサイド化を防止すべき部分(例えば配線のコンタクト領域等のうちシリサイド化したくない部分(図示せず)など)、および、Pチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造の側方、および、Nチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造の側方に、シリサイド化防止膜BL1を残置する(図6)。   Then, anisotropic etching (dry etching) is selectively performed on the silicidation preventing film BL by using a photolithography technique and an etching technique, and a portion where the silicidation is to be prevented (for example, a contact region of the wiring) A portion (not shown) that is not desired to be silicided, the side of the stacked structure of the gate insulating film GI and the gate electrode GE of the P-channel type MISFET, and the gate insulating film GI and the gate electrode GE of the N-channel type MISFET An anti-silicidation film BL1 is left on the side of the stacked structure (FIG. 6).

次に、図7に示すように、Nチャネル型MISFETは覆わずに、Pチャネル型MISFETを選択的に覆うマスク層RMを形成する。マスク層RMにはフォトレジストを採用し、このフォトレジストをパターニングすればよい。そして、マスク層RMによりPチャネル型MISFETを覆いつつ、Nチャネル型MISFETの少なくともN型ソース領域およびN型ドレイン領域に、フッ素イオン(“F+”と表示)および/またはシリコンイオン(“Si+”と表示)の注入IP2を行う。なお、このイオン注入IP2は、フッ素イオン及びシリコンイオンいずれの場合も、5[keV]および6×1014〜1×1015[cm-2]程度の条件下で行えばよい。 Next, as shown in FIG. 7, a mask layer RM that selectively covers the P-channel MISFET without forming the N-channel MISFET is formed. A photoresist is employed for the mask layer RM, and this photoresist may be patterned. Then, while covering the P-channel MISFET with the mask layer RM, at least the N-type source region and the N-type drain region of the N-channel MISFET have fluorine ions (indicated as “F + ”) and / or silicon ions (“Si + ”). Injection IP2 is performed. The ion implantation IP2 may be performed under conditions of about 5 [keV] and about 6 × 10 14 to 1 × 10 15 [cm −2 ] in both cases of fluorine ions and silicon ions.

また、このイオン注入IP2は、フッ素イオン及びシリコンイオンに限らず、フッ素、シリコン、C(炭素)、Ge(ゲルマニウム)、Ne(ネオン)、Ar(アルゴン)、Kr(クリプトン)のうち少なくとも一種類を含むイオンを注入することにより行なってもよい。   The ion implantation IP2 is not limited to fluorine ions and silicon ions, but is at least one of fluorine, silicon, C (carbon), Ge (germanium), Ne (neon), Ar (argon), and Kr (krypton). It may be performed by implanting ions containing.

次に、半導体基板SB表面やゲート電極GE表面に生じたシリコン酸化膜を除去するための、シリサイド化を行う部分の洗浄を行う。この洗浄工程においては、RCA洗浄に加えてフッ酸を用いた洗浄を行えばよい。また、その他にも、前洗浄(ケミカルドライクリーニング)装置とスパッタ装置とが一体化された装置での前洗浄であってもよい。   Next, in order to remove the silicon oxide film generated on the surface of the semiconductor substrate SB and the surface of the gate electrode GE, a portion to be silicided is cleaned. In this cleaning step, cleaning using hydrofluoric acid may be performed in addition to RCA cleaning. In addition, pre-cleaning may be performed using a device in which a pre-cleaning (chemical dry cleaning) device and a sputtering device are integrated.

なおこのとき、残置したシリサイド化防止膜BL1とシリサイド化を行う部分とに対して、洗浄を行う。この洗浄により、Pチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造の側方、および、Nチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造の側方に残置したシリサイド化防止膜BL1は除去される。一方、それ以外の部分のシリサイド化防止膜BL1(図示せず)は、この洗浄では完全には除去されず、残置したままとなる。   At this time, the remaining silicidation preventing film BL1 and the portion to be silicidized are cleaned. By this cleaning, silicidation left on the side of the stacked structure of the gate insulating film GI and the gate electrode GE of the P-channel MISFET and on the side of the stacked structure of the gate insulating film GI and the gate electrode GE of the N-channel MISFET. The prevention film BL1 is removed. On the other hand, the silicidation preventing film BL1 (not shown) in the other portions is not completely removed by this cleaning, and remains as it is.

次に、Nチャネル型MISFET、Pチャネル型MISFET、半導体基板SBの表面、および、残置したシリサイド化防止膜BL1上に、Ni等の金属膜MTをスパッタ法等により図8に示すように形成する。そして、一回目のRTA(Rapid Thermal Annealing)を行い、その後、未反応の金属膜MTを除去して、二回目のRTAを行う。これにより、Nチャネル型MISFETのゲート電極、イオン注入されたN型ソース領域およびN型ドレイン領域、並びに、Pチャネル型MISFETのゲート電極、P型ソース領域およびP型ドレイン領域に、それぞれシリサイド化が行われ、図9に示すように、ゲート電極GE、ソース領域SEおよびドレイン領域DEの各表面に、シリサイド化領域SCg,SCs,SCdが、それぞれ形成される。   Next, a metal film MT such as Ni is formed by sputtering or the like on the surface of the N channel MISFET, P channel MISFET, semiconductor substrate SB, and the remaining silicidation prevention film BL1 as shown in FIG. . Then, the first RTA (Rapid Thermal Annealing) is performed, and then the unreacted metal film MT is removed, and the second RTA is performed. As a result, silicidation occurs in the gate electrode of the N-channel type MISFET, the N-type source region and N-type drain region into which ions are implanted, and the gate electrode, P-type source region and P-type drain region of the P-channel type MISFET. As shown in FIG. 9, silicided regions SCg, SCs, and SCd are formed on the surfaces of the gate electrode GE, the source region SE, and the drain region DE, respectively.

