JP5382925B2 - Demolition method of adjacent multi-layer building and load transmission structure for demolition - Google Patents

Demolition method of adjacent multi-layer building and load transmission structure for demolition Download PDF

Info

Publication number
JP5382925B2
JP5382925B2 JP2009134546A JP2009134546A JP5382925B2 JP 5382925 B2 JP5382925 B2 JP 5382925B2 JP 2009134546 A JP2009134546 A JP 2009134546A JP 2009134546 A JP2009134546 A JP 2009134546A JP 5382925 B2 JP5382925 B2 JP 5382925B2
Authority
JP
Japan
Prior art keywords
jack
building
floor
dismantling
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009134546A
Other languages
Japanese (ja)
Other versions
JP2010281088A (en
Inventor
悦広 尾崎
直之 伊藤
小林  実
敏夫 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2009134546A priority Critical patent/JP5382925B2/en
Publication of JP2010281088A publication Critical patent/JP2010281088A/en
Application granted granted Critical
Publication of JP5382925B2 publication Critical patent/JP5382925B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は隣接多層建築物の解体工法及び解体用荷重伝達構造に関し、とくに隣接する多層建築物の何れか一方を下層部分から取り壊す工法及びその工法で用いる解体用荷重伝達構造に関する。 The present invention relates to a method for demolishing an adjacent multilayer building and a load transmission structure for demolishing, and more particularly to a method for demolishing one of adjacent multilayer buildings from a lower layer portion and a load transmission structure for demolition used in the method.

鉄骨構造(S造)、鉄筋コンクリート構造(RC造)、鉄骨鉄筋コンクリート構造(SRC造)等で構築された多層建築物を解体する工法として、従来から油圧クラッシャー等を用いる圧砕機工法、ダイヤモンドブレード等を用いるカッター(ウォールソー)工法、ワイヤーソーイング工法、アブレイシブウォータージェット工法等が知られている(非特許文献1参照)。これらの工法は何れも、基本的には建設時と逆の順序で鉄骨、鉄筋、コンクリート等の部材(柱材や床梁等)を破砕又は切断して地表まで下ろす作業を、上層階から下層階へ順次繰り返して建築物を解体する方法である。 As a method of dismantling a multi-layered building constructed with steel structure (S structure), reinforced concrete structure (RC structure), steel reinforced concrete structure (SRC structure), etc., a conventional crusher method using a hydraulic crusher, diamond blade, etc. A cutter (wall saw) method, a wire sawing method, an abrasive water jet method, and the like are known (see Non-Patent Document 1). In any of these methods, basically, the work of crushing or cutting the members (columns, floor beams, etc.) such as steel frames, rebars, concrete, etc. in the reverse order of construction and lowering them to the ground surface, from the upper floor to the lower floor It is a method of dismantling the building by repeatedly repeating to the floor.

しかし、多層建築物を上層階から解体する工法は、解体装置(小型の重機等)を先ず建築物の最上階に設置したうえで解体に応じて順次下層階へ移動させる作業が必要があり、上層階から周囲への振動・騒音・飛石・粉塵等の拡散・飛散を防止するために解体工事に先行して建築物の全体を覆うような養生仮設を設ける作業も必要である。このような作業は工期、コストを増加させる要因となっており、従来の解体工法は比較的長い工期が必要とされ、それに応じてコストも嵩むという問題点がある。火薬を用いた逐次爆破によって建築物を崩壊させて解体する工法(ミニブラスティング工法)も開発されているが、この工法は爆破に伴って飛石・粉塵等が周囲に飛散するので、オフィスビルやマンション等が密集する地域での建築物の解体、とくに飛散が広範囲に及ぶような中高層建築物の解体に適用することは困難である。周囲に与える影響を小さく抑えつつ中高層建築物を短い工期で解体できる工法の開発が望まれている。 However, the method of dismantling a multi-layered building from the upper floors requires that the dismantling device (small heavy machinery, etc.) is first installed on the top floor of the building and then moved sequentially to the lower floors according to the dismantling, In order to prevent the diffusion and scattering of vibrations, noise, stepping stones, dust, etc. from the upper floor to the surroundings, it is also necessary to provide a curing temporary construction that covers the entire building prior to the demolition work. Such work is a factor that increases the work period and cost, and the conventional dismantling method requires a relatively long work period, and there is a problem that the cost increases accordingly. A construction method (mini-blasting construction method) has also been developed in which buildings are destroyed by sequential blasting using explosives, but this method also involves stepping stones, dust, etc. scattered around the office building. It is difficult to apply to the dismantling of buildings in areas where condominiums are densely populated, especially the dismantling of high-rise buildings with widespread scattering. Development of a construction method that can dismantle medium- and high-rise buildings in a short construction period while minimizing the impact on the surroundings is desired.

これに対し、例えば特許文献1のように、建築物の周囲にジャッキ装置を介して立設した仮設トラスを建築物と複数箇所で固定したのち、建築物の下端部分を解体する毎に仮設トラスをジャッキダウンすると共にトラスの最下層部分を取り外してジャッキアップするサイクルを反復し、建築物を徐々に降下させながら下層階から解体する工法(以下、ジャッキダウン式解体工法という)が提案されている。また特許文献2のように、鉄骨建屋の鉄骨支柱に組み込まれた最下段の鉄骨梁の下面にジャッキ装置(吊治具)をセットしたのち、鉄骨梁をジャッキで支持しながら鉄骨支柱を所定長さ切断してジャッキダウンすると共に下段から外したジャッキをジャッキアップして上段の鉄骨梁の下面にセットするサイクルを繰り返すことにより、鉄骨建屋を下層階から解体するジャッキダウン式解体工法も提案されている。 On the other hand, for example, as in Patent Document 1, after fixing a temporary truss erected around a building via a jack device at a plurality of locations with the building, the temporary truss is disassembled every time the lower end portion of the building is disassembled. A method of dismantling from the lower floor while repeating the cycle of jacking down and removing the bottom layer of the truss and jacking up, and gradually lowering the building (hereinafter referred to as jackdown dismantling method) has been proposed. . Also, as in Patent Document 2, after setting the jack device (hanging jig) on the lower surface of the lowermost steel beam incorporated in the steel column of the steel building, the steel column is supported for a predetermined length while supporting the steel beam with the jack. A jack-down dismantling method has also been proposed in which the steel building is dismantled from the lower floor by repeating the cycle of cutting and jacking down and jacking up the jack removed from the lower stage and setting it on the lower surface of the upper steel beam. Yes.

ジャッキダウン式解体工法の他の例として、特許文献3は、多層建築物であるビルの下部の複数解体箇所(A点)にそれぞれ装着したジャッキで建築物を支持しつつジャッキで支持しない部分を解体してジャッキダウンするサイクルと、建築物の下部の異なる複数解体箇所(B点)にそれぞれジャッキを付け替えて建築物を支持しつつジャッキで支持しない部分を解体してジャッキダウンするサイクルとを交互に繰り返す工法を開示している。また特許文献4は、所定数の主要支持体を残して建築物の下部を解体すると共に各主要支持体を1つずつ切断して油圧シリンダーをセットしたのち、全ての油圧シリンダーを連動させて建築物をジャッキダウンする工程と、主要支持体を残して建築物の下部を解体すると共に各主要支持体を1つずつ切断して油圧シリンダーを伸長する工程とを交互に繰り返すジャッキダウン式解体工法を開示している。 As another example of the jack-down type demolition method, Patent Document 3 describes a portion that supports a building with a jack that is attached to each of a plurality of demolition locations (point A) of a lower part of a building that is a multi-layered building, but does not support the building with a jack. The cycle of dismantling and jacking down and the cycle of disassembling and jacking down the parts that are not supported by the jack while supporting the building by changing the jacks to different dismantling locations (point B) at the bottom of the building The method of repeating is disclosed. In Patent Document 4, the lower part of the building is dismantled while leaving a predetermined number of main supports, and each main support is cut one by one and hydraulic cylinders are set. A jackdown-type dismantling method that alternately repeats the steps of jacking down an object and disassembling the lower part of the building while leaving the main support, and cutting each main support one by one and extending the hydraulic cylinder. Disclosure.

特開平2−024455号公報JP-A-2-024455 特開平8−270232号公報JP-A-8-270232 特公平7−030637号公報Japanese Patent Publication No. 7-030737 特開2003−049548公報JP 2003-049548 A

社団法人東京建物解体協会「解体工法」2008年5月、インターネット<http://www.kaitai−kyokai.com/dismantling/index.html>Tokyo Building Demolition Association “Demolition Method” May 2008, Internet <http: // www. kaitai-kyokai. com / dismantling / index. html>

特許文献1〜4のようなジャッキダウン式解体工法によれば、多層建築物を地上(1階)の解体装置で順次解体することができ、解体装置を最上階等へ移動させる手間を省くことができる。また、特許文献1の工法では多層建築物と同程度の高さの仮設トラスを構築する必要があるものの、特許文献2〜4の工法では解体作業をジャッキで支持した低層階のみに限定することができ、低層階のみを覆う養生仮設によって飛石・粉塵等の周囲への飛散を有効に防止することができる。従ってジャッキダウン式解体工法によれば、上層階から解体する従来の解体工法に比して、周囲に与える影響を小さく抑えつつ中高層建築物を短い工期で解体することが期待できる。 According to the jackdown-type dismantling methods such as Patent Documents 1 to 4, it is possible to sequentially dismantle multi-layer buildings with the ground (first floor) dismantling device, and save the trouble of moving the dismantling device to the top floor etc. Can do. Moreover, although the construction method of Patent Document 1 requires the construction of a temporary truss as high as a multi-layered building, the construction methods of Patent Documents 2 to 4 limit the dismantling work to only the lower floors supported by jacks. It is possible to effectively prevent scattering of stepping stones, dust, and the like around the low-rise floor by temporary curing. Therefore, according to the jackdown-type dismantling method, it can be expected that medium- and high-rise buildings will be dismantled in a short period of time while keeping the influence on the surroundings small compared to the conventional dismantling method that dismantles from the upper floor.

しかし、特許文献3及び4のように建築物それ自体をジャッキで支持する解体工法は、建築物の上部荷重をジャッキのみで支持する構造となるため、解体中の建築物が構造的に不安定な状態となりやすい問題点がある。このため、例えば特許文献4の工法では、解体中の建築物の最上層部に全方位傾き検出装置を設け、その検出装置の信号により複数の油圧シリンダー(ジャッキ)の動作を連動制御することにより建築物を平衡維持しつつ降下させている。ただし、このようなジャッキの連動制御では解体中の建築物のジャッキに加わる水平荷重(せん断力)を抑制することができず、その水平荷重によってジャッキ上部が座屈し又はジャッキ自体が破損するおそれがある。特許文献4は建築物の傾き傾向を修正するように複数のジャッキの作動を連動制御すると記載しているが、例えば地震時・風負荷時等に建築物1に加わる水平荷重をジャッキの連動制御によって修正することは困難である。建築物の上部荷重をジャッキのみで支持する構造は水平力(せん断力)に対する強度が小さいので、そのような解体中の建築物を地震時・風負荷時にも安定な状態に維持するためには、ジャッキに加わる水平力を小さく抑える必要である。 However, the dismantling method that supports the building itself with a jack as in Patent Documents 3 and 4 has a structure in which the upper load of the building is supported only by the jack, so that the building being demolished is structurally unstable. There is a problem that tends to become a state. For this reason, for example, in the construction method of Patent Document 4, an omnidirectional inclination detection device is provided at the uppermost layer portion of the building being demolished, and the operations of a plurality of hydraulic cylinders (jacks) are interlocked and controlled by signals from the detection device. The building is lowered while maintaining equilibrium. However, such interlocking control of the jack cannot suppress the horizontal load (shearing force) applied to the jack of the building being dismantled, and the horizontal load may cause the upper part of the jack to buckle or damage itself. is there. Patent Document 4 describes that the operation of a plurality of jacks is linked and controlled so as to correct the inclination tendency of the building. For example, the horizontal load applied to the building 1 at the time of an earthquake or wind load is linked to the jack. It is difficult to correct by. Since the structure that supports the upper load of the building only with jacks has low strength against horizontal force (shearing force), in order to maintain such a building under dismantling in a stable state even during earthquakes and wind loads It is necessary to keep the horizontal force applied to the jack small.

そこで本発明の目的は、解体中の建築物を地震時・風負荷時にも構造的に安定な状態に維持できる多層建築物のジャッキダウン式解体工法及び解体用荷重伝達構造を提供することにある。 Accordingly, an object of the present invention is to provide a jack-down type demolition method and a load transmission structure for demolition that can maintain a building under demolition in a structurally stable state even during an earthquake or wind load. .

例えば図3(A)に示すように、多層建築物1の特定下層階Fv(図示例では1階F1)の全ての柱P1〜P4にそれぞれジャッキ10を介装して建築物の上部荷重を支持し、そのジャッキ10が介装された階層(以下、ジャッキ介装階Fvということがある)より上方の各階Fj(j>v)を徐々に降下させて順次解体するジャッキダウン式解体方法では、降下した上方各階Fjの床面(床梁又は床板)の解体時にジャッキ介装階Fvの各柱P1〜P4が解体前より長くなるので変形又は揺動しやすくなり、ジャッキ介装階Fvに加わる水平荷重によってジャッキ介装階Fvの柱P1〜P4が座屈し又はその柱P1〜P4に介装したジャッキ10が破損するおそれがある。上述したように、水平力に抵抗できないジャッキ10(ジャッキ介装階Fv)に加わるせん断力はできる限り小さく抑えることが望ましい。 For example, as shown in FIG. 3 (A), the upper load of the building is applied to all pillars P1 to P4 of the specific lower floor Fv (in the illustrated example, the first floor F1) of the multi-layer building 1 via jacks 10 respectively. In the jack-down type dismantling method in which the floors Fj (j> v) above the level where the jack 10 is supported (hereinafter sometimes referred to as jack intervening floor Fv) are gradually lowered and disassembled sequentially. The pillars P1 to P4 of the jack interposing floor Fv are longer than before the dismantling when disassembling the floor surface (floor beam or floorboard) of the lowered upper floors Fj, so that the pillars P1 to P4 become longer than before dismantling, so that the jack interfacing floor Fv Due to the applied horizontal load, the pillars P1 to P4 of the jack interposing floor Fv may buckle or the jack 10 interposed in the pillars P1 to P4 may be damaged. As described above, it is desirable to keep the shearing force applied to the jack 10 (jack interposing floor Fv) that cannot resist the horizontal force as small as possible.

本発明者は、図3(B)に示すように隣接する多層建築物2a、2bの一方の建築物2aをジャッキダウン式解体方法で解体する場合に、その解体する一方の建築物2a(以下、解体建築物2aということがある)のジャッキ介装階Fvに加わるせん断力(水平荷重)を他方の建築物2b(以下、隣接建築物2bということがある)へ伝達して逃がすことに着目した。同図に示すように、解体建築物2aのジャッキ介装階Fvより上方の柱Pに、ジャッキ10を介装しない隣接建築物2bから複数の荷重伝達梁40を水平に突き出して滑り可能に係合させ、解体建築物2aのジャッキ10の上方各階Fjを荷重伝達梁40と係合させながら徐々に降下させれば、その荷重伝達梁40を介して解体建築物2aのジャッキ上方に加わる水平荷重を隣接建築物2bへ伝達し、更に隣接建築物2bの基礎部Bへ伝達して逃がすことができる。すなわち、解体建築物2aのジャッキ介装階Fvに加わる水平荷重(せん断力)を小さく抑え、解体建築物2aを解体中においても安定な状態に維持することができる。本発明は、この着想に基づく研究開発の結果、完成に至ったものである。 When this inventor disassembles one building 2a of adjacent multi-layered buildings 2a and 2b with a jackdown type dismantling method as shown in FIG. Pay attention to transmitting shear force (horizontal load) applied to the jack intervening floor Fv of the dismantled building 2a) to the other building 2b (hereinafter also referred to as the adjacent building 2b) did. As shown in the figure, a plurality of load transmission beams 40 are protruded horizontally from the adjacent building 2b not including the jack 10 on the pillar P above the jack interposing floor Fv of the dismantled building 2a so as to be slidable. If the upper floor Fj of the jack 10 of the demolished building 2a is gradually lowered while being engaged with the load transmitting beam 40, the horizontal load applied to the upper side of the jack of the demolished building 2a via the load transmitting beam 40. Can be transmitted to the adjacent building 2b, and further transmitted to the base B of the adjacent building 2b to escape. That is, the horizontal load (shearing force) applied to the jack interposing floor Fv of the demolished building 2a can be kept small, and the demolished building 2a can be maintained in a stable state even during the demolishing. The present invention has been completed as a result of research and development based on this idea.

図1及び図8の実施例を参照するに、本発明による隣接多層建築物の解体工法は、隣接する多層建築物2a、2bの何れか一方(図示例では建築物2a)を解体するため、一方の解体建築物2aの特定下層階Fv(例えば1階F1)の各柱Pにそれぞれジャッキ10(図7参照)を介装し、他方の隣接建築物2bのジャッキ上方階Fj(j>v)に一端が結合された複数の荷重伝達梁40(図4参照)の他端をそれぞれ解体建築物2aへ水平に突き出して解体建築物2aのジャッキ上方柱Pに滑り可能且つ水平力伝達可能に係合させ、解体建築物2aの各柱Pのジャッキ直上部を除去してジャッキ10を伸ばす伸長ステップ(図6の流れ図のステップS005)と各柱Pのジャッキ10を同時に縮める収縮ステップ(図6の流れ図のステップS006)とを反復し且つその反復時に降下するジャッキ上方各階Fjの床面3と抵触する荷重伝達梁40を一時的に隣接建築物2bへ引き抜いて降下後の解体建築物2aのジャッキ上方柱Pに滑り可能且つ水平力伝達可能に係合させることにより解体建築物2aのジャッキ上方各階Fjを何れかの荷重伝達梁40に係合させつつ降下させ、解体建築物2aの降下した各階Fjの柱P以外の躯体(床面3や壁面4)をジャッキ介装階Fvで順次解体してなるものである。 Referring to the embodiment of FIG. 1 and FIG. 8, the method for demolishing an adjacent multi-layered building according to the present invention disassembles one of the adjacent multi-layered buildings 2a and 2b (the building 2a in the illustrated example). A jack 10 (see FIG. 7) is interposed in each pillar P of a specific lower floor Fv (for example, the first floor F1) of one demolished building 2a, and the upper floor Fj (j> v) of the jack of the other adjacent building 2b. The other ends of the plurality of load transmission beams 40 (see FIG. 4), one end of which is coupled to each other, are projected horizontally to the dismantled building 2a so as to be slidable and capable of transmitting a horizontal force to the jack upper column P of the dismantled building 2a. The extension step (step S005 in the flowchart of FIG. 6) of extending the jack 10 by removing the jacks directly above the pillars P of the dismantled building 2a and the contraction step of simultaneously contracting the jacks 10 of the pillars P (FIG. 6). Flow diagram steps 006) to repeat a and jack upper column P dismantling building 2a after jack upwards each floor Fj load transmission beams 40 in conflict with the floor surface 3 of the pull out the temporarily adjacent buildings 2b drop drops during that iteration to slidably and horizontal force transmission can engage so lowered while engaged in any of the load transmission beams 40 jack upper floor Fj dismantling building 2a by Rukoto, drop the floor Fj dismantling building 2a A frame (floor surface 3 and wall surface 4) other than the pillar P is sequentially disassembled at the jack interposing floor Fv.

また、図1及び図8の実施例を参照するに、本発明による隣接多層建築物の解体用荷重伝達構造は、隣接する多層建築物2a、2bの何れか一方(図示例では建築物2a)を解体するため、一方の解体建築物2aの特定下層階Fv(例えば1階F1)の各柱Pにそれぞれジャッキ10(図7参照)を介装して設けられ且つ各柱Pのジャッキ直上部を除去してジャッキ10を伸ばす伸長ステップ(図6の流れ図のステップS005)と各柱Pのジャッキ10を同時に縮める収縮ステップ(図6の流れ図のステップS006)との反復により降下するジャッキ上方各階Fj(j>v)の柱P以外の躯体(床面3や壁面4)を順次解体するジャッキ介装階Fv、及び他方の隣接建築物2bのジャッキ上方階Fj(j>v)に一端を結合して設けられ且つ他端をそれぞれ解体建築物2aへ水平に突き出して解体建築物2aのジャッキ上方柱Pに滑り可能且つ水平力伝達可能に係合させる複数の荷重伝達梁40(図4参照)を備え、降下するジャッキ上方各階Fjの床面3と抵触する荷重伝達梁40を一時的に隣接建築物2bへ引き抜いて降下後の解体建築物2aのジャッキ上方柱Pに滑り可能且つ水平力伝達可能に係合させることにより解体建築物2aのジャッキ上方各階Fjを何れかの荷重伝達梁40に係合させつつ降下させてなるものである。 1 and 8, the load transmission structure for dismantling an adjacent multi-layer building according to the present invention is either one of the adjacent multi-layer buildings 2a and 2b (in the illustrated example, the building 2a). Is installed on each pillar P of a specific lower floor Fv (for example, the first floor F1) of one demolished building 2a via jacks 10 (see FIG. 7) and directly above the jacks of each pillar P. Is removed by repeating the extension step (step S005 in the flowchart in FIG. 6) for extending the jack 10 and the contraction step (step S006 in the flowchart in FIG. 6) for simultaneously shrinking the jack 10 of each column P. (J> v) One end is connected to a jack intervening floor Fv that sequentially dismantles the frame (floor surface 3 and wall surface 4) other than the pillar P and a jack upper floor Fj (j> v) of the other adjacent building 2b. Provided One the other end provided with a plurality of load transmission beams 40 which engaged respective dismantled buildings can and horizontal force transmittable engaged sliding the jack above column P dismantling building 2a projecting horizontally into 2a (see FIG. 4), drop The load transmitting beam 40 that is in contact with the floor surface 3 of each floor Fj above the jack to be temporarily pulled out to the adjacent building 2b and slidably engaged with the jack upper column P of the demolished building 2a after being lowered so as to be able to transmit a horizontal force. is allowed is made by lowering while engaged in any of the load transmission beams 40 jack upper floor Fj dismantling building 2a by Rukoto.

隣接する多層建築物2a、2bは、それぞれ独立に構築された建築物2a、2bとすることができるが、例えば図1に示すように、低層部2bに対しセットバックした高層部2aを有し且つ低層部2bの各階層を高層部2aの同じ階層から切り離した高層建築物2a及び低層建築物2bとすることができる。或いは、構造的に分割されてエキスパンションジョイントで接合された多層建築物2a、2bとしてもよい。 The adjacent multi-layer buildings 2a and 2b can be independently constructed buildings 2a and 2b. For example, as shown in FIG. 1, the multi-layer buildings 2a and 2b have a high-rise portion 2a set back with respect to the low-rise portion 2b. And it can be set as the high-rise building 2a and the low-rise building 2b which cut | disconnected each hierarchy of the low-rise part 2b from the same hierarchy of the high-rise part 2a. Or it is good also as the multilayer building 2a, 2b divided | segmented structurally and joined by the expansion joint.

好ましくは図4に示すように、各荷重伝達梁40に、解体する建築物2aのジャッキ上方柱Pを挟み込む平行な梁材41、42の対と、その梁材41、42の対の間に架け渡して建築物2aのジャッキ上方柱Pと間隙Sを介して対向させる係合材43、44の対とを含め、梁材41、42の対と係合材43、44の対とで囲まれた枠内にジャッキ上方柱Pを係合させる。望ましくは図5に示すように、解体する建築物2aのジャッキ上方柱Pと係合材43、44との間隙Sに、ジャッキ上方柱Pの揺動時に間隙Sを塞ぐ間隙閉塞機構50を設ける。 Preferably, as shown in FIG. 4, between each pair of parallel beam members 41 and 42 sandwiching the jack upper column P of the building 2a to be dismantled between each load transmission beam 40 and the pair of beam members 41 and 42. It is surrounded by a pair of beam members 41, 42 and a pair of engagement members 43, 44, including a pair of engagement members 43, 44 that are bridged and face each other via a gap S between the upper pillar P of the building 2a. The jack upper column P is engaged in the frame. Desirably, as shown in FIG. 5, a gap closing mechanism 50 for closing the gap S when the jack upper pillar P swings is provided in the gap S between the jack upper pillar P and the engaging members 43 and 44 of the building 2a to be demolished. .

更に好ましくは、図7、図9及び図10に示すように、解体する建築物2aにおけるジャッキ10の介装時にジャッキ介装階Fvの各柱Pを床面から直上階F(v+1)の床面3の直下まで切断してジャッキを介装すると同時にジャッキ上方部分を所定高さL1の複数ブロック7の積層体で置き換え、解体建築物2aの各階Fjの解体時にジャッキ介装階Fvの各柱Pのジャッキ上方部分を直上階F(v+1)の床面3の直下まで切断して所定高さL1の複数ブロック70の積層体で置き換え、解体建築物2aのジャッキ上方各階Fjの降下時に各柱Pの最下層ブロック70を除去してジャッキ10を伸ばす伸長ステップ(図6の流れ図のステップS005)と各柱Pのジャッキ10を同時に縮める収縮ステップ(図6の流れ図のステップS006)とを反復する。望ましくは、建築物2aのジャッキ介装階Fvの直上階F(v+1)に床面3が各柱Pと切り離された解体作業階Fdを設け、伸長ステップと収縮ステップとの反復により降下した建築物2aの各階Fj(j>v)の柱P以外の躯体を、ジャッキ介装階Fvに代えて解体作業階Fdで順次解体する。 More preferably, as shown in FIGS. 7, 9, and 10, when the jack 10 is installed in the building 2 a to be demolished, the pillars P of the jack interposing floor Fv are placed on the floor F (v + 1) directly above the floor. At the same time, the jacks are cut to just below the floor 3 and the jacks are interposed. At the same time, the upper part of the jacks is replaced with a laminate of a plurality of blocks 7 having a predetermined height L1, and each floor Fj of the demolished building 2a is disassembled. The upper part of the jack of the pillar P is cut to a position directly below the floor 3 of the upper floor F (v + 1) and replaced with a laminated body of a plurality of blocks 70 having a predetermined height L1, and each time when the floor Fj above the jack of the demolished building 2a is lowered. An extension step (step S005 in the flowchart of FIG. 6) for removing the bottom layer block 70 of the pillar P and extending the jack 10 and a contraction step (step S in the flowchart of FIG. 6) for simultaneously shrinking the jack 10 of each pillar P. 06) and is repeated. Desirably, a building Fd (v + 1) immediately above the jack interposing floor Fv of the building 2a is provided with a dismantling work floor Fd in which the floor surface 3 is separated from the pillars P, and the building is lowered by repeating the extension step and the contraction step. The cabinets other than the pillars P of each floor Fj (j> v) of the article 2a are sequentially dismantled on the dismantling work floor Fd instead of the jack interposing floor Fv.

本発明による隣接多層建築物の解体工法及び解体用荷重伝達構造は、隣接する多層建築物2a、2bの一方を解体する場合に、その一方の解体建築物2aの特定下層階Fvの各柱Pにそれぞれジャッキ10を介装し、各柱Pのジャッキ直上部を除去してジャッキ10を伸ばす伸長ステップと各柱Pのジャッキ10を同時に縮める収縮ステップとの反復により降下するジャッキ上方各階Fj(j>v)の柱P以外の躯体(床面3や壁面4)をジャッキ介装階Fvで順次解体すると共に、他方の隣接建築物2bのジャッキ上方階Fj(j>v)に一端が結合された複数の荷重伝達梁40の他端をそれぞれ解体建築物2aへ水平に突き出して解体建築物2aのジャッキ上方柱Pに滑り可能且つ水平力伝達可能に係合させ、降下するジャッキ上方各階Fjの床面3と抵触する荷重伝達梁40を一時的に他方の建築物2bへ引き抜いて降下後の解体建築物2aのジャッキ上方柱Pに滑り可能且つ水平力伝達可能に係合させることにより解体建築物2aのジャッキ上方各階Fjを何れかの荷重伝達梁40に係合させつつ降下させるので、次の効果を奏する。 When disassembling one of the adjacent multilayer buildings 2a and 2b, the dismantling method and the dismantling load transmission structure of the adjacent multilayer building according to the present invention, each pillar P of the specific lower floor Fv of the one dismantled building 2a. The upper floors Fj (j above the jacks descending by repeating the extension step of extending the jack 10 by removing the jacks directly above the pillars P and the contraction step of simultaneously shrinking the jacks 10 of the pillars P. > V) The frame (floor surface 3 and wall surface 4) other than the pillar P is sequentially dismantled at the jack interposing floor Fv, and one end is coupled to the jack upper floor Fj (j> v) of the other adjacent building 2b. each dismantling building 2a can and horizontal force caused transmittable engaged sliding the jack above column P dismantling building 2a projecting horizontally into a plurality of the other end of the load transmission beams 40, drop jacking upper floor Rukoto temporarily other Pull the buildings 2b slidably the jack above column P dismantling building 2a after lowering and horizontal force transmission can engage the load transfer beam 40 to interfere with the floor surface 3 of the j Thus, the lower floor Fj of the dismantled building 2a is lowered while being engaged with any one of the load transmission beams 40, so that the following effects can be obtained.

(イ)各柱Pにジャッキ10を介装した解体建築物2aに加わる地震時・風負荷時等の水平荷重(せん断力)を、荷重伝達梁40によって隣接建築物2bへ伝達して逃がすことができ、解体建築物2aを地震時・風負荷時にも構造的に安定な状態に維持することができる。
(ロ)また、解体建築物2aにおいて柱Pが長柱化しうるジャッキ介装階Fvに加わる水平力を、ジャッキ上方柱Pに係合させた荷重伝達梁40によって小さく抑えることができ、解体建築物2aに十分な耐震・耐風性能を保持させることができる。
(ハ)解体建築物2aのジャッキ上方柱Pと隣接建築物2bに結合した荷重伝達梁40との間の間隙Sに間隙閉塞機構50を介在させ、その間隙Sを建築物2aの揺動に応じて塞ぐことにより、地震時・風負荷時に解体建築物2aを隣接建築物2bと剛結合させて耐震・耐風性能を更に高めることができる。
(ニ)解体する建築物2aのジャッキ介装階Fvの直上階F(v+1)に床3が各柱Pと切り離された解体作業階Fdを設け、降下した各階Fjをジャッキ介装階Fvに代えて解体作業階Fdで順次解体すれば、解体作業階Fdの床3によってジャッキ介装階Fvの柱Pを拘束して揺動等を抑えることができ、建築物2aのジャッキ介装階Fvにおける柱Pの長柱化の影響を避けることができる。
(ホ)また、建築物2aの解体作業階Fdをジャッキ介装階Fvと別階層とすることにより、ジャッキ介装階Fvにおける作業環境の改善を図ることができる。
(B) The horizontal load (shearing force) applied to the demolished building 2a with the jack 10 interposed in each column P during an earthquake or wind load is transmitted to the adjacent building 2b by the load transmission beam 40 and released. The dismantled building 2a can be maintained in a structurally stable state even during an earthquake or wind load.
(B) Further, the horizontal force applied to the jack interposing floor Fv in which the pillar P can be elongated in the demolished building 2a can be suppressed by the load transmission beam 40 engaged with the jack upper pillar P, and the demolished building The object 2a can have sufficient earthquake resistance and wind resistance performance.
(C) A gap closing mechanism 50 is interposed in the gap S between the jack upper column P of the dismantled building 2a and the load transmission beam 40 coupled to the adjacent building 2b, and the gap S is used to swing the building 2a. By closing it accordingly, the demolished building 2a can be rigidly coupled to the adjacent building 2b at the time of an earthquake or wind load to further enhance the earthquake resistance and wind resistance performance.
(D) A dismantling work floor Fd in which the floor 3 is separated from the pillars P is provided on the floor F (v + 1) immediately above the jack interposing floor Fv of the building 2a to be dismantled, and each lowered floor Fj is set to the jack interfacing floor Fv. Instead, if dismantling is performed sequentially on the dismantling work floor Fd, the pillar 3 of the jacking floor Fv can be restrained by the floor 3 of the dismantling work floor Fd, and swinging can be suppressed, and the jacking floor Fv of the building 2a can be suppressed. The influence of making the pillar P into a long pillar can be avoided.
(E) Further, by making the dismantling work floor Fd of the building 2a a different layer from the jack interposing floor Fv, it is possible to improve the work environment in the jack interposing floor Fv.

以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明の解体工法を隣接する多層建築物に適用した実施例の垂直断面図である。 図1の隣接する両建築物の解体作業階(2階)における水平断面図である。 本発明の解体工法による水平力伝達作用を示す説明図である。 本発明の解体工法で用いる荷重伝達梁の一実施例の説明図である。 本発明の解体工法で用いる間隙閉塞機構の一実施例の説明図である。 本発明の解体工法の流れ図の一例である。 本発明の解体工法で用いるジャッキ及びその制御装置の説明図である。 図1の隣接する両建築物の解体作業階(2階)における解体作業の説明図である。 本発明の解体工法で用いるブロック積層体の一例の説明図である。 本発明の解体工法で用いるブロック積層体の他の一例の説明図である。 本発明の解体方法で用いる柱の切断グループの説明図である。 本発明の解体工法で用いる柱の切断グループ化方法の流れ図の一例である。 本発明の解体工法で用いる柱の切断グループ化方法の流れ図の他の一例である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is a vertical sectional view of the Example which applied the dismantling method of this invention to the adjacent multilayer building. It is a horizontal sectional view in the demolition work floor (2nd floor) of both adjacent buildings of FIG. It is explanatory drawing which shows the horizontal force transmission effect | action by the dismantling method of this invention. It is explanatory drawing of one Example of the load transmission beam used with the dismantling method of this invention. It is explanatory drawing of one Example of the gap obstruction | occlusion mechanism used with the dismantling method of this invention. It is an example of the flowchart of the dismantling method of this invention. It is explanatory drawing of the jack used with the dismantling method of this invention, and its control apparatus. It is explanatory drawing of the demolition work in the demolition work floor (2nd floor) of both adjacent buildings of FIG. It is explanatory drawing of an example of the block laminated body used with the dismantling method of this invention. It is explanatory drawing of another example of the block laminated body used with the dismantling method of this invention. It is explanatory drawing of the cutting group of the column used with the dismantling method of this invention. It is an example of the flowchart of the cutting | disconnection grouping method of the column used with the dismantling method of this invention. It is another example of the flowchart of the cutting | disconnection grouping method of the column used with the dismantling method of this invention.

図1、図2及び図4は、本発明の解体工法をセットバック建築物1の解体に適用した実施例を示す。図示例の建築物1は地上20階、地下3階、最上部にPH(エレベータ機械室等のペントハウス)を有し、8階〜20階の高層部2aの外壁面が1階〜7階の低層部2bの外壁面に対して段差状にセットバックした多層建築物であり、図1はその垂直断面図、図2及び図4は水平断面図を示す。図2及び図4の断面図から分かるように、図示例の建築物1は6行9列の54本の柱P11〜P69を有しており、そのうち6行4列の柱P11〜P64は低層部2a及び高層部2aを垂直に貫く長さの柱Pa(以下、解体建築物2aの柱Paということがある)であり、残りの6行5列の柱P15〜P69は低層部2aのみを垂直に貫く長さの柱Pb(以下、隣接建築物2bの柱Pbということがある)となっている。この実施例では、セットバック建築物1の低層部2bの各階層(1階〜7階)を高層部2aの同じ階層から構造的に切り離し、高層建築物2aと低層建築物2bとに分割したうえで、高層建築物2a(8階8F以上の部分)を低層建築物2b(7階以下の部分)と同じ高さになるまで下層階から徐々に解体する。 1, 2 and 4 show an embodiment in which the dismantling method of the present invention is applied to the dismantling of the setback building 1. The building 1 in the illustrated example has 20 floors above ground, 3 floors below ground, and PH (penthouse such as an elevator machine room) at the top, and the outer wall surfaces of the high floor 2a on the 8th to 20th floors are on the 1st to 7th floors. It is a multi-layered building set back in steps with respect to the outer wall surface of the low-rise part 2b. FIG. 1 is a vertical sectional view thereof, and FIGS. 2 and 4 are horizontal sectional views. As can be seen from the cross-sectional views of FIGS. 2 and 4, the building 1 in the illustrated example has 54 columns P11 to P69 of 6 rows and 9 columns, of which the columns P11 to P64 of 6 rows and 4 columns are low-rise. It is a column Pa having a length that penetrates the portion 2a and the high-rise portion 2a vertically (hereinafter, it may be referred to as a column Pa of the dismantled building 2a), and the remaining 6 rows and 5 columns P15 to P69 are only the low-rise portion 2a. The pillar Pb has a length that penetrates vertically (hereinafter may be referred to as the pillar Pb of the adjacent building 2b). In this embodiment, each level (1st to 7th floors) of the low-rise part 2b of the setback building 1 is structurally separated from the same hierarchy of the high-rise part 2a, and divided into a high-rise building 2a and a low-rise building 2b. Then, the high-rise building 2a (8th floor 8F or higher) is gradually dismantled from the lower floor until it becomes the same height as the low-rise building 2b (7th floor or lower).

以下、本発明の解体工法の示す図6の流れ図に沿って、図1のようなセットバック建築物1を高層建築物2aと低層建築物2bとに分割したうえで解体する手順を説明する。ただし、本発明の解体工法はセットバック建築物1の解体への適用に限定されるものではなく、隣接する多層建築物2a、2bの何れか一方を解体する場合に広く適用可能であり、例えばそれぞれ独立に設計・構築されて相互に隣接する多層建築物2a、2bの何れか一方を解体する場合にも図6の流れ図を適用することができる。また、構造的に分割しているがエキスパンションジョイント等の接合具で接合されて隣接する多層建築物2a、2bの何れか一方を解体する場合にも、図6の流れ図に沿って本発明の解体工法を適用することが有効である。更に、以下の説明では低層建築物2bと隣接する高層建築物2aを解体する場合について説明するが、隣接する多層建築物2a、2bは同じ階層であってもよく、逆に高層建築物2aと隣接する低層建築物2bを解体する場合にも図6の流れ図を適用することが可能である。 A procedure for dismantling the setback building 1 as shown in FIG. 1 after dividing it into a high-rise building 2a and a low-rise building 2b will be described below along the flowchart of FIG. However, the dismantling method of the present invention is not limited to the application to the dismantling of the setback building 1, and can be widely applied when disassembling any one of the adjacent multilayer buildings 2a, 2b. The flow chart of FIG. 6 can also be applied to dismantling any one of the multilayer buildings 2a and 2b that are designed and constructed independently and are adjacent to each other. In addition, when disassembling one of the adjacent multi-layer buildings 2a and 2b that are structurally divided but joined by a joint such as an expansion joint, the disassembly of the present invention is performed along the flowchart of FIG. It is effective to apply the construction method. Furthermore, although the following description demonstrates the case where the high-rise building 2a adjacent to the low-rise building 2b is demolished, the adjacent multi-layer building 2a, 2b may be the same hierarchy, and conversely with the high-rise building 2a. It is possible to apply the flowchart of FIG. 6 also when dismantling the adjacent low-rise building 2b.