なお、金属膜MTにはNi以外にも、Ni、Ti(チタン)、Co(コバルト)、Pd(パラジウム)、Pt(白金)、Er(エルビウム)のうち少なくとも一種類を含む金属膜を採用してもよい。   In addition to Ni, the metal film MT employs a metal film including at least one of Ni, Ti (titanium), Co (cobalt), Pd (palladium), Pt (platinum), and Er (erbium). May be.

上記非特許文献1においては、シリサイド化しようとする領域に予めフッ素をイオン注入すればリーク電流を抑制可能と報告されていたが、本願発明者らは、フッ素イオンだけではなく、フッ素、シリコン、炭素、ゲルマニウム、ネオン、アルゴン、クリプトンのうち少なくとも一種類を含むイオンをNチャネル型MISFETのN型ソース領域およびN型ドレイン領域に注入する場合であっても、同様にリーク電流を抑制可能なことを発見した。   In the non-patent document 1, it has been reported that leakage current can be suppressed if fluorine is ion-implanted in advance in the region to be silicided, but the inventors of the present application are not limited to fluorine ions, but fluorine, silicon, Even when ions containing at least one of carbon, germanium, neon, argon, and krypton are implanted into the N-type source region and N-type drain region of the N-channel MISFET, the leakage current can be similarly suppressed. I found

図10は、フッ素注入またはシリコン注入を予め行った上でN型ソース領域およびN型ドレイン領域をNiシリサイド化した多数のNチャネル型MISFETにつき、ドレイン−ボディ間オフリーク電流(基板リーク電流)Ioffbの計測を行った結果の例を示すグラフである。   FIG. 10 shows drain-body off-leakage current (substrate leakage current) Ioffb for a number of N-channel MISFETs in which N-type source regions and N-type drain regions are Ni-silicided after fluorine implantation or silicon implantation has been performed in advance. It is a graph which shows the example of the result of having measured.

図10において、縦軸は、全Nチャネル型MISFETの正規分布計測結果における分位点(値“0”が最頻値)を示し、横軸は基板リーク電流値(任意単位)を示している。また、“F,Si注入”と示した計測結果は、5[keV]および1×1015[cm-2]の条件下でフッ素注入を行った上でN型ソース領域およびN型ドレイン領域をNiシリサイド化した結果、5[keV]および6×1014[cm-2]の条件下でフッ素注入を行った上でN型ソース領域およびN型ドレイン領域をNiシリサイド化した結果、5[keV]および1×1015[cm-2]の条件下でシリコン注入を行った上でN型ソース領域およびN型ドレイン領域をNiシリサイド化した結果、および、5[keV]および6×1014[cm-2]の条件下でシリコン注入を行った上でN型ソース領域およびN型ドレイン領域をNiシリサイド化した結果をそれぞれ示し、“Reference”と示した計測結果はフッ素注入を行わずにN型ソース領域およびN型ドレイン領域をNiシリサイド化した場合の参照値を示している。 In FIG. 10, the vertical axis represents the quantile (value “0” is the mode value) in the normal distribution measurement result of all N-channel MISFETs, and the horizontal axis represents the substrate leakage current value (arbitrary unit). . In addition, the measurement result shown as “F, Si implantation” shows that the N-type source region and the N-type drain region are formed after fluorine implantation is performed under conditions of 5 [keV] and 1 × 10 15 [cm −2 ]. As a result of Ni silicidation, fluorine implantation was performed under the conditions of 5 [keV] and 6 × 10 14 [cm −2 ], and then the N-type source region and N-type drain region were Ni-silicided. ] And 1 × 10 15 [cm −2 ] after silicon implantation, the N-type source region and the N-type drain region were Ni-silicided, and 5 [keV] and 6 × 10 14 [ cm −2 ] shows the result of Ni-silicidation of the N-type source region and N-type drain region after silicon implantation, and the measurement result indicated as “Reference” indicates that N was not implanted with fluorine. Type source area The reference value when the region and the N-type drain region are Ni-silicided is shown.

図10から分かるように、ドレイン−ボディ間オフリーク電流(基板リーク電流)Ioffbの値は、フッ素注入を行わずにソース領域およびドレイン領域をNiシリサイド化した場合(“Reference”)よりも、フッ素またはシリコンの注入を行った上でN型ソース領域およびN型ドレイン領域をNiシリサイド化した場合の方が低い。   As can be seen from FIG. 10, the value of the drain-body off-leakage current (substrate leakage current) Ioffb is higher than that in the case where the source region and the drain region are Ni-silicided (“Reference”) without fluorine implantation. It is lower when the N-type source region and the N-type drain region are Ni-silicided after silicon implantation.

一方、本願では、シリサイド化しようとする領域への予めのフッ素注入がリーク電流抑制に逆効果となるPチャネル型MISFETには、マスクRMを形成する。これにより、シリサイド化しようとする領域への予めのフッ素やシリコン等のイオン注入は行わない。   On the other hand, in the present application, a mask RM is formed in a P-channel type MISFET in which fluorine injection into a region to be silicided has an adverse effect on leakage current suppression. Thereby, ion implantation of fluorine, silicon, or the like in advance into the region to be silicided is not performed.