図6の流れ図では、先ずステップS001において、隣接する多層建築物2a、2bが構造的に結合されている場合に、解体する多層建築物(解体建築物)2aと他方の多層建築物(隣接建築物)2bとを切り離して構造的に分割する。図1の実施例では、セットバック建築物1の高層部2aと低層部2bとの境界(図2及び図4に示す柱Pの4行目と5行目との間の境界線)に沿って、例えば低層部2bの屋上に設置した解体装置8によって矢板等を垂直に打ち込み、水平に連なる各階層の床面(床梁、床板等)3に空隙5を形成することにより、高層建築物(解体建築物)2aと低層建築物(隣接建築物)とを構造的に切り離している。ただし、切り離し方法は図示例に限定されるものでく、例えば多層建築物2a、2bがエキスパンションジョイント等で接合されている場合は、ステップS001において両建築物2a、2bの接合を解除又は除去すればよい。両建築物2a、2bの切り離し部分には、必要に応じて直上階の床(又は屋上)3を支持する強度・耐力の支保部材(例えば柱壁等)32を設置して補強することができる。 In the flowchart of FIG. 6, first, in step S001, when adjacent multi-layer buildings 2a and 2b are structurally coupled, multi-layer building (demolition building) 2a to be dismantled and the other multi-layer building (adjacent building). Object) Separated from 2b and divided structurally. In the embodiment of FIG. 1, along the boundary between the high-rise part 2 a and the low-rise part 2 b of the setback building 1 (the boundary line between the fourth and fifth lines of the pillar P shown in FIGS. 2 and 4). For example, a sheet pile or the like is driven vertically by a dismantling device 8 installed on the roof of the low-rise part 2b, and a gap 5 is formed on the floor surface (floor beam, floor board, etc.) 3 of each level, thereby forming a high-rise building. (Demolition building) 2a and the low-rise building (adjacent building) are structurally separated. However, the separation method is not limited to the illustrated example. For example, when the multi-layered buildings 2a and 2b are joined by an expansion joint or the like, the joining of the two buildings 2a and 2b is released or removed in step S001. That's fine. In the separated part of both buildings 2a and 2b, a supporting member 32 (for example, a column wall) 32 of strength and strength that supports the floor (or rooftop) 3 on the directly upper floor can be installed and reinforced as necessary. .

解体建築物2aと隣接建築物2bとを構造的に切り離したのち、図6のステップS003〜S004において解体建築物2aのジャッキ介装階Fv(図示例では1階1F)の各柱Pa(図2のP11〜P64)にそれぞれジャッキ10を介装するが、その前にステップS001において、図1及び図8(A)に示すように、隣接建築物2bのジャッキ介装階Fvより上方の階Fj(j>v;以下、ジャッキ上方階Fjということがある)に複数の荷重伝達梁40の一端を結合し、その荷重伝達梁40の他端を解体建築物2aへ水平に突き出して解体建築物2aのジャッキ上方の柱Pa(以下、ジャッキ上方柱Paということがある)に滑り可能に係合させる。図示例では、解体建築物2aのジャッキ介装階Fvを1階F1としているので、隣接建築物2bの3階3F、4階4F、5階5Fにそれぞれ荷重伝達梁40を結合しているが、例えばジャッキ介装階Fvを2階F2、3階F3、又は地下階B1〜B3とし、それより上方階Fjの隣接建築物2bと解体建築物2aとの間に荷重伝達梁40を架け渡してもよい。両建築物2a、2bの間に荷重伝達梁40を架け渡す際の障害となる外壁7等は、ステップS001において併せて解体撤去又は取り外すことができる。 After structurally separating the dismantled building 2a and the adjacent building 2b, in steps S003 to S004 in FIG. 6, each pillar Pa (figure 1F in the illustrated example) of the jack-mounted floor Fv (the first floor 1F in the illustrated example) of the dismantled building 2a 2 to P11 to P64), but before that, in step S001, as shown in FIG. 1 and FIG. 8 (A), the floor above the jack interposing floor Fv of the adjacent building 2b. One end of a plurality of load transmission beams 40 is coupled to Fj (j> v; hereinafter may be referred to as jack upper floor Fj), and the other end of the load transmission beams 40 is horizontally projected to the demolition building 2a to be demolished. The object 2a is slidably engaged with a pillar Pa above the jack (hereinafter sometimes referred to as a jack upper pillar Pa). In the illustrated example, since the jack interposing floor Fv of the dismantled building 2a is the first floor F1, the load transmission beam 40 is coupled to the third floor 3F, the fourth floor 4F, and the fifth floor 5F of the adjacent building 2b. For example, the jack interposed floor Fv is the second floor F2, the third floor F3, or the basement floors B1 to B3, and the load transmission beam 40 is bridged between the adjacent building 2b and the demolished building 2a on the upper floor Fj. May be. In step S001, the outer wall 7 or the like that becomes an obstacle when the load transmitting beam 40 is bridged between the two buildings 2a and 2b can be dismantled or removed together.

図4(A)は荷重伝達梁40を架け渡した隣接建築物2b及び解体建築物2aのジャッキ上方階Fj(図示例では3階)の水平断面図を示し、同図(B)はその荷重伝達梁40の拡大図、同図(C)はその荷重伝達梁40の垂直断面図を示す。図示例の荷重伝達梁40は、一対の梁材41、42と、その梁材41、42を平行に隣接建築物2bの柱Pb(図示例ではP55、P56)に結合する結合材45と、その梁材41、42の間に架け渡して解体建築物2aのジャッキ上方柱Pa(図示例ではP52、P53、P54)と所要間隙Sを介して対向させる係合材43、44の対とを有する。例えば、隣接建築物2bの柱Pbを挟んで一対の梁材41、42を水平且つ平行に配置し、その両梁材41、42の一端側に柱Pbを囲むように一対の結合材45を架け渡してボルト等で取り外し可能に結合し、その結合材45を柱Pbに現場溶接したブラケット等46へボルト等で取り外し可能に結合し、両梁材41、42の他端側を解体建築物2aのジャッキ上方柱Paを挟んだ両側へ突出させる。その突出させた両梁材41、42の他端側に、解体建築物2aのジャッキ上方柱Paを所要間隙Sで囲むように一対の係合材43、44を架け渡してボルト等で取り外し可能に結合し、両梁材41、42と両係合材43、44とで囲まれた枠内に間隙Sを介してジャッキ上方柱Paを遊嵌させることにより係合する。 4A shows a horizontal sectional view of the upper floor Fj (the third floor in the illustrated example) of the adjacent building 2b and the dismantled building 2a with the load transmission beam 40 bridged over, and FIG. 4B shows the load. An enlarged view of the transmission beam 40, FIG. 3C shows a vertical sectional view of the load transmission beam 40. The load transmission beam 40 in the illustrated example includes a pair of beam members 41 and 42, and a binding member 45 that couples the beam members 41 and 42 in parallel to the pillar Pb (P55 and P56 in the illustrated example) of the adjacent building 2b. A pair of engaging members 43 and 44 which are spanned between the beam members 41 and 42 and are opposed to each other via the required gap S with a jack upper column Pa (P52, P53 and P54 in the illustrated example) of the demolished building 2a. Have. For example, a pair of beam members 41 and 42 are arranged horizontally and parallel across the pillar Pb of the adjacent building 2b, and a pair of coupling members 45 are disposed so as to surround the pillar Pb on one end side of the both beam members 41 and 42. It is bridged and removably connected with bolts, etc., and the connecting material 45 is removably connected with brackets 46 welded to the pillar Pb with bolts, etc., and the other ends of the beam members 41 and 42 are dismantled building It protrudes to both sides across the jack upper column Pa of 2a. A pair of engaging members 43 and 44 can be bridged to the other end of the projecting beam members 41 and 42 so as to surround the jack upper pillar Pa of the demolished building 2a with the required gap S and removed with bolts or the like. And the jack upper column Pa is engaged by loosely fitting through a gap S in a frame surrounded by both beam members 41 and 42 and both engaging members 43 and 44.

図4に示す荷重伝達梁40は、地震時・風負荷時等に解体建築物2aのジャッキ上方柱Pa(図示例ではP52、P53、又はP54)が水平方向に揺動・変形すると何れかの梁材41、42又は係合材43、44と衝突し、梁材41、42を介して解体建築物2aから隣接建築物2bの柱Pb(図示例ではP55、P56)へ水平力を伝達して基礎部Bへ逃がすことができる。荷重伝達梁40とジャッキ上方柱Paとの間の間隙Sは、地震時・風負荷時等にジャッキ上方柱Paから荷重伝達梁45を介して水平力が直ちに伝達される大きさとすることが望ましい。また、ジャッキ上方柱Paの周囲の間隙Sの大きさが方位によって相違すると、ジャッキ上方柱Paの揺動時に荷重伝達梁40の一箇所に水平荷重が集中して荷重伝達梁40に捩れや損壊を生じさせるおそれがある。そのため、後述するように各間隙Sにそれぞれ弾性変形部材58を配置し、弾性変形部材58でジャッキ上方柱Paの周囲の間隙Sを一定に維持し、梁材41、42と係合材43、44とで囲まれた枠内の中心にジャッキ上方柱Paを芯合わせして荷重伝達梁40の一箇所に水平荷重が集中することを防止することが望ましい。 The load transmission beam 40 shown in FIG. 4 is either when an upper jack column Pa (P52, P53, or P54 in the illustrated example) of the demolished building 2a swings or deforms in the horizontal direction during an earthquake or wind load. Collides with the beam members 41, 42 or the engaging members 43, 44, and transmits the horizontal force from the demolished building 2a to the pillar Pb (P55, P56 in the illustrated example) of the adjacent building 2b via the beam members 41, 42. To the base B. The gap S between the load transmission beam 40 and the jack upper column Pa is preferably set to a size that allows a horizontal force to be immediately transmitted from the jack upper column Pa via the load transmission beam 45 during an earthquake or wind load. . Further, if the size of the gap S around the jack upper column Pa differs depending on the orientation, the horizontal load concentrates on one place of the load transmission beam 40 when the jack upper column Pa swings, and the load transmission beam 40 is twisted or damaged. May be caused. Therefore, as will be described later, an elastic deformation member 58 is disposed in each gap S, and the elastic deformation member 58 maintains the gap S around the jack upper column Pa constant, so that the beam members 41 and 42 and the engagement members 43, It is desirable to prevent the horizontal load from concentrating on one place of the load transmitting beam 40 by centering the jack upper column Pa in the center of the frame surrounded by 44.

図4のように荷重伝達梁40の係合材43、44と解体建築物2aのジャッキ上方柱Paとの間に間隙Sを設けることにより、荷重伝達梁40をジャッキ上方柱Paに滑り可能に係合させることができる。すなわち、常時は荷重伝達梁40を介して水平力の伝達が可能であるが、後述するジャッキ10の収縮ステップ時(図6のステップS006)に両係合材43、44の間でジャッキ上方柱Paを滑らせて降下させることができる。ジャッキ10の収縮ステップ時以外は荷重伝達梁40とジャッキ上方柱Paとを結合してもよく、例えばジャッキ10の収縮時に解除可能な楔(図示せず)を荷重伝達梁40とジャッキ上方柱Paとの間に打ち込んで両者を結合してもよい。なお、本発明で用いる荷重伝達梁40は図示例のように一対の梁材41、42を用いたものに限定されず、地震時・風負荷等に加わる水平荷重の方向を考慮して、例えば図4の荷重伝達梁40から何れかの梁材42又は41を省略し、1本の梁材41又は42に取り付けた係合材43、44をジャッキ上方柱Paと所要間隙Sで対向させてもよい。 As shown in FIG. 4, by providing a gap S between the engaging members 43, 44 of the load transmission beam 40 and the jack upper column Pa of the demolished building 2a, the load transmission beam 40 can slide on the jack upper column Pa. Can be engaged. That is, the horizontal force can be transmitted through the load transmitting beam 40 at all times, but the jack upper column between the engaging members 43 and 44 at the time of the contraction step of the jack 10 described later (step S006 in FIG. 6). Pa can be slid down. The load transmitting beam 40 and the jack upper column Pa may be coupled except when the jack 10 is contracted. For example, a wedge (not shown) that can be released when the jack 10 is contracted is connected to the load transmitting beam 40 and the jack upper column Pa. The two may be combined by driving between them. In addition, the load transmission beam 40 used in the present invention is not limited to the one using the pair of beam members 41 and 42 as in the illustrated example, and in consideration of the direction of the horizontal load applied to the wind load or the like during an earthquake, for example, One of the beam members 42 or 41 is omitted from the load transmitting beam 40 in FIG. 4, and the engaging members 43 and 44 attached to one beam member 41 or 42 are opposed to the jack upper column Pa with the required gap S. Also good.

なお、解体建築物2aと隣接建築物2bとの間に架け渡す複数の荷重伝達梁40は、後述するジャッキ10の収縮ステップ時(図6のステップS006)に解体建築物2aのジャッキ上方床3(床梁や床板)の降下の障害とならないように、必要に応じて梁材41、42から結合材45及び係合材43、44を取り外して一時的に隣接建築物2bへ引き抜く必要がある(図4(A)の斜線で表した荷重伝達梁及び図8(B)参照)。そのため、全ての荷重伝達梁40を同時期に引き抜くと解体建築物2aから隣接建築物2bへの水平力を伝達できなくなるので、各荷重伝達梁40の引き抜く時期をそれぞれ相違させることが望ましい。図1の実施例では、複数の荷重伝達梁40をそれぞれ異なる床高さh1、h2、h3で隣接建築物2bに結合し、各荷重伝達梁40とジャッキ上方床3との間隔を相違させることにより、荷重伝達梁40毎の引き抜く時期が重ならないようにしている。図示例では複数の荷重伝達梁40をそれぞれ異なる階層に結合しているが、隣接建築物2bの同じ階層に複数の荷重伝達梁40を異なる床高さh1、h2、h3で結合してもよい。 The plurality of load transmission beams 40 spanned between the dismantled building 2a and the adjacent building 2b are the upper floor 3 of the jack of the dismantled building 2a at the time of the contraction step of the jack 10 described later (step S006 in FIG. 6). It is necessary to remove the coupling material 45 and the engagement materials 43 and 44 from the beam materials 41 and 42 and temporarily pull them out to the adjacent building 2b as necessary so as not to obstruct the descent of the floor beams and floorboards. (Refer to the load transmission beam represented by the oblique lines in FIG. 4A and FIG. 8B). Therefore, if all the load transmission beams 40 are pulled out at the same time, it becomes impossible to transmit the horizontal force from the demolished building 2a to the adjacent building 2b. In the embodiment of FIG. 1, a plurality of load transmission beams 40 are coupled to the adjacent building 2b at different floor heights h1, h2, and h3, and the intervals between the load transmission beams 40 and the jack upper floor 3 are made different. Thus, the time for pulling out each load transmitting beam 40 does not overlap. In the illustrated example, the plurality of load transmission beams 40 are coupled to different levels, but the plurality of load transmission beams 40 may be coupled to the same level of the adjacent building 2b at different floor heights h1, h2, and h3. .

好ましくは、図5に示すように、図4の荷重伝達梁40の係合材43、44とジャッキ上方柱Paとの間隙Sに、ジャッキ上方柱Paの水平方向の揺動に応じて間隙Sを塞ぐ間隙閉塞機構50を設ける。図5(A)及び同図(B)は間隙Sに配置する間隙閉塞機構50の一例の頂面図及び正面図を示し、同図(C)はその線C−Cにおける断面図を示す。図示例の間隙閉塞機構50は、荷重伝達梁40とジャッキ上方柱Paとの対向間隙Sを塞ぐ楔材51と、その楔材51を荷重伝達梁40の係合材43、44に支持して間隙Sの上方に落下可能に保持する保持装置52と、ジャッキ上方柱Paの揺動を検知する感震器64(同図(F)参照)の検知信号に応じて保持装置52による楔材51の保持を解除する解除装置55とを有している。図示例の保持装置52は、同図(C)に示すように、荷重伝達梁40の係合材43、44上に鉛直に立ち上げた鉛直部材52aと、その鉛直部材52aの頂端に係合材43、44と平行に配置した中空水平部材52bとを有し、その水平部材52bの中空部内に設けたピン56に係止した吊り下げ索(チェーン等)53に楔材51を吊り下げて間隙Sの上方に保持している。なお、同図(C)から分かるように、図示例の荷重伝達梁40は係合材43、44を中空筒状材としている。 Preferably, as shown in FIG. 5, the gap S between the engagement members 43 and 44 of the load transmission beam 40 and the jack upper column Pa in FIG. 4 corresponds to the gap S according to the horizontal swing of the jack upper column Pa. A gap closing mechanism 50 is provided to close the gap. 5A and 5B show a top view and a front view of an example of the gap closing mechanism 50 disposed in the gap S, and FIG. 5C shows a cross-sectional view along the line CC. The gap closing mechanism 50 in the illustrated example supports a wedge member 51 that closes the opposing gap S between the load transmission beam 40 and the jack upper column Pa, and supports the wedge member 51 on the engagement members 43 and 44 of the load transmission beam 40. A wedge device 51 by the holding device 52 according to a detection signal of a holding device 52 that holds the gap S so as to be dropped and a seismic device 64 that detects the swing of the jack upper column Pa (see FIG. 5F). And a release device 55 for releasing the holding. As shown in FIG. 2C, the holding device 52 in the illustrated example is engaged with a vertical member 52a raised vertically on the engaging members 43 and 44 of the load transmitting beam 40 and the top end of the vertical member 52a. The wedge member 51 is suspended from a suspension cord (chain or the like) 53 that has a hollow horizontal member 52b arranged in parallel with the members 43 and 44, and is locked to a pin 56 provided in the hollow portion of the horizontal member 52b. It is held above the gap S. As can be seen from FIG. 5C, the load transmitting beam 40 in the illustrated example uses the engaging members 43 and 44 as hollow cylindrical members.

図5(F)は、解除装置55による楔材51の保持解除システムの一例を示す。通常時は、同図に実線で示すように解除装置55のピン56と保持部材52bの中空部内に配置されたリンク機構57とを介して吊り下げ索53を係止することにより、同図(C)に示すように間隙Sと離れた位置に楔材51を保持し、荷重伝達梁40に対してジャッキ上方柱Paを滑り可能とする。解除装置55が感震器64の検知信号(例えば地震検出信号)を入力すると、ソレノイド等が駆動されて係止ピン56が移動することにより、リンク機構57から係止ピン56が外れてリンク機構57の動作によって吊り下げ索53が解放され、同図(D)に示すように楔材51が自重で落下して間隙Sを塞ぎ、荷重伝達梁40の係合材43、44とジャッキ上方柱Paとを剛結合する。図5(F)のシステムは、非常停止装置63を介して感震器64を複数の間隙閉塞機構50の保持装置52及び解除装置55と接続し、感震器64の検知信号に応じて複数(例えば同図(A)の2個)の間隙閉塞機構50の解除装置55を同時に駆動することができる。また、非常停止装置63に感震器64と共に早期地震警報受信機65又は手動スイッチ66を接続し、早期地震警報受信機65の受信信号(早期地震警報信号)又は手動スイッチ66の押下信号を解除装置55に入力し、早期地震警報信号又は手動スイッチ信号に応じて保持装置52による楔材51の保持を解除して荷重伝達梁40とジャッキ上方柱Paとを固定することもできる。 FIG. 5F shows an example of a holding release system for the wedge material 51 by the release device 55. In the normal state, as shown by the solid line in FIG. 8, the suspension cable 53 is locked via the pin 56 of the release device 55 and the link mechanism 57 disposed in the hollow portion of the holding member 52b. As shown in C), the wedge material 51 is held at a position away from the gap S, and the jack upper column Pa is slidable with respect to the load transmitting beam 40. When the release device 55 inputs a detection signal (for example, an earthquake detection signal) from the seismic device 64, the locking pin 56 is released from the link mechanism 57 by driving the solenoid or the like and moving the locking pin 56. The suspension cable 53 is released by the operation of 57, and the wedge material 51 falls by its own weight and closes the gap S as shown in FIG. 4D, and the engagement materials 43 and 44 of the load transmission beam 40 and the jack upper column Rigidly connects with Pa. In the system of FIG. 5F, the seismic device 64 is connected to the holding device 52 and the release device 55 of the plurality of gap closing mechanisms 50 via the emergency stop device 63, and a plurality of the seismic devices 64 are connected according to the detection signal of the seismic device 64. The release devices 55 of the gap closing mechanism 50 (for example, two in FIG. 5A) can be driven simultaneously. In addition, the early earthquake warning receiver 65 or the manual switch 66 is connected to the emergency stop device 63 together with the seismic device 64, and the reception signal (early earthquake warning signal) of the early earthquake warning receiver 65 or the pressing signal of the manual switch 66 is released. It is also possible to input to the device 55 and release the holding of the wedge material 51 by the holding device 52 in accordance with the early earthquake warning signal or the manual switch signal, thereby fixing the load transmitting beam 40 and the jack upper column Pa.

また図5の間隙閉塞機構50は、楔材51を断面テーパー状とし、その楔材51と対向する荷重伝達梁40の係合材43、44に嵌合板54を取り付けることにより、係合材43、44とジャッキ上方柱Paとの間隙Sを楔材51の嵌合可能なテーパー形状としている。同図(D)において、間隙Sに一旦嵌合した楔材51が地震の水平力等により抜け出さないように、楔材51と嵌合板54との間の摩擦係数(又は摩擦角)を楔材51の断面テーパー角より大きくし、間隙Sに嵌合した楔材51にセルフロック機能を生じさせることが望ましい。また、一旦間隙Sに嵌合した楔材51は、例えば係止ピン56を復帰させて吊り下げ索53を手動で巻き上げることにより同図(C)の吊り下げ位置に戻すことができるが、例えば保持装置52に自動巻き上げ機構を設けて吊り下げ位置に復帰させることも可能である。 Further, the gap closing mechanism 50 of FIG. 5 has a wedge member 51 having a tapered cross section, and a fitting plate 54 is attached to the engagement members 43, 44 of the load transmitting beam 40 facing the wedge member 51, thereby , 44 and the jack upper column Pa are tapered so that the wedge material 51 can be fitted. In FIG. 4D, the friction coefficient (or friction angle) between the wedge material 51 and the fitting plate 54 is defined as the wedge material so that the wedge material 51 once fitted in the gap S does not come off due to an earthquake horizontal force or the like. It is desirable to make the wedge material 51 fitted in the gap S to have a self-locking function by making it larger than the sectional taper angle of 51. Further, the wedge material 51 once fitted in the gap S can be returned to the hanging position shown in FIG. 5C by, for example, returning the locking pin 56 and manually winding the hanging rope 53. It is also possible to provide the holding device 52 with an automatic winding mechanism and return it to the suspended position.

更に図示例の間隙閉塞機構50は、図5(E)の断面図に示すように中空筒状の係合材43、44の内部に弾性変形部材58を保持しており、その弾性変形部材58で係合材43、44とジャッキ上方柱Paとの間隙Sを一定に維持している。図示例の弾性変形部材58は、係合材43、44の中空部内の中敷板62上に荷重伝達梁40の梁材41、42と平行に配置され、ジャッキ上方柱Paの揺動に抗して間隙Sを維持するに十分な降伏強さ及び弾性定数(バネ定数)を有している。弾性変形部材58の一端を係合材43、44に保持すると共に他端に例えばナイロン製の摺動材59が結合し、その他端の摺動材59を係合材43、44の中空部から間隙Sへ突出させてジャッキ上方柱Paに当接させることにより、間隙Sを維持しつつジャッキ上方柱Paを荷重伝達梁40に対して滑り移動可能とする。間隙Sに設置誤差等が生じた場合は、係合材43、44の頂面に設けた開口61から弾性変形部材58の一端側に隙間調整プレート60を差し込むことが可能であり、隙間調整プレート60の厚さ(枚数)によって他端に結合された摺動材59の突出量を調整できる。ジャッキ上方柱Paの両側の係合材43、44にそれぞれ弾性変形部材58を配置することにより、両係合材43、44の間におけるジャッキ上方柱Paの横ずれ等を防止し、荷重伝達梁40に対してジャッキ上方柱Paを鉛直方向に精度よく昇降させることができる。 Further, the gap closing mechanism 50 in the illustrated example holds the elastic deformation member 58 inside the hollow cylindrical engagement members 43 and 44 as shown in the sectional view of FIG. Thus, the gap S between the engaging members 43 and 44 and the jack upper column Pa is kept constant. The elastic deformation member 58 in the illustrated example is disposed on the insole plate 62 in the hollow portion of the engaging members 43 and 44 in parallel with the beam members 41 and 42 of the load transmitting beam 40 and resists the swinging of the jack upper column Pa. Therefore, it has sufficient yield strength and elastic constant (spring constant) to maintain the gap S. One end of the elastic deformation member 58 is held by the engaging members 43 and 44, and a sliding member 59 made of nylon, for example, is coupled to the other end, and the sliding member 59 at the other end is connected from the hollow portion of the engaging members 43 and 44. By projecting into the gap S and coming into contact with the jack upper column Pa, the jack upper column Pa can be slid relative to the load transmitting beam 40 while maintaining the gap S. When an installation error or the like occurs in the gap S, the gap adjusting plate 60 can be inserted into one end side of the elastic deformation member 58 from the opening 61 provided on the top surfaces of the engaging members 43 and 44. The protrusion amount of the sliding member 59 coupled to the other end can be adjusted by the thickness (number of sheets) of 60. By disposing the elastically deformable members 58 on the engaging members 43 and 44 on both sides of the jack upper column Pa, the lateral displacement of the jack upper column Pa between the both engaging members 43 and 44 can be prevented, and the load transmitting beam 40 can be prevented. On the other hand, the jack upper column Pa can be raised and lowered with high accuracy in the vertical direction.

図6の流れ図のステップS002は、ステップS001で解体建築物2aと隣接建築物2bとの間に荷重伝達梁40を架け渡したのち、図7(A)に示すような柱刳り貫き装置31によって解体建築物2aのジャッキ介装階Fvの直上階F(v+1)(例えば2階)の床3と各柱Paとを切り離すことにより、その直上階F(v+1)に解体作業階Fdを設ける処理を示す。例えば図1に示すように、隣接建築物2bの解体作業階Fd上に可動ベースマシーン(例えばバックホー)等の解体装置9を配置し、同図の矢印に示すように解体建築物2aの降下した各階Fjの解体作業時(ステップS008)に隣接建築物2bから解体建築物2aの解体作業階Fdへ解体装置9を乗り入れて降下した各階Fjを解体する。ただし、ステップS002は本発明の解体工法に必須のものではなく、解体装置9をジャッキ介装階Fv(例えば1階)に配置し、ステップS008において解体建築物2aの降下した各階Fjをジャッキ介装階Fvで解体することも可能である。 Step S002 in the flowchart of FIG. 6 is performed by a pillar drilling device 31 as shown in FIG. The process of providing the demolition work floor Fd on the immediately upper floor F (v + 1) by separating the floor 3 and the pillars Pa of the floor F (v + 1) (for example, the second floor) directly above the jack interposing floor Fv of the demolition building 2a Indicates. For example, as shown in FIG. 1, a dismantling device 9 such as a movable base machine (for example, a backhoe) is disposed on the dismantling work floor Fd of the adjacent building 2b, and the dismantling building 2a descends as shown by an arrow in the figure. At the time of dismantling work of each floor Fj (step S008), the dismantling apparatus 9 is put into the dismantling work floor Fd of the dismantling building 2a from the adjacent building 2b, and each floor Fj lowered is dismantled. However, step S002 is not essential for the dismantling method of the present invention, the dismantling device 9 is arranged on the jack interposing floor Fv (for example, the first floor), and each floor Fj where the dismantling building 2a is lowered in step S008 is jacked. It is also possible to dismantle with the floor Fv.

図示例のようにジャッキ介装階Fvではなくその直上階F(v+1)を解体作業階Fdとすることの利点を、図3(C)を参照して説明する。同図(B)のように荷重伝達梁40を設けることにより、上述したように地震時・風負荷時等に解体建築物2aに加わる水平力を小さく抑えて解体作業時の解体建築物2aの構造的な安定性を高めることができる。ただし、例えば降下した各階Fjをジャッキ介装階Fvで解体する際に柱Pに大きな水平荷重(せん断力)が加わる可能性があり、解体時に長柱化するジャッキ介装階Fvの柱Pが座屈し又は柱Pに介装したジャッキ10が破損するおそれがある。図3(C)に示すように、解体建築物2aのジャッキ介装階Fvの直上階F(v+1)の床3を各柱Pと切り離し、その直上階F(v+1)を解体作業階Fdとすれば、解体作業階Fdの床3によって解体建築物2aの各ジャッキ上方柱Pを拘束し、ジャッキ介装階Fvにおける柱Pの長柱化の影響を避けることができる。また、地震時・風負荷時又は解体作業時等に解体作業階Fdに加わる水平力(せん断力)を、解体作業階Fdの床3からジャッキ介装階Fvの壁4(又は後述の支保部材32)を介してジャッキ下方(基礎部B等)へ伝達して逃がすことができ、ジャッキ介装階Fv(ジャッキ10と柱Pとの接合部)に加わる水平力を小さく抑えて解体建築物2aの構造力学的な安定性を高めることも期待できる。更に、解体作業階Fdをジャッキ介装階Fvと別階層とすることで、ジャッキ介装階Fvの作業環境の改善を図ることができる。 The advantage of using the floor F (v + 1) directly above the jack intervening floor Fv as in the illustrated example as the dismantling work floor Fd will be described with reference to FIG. By providing the load transmitting beam 40 as shown in FIG. 5B, the horizontal force applied to the demolished building 2a during earthquakes and wind loads is kept small as described above, and the demolished building 2a at the time of the demolishing work is reduced. Structural stability can be increased. However, for example, there is a possibility that a large horizontal load (shearing force) is applied to the pillar P when disassembling each lowered floor Fj at the jack interposing floor Fv. There is a possibility that the jack 10 buckled or the pillar P interposed may be damaged. As shown in FIG. 3 (C), the floor 3 of the upper floor F (v + 1) of the jack interposing floor Fv of the demolition building 2a is separated from each pillar P, and the upper floor F (v + 1) is separated from the demolition work floor Fd. If it does so, each jack upper pillar P of the demolition building 2a can be restrained by the floor 3 of the demolition work floor Fd, and the influence of making the pillar P long in the jack interposing floor Fv can be avoided. Further, the horizontal force (shearing force) applied to the demolition work floor Fd at the time of an earthquake, wind load, or demolition work is transferred from the floor 3 of the demolition work floor Fd to the wall 4 (or a support member described later) of the jack interposing floor Fv. 32) can be transmitted to the lower part of the jack (base B, etc.) via 32) and the horizontal force applied to the jack interposing floor Fv (joint part of the jack 10 and the pillar P) can be suppressed to a small size, and the demolished building 2a It can also be expected to improve the structural mechanical stability. Furthermore, the work environment of the jack interposition floor Fv can be improved by making the dismantling work floor Fd different from the jack interposition floor Fv.

図6のステップS002では、例えばダイヤモンドブレード又はワイヤーソー(ダイヤモンド切刃をワイヤーに巻きつけたもの)等の柱刳り貫き装置31によって、解体作業階Fdの床3(床板や床梁)と高層物の各柱Paとを切り離すことができる。解体作業階Fdの床3は、各柱Paと切り離した場合でも下方のジャッキ介装階Fvの既存の壁4等によって落下しないように支持することができる。ただし、図示例のように大重量の解体装置9を解体作業階Fdへ乗り入れる場合は、必要に応じて、図1に示すようにジャッキ介装階Fvに解体作業階Fdの床3及び/又は解体装置9を支持する強度・耐力の支保部材(例えば柱壁等)32を設けてもよい。 In step S002 of FIG. 6, for example, a floor 3 (floor board or floor beam) and a high-rise object on the dismantling work floor Fd by a pillar punching device 31 such as a diamond blade or a wire saw (a diamond cutting blade wound around a wire). Each pillar Pa can be separated. Even when the floor 3 of the dismantling work floor Fd is separated from the pillars Pa, the floor 3 can be supported so as not to fall by the existing wall 4 or the like of the lower jack interposing floor Fv. However, when the heavy-weight dismantling device 9 enters the dismantling work floor Fd as in the illustrated example, the floor 3 of the dismantling work floor Fd and / or the jack interposing floor Fv as shown in FIG. A strength / strength supporting member 32 (for example, a column wall) 32 that supports the dismantling apparatus 9 may be provided.

好ましくは、図7に示すように、解体作業階Fdの床3と柱Paとを切り離した隙間dに、柱Paと床3とを解除可能に連結する拘束器34を設ける。図7(D)の実施例では、解体作業階Fdの床3上の各柱Paの周囲に押しボルト34付きの柱ガイド33を固定し、その押しボルト式拘束器34により床3と各柱Paとを拘束し、後述するジャッキ10の収縮ステップ時(図6のステップS006)には押しボルト34を各柱Paから離して各柱Paを床3に対して移動可能としている。押しボルト式拘束器34に代えて、床3上の各柱Paの4方向周囲の間隙dにそれぞれ抜き取り可能な楔式拘束器34を打ち込み、その楔型拘束器34で解体作業階Fdの床3と各柱Paとを拘束すると共に、ジャッキ10の収縮ステップ時には楔式拘束器34を抜き取ることで各柱Paを床3に対して移動可能としてもよい。また、解体作業階Fdの床3と柱Paとの隙間dが柱Paを十分拘束できる程度の幅であれば拘束器34を省略してもよい。 Preferably, as shown in FIG. 7, a restraint 34 for releasably connecting the pillar Pa and the floor 3 is provided in a gap d obtained by separating the floor 3 and the pillar Pa of the dismantling work floor Fd. In the embodiment of FIG. 7D, a column guide 33 with a push bolt 34 is fixed around each column Pa on the floor 3 of the dismantling work floor Fd, and the floor 3 and each column are fixed by the push bolt type restraint 34. Pa is constrained, and at the time of a contraction step of the jack 10 to be described later (step S006 in FIG. 6), the push bolts 34 are separated from the pillars Pa so that the pillars Pa can be moved with respect to the floor 3. Instead of the push bolt type restraint 34, a wedge type restraint 34 that can be extracted is driven into the gaps d around the four directions of the pillars Pa on the floor 3, and the floor of the dismantling work floor Fd by the wedge type restraint 34. 3 and the respective pillars Pa, and at the time of the contraction step of the jack 10, each wedge Pa may be movable with respect to the floor 3 by extracting the wedge-shaped restrainer 34. Further, the restraint 34 may be omitted if the gap d between the floor 3 of the dismantling work floor Fd and the pillar Pa is wide enough to restrain the pillar Pa.

図6のステップS003〜S004は、図7(A)に示すように解体建築物2aのジャッキ介装階Fv(図示例では1階1F)において、上部荷重を負担する全ての柱Pa(図2のP11〜P64)をそれぞれ切断装置30で初期長さL0だけ切断し、同図(B)に示すように各柱Paの初期長さL0の切断部分にそれぞれジャッキ10を介装する処理を示す。解体建築物2aには上部荷重を負担しない二次部材の柱が存在している場合もあるが、そのような二次的な柱は本発明において柱以外の躯体と考えることができ、ステップS001又はステップS002において予め解体撤去しておくことができる。 Steps S003 to S004 in FIG. 6 include all the pillars Pa (FIG. 2) that bear the upper load on the jack interposing floor Fv (the first floor 1F in the illustrated example) of the dismantled building 2a as shown in FIG. P11 to P64) are cut by the cutting device 30 by the initial length L0, and the jacks 10 are respectively inserted in the cut portions of the initial length L0 of the pillars Pa as shown in FIG. . There may be a column of secondary members that do not bear the upper load in the demolished building 2a, but such a secondary column can be considered as a frame other than a column in the present invention, and step S001. Or it can dismantle and remove beforehand in step S002.

ジャッキ介装ステップS004では、例えば解体建築物2aのジャッキ介装階Fvの各柱Paを1本ずつ吊りし切りにより切断してジャッキ10を介装する。柱Paを1本ずつ吊るし切りすれば、切断する柱Paの支持荷重を他の柱Paで負担して支持することができ、解体中の解体建築物2aを構造的に安定な状態に維持できる。また、同時に切断可能な複数本の柱Paを纏めて切断し、それらの柱Paにジャッキ10を同時に介装してもよい。図6の流れ図では、ステップS003においてジャッキ介装階Fvの各柱Pa(図2のP11〜P64)を同時に切断可能な複数本の柱Paを集めた切断グループR1〜Rnに分け、ステップS004において切断グループR1〜Rn毎にジャッキ介装階Fvの柱Paを纏めて同時に吊るし切りにより切断してジャッキ10を介装している。切断グループR1〜Rn毎にグループ内の柱Paを同時に切断してジャッキ10を介装することにより、ジャッキ介装ステップを迅速に進めて解体作業工期の短縮を図ることができる。ジャッキ介装階Fvの各柱Paを切断グループR1〜Rnに分ける方法の詳細については後述する(実施例1参照)。 In the jack insertion step S004, for example, the jacks 10 are interposed by suspending and cutting each pillar Pa of the jack insertion floor Fv of the demolished building 2a one by one. If the pillars Pa are suspended and cut one by one, the supporting load of the pillars Pa to be cut can be borne and supported by the other pillars Pa, and the demolished building 2a being dismantled can be maintained in a structurally stable state. . Alternatively, a plurality of pillars Pa that can be cut simultaneously may be cut together, and the jacks 10 may be interposed simultaneously in the pillars Pa. In the flowchart of FIG. 6, in step S003, each pillar Pa (P11 to P64 in FIG. 2) of the jack interposing floor Fv is divided into cutting groups R1 to Rn in which a plurality of pillars Pa that can be cut simultaneously are collected, and in step S004 For each cutting group R1 to Rn, the pillars Pa of the jacking floor Fv are gathered and simultaneously suspended and cut by cutting and the jack 10 is interposed. By simultaneously cutting the pillars Pa in the group for each of the cutting groups R1 to Rn and interposing the jack 10, the jack interposing step can be rapidly advanced to shorten the dismantling work period. The details of the method of dividing each pillar Pa of the jack interposing floor Fv into the cutting groups R1 to Rn will be described later (see Example 1).

図7(B)に示すジャッキ10は、ジャッキ介装階Fvの床3又は解体建築物2aの基礎部Bにアンカーボルト11aで固定されたアンカープレート11上に設置され、ラム(又はピストン)12と上昇距離センサ14と圧力変換器18とを有している。その圧力変換器18は、油圧供給ケーブル29b及び油圧中継装置27を介して油圧ポンプユニット26に接続されると共に、油圧制御ケーブル28cと制御中継装置25と光ファイバーケーブル28aとを介してジャッキ制御装置20に接続されている。同図(E)に示すジャッキ制御装置20は、光ファイバーケーブル28aを介して直列に接続された複数の制御中継装置25を有しており、その制御中継装置25の各々をジャッキ介装階Fvの各柱Paに介装したジャッキ10と接続することにより、解体建築物2aのジャッキ介装階Fvの全ての柱Paに介装したジャッキ10の伸縮を同時に制御することができる。 A jack 10 shown in FIG. 7B is installed on an anchor plate 11 fixed with anchor bolts 11a to the floor 3 of the jack interposing floor Fv or the foundation B of the demolished building 2a, and the ram (or piston) 12 is installed. And a lift distance sensor 14 and a pressure transducer 18. The pressure converter 18 is connected to the hydraulic pump unit 26 via a hydraulic pressure supply cable 29b and a hydraulic relay device 27, and the jack control device 20 via a hydraulic control cable 28c, a control relay device 25, and an optical fiber cable 28a. It is connected to the. The jack control device 20 shown in FIG. 5E has a plurality of control relay devices 25 connected in series via an optical fiber cable 28a, and each of the control relay devices 25 is connected to a jack interposition floor Fv. By connecting to the jacks 10 interposed in the pillars Pa, the expansion and contraction of the jacks 10 interposed in all the pillars Pa of the jack-interposing floor Fv of the demolished building 2a can be controlled simultaneously.