すなわち、本発明によれば、マスク層RMによりPチャネル型MISFETを覆いつつ、Nチャネル型MISFETのN型ソース領域およびN型ドレイン領域にイオンを注入する。その後、Nチャネル型MISFETおよびPチャネル型MISFETの各ゲート電極、ソース領域およびドレイン領域にシリサイド化を行う。言い換えれば、本願ではPチャネル型MISFETのP型ソース領域およびP型ドレイン領域にはイオンを注入することなく、かつ、Nチャネル型MISFETのN型ソース領域およびN型ドレイン領域にはイオンを注入した後に、シリサイド化を行うことができる。これにより、Pチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流Ioffbを劣化させること無く、Nチャネル型MISFETにおいてドレイン−ボディ間オフリーク電流(基板リーク電流)Ioffbの抑制が図れる。よって、より確実にMISFETにおけるリーク電流の抑制が図れる半導体装置の製造方法が実現できる。   That is, according to the present invention, ions are implanted into the N-type source region and the N-type drain region of the N-channel MISFET while covering the P-channel MISFET with the mask layer RM. Thereafter, silicidation is performed on each gate electrode, source region, and drain region of the N-channel type MISFET and the P-channel type MISFET. In other words, in this application, ions are not implanted into the P-type source region and the P-type drain region of the P-channel type MISFET, and ions are implanted into the N-type source region and the N-type drain region of the N-channel type MISFET. Later, silicidation can be performed. As a result, the drain-body off-leakage current (substrate leakage current) Ioffb can be suppressed in the N-channel MISFET without degrading the drain-body off-leakage current Ioffb in the P-channel MISFET. Therefore, it is possible to realize a method for manufacturing a semiconductor device that can more reliably suppress the leakage current in the MISFET.

また、本発明によれば、Pチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造の側方、および、Nチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造の側方にシリサイド化防止膜BL1を残置し、残置したシリサイド化防止膜BL1とシリサイド化を行う部分とに対して、洗浄を行う。シリサイド化防止膜BL1がゲート絶縁膜GIおよびゲート電極GEの積層構造の側方に残置しているので、シリサイド化を行う部分の洗浄時に、Nチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造およびPチャネル型MISFETのゲート絶縁膜GIおよびゲート電極GEの積層構造に付随するサイドウォール絶縁膜SW1,SW2部分のエッチングがされにくい。よって、Nチャネル型MISFETおよびPチャネル型MISFETの各ソース領域および各ドレイン領域におけるシリサイド化領域が、チャネル近くにまで入り込みにくく、より確実にMISFETにおけるリーク電流の抑制が図れる半導体装置の製造方法が実現できる。   Further, according to the present invention, the side of the stacked structure of the gate insulating film GI and the gate electrode GE of the P-channel MISFET and the side of the stacked structure of the gate insulating film GI and the gate electrode GE of the N-channel MISFET. The silicidation prevention film BL1 is left, and the remaining silicidation prevention film BL1 and the portion to be silicided are cleaned. Since the silicidation preventing film BL1 is left on the side of the laminated structure of the gate insulating film GI and the gate electrode GE, when the portion to be silicidized is cleaned, the gate insulating film GI and the gate electrode GE of the N channel MISFET Etching of the side wall insulating films SW1 and SW2 accompanying the laminated structure and the laminated structure of the gate insulating film GI and the gate electrode GE of the P-channel type MISFET is difficult. Accordingly, a method for manufacturing a semiconductor device is realized in which the silicide regions in the source region and the drain region of the N channel MISFET and the P channel MISFET do not easily enter the vicinity of the channel, and the leakage current in the MISFET can be more reliably suppressed. it can.

図11は、洗浄後の本発明に係る半導体装置の構造を示す断面図である。図11においては、右側にNチャネル型MISFETが、左側にPチャネル型MISFETが、それぞれ示されている。図11の構造のうちNチャネル型MISFETにおいては、半導体基板SBの表面からの第1サイドウォール絶縁膜SW1の高さは、半導体基板SBの表面からの第2サイドウォール絶縁膜SW2の高さよりも小さい。また、Nチャネル型MISFETにおいては、ゲート絶縁膜GIおよびゲート電極GEの積層構造の側面からの第1サイドウォール絶縁膜SW1の最大距離は、ゲート絶縁膜GIおよびゲート電極GEの積層構造の側面からの第2サイドウォール絶縁膜SW2の最大距離よりも小さい。そして、第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bnは、第1サイドウォール絶縁膜SW1の高さと第2サイドウォール絶縁膜SW2の高さとの差Anよりも小さい。   FIG. 11 is a cross-sectional view showing the structure of the semiconductor device according to the present invention after cleaning. In FIG. 11, an N-channel MISFET is shown on the right side, and a P-channel MISFET is shown on the left side. In the N-channel MISFET of the structure of FIG. 11, the height of the first sidewall insulating film SW1 from the surface of the semiconductor substrate SB is higher than the height of the second sidewall insulating film SW2 from the surface of the semiconductor substrate SB. small. In the N channel MISFET, the maximum distance of the first sidewall insulating film SW1 from the side surface of the stacked structure of the gate insulating film GI and the gate electrode GE is from the side surface of the stacked structure of the gate insulating film GI and the gate electrode GE. This is smaller than the maximum distance of the second sidewall insulating film SW2. The difference Bn between the maximum distance from the gate side surface of the second sidewall insulating film SW2 and the maximum distance from the gate side surface of the first sidewall insulating film SW1 is the height of the first sidewall insulating film SW1 and the second side. It is smaller than the difference An from the height of the wall insulating film SW2.