図示例のジャッキ10は、油圧ポンプユニット26から圧力変換器18へ供給される油圧をジャッキ制御装置20で制御することにより、ラム(又はピストン)12を伸長又は収縮させることができる。ラム(又はピストン)12の上昇距離をセンサ14で計測し、その計測値をセンサケーブル28b経由で制御中継装置25へ入力することにより伸長又は収縮の制御に利用する。ただし、本発明で利用可能なジャッキ10は油圧ジャッキ装置に限定されず、解体建築物2aの各柱Paを支持できる十分な揚力及び耐荷重性能を有する適当なジャッキ装置を利用することができる。 The jack 10 of the illustrated example can extend or contract the ram (or piston) 12 by controlling the hydraulic pressure supplied from the hydraulic pump unit 26 to the pressure converter 18 with the jack control device 20. The ascending distance of the ram (or piston) 12 is measured by the sensor 14, and the measured value is input to the control relay device 25 via the sensor cable 28b to be used for controlling expansion or contraction. However, the jack 10 that can be used in the present invention is not limited to the hydraulic jack device, and an appropriate jack device having sufficient lift and load bearing performance capable of supporting each column Pa of the demolished building 2a can be used.

また図6のステップS004では、図7(B)に示すようにジャッキ介装階Fvの各柱Paを、ジャッキ介装階Fvの床面3から直上階F(v+1)の床面3の直下までの初期長さL0で切断し、その切断部分にジャッキ10を介装すると同時にジャッキ上方部分を所定高さL1の複数のブロック70の積層体で置き換えている。図示例では、各柱Paのジャッキ10の上方に複数の所定高さL1のブロック70を積層し、その最上段ブロック70を各柱Paの切断した上端面にボルト等の接合具71によって解除可能に接合させ、その下方に4個のブロック70をそれぞれボルト等の接合具71で解除可能に順次接合させている。このように接合具71で柱Paに接合させたブロック70の積層体は、後述するジャッキ10の伸長ステップ(図6のステップS005)においてジャッキ10から浮かして接合具71を解除することにより最下層からブロック70を1つずつ除去することができる。各ブロック70の所定高さL1は、例えば図示例のようにジャッキ10の伸縮ストローク長L1と同じ高さ又はその整数分の1の高さとすることが望ましいが、ジャッキ10の伸縮ストローク長L1の範囲内で適宜高さを選択することが可能であり、伸縮ストローク長L1に応じてブロック70毎に異なる高さL1としてもよい。 Further, in step S004 of FIG. 6, as shown in FIG. 7B, each pillar Pa of the jack interposing floor Fv is directly below the floor 3 of the upper floor F (v + 1) from the floor surface 3 of the jack interposing floor Fv. The initial length L0 is cut, and the jack 10 is interposed in the cut portion, and at the same time, the upper portion of the jack is replaced with a laminated body of a plurality of blocks 70 having a predetermined height L1. In the illustrated example, a plurality of blocks 70 having a predetermined height L1 are stacked above the jack 10 of each pillar Pa, and the uppermost block 70 can be released to the upper end surface of each pillar Pa by a joint 71 such as a bolt. The four blocks 70 are sequentially joined to each other by a joint 71 such as a bolt so that they can be released. Thus, the laminated body of the block 70 joined to the column Pa by the joint 71 is floated from the jack 10 in the extension step (step S005 in FIG. 6) of the jack 10 to be described later, and the joint 71 is released to release the lowermost layer. The blocks 70 can be removed one by one. The predetermined height L1 of each block 70 is preferably set to the same height as the expansion / contraction stroke length L1 of the jack 10, for example, as shown in the illustrated example, or a height of an integral number thereof. The height can be appropriately selected within the range, and the height L1 may be different for each block 70 according to the expansion / contraction stroke length L1.

なお図示例のジャッキ10は、ラム(又はピストン)12上に凹面座金15及び球面座金16を載置し、その球面座金16上にブロック70の積層体を積み上げ、その積層体頂部に設けた調整部材(当て板)17を介して各柱Paの切断した上端面を支持している。切断した各柱Paの切断面をそれぞれ球面座金16を介してジャッキ10上に滑り支承させることにより、各柱Paの切断面の水平施工誤差を吸収すると共に、地震時・風負荷時等の水平力による柱Paの挙動を吸収することができる。球面座金16の中心は、例えばジャッキ介装階Fvの直上階F(v+1)上に固定した柱ガイド33と同じ高さとすることができる。また、調整部材17を介して各柱Paの切断面を支持することにより、切断面の凹凸等により生じる不均等な荷重を改善することができる。調整部材17の一例は、砂やライナー等の詰め物、又は木質板等である。 In the jack 10 of the illustrated example, a concave washer 15 and a spherical washer 16 are placed on a ram (or piston) 12, and a laminated body of blocks 70 is stacked on the spherical washer 16, and an adjustment provided on the top of the laminated body. The upper end surface of each pillar Pa is supported via a member (pad plate) 17. By sliding the cut surface of each column Pa on the jack 10 via the spherical washer 16, the horizontal construction error of the cut surface of each column Pa is absorbed, and the horizontal surface such as during an earthquake or wind load is absorbed. The behavior of the column Pa due to force can be absorbed. The center of the spherical washer 16 can be set to the same height as the pillar guide 33 fixed on the floor F (v + 1) immediately above the jack interposed floor Fv, for example. Further, by supporting the cut surface of each column Pa via the adjusting member 17, it is possible to improve uneven load caused by unevenness of the cut surface. An example of the adjusting member 17 is padding such as sand or liner, or a wooden board.

図6のステップS005は、ジャッキ介装階Fvの各柱Paのジャッキ直上部を所定高さL1だけ除去し、ジャッキ制御装置20により各柱Paのジャッキ10を伸ばす伸長ステップを示す。例えば図7(B)のように各柱Paの切断面にブロック70の積層体を吊り下げてジャッキ上方部分を置き換えた場合は、ジャッキ介装階Fvの各柱Paを1本ずつ、例えばジャッキ10を若干(例えば50mm程度)下降させて積層体をジャッキから浮かすことにより最下層ブロック(ジャッキ直上ブロック)70を除去又は吊るし切りしてジャッキ10を伸ばすサイクルを順次反復する(図7(C)参照)。或いは、同時に切断可能な複数本の柱Paの最下層ブロック70を纏めて同時に除去又は吊るし切りし、それらの柱Paのジャッキ10を同時に伸ばすサイクルを順次反復してもよい。図6の流れ図では、ステップS003で分類した切断グループR1〜Rnに基づき、ステップS005において切断グループR1〜Rn毎に複数本の柱Paの最下層ブロックをそれぞれ同時に除去し、切断グループR1〜Rn毎に柱Paのジャッキ10を同時に伸長させている。このように複数本の柱Paのジャッキ10を同時に伸張させることにより伸長ステップの時間を短縮できるが、その詳細については後述する(実施例1参照)。 Step S005 of FIG. 6 shows an extension step in which the jacks directly above the pillars Pa of the jack interposition floor Fv are removed by a predetermined height L1 and the jacks 10 of the pillars Pa are extended by the jack controller 20. For example, as shown in FIG. 7B, when the stacked body of the blocks 70 is suspended on the cut surface of each pillar Pa and the upper part of the jack is replaced, one pillar Pa on the jack interposing floor Fv, for example, a jack. 10 is lowered slightly (for example, about 50 mm), and the laminate is lifted from the jack to remove or suspend the lowermost layer block (block just above the jack) 70 to extend the jack 10 in order (FIG. 7C). reference). Alternatively, a cycle in which the lowermost block 70 of a plurality of pillars Pa that can be cut at the same time is collectively removed or suspended and the jacks 10 of the pillars Pa are simultaneously extended may be sequentially repeated. In the flowchart of FIG. 6, based on the cutting groups R1 to Rn classified in step S003, the bottom layer blocks of the plurality of pillars Pa are simultaneously removed for each cutting group R1 to Rn in step S005, and the cutting groups R1 to Rn are respectively removed. The jack 10 of the column Pa is simultaneously extended. As described above, the extension step time can be shortened by simultaneously extending the jacks 10 of the plurality of pillars Pa. Details thereof will be described later (see Example 1).

伸長ステップS005における1回当たりの伸長高さL1(ジャッキ10の伸縮ストローク長)は、解体建築物2aの階層高さL(図7(B)参照)以下の範囲内で任意に選択可能であるが、ストロークが大きくなるとジャッキ10自体も大きくする必要があるので、例えば解体建築物2aの階層高さLの1/4〜1/6程度(例えば600〜900mm程度)とすることが好ましい。解体建築物2aの各柱Paが鉄骨構造(S造)である場合は、溶断装置等の切断装置30を用いて比較的短時間で切断できるので、伸長ステップS005においてジャッキ10を伸長する度に小刻みに柱Paの切断作業を繰り返すことも可能である。しかし各柱Paが鉄筋コンクリート構造(RC造)である場合はワイヤーソー等の切断装置30で時間をかけて切断する必要があり、鉄骨芯を含む鉄骨鉄筋コンクリート構造(SRC造)の柱Paの切断作業には更に時間がかかる。更に、RC造、SRC造の柱Paの切断時には多量の汚水が発生するので、汚水処理等も必要となる。図7のようにジャッキ上方部分を複数のブロック70の積層体で置き換える方法によれば、伸長ステップS005において手間及び汚水処理の必要な柱Paの切断作業を省くことができ、S造、RC造、SRC造等の構造種別に拘わらず切断作業の回数を最小限に抑えて解体作業工期の短縮を図ることができる。また、将来的にはコンクリート充填鋼管工法(CFT造)の構造物1の解体への適用も期待できる。 The extension height L1 (extension / contraction stroke length of the jack 10) per extension in the extension step S005 can be arbitrarily selected within the range of the hierarchical height L (see FIG. 7B) of the dismantled building 2a. However, since it is necessary to increase the jack 10 itself as the stroke increases, for example, it is preferable to set the height L of the demolished building 2a to about 1/4 to 1/6 (for example, about 600 to 900 mm). When each pillar Pa of the demolished building 2a has a steel structure (S structure), it can be cut in a relatively short time by using a cutting device 30 such as a fusing device, so each time the jack 10 is extended in the extension step S005. It is also possible to repeat the cutting operation of the pillar Pa in small increments. However, when each column Pa has a reinforced concrete structure (RC structure), it is necessary to cut it with a cutting device 30 such as a wire saw, and the work of cutting the column Pa of the steel reinforced concrete structure (SRC structure) including the steel core is performed. Takes more time. Furthermore, since a large amount of sewage is generated when the RC and SRC pillars Pa are cut, sewage treatment and the like are also required. According to the method of replacing the upper part of the jack with a laminated body of a plurality of blocks 70 as shown in FIG. 7, it is possible to save labor and cutting work of the column Pa that requires sewage treatment in the extension step S005. Regardless of the structure type such as SRC construction, the number of cutting operations can be minimized and the dismantling work period can be shortened. In the future, application of the concrete-filled steel pipe method (CFT construction) to the dismantling of the structure 1 can also be expected.

図6のステップS006は、図8(B)に示すように、ジャッキ介装階Fvの各柱Paのジャッキ10を、ジャッキ制御装置20により平衡に維持しながら同時に縮める収縮ステップを示す。ジャッキ10の収縮時に降下するジャッキ上方床3と抵触する荷重伝達梁40は、同図に示すように一時的に解体建築物2aから隣接建築物2bへ引き抜き、同図(C)に示すように収縮後のジャッキ上方柱Paに付け替える、すなわち降下後の解体建築物2aのジャッキ上方柱Paに滑り可能且つ水平力伝達可能に係合させる。上述したように、何れかの荷重伝達梁40を引き抜いた場合でも、他の荷重伝達梁40を解体建築物2aと隣接建築物2bとの間に架け渡しておくことにより、収縮ステップS006において解体建築物2aのジャッキ上方階Fj(j>v)を何れかの荷重伝達梁40に係合させつつ徐々に降下させることができる。ジャッキ上方階Fjの降下時の障害となり得る解体建築物2aの外壁7等は、図1に示すように、例えば隣接建築物2bの屋上に設けた解体装置8により予め解体撤去又は取り外しておくことができる。 Step S006 in FIG. 6 shows a contraction step in which the jacks 10 of the pillars Pa of the jack interposing floor Fv are simultaneously contracted while being maintained in equilibrium by the jack control device 20, as shown in FIG. 8B. The load transmitting beam 40 that comes into contact with the upper floor 3 of the jack descending when the jack 10 contracts is temporarily pulled out from the dismantled building 2a to the adjacent building 2b as shown in the figure, and as shown in FIG. It replaces with jack upper pillar Pa after contraction , ie, it engages with jack upper pillar Pa of demolished building 2a after descent so that sliding and horizontal force transmission are possible . As described above, even when any one of the load transmission beams 40 is pulled out, the other load transmission beams 40 are bridged between the dismantled building 2a and the adjacent building 2b, thereby dismantling in the contraction step S006. The jack upper floor Fj (j> v) of the building 2 a can be gradually lowered while being engaged with any of the load transmission beams 40. As shown in FIG. 1, the outer wall 7 and the like of the demolished building 2a that may be an obstacle when the jack F floor is lowered is previously demolished or removed by a demolishing device 8 provided on the roof of the adjacent building 2b, for example. Can do.

図6のステップS007において、解体建築物2aのジャッキ上方各階Fj(j>d)が解体に適する高さまで降下したか否かを判断し、降下していない場合はステップS005へ戻り、上述した伸長ステップS005と収縮ステップS006とを繰り返すことにより、図8(C)に示すようにジャッキ上方各階Fj(j>d)を解体に適する高さ(例えば建築物2aの階層高さL)だけ降下させる。図9(A)〜(J)は、建築物2aの階層高さLが3375mmである場合に、伸縮ストローク長L1=675mm(=3375mm×1/5)のジャッキ10を用い、伸長ステップS005及び収縮ステップS006の5回の繰り返しにより階層高さLだけ降下させる解体工法を示す。ステップS007において、ジャッキ上方階Fjが階層高さLだけ降下したと判断した場合は解体ステップS008へ進む(図9(K)参照)。 In step S007 of FIG. 6, it is determined whether or not each floor Fj (j> d) above the jack of the dismantled building 2a has been lowered to a height suitable for dismantling. If not, the process returns to step S005, and the above-described expansion is performed. By repeating step S005 and contraction step S006, as shown in FIG. 8C, the upper floors Fj (j> d) above the jack are lowered by a height suitable for dismantling (for example, the floor height L of the building 2a). . FIGS. 9A to 9J show that when the floor height L of the building 2a is 3375 mm, the expansion stroke length L1 = 675 mm (= 3375 mm × 1/5) jack 10 is used, and the extension steps S005 and A demolition method in which the floor height L is lowered by repeating the contraction step S006 five times is shown. If it is determined in step S007 that the jack upper floor Fj has been lowered by the floor height L, the process proceeds to the dismantling step S008 (see FIG. 9K).

ジャッキ介装階Fvの直上階F(v+1)に解体作業階Fdを設けた図6の流れ図では、ステップS008において降下したジャッキ上方階Fj(j>d)の柱Pa以外の躯体を解体作業階Fdで順次解体する。例えば図2及び図8(C)に示すように、隣接建築物2bから解体建築物2aの解体作業階Fd(図示例では2階F2)へ解体装置9を進入させ、降下した階Fjの床3や壁4を解体する。なお、ステップS008において降下した各階Fjの内装、設備、アスベスト等も同時に撤去又は除去することができが、本発明の解体工法では内装、設備、アスベスト等の撤去・除去処理を解体作業階Fdと異なる上方階F(d+1)(例えば3階3F又は4階4F)で行うことも可能であり、例えば解体作業階Fdに降下した階Fjの解体作業と並行してその上方階F(j+1)の内装、設備、アスベスト等の撤去・除去作業を行うことができる。 In the flowchart of FIG. 6 in which the dismantling work floor Fd is provided on the floor F (v + 1) immediately above the jack interposing floor Fv, the housing other than the pillar Pa of the jack upper floor Fj (j> d) lowered in step S008 is dismantling work floor. Dismantle sequentially with Fd. For example, as shown in FIGS. 2 and 8C, the demolishing device 9 is entered from the adjacent building 2b to the demolishing work floor Fd (the second floor F2 in the illustrated example) of the demolishing building 2a, and the floor of the lowered floor Fj is lowered. 3 and wall 4 are dismantled. The interior, equipment, asbestos, etc. of each floor Fj lowered in step S008 can be removed or removed at the same time. However, in the dismantling method of the present invention, the removal / removal processing of the interior, equipment, asbestos, etc. is performed with the dismantling work floor Fd. It is also possible to carry out at a different upper floor F (d + 1) (for example, the third floor 3F or the fourth floor 4F). For example, in parallel with the dismantling work of the floor Fj descended to the dismantling work floor Fd, the upper floor F (j + 1) Can remove and remove interior, equipment, asbestos, etc.

図6のステップS008でジャッキ上方階Fjの解体が終了したのちステップS009へ進み、隣接建築物2bと同じ階層(図示例では7階F7)以下になるまで解体建築物2aが解体されたか否かを判断する。隣接建築物2bと同じ階層まで解体されていない場合は、ステップS010〜S011を介してステップS012へ進み、図9(K)に示すように解体建築物2aのジャッキ介装階Fvの各柱Pa(図2のP11〜P64)のジャッキ上方部分を切断し、同図(L)に示すように切断したジャッキ上方部分を所定高さL1の複数のブロック70の積層体で置き換える。図9(L)は同図(A)と同じ状態に復帰することを示しており、そののち再びステップS005へ戻って上述した伸長ステップS005と収縮ステップS006とを繰り返すことにより(図9(A)〜(J)参照)、更に上方の各階F(j+1)を階層高さLだけ降下させて順次解体することができる(図9(K)参照)。図9の流れ図では、伸長ステップS005及び収縮ステップS006を5回繰り返す毎に、解体ステップS008及び柱切断ステップS012を設けて、図8(C)のように降下したジャッキ上方各階Fjを解体作業階Fdで階層毎に順次解体する。 After the dismantling of the jack upper floor Fj is completed in step S008 in FIG. 6, the process proceeds to step S009, and whether or not the dismantled building 2a has been dismantled until it is below the same level as the adjacent building 2b (seventh floor F7 in the illustrated example). Judging. If it is not demolished to the same level as the adjacent building 2b, the process advances to step S012 via steps S010 to S011, and each pillar Pa of the jack interposing floor Fv of the demolished building 2a as shown in FIG. 9 (K). The upper part of the jack of (P11 to P64 in FIG. 2) is cut, and the upper part of the cut jack is replaced with a laminated body of a plurality of blocks 70 having a predetermined height L1 as shown in FIG. FIG. 9 (L) shows that the state returns to the same state as FIG. 9 (A), and then returns to step S005 and repeats the expansion step S005 and the contraction step S006 described above (FIG. 9 (A). ) To (J)), and further lower each floor F (j + 1) by lowering the floor height L and sequentially dismantling (see FIG. 9K). In the flowchart of FIG. 9, every time the extension step S005 and the contraction step S006 are repeated five times, a dismantling step S008 and a column cutting step S012 are provided, and each floor Fj above the jack lowered as shown in FIG. Dismantle sequentially for each layer with Fd.