なお、図12は、イオン注入がない場合の、洗浄後のNチャネル型MISFETの構造を示す断面図である。図12においては、第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bn1は、第1サイドウォール絶縁膜SW1の高さと第2サイドウォール絶縁膜SW2の高さとの差An1と同程度である。   FIG. 12 is a cross-sectional view showing the structure of the N-channel MISFET after cleaning when no ion implantation is performed. In FIG. 12, the difference Bn1 between the maximum distance from the gate side surface of the second sidewall insulating film SW2 and the maximum distance from the gate side surface of the first sidewall insulating film SW1 is the height of the first sidewall insulating film SW1. The difference An1 from the height of the second sidewall insulating film SW2 is approximately the same.

本願発明者らは、図11のBnと図12のBn1との大きさの違いについて下記のように考える。   The inventors consider the difference in size between Bn in FIG. 11 and Bn1 in FIG. 12 as follows.

すなわち、フッ素やシリコン等のイオン注入が行われる図11の場合、第1サイドウォール絶縁膜SW1のゲート電極GEの側面に接触する部分の頂部には、イオンが比較的多く注入される。一方、第1サイドウォール絶縁膜SW1のソース領域SEおよびドレイン領域DEに接触する部分の端部上には、第2サイドウォール絶縁膜SW2が存在し、さらに、その側方にはシリサイド化防止膜BL1が残置する。   That is, in the case of FIG. 11 where ion implantation of fluorine, silicon, or the like is performed, a relatively large amount of ions are implanted into the top of the portion of the first sidewall insulating film SW1 that contacts the side surface of the gate electrode GE. On the other hand, the second sidewall insulating film SW2 is present on the end portion of the first sidewall insulating film SW1 that is in contact with the source region SE and the drain region DE. BL1 remains.

このため、本発明においては、第1サイドウォール絶縁膜SW1のソース領域SEおよびドレイン領域DEに接触する部分の端部付近よりも、ゲート電極GEの側面に接触する部分の頂部付近に、より多くのイオンが注入されることとなる。   For this reason, in the present invention, more in the vicinity of the top of the portion in contact with the side surface of the gate electrode GE than in the vicinity of the end of the portion in contact with the source region SE and drain region DE of the first sidewall insulating film SW1. Ions are implanted.

図13のグラフに示すように、第1サイドウォール絶縁膜SW1を構成するTEOS酸化膜も、第2サイドウォール絶縁膜SW2を構成するシリコン窒化膜も、イオンが注入されると、そのドーズ量が多くなるにつれてシリサイド化工程直前の洗浄時にエッチングされる量が多くなることが分かっている。   As shown in the graph of FIG. 13, when ions are implanted into the TEOS oxide film constituting the first sidewall insulating film SW1 and the silicon nitride film constituting the second sidewall insulating film SW2, the dose amount is increased. It has been found that as the amount increases, the amount etched during cleaning immediately before the silicidation step increases.

よって、本発明に係る半導体装置の製造方法を用いて、Nチャネル型MISFETにイオン注入の工程を行い、洗浄工程、シリサイド化工程を行うと、シリサイド化工程直前の洗浄時に、第1サイドウォール絶縁膜SW1のゲート電極GEの側面に接触する部分の頂部付近が比較的多くエッチングされ、一方、第1サイドウォール絶縁膜SW1のソース領域SEおよびドレイン領域DEに接触する部分の端部付近は比較的少なくエッチングされるのである。これが、第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bnは、第1サイドウォール絶縁膜SW1の高さと第2サイドウォール絶縁膜SW2の高さとの差Anよりも小さい理由と考えられる。   Therefore, when the ion implantation process is performed on the N-channel MISFET and the cleaning process and the silicidation process are performed using the semiconductor device manufacturing method according to the present invention, the first sidewall insulation is performed at the time of cleaning immediately before the silicidation process. The vicinity of the top of the portion of the film SW1 in contact with the side surface of the gate electrode GE is etched much, while the vicinity of the end of the portion of the first sidewall insulating film SW1 in contact with the source region SE and drain region DE is relatively It is etched a little. This is because the difference Bn between the maximum distance from the gate side surface of the second sidewall insulating film SW2 and the maximum distance from the gate side surface of the first sidewall insulating film SW1 is the height of the first sidewall insulating film SW1 and the second side. The reason is considered to be smaller than the difference An from the height of the wall insulating film SW2.

一方、イオン注入工程を行わない場合には、シリサイド化工程直前の洗浄時の、第1サイドウォール絶縁膜SW1のゲート電極GEの側面に接触する部分の頂部付近のエッチング量と、第1サイドウォール絶縁膜SW1のソース領域SEおよびドレイン領域DEに接触する部分の端部付近のエッチング量との間に差は生じない。これが、第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bn1は、第1サイドウォール絶縁膜SW1の高さと第2サイドウォール絶縁膜SW2の高さとの差An1と同程度である理由と考えられる。   On the other hand, when the ion implantation step is not performed, the etching amount near the top of the portion of the first sidewall insulating film SW1 that contacts the side surface of the gate electrode GE at the time of cleaning immediately before the silicidation step, and the first sidewall There is no difference between the etching amount in the vicinity of the end portion of the insulating film SW1 in contact with the source region SE and the drain region DE. This is because the difference Bn1 between the maximum distance from the gate side surface of the second sidewall insulating film SW2 and the maximum distance from the gate side surface of the first sidewall insulating film SW1 is the height of the first sidewall insulating film SW1 and the second side. This is probably because the difference An1 from the height of the wall insulating film SW2 is approximately the same.

図14は、フッ素注入を予め行った上でゲート電極GEのシリサイド化を行った多数のNチャネル型MISFETにつき、ゲート電極GEのシート抵抗の計測を行った結果を示すグラフである。図14において、縦軸は、全Nチャネル型MISFETの正規分布計測結果における分位点(値“0”が最頻値)を示し、横軸はシート抵抗値(任意単位)を示している。また、“F注入”と示したグラフは5[keV]および1×1015[cm-2]の条件下でフッ素注入を行った上でゲート電極GEをNiシリサイド化した結果、および、5[keV]および6×1014[cm-2]の条件下でフッ素注入を行った上でゲート電極GEをNiシリサイド化した結果を示し、“Reference”と示したグラフはフッ素注入を行わずにゲート電極GEをNiシリサイド化した場合の参照値を示している。フッ素注入を予め行った上でゲート電極GEのシリサイド化を行ったNチャネル型MISFETの方が、シート抵抗値が低くなっていることが分かる。 FIG. 14 is a graph showing the result of measuring the sheet resistance of the gate electrode GE for a number of N-channel MISFETs in which the gate electrode GE was silicidized after fluorine implantation was performed in advance. In FIG. 14, the vertical axis represents the quantile (value “0” is the mode value) in the normal distribution measurement result of all N-channel MISFETs, and the horizontal axis represents the sheet resistance value (arbitrary unit). Further, the graph indicated as “F implantation” shows the result of Ni silicide formation of the gate electrode GE after performing fluorine implantation under conditions of 5 [keV] and 1 × 10 15 [cm −2 ], and 5 [ The result is that the gate electrode GE was Ni-silicided after fluorine implantation under the conditions of keV] and 6 × 10 14 [cm −2 ], and the graph labeled “Reference” shows the gate without fluorine implantation. Reference values when the electrode GE is Ni-silicided are shown. It can be seen that the sheet resistance value is lower in the N-channel MISFET in which the gate electrode GE is silicided after the fluorine implantation is performed in advance.

なお、Pチャネル型MISFETにおいてはイオン注入が行われないことから、シリサイド化工程直前の洗浄時には、Pチャネル型MISFETの第1サイドウォール絶縁膜SW1の頂部付近のエッチング量は、Nチャネル型MISFETの第1サイドウォール絶縁膜SW1の頂部付近のエッチング量よりも大幅に少なくなる。図11の左側においては、Pチャネル型MISFETの第1サイドウォール絶縁膜SW1の高さの方が、第2サイドウォール絶縁膜SW2の高さよりも大きく、その差をApとして示している。   Since no ion implantation is performed in the P-channel type MISFET, the etching amount near the top of the first sidewall insulating film SW1 of the P-channel type MISFET is equal to that of the N-channel type MISFET during cleaning immediately before the silicidation process. The amount of etching near the top of the first sidewall insulating film SW1 is significantly smaller. On the left side of FIG. 11, the height of the first sidewall insulating film SW1 of the P-channel type MISFET is larger than the height of the second sidewall insulating film SW2, and the difference is shown as Ap.

そして、Pチャネル型MISFETにおいてもNチャネル型MISFETの場合と同様、ゲート絶縁膜GIおよびゲート電極GEの積層構造の側面からの第1サイドウォール絶縁膜SW1の最大距離は、ゲート絶縁膜GIおよびゲート電極GEの積層構造の側面からの第2サイドウォール絶縁膜SW2の最大距離よりも小さいが、Pチャネル型MISFETにおける第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bpは、Nチャネル型MISFETの第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bnに、略等しい。   In the P-channel type MISFET, as in the case of the N-channel type MISFET, the maximum distance of the first sidewall insulating film SW1 from the side surface of the stacked structure of the gate insulating film GI and the gate electrode GE is equal to the gate insulating film GI and the gate. Although it is smaller than the maximum distance of the second sidewall insulating film SW2 from the side surface of the stacked structure of the electrode GE, the maximum distance from the gate side surface of the second sidewall insulating film SW2 in the P-channel MISFET and the first sidewall insulating film The difference Bp between the maximum distance from the gate side surface of SW1 is the maximum distance from the gate side surface of the second sidewall insulating film SW2 of the N-channel MISFET and the maximum distance from the gate side surface of the first sidewall insulating film SW1. It is substantially equal to the difference Bn.

このように、本発明の半導体装置の構造によれば、Nチャネル型MISFETにおいて、第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bnは、第1サイドウォール絶縁膜SW1の高さと第2サイドウォール絶縁膜SW2の高さとの差Anよりも小さい。よって、シリサイド化を行う際に、N型ソース領域およびN型ドレイン領域におけるシリサイド化領域が、チャネル近くにまで入り込みにくく、より確実にMISFETにおけるリーク電流の抑制が図れる半導体装置が実現できる。また、第1サイドウォール絶縁膜SW1の高さは、第2サイドウォール絶縁膜SW2の高さよりも小さい。よって、ゲート電極GEにシリサイド化を行うと、第2サイドウォール絶縁膜SW2の高さよりも低い部分にまで入り込んでゲート電極GEがシリサイド化され、ゲート電極GEの抵抗値をより低減できる。   Thus, according to the structure of the semiconductor device of the present invention, in the N-channel type MISFET, the maximum distance from the gate side surface of the second sidewall insulating film SW2 and the maximum distance from the gate side surface of the first sidewall insulating film SW1. Is smaller than the difference An between the height of the first sidewall insulating film SW1 and the height of the second sidewall insulating film SW2. Therefore, when silicidation is performed, a silicide device in the N-type source region and the N-type drain region is unlikely to enter near the channel, and a semiconductor device that can more reliably suppress leakage current in the MISFET can be realized. The height of the first sidewall insulating film SW1 is smaller than the height of the second sidewall insulating film SW2. Therefore, when silicidation is performed on the gate electrode GE, the gate electrode GE is silicided by entering a portion lower than the height of the second sidewall insulating film SW2, and the resistance value of the gate electrode GE can be further reduced.