ステップS012の柱切断ステップでは、ジャッキ介装ステップS004の場合と同様に、例えばジャッキ介装階Fvの各柱Paを1本ずつ吊りし切りにより切断することができる。柱Paを1本ずつ吊るし切りすれば、切断する柱Paの支持荷重を他の柱Paで負担して支持することができ、解体中の解体建築物2aを構造的に安定な状態に維持できる。図6の流れ図では、ステップS003で分類した切断グループR1〜Rnに基づき、ステップS012において切断グループR1〜Rn毎に複数本の柱Paのジャッキ上方部分を纏めて同時に吊るし切りにより切断している。このように切断グループR1〜Rn毎に複数本の柱Paを同時に切断することにより柱切断ステップを迅速に進めることができるが、その詳細については後述する(実施例1参照)。 In the column cutting step of step S012, as in the case of the jack insertion step S004, for example, each column Pa of the jack insertion floor Fv can be suspended and cut by cutting. If the pillars Pa are suspended and cut one by one, the supporting load of the pillars Pa to be cut can be borne and supported by the other pillars Pa, and the demolished building 2a being dismantled can be maintained in a structurally stable state. . In the flowchart of FIG. 6, based on the cutting groups R1 to Rn classified in step S003, the upper portions of the jacks of the plurality of pillars Pa are collectively suspended and cut in step S012 for each of the cutting groups R1 to Rn. As described above, the column cutting step can be rapidly advanced by simultaneously cutting a plurality of columns Pa for each of the cutting groups R1 to Rn, details of which will be described later (see Example 1).

なお、図6のステップS010〜S011は、解体建築物2aの各柱Paを切断グループR1〜Rnに分けている場合に、ジャッキ介装階Fvの各柱Paのジャッキ上方部分を切断する前に、必要に応じて、そのジャッキ介装階Fvの柱Paについて切断グループRを更新する処理を示す。解体した降下階Fjの直上階F(j+1)において柱Paの一部分が間引きされている場合は、間引きされた柱Paのジャッキ10を撤去したうえで、残された柱Paのジャッキ上方部分を切断グループR1〜Rn毎に切断すると共に,切断部分を所定高さL1の複数のブロック70の積層体で置き換える。ステップS010〜S011の切断グループRの更新処理の詳細については後述する(実施例1参照)。 In addition, steps S010 to S011 in FIG. 6 are performed before cutting the upper portion of the jack of each pillar Pa of the jack interposing floor Fv when each pillar Pa of the demolished building 2a is divided into cutting groups R1 to Rn. The process which updates the cutting | disconnection group R about the pillar Pa of the jack interposition floor Fv as needed is shown. When a part of the pillar Pa is thinned out on the floor F (j + 1) immediately above the demolished descending floor Fj, the jack 10 of the thinned pillar Pa is removed, and the remaining upper part of the jack of the pillar Pa is cut. While cutting for every group R1-Rn, a cut part is replaced with the laminated body of the some block 70 of predetermined height L1. Details of the update processing of the cutting group R in steps S010 to S011 will be described later (see Example 1).

図6のステップS009において、隣接建築物2bと同じ高さ以下まで解体建築物2aの解体が完了した場合はステップS013へ進み、解体建築物2aの残部(隣接建築物2bと同じ階層以下の部分)を隣接建築物2bと一体的に又は別々に、例えば従来の上層階から解体する工法により解体する。本発明の解体工法は、解体建築物2aのジャッキ上方各階Fj(j>v)を荷重伝達梁40に係合させながら順次解体するので、解体建築物2aに加わる地震時・風負荷時等の水平荷重を荷重伝達梁40により低層部2へ伝達して逃がすことができ、地震時・風負荷時にも解体建築物2aを構造的に安定な状態に維持できる。また、解体建築物2aのジャッキ介装階Fvに加わる水平力を小さく抑えて柱Paの座屈及びその柱Paに介装したジャッキ10の破損を防止できので、解体建築物2aに十分な耐震・耐風性能を保持させることができる。 In step S009 of FIG. 6, when the dismantling of the dismantled building 2a is completed to the same height or less as the adjacent building 2b, the process proceeds to step S013, and the remaining part of the dismantled building 2a (the portion below the same level as the adjacent building 2b) ) Is dismantled integrally or separately from the adjacent building 2b, for example, by a conventional method of dismantling from an upper floor. The dismantling method of the present invention sequentially disassembles each floor Fj (j> v) above the jack of the dismantling building 2a while being engaged with the load transmitting beam 40. Therefore, when an earthquake or wind load is applied to the dismantling building 2a. A horizontal load can be transmitted to the lower layer 2 by the load transmission beam 40 and escaped, and the demolished building 2a can be maintained in a structurally stable state even during an earthquake or wind load. In addition, since the horizontal force applied to the jack interposing floor Fv of the demolished building 2a can be suppressed to prevent buckling of the column Pa and damage to the jack 10 interposed in the column Pa, the earthquake resistance sufficient for the demolished building 2a. -Wind resistance can be maintained.

こうして本発明の目的である「解体中の建築物を地震時・風負荷時にも構造的に安定な状態に維持できる多層建築物のジャッキダウン式解体工法及び解体用荷重伝達構造」の提供が達成できる。 Thus, the object of the present invention is to provide “a jackdown type demolition construction method and load transfer structure for demolition of a multi-layered building capable of maintaining a structurally stable structure during a demolition and a wind load”. it can.

図6の流れ図のステップS003は、解体建築物2aの上部荷重を負担する全ての柱Pa(図2のP11〜P64)を、柱切断時に床3を介して荷重伝達される隣接柱群Qが相互に重ならない柱Paを集めた複数の切断グループR1〜Rnに分ける処理を示す。解体建築物2aの各柱Paは、例えば図11(A)に示す柱P1〜P4のように各階Fjの床面(床梁や床板)3で相互に結合されており、その何れかの柱Px(例えばP2)の切断時に、その柱Pxの支持荷重が隣接する柱P(x−1)及びP(x+1)(例えばP1及びP3)に荷重増加として伝達される。荷重を受ける柱P(例えばP3)は、許容応力や限界耐力を考慮して隣接する1本の柱P(例えばP2)から伝達される程度の荷重増加を負担する強度は有しているが、隣接する2本以上の柱P(例えばP2及びP4)の荷重増加を同時に負担させることは安全上避けることが望ましい。 Step S003 in the flow chart of FIG. 6 shows that the adjacent column group Q to which the load is transmitted through the floor 3 at the time of column cutting is performed for all the columns Pa (P11 to P64 in FIG. 2) that bear the upper load of the demolished building 2a. The process which divides | segments into several cutting | disconnection group R1-Rn which collected the pillar Pa which does not mutually overlap is shown. The pillars Pa of the demolished building 2a are connected to each other by floor surfaces (floor beams and floorboards) 3 of the floors Fj as in the pillars P1 to P4 shown in FIG. 11A, for example. At the time of cutting Px (for example, P2), the support load of the column Px is transmitted to the adjacent columns P (x-1) and P (x + 1) (for example, P1 and P3) as an increase in load. The column P that receives the load (for example, P3) has the strength to bear the load increase to the extent that it is transmitted from the adjacent column P (for example, P2) in consideration of the allowable stress and the limit proof stress. For safety reasons, it is desirable to avoid simultaneously increasing the load of two or more adjacent pillars P (for example, P2 and P4).

例えば図11(B)のように解体建築物2aの全柱Paがそれぞれ格子面上の交差する二方向軸(x軸、y軸)の各交点に配置されている場合は、特定の柱P(x、y)(例えばP32)の切断時に、その柱Pが切断前に支持していた上部荷重は主に床3経由で隣接する4本の隣接柱P(x−1、y)、P(x、y−1)、P(x、y+1)、P(x+1、y)(例えばP22、P31、P33、P42)に荷重増加として伝達される。従って、各交点の柱P(x、y)毎に床3経由で荷重伝達される格子軸方向の4本の隣接柱群Q(P(x−1、y)、P(x、y−1)、P(x、y+1)、P(x+1、y))を想定し、その隣接柱群Qが相互に重ならない柱P(例えば同図の斜線付きの柱P32、P11、P24)をグループとすれば、そのグループ内の複数の柱Pを同時に切断しても他の何れかの柱P(そのグループ以外の柱)に複数の柱Pから同時に荷重が伝達されることはなく、そのグループ以外の柱Pで高層建築物の上部荷重を支持して構造的に不安定な状態となることを避けることができる。 For example, as shown in FIG. 11B, when all the columns Pa of the demolished building 2a are arranged at the intersections of the two directional axes (x axis, y axis) intersecting each other on the lattice plane, a specific column P When cutting (x, y) (for example, P32), the upper load supported by the column P before the cutting is mainly four adjacent columns P (x-1, y), P adjacent via the floor 3. (X, y-1), P (x, y + 1), and P (x + 1, y) (for example, P22, P31, P33, P42) are transmitted as load increases. Accordingly, four adjacent column groups Q (P (x−1, y), P (x, y−1) in the lattice axis direction in which the load is transmitted via the floor 3 for each column P (x, y) at each intersection. ), P (x, y + 1), P (x + 1, y)), and the columns P (for example, the shaded columns P32, P11, and P24 in FIG. 2) that do not overlap with each other are grouped as groups. Then, even if the plurality of pillars P in the group are cut simultaneously, the load is not simultaneously transmitted from the plurality of pillars P to any other pillars P (columns other than the group). It is possible to avoid a structurally unstable state by supporting the upper load of a high-rise building with the pillar P.

図11(B)において、柱P32の隣接柱群Q32にはP22、P31、P33、P42の4本の柱が含まれ、柱P23の隣接柱群Q23にはP13、P22、P24、P33の4本の柱が含まれる。ただし、各柱Pxyの隣接4交点には柱の存在しない交点も含まれ、解体建築物2aの外周部の柱Pの隣接柱群Qは3本又は2本の柱のみで構成される。例えば柱P12の隣接柱群Q12にはP11、P22、P13の3本の柱だけが含まれ、柱P11の隣接柱群Q11にはP21、P12の2本の柱だけが含まれる。 In FIG. 11B, the adjacent column group Q32 of the column P32 includes four columns P22, P31, P33, and P42, and the adjacent column group Q23 of the column P23 includes 4 of P13, P22, P24, and P33. Includes a book pillar. However, the adjacent four intersections of each column Pxy include intersections where no column exists, and the adjacent column group Q of the columns P on the outer peripheral portion of the demolished building 2a includes only three or two columns. For example, the adjacent column group Q12 of the column P12 includes only three columns P11, P22, and P13, and the adjacent column group Q11 of the column P11 includes only two columns P21 and P12.

図11(B)から分かるように、隣接柱群Q32と隣接柱群Q23とは一部の柱P(P22及びP33)が重なることから、柱P32と柱P23とを同じ切断グループRとすることはできない。これに対して、隣接柱群Q32と隣接柱群Q11との間に相互に重なる柱Pが存在せず、隣接柱群Q32と隣接柱群Q24の相互間にも重なる柱Pが存在せず、隣接柱群Q11と隣接柱群Q24の相互間にも重なる柱Pが存在しないことから、これらの柱P32、P11、P24は同じ切断グループRとすることができる。ただし、同図に示す各柱を切断グループRに分類する方法は一通りではなく、同様に隣接柱群Qxyの相互に重なる柱Pが存在しない柱Pxyを検討することにより、例えば図11(C)に示すように、柱P32、P13、P44を同じ切断グループRに分類することも可能である。 As can be seen from FIG. 11 (B), since the adjacent column group Q32 and the adjacent column group Q23 are partially overlapped with the columns P (P22 and P33), the column P32 and the column P23 are defined as the same cutting group R. I can't. On the other hand, there is no overlapping column P between the adjacent column group Q32 and the adjacent column group Q11, and there is no overlapping column P between the adjacent column group Q32 and the adjacent column group Q24. Since there is no overlapping column P between the adjacent column group Q11 and the adjacent column group Q24, these columns P32, P11, and P24 can be the same cutting group R. However, the method of classifying each column shown in the figure into the cutting group R is not one way. Similarly, by examining the column Pxy in which the adjacent column group Qxy does not have a mutually overlapping column Pxy, for example, FIG. ), The pillars P32, P13, and P44 can be classified into the same cutting group R.

図6のステップS003では、上述した隣接柱群Qxyの相互の重なりを各交点(x、y)の柱Pxy毎に順次検討することにより、解体建築物2aの各柱Paを複数の切断グループR1〜Rnに分類することができる。同じ切断グループRiの各柱Paは、同時に切断しても、そのグループR内の各柱Paに作用する荷重は上部の床3を介して隣接する他のグループRの柱Paに再配分されるので、解体中の解体建築物2aを構造的に安定な状態に保つことができる。切断グループRには1本の柱Paのみからなるグループも合まれる。ただし、解体工期を短縮するためには、各切断グループRiに隣接柱群Qxyが相互に重ならない複数の柱Paを含め、切断グループRiの数をできるだけ少なくすることが有効である。 In step S003 of FIG. 6, each column Pa of the demolished building 2a is divided into a plurality of cutting groups R1 by sequentially examining the overlapping of the adjacent column groups Qxy described above for each column Pxy at each intersection (x, y). Can be classified into ~ Rn. Even if the pillars Pa of the same cutting group Ri are cut at the same time, the load acting on the pillars Pa in the group R is redistributed to the pillars Pa of other adjacent groups R via the upper floor 3. Therefore, the demolished building 2a being demolished can be maintained in a structurally stable state. The group consisting of only one pillar Pa is combined with the cutting group R. However, in order to shorten the dismantling period, it is effective to reduce the number of cutting groups Ri as much as possible, including a plurality of columns Pa in which the adjacent column groups Qxy do not overlap each other in each cutting group Ri.

図11(D)及び図12の流れ図は、解体建築物2aの各柱Paを5つの切断グループR1〜R5に分類する方法の一例を示す。図12のステップS101では、図11(D)に示すように、先ず解体建築物2aの各柱Paが配置された格子面上の全交点(x、y)を、桂馬飛びの位置関係の交点(例えばP11、P32、P24、P53、P61)毎に二軸方向の隣接4交点(x−1、y)、(x、y−1)、(x、y+1)、(x+1、y)を割り付けることにより、5交点単位で区分けする。各5交点単位は、一軸方向の隣接3交点(例えばP52、P53、P54)と、その中心交点(P53)に隣接する他軸方向の2交点(例えばP43、P63)とからなる。次に、ステップS102〜S105において、区分けした各5交点単位からそれぞれ対応する位置の交点の柱(例えばP11、P32、P24、P53、P61)を集めて同じ切断グループR1とする。更に、グループ番号iを1つずつ繰り上げながらステップS102〜S105を繰り返し、各5交点単位から前回と異なる対応位置の交点の柱を集めることにより、図11(D)に示すように解体建築物2aの各柱Paを5つの切断グループR1〜R5に分類することができる。なお、図示例では6行4列の24本の柱P11〜64の分類を示しているが、図12の流れ図は任意の行列数の柱Pに適用可能である。 The flowchart of FIG.11 (D) and FIG. 12 shows an example of the method of classifying each pillar Pa of the demolition building 2a into five cutting groups R1-R5. In step S101 of FIG. 12, as shown in FIG. 11D, first, all intersection points (x, y) on the lattice plane where the pillars Pa of the dismantled building 2a are arranged are intersection points of Keima flying positional relationship. Assign four adjacent intersections (x-1, y), (x, y-1), (x, y + 1), (x + 1, y) in the biaxial direction for each (for example, P11, P32, P24, P53, P61) By dividing, it is divided in units of 5 intersections. Each 5-intersection unit consists of three adjacent intersections in one axis direction (for example, P52, P53, P54) and two intersection points in the other axis direction (for example, P43, P63) adjacent to the central intersection (P53). Next, in steps S102 to S105, intersection columns (for example, P11, P32, P24, P53, and P61) at corresponding positions are collected from each of the divided five intersection units to form the same cutting group R1. Further, steps S102 to S105 are repeated while incrementing the group number i one by one, and by collecting the pillars of intersections at corresponding positions different from the previous one from each of the five intersection units, the demolished building 2a as shown in FIG. Can be classified into five cutting groups R1 to R5. In the illustrated example, the classification of 24 columns P11 to 64 of 6 rows and 4 columns is shown. However, the flowchart of FIG. 12 is applicable to columns P having an arbitrary number of matrices.

また図11(E)及び図13の流れ図は、解体建築物2aの各柱Paをそれぞれ4本の柱Paが含まれる切断グループR1〜R6に分類する方法の一例を示す。図11(D)の分類では複数の切断グループR1〜Rnに属する柱Paの数がグループ毎で相異しているが、切断グループR1〜Rn毎の柱切断効率を向上するためには、何れの切断グループR1〜Rnも同数の切断装置30(図7(A)参照)でグループ内の柱Paが切断できるように、各切断グループR1〜Rnにそれぞれ同数の柱Paを含めることが望ましい。図13のステップS201では、図11(E)に示すように、先ず解体建築物2aの各柱Paが配置された格子面の全交点(x、y)からk行4列を取り出す。なお、図11(E)は6行4列の24本の柱P11〜64の分類を示しているが、図13の流れ図は任意の行数kの配置に適用可能であり、Z列数が8行、12行等の配置にも適用可能である。 Moreover, the flowchart of FIG.11 (E) and FIG. 13 shows an example of the method of classifying each pillar Pa of the demolished building 2a into the cutting groups R1 to R6 each including four pillars Pa. In the classification of FIG. 11D, the number of columns Pa belonging to a plurality of cutting groups R1 to Rn is different for each group, but in order to improve the column cutting efficiency for each cutting group R1 to Rn, It is desirable to include the same number of columns Pa in each of the cutting groups R1 to Rn so that the same number of cutting devices R1 to Rn can also cut the columns Pa in the group with the same number of cutting devices 30 (see FIG. 7A). In step S201 of FIG. 13, as shown in FIG. 11E, first, k rows and 4 columns are extracted from all intersection points (x, y) of the lattice plane on which the pillars Pa of the demolished building 2a are arranged. 11E shows the classification of 24 columns P11 to 64 of 6 rows and 4 columns, the flowchart of FIG. 13 is applicable to an arrangement with an arbitrary number k of rows, and the number of Z columns is The present invention can also be applied to arrangements such as 8 rows and 12 rows.