また、本発明によれば、Pチャネル型MISFETにおける第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bpは、Nチャネル型MISFETの第2サイドウォール絶縁膜SW2のゲート側面からの最大距離と第1サイドウォール絶縁膜SW1のゲート側面からの最大距離との差Bnに、略等しい。よって、シリサイド化を行う際に、P型ソース領域およびP型ドレイン領域におけるシリサイド化領域も、チャネル近くにまで入り込みにくく、より確実にMISFETにおけるリーク電流の抑制が図れる半導体装置が実現できる。   According to the present invention, the difference Bp between the maximum distance from the gate side surface of the second sidewall insulating film SW2 and the maximum distance from the gate side surface of the first sidewall insulating film SW1 in the P-channel type MISFET is N channel. The difference Bn between the maximum distance from the gate side surface of the second sidewall insulating film SW2 of the type MISFET and the maximum distance from the gate side surface of the first sidewall insulating film SW1 is substantially equal. Therefore, when silicidation is performed, the silicidation regions in the P-type source region and the P-type drain region do not easily enter the vicinity of the channel, and a semiconductor device that can more reliably suppress the leakage current in the MISFET can be realized.

SB 半導体基板、SE ソース領域、DE ドレイン領域、GE ゲート電極、GI ゲート絶縁膜、SW1 第1サイドウォール絶縁膜、SW2 第2サイドウォール絶縁膜、BL1 シリサイド化防止膜、SCs,SCd,SCg シリサイド化領域。   SB semiconductor substrate, SE source region, DE drain region, GE gate electrode, GI gate insulating film, SW1 first sidewall insulating film, SW2 second sidewall insulating film, BL1 silicidation preventing film, SCs, SCd, SCg silicidation region.

Claims (8)

半導体基板に形成されたPチャネル型MISFETとNチャネル型MISFETとからなるCMOS構造を有する半導体装置において、
前記Pチャネル型MISFETは、
前記半導体基板上に形成された第1ゲート絶縁膜と、
前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
前記第1ゲート電極の側面上および前記半導体基板上に形成され、且つ、第1絶縁膜からなる第1サイドウォールと、
前記第1ゲート電極の側面上および前記半導体基板上に前記第1サイドウォールを介して形成され、且つ、第2絶縁膜からなる第2サイドウォールと、
前記半導体基板に形成されたP型ソース領域およびP型ドレイン領域と、
前記P型ソース領域上および前記P型ドレイン領域上に形成された第1シリサイド化領域とを有し、
前記Nチャネル型MISFETは、
前記半導体基板上に形成された第2ゲート絶縁膜と、
前記第2ゲート絶縁膜上に形成された第2ゲート電極と、
前記第2ゲート電極の側面上および前記半導体基板上に形成され、且つ、前記第1絶縁膜からなる第3サイドウォールと、
前記第2ゲート電極の側面上および前記半導体基板上に前記第3サイドウォールを介して形成され、且つ、前記第2絶縁膜からなる第4サイドウォールと、
前記半導体基板に形成されたN型ソース領域およびN型ドレイン領域と、
前記N型ソース領域上および前記N型ドレイン領域上に形成された第2シリサイド化領域とを有し、
前記Nチャネル型MISFETにおいて、前記半導体基板からの前記第3サイドウォールの高さは、前記半導体基板からの前記第4サイドウォールの高さよりも低くなっており、
前記Pチャネル型MISFETにおいて、前記半導体基板からの前記第1サイドウォールの高さは、前記半導体基板からの前記第2サイドウォールの高さよりも高くなっており、
前記Nチャネル型MISFETにおいて、前記第2ゲート電極の側面からの前記第4サイドウォールの最大距離と、前記第2ゲート電極の側面からの前記第3サイドウォールの最大距離との差Bnは、前記半導体基板からの前記第3サイドウォールの高さと、前記半導体基板からの前記第4サイドウォールの高さとの差Anよりも小さくなっており、
前記Pチャネル型MISFETにおいて、前記第1ゲート電極の側面からの前記第2サイドウォールの最大距離と、前記第1ゲート電極の側面からの前記第1サイドウォールの最大距離との差Bpは、前記半導体基板からの前記第1サイドウォールの高さと、前記半導体基板からの前記第2サイドウォールの高さとの差Apよりも小さいことを特徴とする半導体装置。
In a semiconductor device having a CMOS structure composed of a P-channel MISFET and an N-channel MISFET formed on a semiconductor substrate,
The P-channel type MISFET is
A first gate insulating film formed on the semiconductor substrate;
A first gate electrode formed on the first gate insulating film;
A first sidewall formed on a side surface of the first gate electrode and on the semiconductor substrate and made of a first insulating film;
A second sidewall formed on the side surface of the first gate electrode and on the semiconductor substrate via the first sidewall and made of a second insulating film;
A P-type source region and a P-type drain region formed in the semiconductor substrate;
A first silicidation region formed on the P-type source region and the P-type drain region;
The N-channel MISFET is
A second gate insulating film formed on the semiconductor substrate;
A second gate electrode formed on the second gate insulating film;
A third sidewall formed on the side surface of the second gate electrode and on the semiconductor substrate and made of the first insulating film;
A fourth sidewall formed on the side surface of the second gate electrode and on the semiconductor substrate via the third sidewall, and made of the second insulating film;
An N-type source region and an N-type drain region formed in the semiconductor substrate;
A second silicidation region formed on the N-type source region and the N-type drain region,
In the N-channel MISFET, the height of the third sidewall from the semiconductor substrate is lower than the height of the fourth sidewall from the semiconductor substrate,
In the P-channel MISFET, the height of the first sidewall from the semiconductor substrate is higher than the height of the second sidewall from the semiconductor substrate,
In the N-channel MISFET, the difference Bn between the maximum distance of the fourth sidewall from the side surface of the second gate electrode and the maximum distance of the third sidewall from the side surface of the second gate electrode is A difference An between a height of the third sidewall from the semiconductor substrate and a height of the fourth sidewall from the semiconductor substrate is smaller than
In the P-channel MISFET, the difference Bp between the maximum distance of the second sidewall from the side surface of the first gate electrode and the maximum distance of the first sidewall from the side surface of the first gate electrode is A semiconductor device, wherein a difference Ap between a height of the first sidewall from the semiconductor substrate and a height of the second sidewall from the semiconductor substrate is smaller.
半導体基板に形成されたPチャネル型MISFETとNチャネル型MISFETとからなるCMOS構造を有する半導体装置において、
前記Pチャネル型MISFETは、
前記半導体基板上に形成された第1ゲート絶縁膜と、
前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
前記第1ゲート電極の側面上および前記半導体基板上に形成され、且つ、第1絶縁膜からなる第1サイドウォールと、
前記第1ゲート電極の側面上および前記半導体基板上に前記第1サイドウォールを介して形成され、且つ、第2絶縁膜からなる第2サイドウォールと、
前記半導体基板に形成されたP型ソース領域およびP型ドレイン領域と、
前記第1ゲート電極上、前記P型ソース領域上および前記P型ドレイン領域上に形成された第1シリサイド化領域とを有し、
前記Nチャネル型MISFETは、
前記半導体基板上に形成された第2ゲート絶縁膜と、
前記第2ゲート絶縁膜上に形成された第2ゲート電極と、
前記第2ゲート電極の側面上および前記半導体基板上に形成され、且つ、前記第1絶縁膜からなる第3サイドウォールと、
前記第2ゲート電極の側面上および前記半導体基板上に前記第3サイドウォールを介して形成され、且つ、前記第2絶縁膜からなる第4サイドウォールと、
前記半導体基板に形成されたN型ソース領域およびN型ドレイン領域と、
前記第2ゲート電極上、前記N型ソース領域上および前記N型ドレイン領域上に形成された第2シリサイド化領域とを有し、
前記Nチャネル型MISFETにおいて、前記半導体基板からの前記第3サイドウォールの高さは、前記半導体基板からの前記第4サイドウォールの高さよりも低くなっており、
前記Pチャネル型MISFETにおいて、前記半導体基板からの前記第1サイドウォールの高さは、前記半導体基板からの前記第2サイドウォールの高さよりも高くなっており、
前記Nチャネル型MISFETのゲート長方向において前記第4サイドウォールの端部から前記第3サイドウォールが前記第2ゲート電極側に後退している距離Bnは、前記半導体基板からの前記第3サイドウォールの高さと前記半導体基板からの前記第4サイドウォールの高さとの差Anよりも小さくなっており、
前記Pチャネル型MISFETのゲート長方向において前記第2サイドウォールの端部から前記第1サイドウォールが前記第1ゲート電極側に後退している距離Bpは、前記半導体基板からの前記第1サイドウォールの高さと前記半導体基板からの前記第2サイドウォールの高さとの差Anよりも小さくなっていることを特徴とする半導体装置。
In a semiconductor device having a CMOS structure composed of a P-channel MISFET and an N-channel MISFET formed on a semiconductor substrate,
The P-channel type MISFET is
A first gate insulating film formed on the semiconductor substrate;
A first gate electrode formed on the first gate insulating film;
A first sidewall formed on a side surface of the first gate electrode and on the semiconductor substrate and made of a first insulating film;
A second sidewall formed on the side surface of the first gate electrode and on the semiconductor substrate via the first sidewall and made of a second insulating film;
A P-type source region and a P-type drain region formed in the semiconductor substrate;
A first silicidation region formed on the first gate electrode, on the P-type source region and on the P-type drain region;
The N-channel MISFET is
A second gate insulating film formed on the semiconductor substrate;
A second gate electrode formed on the second gate insulating film;
A third sidewall formed on the side surface of the second gate electrode and on the semiconductor substrate and made of the first insulating film;
A fourth sidewall formed on the side surface of the second gate electrode and on the semiconductor substrate via the third sidewall, and made of the second insulating film;
An N-type source region and an N-type drain region formed in the semiconductor substrate;
A second silicidation region formed on the second gate electrode, on the N-type source region and on the N-type drain region;
In the N-channel MISFET, the height of the third sidewall from the semiconductor substrate is lower than the height of the fourth sidewall from the semiconductor substrate,
In the P-channel MISFET, the height of the first sidewall from the semiconductor substrate is higher than the height of the second sidewall from the semiconductor substrate,
The distance Bn in which the third sidewall recedes from the end of the fourth sidewall in the gate length direction of the N-channel MISFET toward the second gate electrode is the third sidewall from the semiconductor substrate. And the difference An between the height of the fourth sidewall from the semiconductor substrate is smaller,
In the gate length direction of the P-channel type MISFET, the distance Bp that the first sidewall recedes from the end of the second sidewall toward the first gate electrode is the first sidewall from the semiconductor substrate. And a difference An between the height of the second side wall from the semiconductor substrate and the height of the second sidewall.
請求項1または請求項2に記載の半導体装置であって、
前記Bnの値は、前記Bpの値に等しいことを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2, wherein
The value of the Bn is wherein a constant correct that the value of the Bp.
請求項1〜3の何れか1項に記載の半導体装置であって、
前記第1絶縁膜は、前記第2絶縁膜と異なる材料からなることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 3,
The semiconductor device, wherein the first insulating film is made of a material different from that of the second insulating film .
請求項1〜4の何れか1項に記載の半導体装置であって、
前記第1絶縁膜は、シリコン酸化膜からなることを特徴とする半導体装置。
A semiconductor device according to any one of claims 1 to 4,
The semiconductor device according to claim 1, wherein the first insulating film is made of a silicon oxide film .
請求項1〜5の何れか1項に記載の半導体装置であって、
前記第絶縁膜は、シリコン窒化膜からなることを特徴とする半導体装置。
A semiconductor device according to any one of claims 1 to 5,
The semiconductor device, wherein the second insulating film is made of a silicon nitride film .
請求項1〜6の何れか1項に記載の半導体装置であって、
前記第1及び第2シリサイド化領域は、それぞれ、ニッケル、チタン、コバルト、パラジウム、白金、エルビウムのうち少なくとも一種類を含む金属膜からなることを特徴とする半導体装置。
A semiconductor device according to any one of claims 1 to 6,
The first and second silicidation regions are each made of a metal film containing at least one of nickel, titanium, cobalt, palladium, platinum, and erbium .
請求項1〜7の何れか1項に記載の半導体装置であって、
前記P型ソース領域および前記P型ドレイン領域は、それぞれ、P型低濃度不純物領域と、前記P型低濃度不純物領域よりも高濃度のP型高濃度不純物領域とを含み、
前記第1シリサイド化領域は前記P型高濃度不純物領域上に形成されており、
前記N型ソース領域および前記N型ドレイン領域は、それぞれ、N型低濃度不純物領域と、前記N型低濃度不純物領域よりも高濃度のN型高濃度不純物領域からなり、
前記第2シリサイド化領域は前記N型高濃度不純物領域上に形成されていることを特徴とする半導体装置。
A semiconductor device according to any one of claims 1 to 7,
The P-type source region and the P-type drain region each include a P-type low-concentration impurity region and a P-type high-concentration impurity region having a higher concentration than the P-type low-concentration impurity region.
The first silicidation region is formed on the P-type high concentration impurity region,
Each of the N-type source region and the N-type drain region includes an N-type low-concentration impurity region and an N-type high-concentration impurity region having a higher concentration than the N-type low-concentration impurity region,
The second silicidation region is a semiconductor device which is characterized that you have been formed on the N-type high concentration impurity region.
JP2011103545A 2011-05-06 2011-05-06 Semiconductor device Active JP5384556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103545A JP5384556B2 (en) 2011-05-06 2011-05-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103545A JP5384556B2 (en) 2011-05-06 2011-05-06 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005291097A Division JP4850470B2 (en) 2005-10-04 2005-10-04 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2011176354A JP2011176354A (en) 2011-09-08
JP5384556B2 true JP5384556B2 (en) 2014-01-08