図13のステップS202〜S205において、i行1列の柱P(例えばP11)と、その柱Pに対して桂馬飛びの位置関係にある(i−2)行2列及び(i+1)行3列の2本の柱P(例えばP52、P23)と、その2本の柱Pに対して桂馬飛びの位置関係にある(i−1)行4列の1本の柱P(例えばP64)との4本の柱を集めて同じ切断グループRiとする。或いは、i行1列の柱P(例えばP11)に対して、桂馬飛びの位置関係にある(i+2)行2列及び(i−1)行3列の2本の柱P(例えばP32、P63)と、その2本の柱Pに対して桂馬飛びの位置関係にある(i+1)行4列の1本の柱P(例えばP24)との4本の柱を集めて同じ切断グループRiとしてもよい。この場合に、桂馬飛びの位置関係にある交点(x、y)の行座標xがkより大きい(x>k)場合はその行xからkを差し引いた交点(x−k、y)の柱Pを集め、交点(x、y)の行座標xが0より小さい(x<0)場合はその行xにkを加えた交点(x+k、y)の柱Pを集めるものとする。更に、グループ番号iを1つずつ繰り上げながらステップS202〜S205を繰り返すことにより、図11(E)に示すように、解体建築物2aの各柱Paをそれぞれ4本の柱Pが含まれる複数の切断グループR1〜R6に分類することができる。 In steps S202 to S205 in FIG. 13, a column P (for example, P11) of i rows and 1 column and (i-2) rows 2 columns and (i + 1) rows 3 columns that are in a positional relationship with respect to the columns P Of the two pillars P (for example, P52, P23) and (i-1) one pillar P (for example, P64) in row 4 columns that are in a positional relationship with the two pillars P. Collect the four pillars into the same cutting group Ri. Alternatively, two columns P (for example, P32 and P63) of (i + 2) rows and 2 columns and (i-1) rows and 3 columns, which are in a positional relationship with Keima jumping, with respect to the column P (for example, P11) of i rows and 1 column. ) And (i + 1) one column P (for example, P24) in four rows and four columns that are in a positional relationship with Keima jumping with respect to the two columns P. Good. In this case, when the line coordinate x of the intersection (x, y) in the positional relationship of Keikei jump is larger than k (x> k), the column of the intersection (x−k, y) obtained by subtracting k from the line x. If P is collected and the row coordinate x of the intersection (x, y) is smaller than 0 (x <0), the column P of the intersection (x + k, y) obtained by adding k to the row x is collected. Furthermore, by repeating steps S202 to S205 while raising the group number i one by one, each pillar Pa of the dismantled building 2a includes a plurality of pillars P each including four pillars P as shown in FIG. It can be classified into cutting groups R1 to R6.

ステップS003において解体建築物2aの各柱Paを複数の切断グループR1〜Rnに分類しておけば、図6のジャッキ介装ステップS004において、切断グループR1〜Rn毎にグループ内の柱Paを同時に切断してジャッキ10を介装することにより、各柱Paの切断作業を迅速に進めて解体工期の短縮を図ることができる。例えばステップS004において、特定の切断グループRi以外の柱Pで解体建築物2aの上部荷重を支持しつつ、図7(A)に示すようにその特定の切断グループRi内の各柱Paをそれぞれ同時に初期高さL0だけ切断し、同図(B)に示すように各柱Paの切断部分にそれぞれジャッキ10を介装すると共にジャッキ上方部分をブロック70の積層体で置き換える。この切断グループRi毎のジャッキ介装作ステップをグループ数だけ繰り返すことにより、解体建築物2aの全ての柱Paにそれぞれジャッキ10を介装することができる。また、解体建築物2aの各柱Paを複数の切断グループR1〜Rnに分類しておけば、ジャッキ介装ステップS004と同様に、ジャッキ切断ステップS012においても柱切断作業の迅速化を図ることができる。 If each pillar Pa of the demolished building 2a is classified into a plurality of cutting groups R1 to Rn in step S003, the jacks Pa in the group are simultaneously provided for each cutting group R1 to Rn in the jack insertion step S004 of FIG. By cutting and interposing the jack 10, the cutting work of each pillar Pa can be rapidly advanced to shorten the dismantling work period. For example, in step S004, while supporting the upper load of the demolished building 2a with the pillars P other than the specific cutting group Ri, as shown in FIG. 7A, the pillars Pa in the specific cutting group Ri are simultaneously set. The initial height L0 is cut, and the jacks 10 are respectively inserted in the cut portions of the pillars Pa as shown in FIG. By repeating this jack interposing step for each cutting group Ri by the number of groups, the jacks 10 can be interposed in all the pillars Pa of the dismantled building 2a. Moreover, if each pillar Pa of the demolished building 2a is classified into a plurality of cutting groups R1 to Rn, it is possible to speed up the column cutting work in the jack cutting step S012 as well as the jack insertion step S004. it can.

更に、解体建築物2aの各柱Paを複数の切断グループR1〜Rnに分類しておけば、図6のジャッキ伸長ステップS005の迅速化を図ることもできる。上述した図7(E)に示すジャッキ制御装置20は、解体建築物2aの各柱Paについてそれぞれ何れの切断グループR1〜Rnに属するかを記憶する記憶手段21と、その切断グループR1〜Rn毎にグループ内の各柱Paのジャッキ10を同時に伸ばすサイクルを反復して全ての柱Paのジャッキ10を伸長する伸長ステップ手段23と、各柱Paのジャッキ10を同時に縮める収縮ステップ手段24とを有している。また図示例のジャッキ制御装置20は、例えば上述した図12又は図13の流れ図に従って解体建築物2aの各柱Paを複数の切断グループR1〜Rnに分類する柱グループ化手段22を有し、例えばステップS003において柱グループ化手段22で求めた各切断グループR1〜Rnに属する柱Paを記憶手段21に記憶している。 Furthermore, if each pillar Pa of the demolished building 2a is classified into a plurality of cutting groups R1 to Rn, the jack extension step S005 in FIG. 6 can be speeded up. The jack control device 20 shown in FIG. 7 (E) described above stores each cutting group R1 to Rn that belongs to each cutting group R1 to Rn for each pillar Pa of the demolished building 2a, and each cutting group R1 to Rn. The extension step means 23 for extending the jacks 10 of all the pillars Pa by repeating the cycle of extending the jacks 10 of each pillar Pa in the group at the same time, and the contraction step means 24 for simultaneously shrinking the jacks 10 of each pillar Pa. doing. Moreover, the jack control apparatus 20 of the example of illustration has the pillar grouping means 22 which classify | categorizes each pillar Pa of the demolition building 2a into several cutting group R1-Rn according to the flowchart of FIG. 12 or FIG. 13 mentioned above, for example, The column Pa belonging to each of the cutting groups R1 to Rn obtained by the column grouping unit 22 in step S003 is stored in the storage unit 21.

例えば図6のステップS005において、ジャッキ制御装置20の伸長ステップ手段23により、特定の切断グループRi以外の柱Paのジャッキ10で解体建築物2aの上部荷重を支持しながら、図7(B)に示すようにその切断グループRi内の各ジャッキ10を若干(例えば50mm程度)下降させたうえで各柱Paの最下層ブロック(ジャッキ直上ブロック)70を除去又は吊るし切りし、同図(C)に示すように各柱Paのジャッキ10を所定高さL1だけ伸ばす。このように切断グループRi毎のジャッキ伸長ステップS005をグループ数だけ繰り返すことにより、解体建築物2aの全ての柱Paのジャッキ10をそれぞれ所定高さL1だけ伸長させる。 For example, in step S005 of FIG. 6, the extension step means 23 of the jack control device 20 supports the upper load of the dismantled building 2a with the jack 10 of the pillar Pa other than the specific cutting group Ri, while FIG. As shown in the figure, the jacks 10 in the cutting group Ri are slightly lowered (for example, about 50 mm), and then the lowermost layer block (the block directly above the jacks) 70 of each column Pa is removed or suspended. As shown, the jack 10 of each pillar Pa is extended by a predetermined height L1. In this way, by repeating the jack extension step S005 for each cutting group Ri by the number of groups, the jacks 10 of all the pillars Pa of the demolished building 2a are each extended by a predetermined height L1.

なお、図6のステップS010〜011は、解体ステップS008で解体した降下階Fjの直上階F(j+1)の柱Paの一部分が間引きされている場合に、その直上階F(j+1)を解体する前に、必要に応じて、その直上階F(j+1)の残された柱Paについて切断グループRを更新する処理を示す。ステップS010において、直上階F(j+1)の残された柱Paの切断グループRを変更する必要があるか否かを判断し、変更する必要があると判断した場合は、ステップS011においてジャッキ制御装置20の柱グループ化手段22により、直上階F(j+1)の残された全ての柱Paを新たな切断グループR1〜Rn´に分け直す。新たな切断グループR1〜Rn´に更新したうえでステップS012へ進み、更新した切断グループR1〜Rn毎に解体建築物2aの各柱Paのジャッキ上方部分を切断して切断部分を所定高さL1の複数のブロック70の積層体で置き換える。図6の流れ図によれば、解体する建築物2aの各階Fj毎に、ジャッキ制御装置20の柱グループ化手段22により切断グループRを更新することも可能である。 Note that steps S010 to 011 in FIG. 6 dismantle the immediately upper floor F (j + 1) when a part of the column Pa of the floor F (j + 1) directly above the descending floor Fj dismantled in the dismantling step S008 is thinned out. Before, the process which updates the cutting | disconnection group R about the pillar Pa which the directly upper floor F (j + 1) remained is shown as needed. In step S010, it is determined whether or not it is necessary to change the cutting group R of the remaining pillar Pa on the immediately upper floor F (j + 1). If it is determined that it is necessary to change, the jack control device is determined in step S011. The 20 column grouping means 22 redivides all the remaining columns Pa of the immediately upper floor F (j + 1) into new cutting groups R1 to Rn ′. It progresses to step S012 after updating to new cutting group R1-Rn ', cuts the jack upper part of each pillar Pa of demolition building 2a for every updated cutting group R1-Rn, and makes a cutting | disconnection part predetermined height L1. Are replaced with a stack of a plurality of blocks 70. According to the flowchart of FIG. 6, it is also possible to update the cutting group R by the pillar grouping means 22 of the jack control device 20 for each floor Fj of the building 2a to be demolished.

図10は、本発明の解体工法でジャッキ10の上方部分に積層するブロックの他の実施例を示す。この実施例では、図6のジャッキ介装ステップS004において、先ず同図(A)に示すように解体建築物2aのジャッキ介装階Fvの各柱Paを床面3から直上階Fdの床面3の直下まで切断し、各柱Paの切断部下端にジャッキ10を介装すると共に、ジャッキ介装階Fvの各柱Paの下端周囲にジャッキ10を内包するように囲む所定径の中空筒状ベース72を設ける。次いで同図(B)に示すように、筒状ベース72上に同じ径で所定高さL1の中空筒状ブロック73を各柱Paの切断上端面まで複数層(図示例では5層)積み上げ、ジャッキ上方部分を複数の筒状ブロック73の積層体で置き換える。積層体の頂部は、当て板等の調整部材17を介して各柱Paの切断面に当接させる。筒状ベース72及び筒状ブロック73は、それぞれ上部荷重を支持する強度・耐力を有しており、例えばボルト等で解除可能に接合させて積み上げることができる。また筒状ベース72及び筒状ブロック73の所定高さL1は、図7及び図9のブロック70と同様にジャッキ10の伸縮ストローク長L1と同じ高さ又はその整数分の1の高さとすることができるが、ジャッキ10の伸縮ストローク長L1の範囲内で適宜高さを選択することが可能であり、伸縮ストローク長L1に応じてブロック73毎に異なる高さL1としてもよい。 FIG. 10 shows another embodiment of the block laminated on the upper part of the jack 10 by the dismantling method of the present invention. In this embodiment, in the jack installation step S004 of FIG. 6, first, as shown in FIG. 6A, each column Pa of the jack installation floor Fv of the dismantled building 2a is moved from the floor surface 3 to the floor surface of the upper floor Fd. 3 is cut to a position directly below 3, and the jack 10 is interposed at the lower end of the cutting portion of each pillar Pa, and the hollow cylinder having a predetermined diameter is enclosed so as to enclose the jack 10 around the lower end of each pillar Pa of the jack interposing floor Fv. A base 72 is provided. Next, as shown in FIG. 4B, a plurality of layers (5 layers in the illustrated example) are stacked on the cylindrical base 72 up to the cut upper end surface of each column Pa with a hollow cylindrical block 73 having the same diameter and a predetermined height L1. The upper part of the jack is replaced with a laminated body of a plurality of cylindrical blocks 73. The top of the laminate is brought into contact with the cut surface of each column Pa via an adjusting member 17 such as a backing plate. The cylindrical base 72 and the cylindrical block 73 each have strength and proof strength to support the upper load, and can be stacked by being releasably joined with, for example, a bolt or the like. The predetermined height L1 of the cylindrical base 72 and the cylindrical block 73 is the same height as the expansion / contraction stroke length L1 of the jack 10 or a height of an integral number thereof, like the block 70 of FIGS. However, the height can be appropriately selected within the range of the expansion / contraction stroke length L1 of the jack 10, and the height L1 may be different for each block 73 according to the expansion / contraction stroke length L1.

図示例の筒状ブロック73は、同図(M)及び(N)に示すように複数の分割可能な筒状片73a、73bを例えばボルト等によって相互に付き合わせて締結させたものであり、各筒状片73a、73bに直径方向に軸合せした差込穴74が形成されている。図示例では一対の半割型筒状片73a、73bにより筒状ブロック73を構成しているが、筒状片の分割数は図示例に限定されず、筒状ブロック73を3以上の筒状片で構成してもよい。また、同図(M)は各筒状片73a、73bの上端及び下端の周縁を一部切欠いて差込穴74を設けているが、同図(N)に示すように各筒状片73a、73bの周壁に適宜に設けた貫通穴を差込穴74としてもよい。 The cylindrical block 73 in the illustrated example is formed by attaching a plurality of separable cylindrical pieces 73a and 73b to each other with bolts or the like as shown in FIGS. Each cylindrical piece 73a, 73b is formed with an insertion hole 74 aligned in the diameter direction. In the illustrated example, the cylindrical block 73 is configured by a pair of halved cylindrical pieces 73a and 73b. However, the number of divisions of the cylindrical piece is not limited to the illustrated example, and the cylindrical block 73 has three or more cylindrical shapes. You may comprise by a piece. Moreover, although the figure (M) cuts off the peripheral part of the upper end and lower end of each cylindrical piece 73a, 73b partially, and has provided the insertion hole 74, as shown to the figure (N), each cylindrical piece 73a. , 73b may be provided as through holes 74 provided as appropriate in the peripheral wall.

図10(C)に示すように、図6のジャッキ伸長ステップS005において、各柱Paの最下層ブロック73とその上層ブロック73との間の差込穴74に係止具75を引き抜き可能に差し込み、ジャッキ10を伸ばして上層ブロック73を押し上げて最下層ブロック73を複数の筒状片73a、73bに分割して除去する。例えば最下層ブロック73の上端とその上層ブロック73の下端との間に形成された差込穴74(図10(M)参照)へ例えば角棒状の係止具75を井桁上に貫通させてジャッキ10を伸ばし、その係止具75により上層ブロック73を押し上げつつ最下層ブロック73を除去する。図10(C)では、ジャッキ10及び筒状ブロック73で各柱Paの上部荷重を支持しながらジャッキ10を伸長させることができるので、ジャッキ伸長時に各柱Paの支持荷重を他の柱Paに負担させる必要はなく、ジャッキ介装階Fvの全ての柱Paの最下層ブロック73とその上層ブロック73との間の差込穴74に係止具75を差し込んだうえで、全ての柱Paのジャッキ10を同時に伸長させることが可能である。 As shown in FIG. 10 (C), in the jack extension step S005 of FIG. 6, the locking tool 75 is removably inserted into the insertion hole 74 between the lowermost layer block 73 and the upper layer block 73 of each pillar Pa. The jack 10 is extended and the upper layer block 73 is pushed up to divide and remove the lowermost layer block 73 into a plurality of cylindrical pieces 73a and 73b. For example, a jack rod 75 is inserted into the insertion hole 74 (see FIG. 10 (M)) formed between the upper end of the lowermost block 73 and the lower end of the upper block 73, and the jack 75 is passed through the cross beam. 10 and the lower layer block 73 is removed while the upper layer block 73 is pushed up by the locking member 75. In FIG. 10C, since the jack 10 can be extended while supporting the upper load of each column Pa with the jack 10 and the cylindrical block 73, the support load of each column Pa is transferred to the other column Pa when the jack is extended. It is not necessary to bear, and after inserting the locking tool 75 into the insertion hole 74 between the lowermost layer block 73 of all the pillars Pa and the upper layer block 73 of the jack interposing floor Fv, The jack 10 can be extended at the same time.

なお、図10の流れ図において筒状ブロック73は、同図(B)のようにジャッキ10を収縮させた状態でベース72上に積み上げる必要はなく、同図(C)のようにジャッキ10を伸長させた状態で積み上げてもよい。その場合は、同図(A)において予めジャッキ10を伸長させると共にジャッキ10上に係止具75を設置しておき、その係止具75に係止させて同図(C)のように複数層(図示例では4層)の筒状ブロック73を積み上げればよく、図10の流れ図において同図(B)を省略できる。 In the flowchart of FIG. 10, the cylindrical block 73 does not need to be stacked on the base 72 in a state where the jack 10 is contracted as shown in FIG. 10B, and the jack 10 is extended as shown in FIG. You may pile up in the state made to do. In that case, the jack 10 is extended in advance in FIG. 5A, and a locking tool 75 is installed on the jack 10, and the locking tool 75 is locked and a plurality of the locking tools 75 as shown in FIG. It suffices to stack the cylindrical blocks 73 of layers (four layers in the illustrated example), and the figure (B) can be omitted in the flowchart of FIG.

次いで図10(D)に示すように、図6のジャッキ収縮ステップS006において、ジャッキ介装階Fvの各柱Paのジャッキ10を同時に縮めて係止具75で押し上げられた上層ブロック73を筒状ベース72上に着座させ、着座させた上層ブロック73と筒状ベース72との間から係止具75を引き抜く。図10(E)〜(L)は、上述したジャッキ伸長ステップS005及び収縮ステップS006を繰り返し、解体建築物2aのジャッキ上方階Fj(j>d)を所定高さL1ずつ降下させる処理を示す。図10(L)において、ジャッキ上方階Fjを解体に適する高さまで降下させたのち、図1の解体ステップS008において、降下したジャッキ上方階Fjの柱Pa以外の躯体を解体する。図10(L)は同図(A)と同じ状態に復帰することを示している。次いで図1の柱切断ステップS012において、再び同図(A)に戻って解体建築物2aのジャッキ介装階Fvの各柱Paのジャッキ上方部分を切断すると共に、同図(B)に示すように切断したジャッキ上方部分を所定高さL1の複数の筒状ブロック73の積層体で置き換え、図10(C)〜(L)のジャッキ伸長ステップS005及び収縮ステップS006を繰り返すことにより、解体建築物2aのジャッキ上方各階Fjを階層毎に順次解体する。 Next, as shown in FIG. 10 (D), in the jack contraction step S006 of FIG. 6, the upper layer block 73 that is simultaneously compressed by the jacks 10 of the pillars Pa of the jack interposing floor Fv and pushed up by the locking tool 75 is cylindrical. The locking tool 75 is pulled out from between the upper layer block 73 and the cylindrical base 72 that are seated on the base 72. FIGS. 10E to 10L show a process of lowering the jack upper floor Fj (j> d) of the dismantled building 2a by a predetermined height L1 by repeating the jack extension step S005 and the contraction step S006 described above. In FIG. 10 (L), after lowering the jack upper floor Fj to a height suitable for dismantling, in the dismantling step S008 of FIG. 1, the housing other than the pillar Pa of the lowered jack upper floor Fj is dismantled. FIG. 10L shows that the state returns to the same state as FIG. Next, in the column cutting step S012 of FIG. 1, returning to the same figure (A) again, while cutting the jack upper part of each pillar Pa of the jack interposing floor Fv of the dismantled building 2a, as shown in the same figure (B). The upper part of the jack cut into two is replaced with a laminated body of a plurality of cylindrical blocks 73 having a predetermined height L1, and the jack extension step S005 and the contraction step S006 of FIGS. Each floor Fj above the jack 2a is sequentially dismantled for each layer.