Family

ID=44688856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103545A Active JP5384556B2 (en) 2011-05-06 2011-05-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5384556B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156502A (en) * 1998-09-21 2000-06-06 Texas Instr Inc <Ti> Integrated circuit and method
JP2004127957A (en) * 2002-09-30 2004-04-22 Fujitsu Ltd Process for fabricating semiconductor device, and semiconductor device
JP2005005536A (en) * 2003-06-12 2005-01-06 Semiconductor Leading Edge Technologies Inc Semiconductor device and method for manufacturing same
US6991979B2 (en) * 2003-09-22 2006-01-31 International Business Machines Corporation Method for avoiding oxide undercut during pre-silicide clean for thin spacer FETs
JP2005294799A (en) * 2004-03-12 2005-10-20 Toshiba Corp Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2011176354A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP4850470B2 (en) Manufacturing method of semiconductor device
JP6275559B2 (en) Semiconductor device and manufacturing method thereof
US7843013B2 (en) Semiconductor device and method for fabricating the same
JP5125036B2 (en) Manufacturing method of semiconductor device
KR100606926B1 (en) A method for fabricating a semiconductor device
US8404533B2 (en) Metal gate transistor and method for fabricating the same
US8980753B2 (en) Metal gate transistor and method for fabricating the same
JP2007042802A (en) Mosfet and its manufacturing method
US7923365B2 (en) Methods of forming field effect transistors having stress-inducing sidewall insulating spacers thereon
KR101757748B1 (en) Fabricating method of semiconductor device
US11107689B2 (en) Method for fabricating semiconductor device
JP2006196646A (en) Semiconductor device and its manufacturing method
JP2002353449A (en) Method of manufacturing semiconductor element
JP2008103644A (en) Semiconductor device and production method thereof
JP2008016475A (en) Semiconductor device
US9202913B2 (en) Method for manufacturing semiconductor structure
US20140175553A1 (en) Mos semiconductor device and method of manufacturing the same
JP5384556B2 (en) Semiconductor device
TWI509702B (en) Metal gate transistor and method for fabricating the same
KR100772898B1 (en) Method of fabricating semiconductor integrated circuit device and semiconductor integrated circuit device by the same
JP2008192683A (en) Semiconductor device and manufacturing method thereof
JP2006114681A (en) Semiconductor device and its manufacturing method
KR100685904B1 (en) Method for fabricating fully silicided gate and semiconductor device having it
JP2006140290A (en) Semiconductor device and its manufacturing method
JP5854104B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350