図10のような分割可能な筒状ブロック73の積層体を用いてジャッキ上方部分を置き換える方法によれば、解体建築物2aの全ての柱Paのジャッキ10で上部荷重を支持しながら、全ての柱Paのジャッキ10を同時に伸長及び収縮させることができるので、S造、RC造、SRC造、CFT造等の構造種別に拘わらず解体建築物2aの解体作業を極めて効率的に進めて工期短縮を図ることができる。また筒状ブロック73は量産化が可能であり、解体する構造物1の階層高さLに応じて筒状ブロック73の所定高さL1を調整することも容易である。構造物の階層高さLが大きく、ジャッキ伸長ステップS005又は収縮ステップS006において筒状ブロック73の積層体が転倒する等のおそれがある場合は、必要に応じてジャッキ介装階Fvの各柱Paの周囲に放射状の斜材(図示せず)を設けて筒状ブロック73の積層体を支持することも容易に可能である。 According to the method of replacing the upper part of the jack by using a stack of cylindrical blocks 73 that can be divided as shown in FIG. 10, while supporting the upper load with the jacks 10 of all the pillars Pa of the demolished building 2a, Since the jack 10 of the column Pa can be extended and contracted at the same time, the dismantling work of the dismantling building 2a can be advanced extremely efficiently regardless of the structure type such as S structure, RC structure, SRC structure, CFT structure, etc. Can be achieved. The cylindrical block 73 can be mass-produced, and it is easy to adjust the predetermined height L1 of the cylindrical block 73 according to the hierarchical height L of the structure 1 to be dismantled. If the level L of the structure is large and the laminated body of the cylindrical blocks 73 may fall over in the jack extension step S005 or the contraction step S006, each column Pa of the jack interposing floor Fv is necessary. It is also possible to easily support the laminated body of the cylindrical blocks 73 by providing a radial diagonal member (not shown) around the periphery.

1…セットバック多層建築物 2a…解体建築物
2b…隣接建築物 3…床(床梁又は床板)
4…壁 5…切り離し空隙
6…工事用エレベータ 7…外壁
8…解体装置 9…解体装置
10…ジャッキ
11…アンカープレート 11a…アンカーボルト
12…ラム(又はピストン)
14…上昇距離センサ 15…凹面座金
16…球面座金 17…調整部材(シュー)
18…圧力変換器
20…ジャッキ制御装置 21…記憶手段
22…柱グループ化手段 23…伸長ステップ手段
24…収縮ステップ手段 25…制御中継装置
26…油圧ポンプユニット 27…油圧中継装置
28…制御ケーブル 28a…光ファイバーケーブル
28b…センサケーブル 28c…油圧制御ケーブル
29a…油圧伝送ケーブル 29b…油圧供給ケーブル
30…柱切断装置 31…柱刳り貫き装置
32…支保部材(壁柱) 33…柱ガイド
34…拘束器(押しボルト式拘束器)
40…荷重伝達梁 41、42…梁材
43、44…係合材 45…結合材
46…ブラケット
50…間隙閉塞機構 51…楔材
52…保持装置 52a…鉛直保持部材
52b…水平保持部材 53…吊り下げ索(チェーン)
54…嵌合板 55…解除装置
56…係止ピン 57…リンク機構
58…弾性変形部材 59…摺動材
60…隙間調整プレート 61…開口
62…中敷板 63…非常停止装置
64…感震器 65…早期地震警報受信器
66…手動スイッチ
70…ブロック 71…接合具
72…筒状ベース 73…中空筒状ブロック
74…差込穴 75…係止具
B…基礎部 d…刳り貫き隙間
F…階 Fv…ジャッキ介装階(特定下層階)
Fd…解体作業階 G…地面
L…切断高さ P…柱
Pa…解体建築物の柱 Pb…隣接建築物の柱
Q…隣接柱群 R…切断グループ
S…間隙
DESCRIPTION OF SYMBOLS 1 ... Setback multilayer building 2a ... Demolition building 2b ... Adjacent building 3 ... Floor (floor beam or floor board)
DESCRIPTION OF SYMBOLS 4 ... Wall 5 ... Separation space | gap 6 ... Construction elevator 7 ... Outer wall 8 ... Dismantling apparatus 9 ... Dismantling apparatus 10 ... Jack 11 ... Anchor plate 11a ... Anchor bolt 12 ... Ram (or piston)
14 ... Ascent distance sensor 15 ... Concave washer 16 ... Spherical washer 17 ... Adjusting member (shoe)
DESCRIPTION OF SYMBOLS 18 ... Pressure converter 20 ... Jack control apparatus 21 ... Memory | storage means 22 ... Column grouping means 23 ... Expansion | extension step means 24 ... Shrinkage step means 25 ... Control relay apparatus 26 ... Hydraulic pump unit 27 ... Hydraulic relay apparatus 28 ... Control cable 28a ... optical fiber cable 28b ... sensor cable 28c ... hydraulic control cable 29a ... hydraulic transmission cable 29b ... hydraulic supply cable 30 ... pillar cutting device 31 ... pillar drilling device 32 ... support member (wall pillar) 33 ... pillar guide 34 ... restraint ( Push bolt type restraint)
DESCRIPTION OF SYMBOLS 40 ... Load transmission beam 41, 42 ... Beam material 43, 44 ... Engagement material 45 ... Binding material 46 ... Bracket 50 ... Gap closing mechanism 51 ... Wedge material 52 ... Holding device 52a ... Vertical holding member 52b ... Horizontal holding member 53 ... Hanging rope (chain)
54 ... Fitting plate 55 ... Release device 56 ... Locking pin 57 ... Link mechanism 58 ... Elastic deformation member 59 ... Sliding material 60 ... Gap adjusting plate 61 ... Opening 62 ... Insole plate 63 ... Emergency stop device 64 ... Shock absorber 65 ... Early earthquake warning receiver 66 ... Manual switch 70 ... Block 71 ... Joint 72 ... Cylindrical base 73 ... Hollow cylindrical block 74 ... Insertion hole 75 ... Locking tool B ... Foundation part d ... Drilling gap F ... Floor Fv… jack floor (specific lower floor)
Fd ... Demolition work floor G ... Ground L ... Cutting height P ... Column Pa ... Column of demolished building Pb ... Column of adjacent building Q ... Adjacent column group R ... Cutting group S ... Gap

Claims (13)

隣接する多層建築物の何れか一方を解体するため、一方の解体建築物の特定下層階の各柱にそれぞれジャッキを介装し、他方の隣接建築物のジャッキ上方階に一端が結合された複数の荷重伝達梁の他端をそれぞれ前記解体建築物へ水平に突き出して前記解体建築物のジャッキ上方柱に滑り可能且つ水平力伝達可能に係合させ、前記解体建築物の各柱のジャッキ直上部を除去してジャッキを伸ばす伸長ステップと各柱のジャッキを同時に縮める収縮ステップとを反復し且つその反復時に降下するジャッキ上方各階の床面と抵触する荷重伝達梁を一時的に前記隣接建築物へ引き抜いて降下後の前記解体建築物のジャッキ上方柱に滑り可能且つ水平力伝達可能に係合させることにより前記解体建築物のジャッキ上方各階を何れかの荷重伝達梁に係合させつつ降下させ、前記解体建築物の降下した各階の柱以外の躯体をジャッキ介装階で順次解体してなる隣接多層建築物の解体工法。 In order to dismantle one of the adjacent multi-layer buildings, a jack is installed on each pillar of the specific lower floor of one dismantled building, and one end is joined to the upper floor of the jack of the other adjacent building each of said demolition building the demolition buildings jack upper column to slidably and horizontal force caused transmittable engaged in projecting horizontally to the other end of the load transmission beams, the jack directly above each pillar of the demolition building The load transmission beam that conflicts with the floor surface of each floor above the jack that descends at the same time is repeatedly applied to the adjacent building. engaging the jack upper floor of the demolition building by Rukoto the slidable in the jack above pillars of demolition building allowed and horizontal force transmittable engaged after drop withdrawn in any of the load transmission beams Allowed while lowering, demolishing method neighboring multilayer building a skeleton other than lowering the floor of the pillars of the demolition building formed by sequentially dismantled jack KaiSokai. 請求項1の解体工法において、前記隣接する多層建築物を、低層部に対しセットバックした高層部を有し且つ低層部の各階層を高層部の同じ階層から切り離した多層建築物としてなる隣接多層建築物の解体工法。 The dismantling method according to claim 1, wherein the adjacent multi-layered building has a high-rise part set back with respect to the low-rise part, and is formed as a multi-layered building in which each level of the low-rise part is separated from the same hierarchy of the high-rise part. Building demolition method. 請求項1の解体工法において、前記隣接する多層建築物を、構造的に分割され且つエキスパンションジョイントで接合された多層建築物としてなる隣接多層建築物の解体工法。 The dismantling method of the adjacent multi-layered building according to claim 1, wherein the adjacent multi-layered building is a multi-layered building that is structurally divided and joined by an expansion joint. 請求項1から3の何れかの解体工法において、前記各荷重伝達梁に、前記解体建築物のジャッキ上方柱を挟み込む平行な梁材の対と、その梁材対の間に架け渡して前記解体建築物のジャッキ上方柱と間隙を介して対向させる係合材の対とを含め、前記梁材対と係合材対とで囲まれた枠内にジャッキ上方柱を係合させてなる隣接多層建築物の解体工法。 In any of the dismantling method of claims 1 to 3, wherein each load transfer beam, wherein a pair of demolition building parallel beam members to sandwich the jack upper column of the dismantled bridged between the beam members pairs An adjacent multi-layer comprising a jack upper column engaged in a frame surrounded by the beam material pair and the engagement material pair, including a pair of engagement materials opposed to the jack upper column of the building via a gap. Building demolition method. 請求項4の解体工法において、前記解体建築物のジャッキ上方柱と係合材との間隙に、前記ジャッキ上方柱の揺動時に当該間隙を塞ぐ間隙閉塞機構を設けてなる隣接多層建築物の解体工法。 5. The demolition method according to claim 4, wherein a gap closing mechanism is provided in a gap between the upper column of the jack of the demolition building and the engaging member to close the gap when the upper column of the jack swings. Construction method. 請求項1から5の何れかの解体工法において、前記解体建築物のジャッキ介装階の直上階に床面が各柱と切り離された解体作業階を設け、前記解体建築物の降下した各階をジャッキ介装階に代えて解体作業階で順次解体してなる隣接多層建築物の解体工法。 The dismantling method according to any one of claims 1 to 5, wherein a dismantling work floor in which a floor surface is separated from each pillar is provided on a floor directly above a jack interposing floor of the dismantling building, and each floor where the dismantling building descends is provided. Demolition method of adjacent multi-layered buildings that are sequentially demolished on the demolishing work floor instead of the jack interposition floor. 請求項1から6の何れかの解体工法において、前記解体建築物のジャッキ介装時にジャッキ介装階の各柱を床面から直上階床面直下まで切断してジャッキを介装すると同時にジャッキ上方部分を所定高さの複数ブロックの積層体で置き換え、前記解体建築物の降下した各階の解体時にジャッキ介装階の各柱のジャッキ上方部分を直上階床面直下まで切断して所定高さの複数ブロックの積層体で置き換え、前記解体建築物のジャッキ上方各階の降下時に各柱の最下層ブロックを除去してジャッキを伸ばす伸長ステップと各柱のジャッキを同時に縮める収縮ステップとを反復してなる隣接多層建築物の解体工法。 The dismantling method according to any one of claims 1 to 6, wherein at the time of jacking the dismantled building , each pillar of the jacking floor is cut from the floor surface to a position immediately below the floor immediately above and the jack is interposed at the same time. Replace the upper part with a stack of multiple blocks of a predetermined height, and when dismantling each floor where the demolished building descends, cut the jack upper part of each pillar of the jack interposing floor to the position directly below the floor level. It is replaced with a laminated body of multiple blocks, and the lower layer block of each pillar is removed when descending each floor above the jack of the demolished building, and the extension step for extending the jack and the contraction step for simultaneously shrinking the jack of each pillar are repeated. Deconstruction method of adjacent multi-layered building. 隣接する多層建築物の何れか一方を解体するため、一方の解体建築物の特定下層階の各柱にそれぞれジャッキを介装して設けられ且つ各柱のジャッキ直上部を除去してジャッキを伸ばす伸長ステップと各柱のジャッキを同時に縮める収縮ステップとの反復により降下するジャッキ上方各階の柱以外の躯体を順次解体するジャッキ介装階、及び他方の隣接建築物のジャッキ上方階に一端を結合して設けられ且つ他端をそれぞれ前記解体建築物へ水平に突き出して前記解体建築物のジャッキ上方柱に滑り可能且つ水平力伝達可能に係合させる複数の荷重伝達梁を備え、前記降下するジャッキ上方各階の床面と抵触する荷重伝達梁を一時的に前記隣接建築物へ引き抜いて降下後の前記解体建築物のジャッキ上方柱に滑り可能且つ水平力伝達可能に係合させることにより前記解体建築物のジャッキ上方各階を何れかの荷重伝達梁に係合させつつ降下させてなる隣接多層建築物の解体用荷重伝達構造。 In order to dismantle one of the adjacent multi-layer buildings, jacks are provided on each pillar of a specific lower floor of one dismantled building, and the jacks on each pillar are removed to extend the jacks. One end is connected to the jack interfacing floor that sequentially dismantles the frame other than the pillars on each floor above the jack that descends by repeating the extension step and the contraction step that simultaneously shrinks the jack of each pillar, and the jack upper floor of the other adjacent building. comprising a plurality of load transmission beams to provided and the other end engaged respectively the demountable and horizontal force transmittable engaged sliding the jack above pillars of the demolition building projects horizontally into the building Te, jack upwards to the drop temporarily the neighboring building to pull out slidable in the jack above pillars of the demolition building after lowering and horizontal force transmittable engaged load transmission beams to interfere with each floor of the floor Disassembling load transmitting structure of the dismantling jack upper floors of the building is lowered while engaged in any of the load transmission beams formed by adjacent multilayered building by Rukoto is. 請求項8の荷重伝達構造において、前記隣接する多層建築物を、低層部に対しセットバックした高層部を有し且つ低層部の各階層を高層部の同じ階層から切り離した多層建築物としてなる隣接多層建築物の解体用荷重伝達構造。 The load transmission structure according to claim 8, wherein the adjacent multi-layered building has a high-rise part set back with respect to the low-rise part, and is adjacent as a multi-layered building in which each level of the low-rise part is separated from the same hierarchy of the high-rise part. Load transmission structure for dismantling multi-layer buildings. 請求項8の荷重伝達構造において、前記隣接する多層建築物を、構造的に分割され且つエキスパンションジョイントで接合された多層建築物としてなる隣接多層建築物の解体用荷重伝達構造。 9. The load transmission structure according to claim 8, wherein the adjacent multi-layered building is a multi-layered building that is structurally divided and joined by an expansion joint. 請求項8から10の何れかの荷重伝達構造において、前記各荷重伝達梁に、前記解体建築物のジャッキ上方柱を挟み込む平行な梁材の対と、その梁材対の間に架け渡して前記解体建築物のジャッキ上方柱と間隙を介して対向させる係合材の対とを含め、前記梁材対と係合材対とで囲まれた枠内にジャッキ上方柱を係合させてなる隣接多層建築物の解体用荷重伝達構造。 In any of the load transfer structure of claim 8 10, wherein each load transfer beam, said demolition buildings jack upper pillar pairs of parallel beam members sandwiching the and bridged between the beam members to said Adjacent to the upper column of the jack of the demolished building, including the pair of engaging members opposed to each other through a gap, and the upper column of the jack engaged in a frame surrounded by the pair of beam members and the engaging member pair. Load transmission structure for dismantling multi-layer buildings. 請求項11の荷重伝達構造において、前記解体建築物のジャッキ上方柱と係合材との間隙に、前記ジャッキ上方柱の揺動時に当該間隙を塞ぐ間隙閉塞機構を設けてなる隣接多層建築物の解体用荷重伝達構造。 12. The load transmission structure according to claim 11, wherein a gap closing mechanism is provided in a gap between the upper column of the jack of the dismantled building and the engaging member to close the gap when the upper column of the jack swings. Load transmission structure for dismantling. 請求項8から12の何れかの荷重伝達構造において、前記解体建築物のジャッキ介装階の直上階に床面が各柱と切り離された解体作業階を設け、前記解体建築物の降下するジャッキ上方各階をジャッキ介装階に代えて解体作業階で順次解体してなる隣接多層建築物の解体用荷重伝達構造。 The load transmission structure according to any one of claims 8 to 12, wherein a dismantling work floor in which a floor surface is separated from each pillar is provided on a floor directly above a jack interposition floor of the dismantling building, and the jack in which the dismantling building descends is provided. A load transmission structure for dismantling of an adjacent multi-layered building, in which upper floors are sequentially dismantled on the dismantling work floor instead of the jack interposing floor
JP2009134546A 2009-06-03 2009-06-03 Demolition method of adjacent multi-layer building and load transmission structure for demolition Expired - Fee Related JP5382925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134546A JP5382925B2 (en) 2009-06-03 2009-06-03 Demolition method of adjacent multi-layer building and load transmission structure for demolition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134546A JP5382925B2 (en) 2009-06-03 2009-06-03 Demolition method of adjacent multi-layer building and load transmission structure for demolition

Publications (2)

Publication Number Publication Date
JP2010281088A JP2010281088A (en) 2010-12-16
JP5382925B2 true JP5382925B2 (en) 2014-01-08

Family

ID=43538051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134546A Expired - Fee Related JP5382925B2 (en) 2009-06-03 2009-06-03 Demolition method of adjacent multi-layer building and load transmission structure for demolition

Country Status (1)

Country Link
JP (1) JP5382925B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299944B2 (en) * 2013-06-27 2018-03-28 株式会社竹中工務店 Building dismantling method
CN111441610B (en) * 2020-06-08 2021-11-23 凤阳县天龙水利建筑工程有限公司 Building auxiliary beam demolishs device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387533A (en) * 1977-01-13 1978-08-02 Mitsubishi Heavy Ind Ltd Method of dropping structure
JP2990593B2 (en) * 1996-10-03 1999-12-13 川崎重工業株式会社 Demolition method and demolition equipment for building structures
JP2001329700A (en) * 2000-05-23 2001-11-30 Dai Nippon Construction Temporary jointing method for column during building demolition in jack system

Also Published As

Publication number Publication date
JP2010281088A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US11274432B2 (en) Method of constructing a building, and a building construction system therefor
CN108331336B (en) Integral lifting steel platform system for synchronous construction of floor slabs and construction method thereof
JP5177883B2 (en) Demolition method of multi-layered building and load transmission structure for demolition
JP4658006B2 (en) Seismic isolation method for existing buildings and temporary seismic control panel
JP5503223B2 (en) Remodeling existing building
JP5382925B2 (en) Demolition method of adjacent multi-layer building and load transmission structure for demolition
JP5382926B2 (en) Jackdown dismantling method and system for multi-story buildings
KR102386880B1 (en) Constructing Method of Tower Structure with Ascending and Descending of Work Deck and Form, and Tower Structure constructed by such method
KR20150138785A (en) Vertical expansion remodeling method of existing building with seperate load path
JP5709208B2 (en) Method and system for raising and lowering multi-layer buildings
CN108560575B (en) Shock insulation pile foundation and construction method thereof
JP4237085B2 (en) Lower floor extension method for existing buildings
JP5187822B2 (en) Demolition method and system for multi-layer buildings
JP6835496B2 (en) Wooden laminated building using wooden unit
JP4986239B2 (en) Demolition method for multi-story buildings
CN110409604A (en) A kind of prestressing force assembled steel frame damping by friction structural system and its design method
JP6767854B2 (en) Building demolition material carry-out system
JP5035850B2 (en) Horizontal support method and support structure for multi-story building
JP5039304B2 (en) Construction method of boiler frame
JP5645548B2 (en) Dismantling method, jack structure
JP5985263B2 (en) Structure demolition method
JP2016084701A (en) Vibration control building
JP6767853B2 (en) Building demolition material unloading system and building demolition material unloading method
Melkumyan Base isolation retrofitting design for the existing 2-story stone building and its Conversion into a 3-Story kindergarten
JP5992218B2 (en) Structure demolition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5382925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees