JP4986239B2 - Demolition method for multi-story buildings - Google Patents
Demolition method for multi-story buildings Download PDFInfo
- Publication number
- JP4986239B2 JP4986239B2 JP2007314039A JP2007314039A JP4986239B2 JP 4986239 B2 JP4986239 B2 JP 4986239B2 JP 2007314039 A JP2007314039 A JP 2007314039A JP 2007314039 A JP2007314039 A JP 2007314039A JP 4986239 B2 JP4986239 B2 JP 4986239B2
- Authority
- JP
- Japan
- Prior art keywords
- floor
- building
- jack
- dismantling
- pillars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 73
- 230000005540 biological transmission Effects 0.000 claims description 114
- 238000005520 cutting process Methods 0.000 claims description 75
- 230000008602 contraction Effects 0.000 claims description 27
- 238000010276 construction Methods 0.000 claims description 19
- 230000009191 jumping Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 description 22
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 239000010425 asbestos Substances 0.000 description 7
- 229910052895 riebeckite Inorganic materials 0.000 description 7
- 238000010008 shearing Methods 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000000837 restrainer Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005422 blasting Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Working Measures On Existing Buildindgs (AREA)
Description
本発明は多層建築物の解体工法に関し、とくにビル等の多層建築物をジャッキにより降下させながら下層から順次解体する工法に関する。 The present invention relates to a method for demolishing a multi-layered building, and more particularly to a method for sequentially demolishing a multi-layered building such as a building from a lower layer while lowering it with a jack.
従来から、鉄骨構造(S造)、鉄筋コンクリート構造(RC造)、鉄骨鉄筋コンクリート構造(SRC造)等の多層建築物を解体する工法として、油圧クラッシャー等を用いる圧砕機工法、ダイヤモンドブレード等を用いるカッター(ウォールソー)工法、ワイヤーソーイング工法、アブレイシブウォータージェット工法等が知られている(非特許文献1参照)。これらの工法は何れも、基本的には建設時と逆の順序で鉄骨、鉄筋、コンクリート等の部材(柱材や床梁等)を破砕又は切断して地表まで下ろす作業を、上層階から下層階へ順次繰り返して建築物を解体する方法である。 Conventionally, as a method of dismantling multi-layered buildings such as steel structure (S structure), reinforced concrete structure (RC structure), steel reinforced concrete structure (SRC structure), crusher method using hydraulic crusher, etc., cutter using diamond blade, etc. (Wall saw) method, wire sawing method, abrasive water jet method and the like are known (see Non-Patent Document 1). In any of these methods, basically, the work of crushing or cutting the members (columns, floor beams, etc.) such as steel frames, rebars, concrete, etc. in the reverse order of construction and lowering them to the ground surface, from the upper floor to the lower floor It is a method of dismantling the building by repeatedly repeating to the floor.
しかし、従来の上層階から解体する工法は、解体装置(小型の重機等)を先ず最上階に設置したうえで解体に応じて順次下層階へ移動させる作業が必要があり、上層階から周囲への振動・騒音・飛石・粉塵等の拡散・飛散を防止するために解体工事に先行して建築物の全体を覆うような養生仮設を設ける作業も必要である。このような作業は工期、コストを増加させる要因となっており、従来の解体工法は比較的長い工期が必要とされ、それに応じてコストも嵩むという問題点がある。火薬を用いた逐次爆破によって建築物を崩壊させて解体する工法(ミニブラスティング工法)も開発されているが、この工法は爆破に伴って飛石・粉塵等が周囲に飛散するので、オフィスビルやマンション等が密集する地域での建築物の解体、とくに飛散が広範囲に及ぶような中高層建築物の解体に適用することは困難である。周囲に与える影響を小さく抑えつつ中高層建築物を短い工期で解体できる工法の開発が望まれている。 However, in the conventional method of dismantling from the upper floor, it is necessary to first install the dismantling device (small heavy machinery, etc.) on the top floor and then move it sequentially to the lower floor according to the dismantling. In order to prevent the spread and scattering of vibration, noise, stepping stones, dust, etc., it is also necessary to provide a temporary work that covers the entire building prior to the demolition work. Such work is a factor that increases the work period and cost, and the conventional dismantling method requires a relatively long work period, and there is a problem that the cost increases accordingly. A construction method (mini-blasting construction method) has also been developed in which buildings are destroyed by sequential blasting using explosives, but this method also involves stepping stones, dust, etc. scattered around the office building. It is difficult to apply to the dismantling of buildings in areas where condominiums are densely populated, especially the dismantling of high-rise buildings with widespread scattering. Development of a construction method that can dismantle medium- and high-rise buildings in a short construction period while minimizing the impact on the surroundings is desired.
これに対し、例えば特許文献1のように、多層建築物の周囲にジャッキ装置を介して立設した仮設トラスを建築物と複数箇所で固定したのち、建築物の下端部分を解体する毎に仮設トラスをジャッキダウンすると共にトラスの最下層部分を取り外してジャッキアップするサイクルを反復し、建築物を徐々に降下させながら下層階から解体する工法(以下、ジャッキダウン式解体工法という)が提案されている。また特許文献2のように、鉄骨建屋の鉄骨支柱に組み込まれた最下段の鉄骨梁の下面にジャッキ装置(吊治具)をセットしたのち、鉄骨梁をジャッキで支持しながら鉄骨支柱を所定長さ切断してジャッキダウンすると共に下段から外したジャッキをジャッキアップして上段の鉄骨梁の下面にセットするサイクルを繰り返すことにより、鉄骨建屋を下層階から解体するジャッキダウン式解体工法も提案されている。 On the other hand, for example, as in Patent Document 1, a temporary truss erected around a multi-layered building via a jack device is fixed to the building at a plurality of locations, and then temporarily installed every time the lower end portion of the building is disassembled. A method of jacking down the truss and removing the lowermost layer of the truss and jacking up is repeated, and a method of dismantling from the lower floor while gradually lowering the building (hereinafter referred to as a jackdown-type dismantling method) has been proposed. Yes. Also, as in Patent Document 2, after setting the jack device (hanging jig) on the lower surface of the lowermost steel beam incorporated in the steel column of the steel building, the steel column is supported for a predetermined length while supporting the steel beam with the jack. A jack-down dismantling method has also been proposed in which the steel building is dismantled from the lower floor by repeating the cycle of cutting and jacking down and jacking up the jack removed from the lower stage and setting it on the lower surface of the upper steel beam. Yes.
ジャッキダウン式解体工法の他の例として、特許文献3は、多層建築物(ビル)の下部の複数解体箇所(A点)にそれぞれ装着したジャッキで建築物を支持しつつジャッキで支持しない部分を解体してジャッキダウンするサイクルと、建築物の下部の異なる複数解体箇所(B点)にそれぞれジャッキを付け替えて建築物を支持しつつジャッキで支持しない部分を解体してジャッキダウンするサイクルとを交互に繰り返す工法を開示している。また特許文献4は、所定数の主要支持体を残して建築物の下部を解体すると共に各主要支持体を1つずつ切断して油圧シリンダーをセットしたのち、全ての油圧シリンダーを連動させて建築物をジャッキダウンする工程と、主要支持体を残して建築物の下部を解体すると共に各主要支持体を1つずつ切断して油圧シリンダーを伸長する工程とを交互に繰り返すジャッキダウン式解体工法を開示している。 As another example of the jackdown-type dismantling method, Patent Document 3 describes a portion that supports a building with a jack that is attached to each of a plurality of dismantling locations (point A) in a lower part of a multi-layer building (building) but does not support a jack. The cycle of dismantling and jacking down and the cycle of disassembling and jacking down the parts that are not supported by the jack while supporting the building by changing the jacks to different dismantling locations (point B) at the bottom of the building The method of repeating is disclosed. In Patent Document 4, the lower part of the building is dismantled while leaving a predetermined number of main supports, and each main support is cut one by one and hydraulic cylinders are set. A jackdown-type dismantling method that alternately repeats the steps of jacking down an object and disassembling the lower part of the building while leaving the main support, and cutting each main support one by one and extending the hydraulic cylinder. Disclosure.
特許文献1〜4のようなジャッキダウン式解体工法によれば、多層建築物を地上(1階)の解体装置で順次解体することができ、解体装置を最上階等へ移動させる手間を省くことができる。また、特許文献1の工法では多層建築物と同程度の高さの仮設トラスを構築する必要があるものの、特許文献2〜4の工法では解体作業をジャッキで支持した低層階のみに限定することができ、低層階のみを覆う養生仮設によって飛石・粉塵等の周囲への飛散を有効に防止することができる。従ってジャッキダウン式解体工法によれば、上層階から解体する従来の解体工法に比して、周囲に与える影響を小さく抑えつつ中高層建築物を短い工期で解体することが期待できる。 According to the jackdown-type dismantling methods such as Patent Documents 1 to 4, it is possible to sequentially dismantle multi-layer buildings with the ground (first floor) dismantling device, and save the trouble of moving the dismantling device to the top floor etc. Can do. Moreover, although the construction method of Patent Document 1 requires the construction of a temporary truss as high as a multi-layered building, the construction methods of Patent Documents 2 to 4 limit the dismantling work to only the lower floors supported by jacks. It is possible to effectively prevent scattering of stepping stones, dust, and the like around the low-rise floor by temporary curing. Therefore, according to the jackdown-type dismantling method, it can be expected that medium- and high-rise buildings will be dismantled in a short period of time while keeping the influence on the surroundings small compared to the conventional dismantling method that dismantles from the upper floor.
しかし、特許文献3及び4のように多層建築物それ自体をジャッキで支持する解体工法は、建築物の上部荷重を複数のジャッキのみで支持する構造となるため、解体中の建築物が構造的に不安定な状態となりやすい問題点がある。このため、例えば特許文献4の工法では、解体中の建築物の最上層部に全方位傾き検出装置を設け、その検出装置の信号により複数の油圧シリンダー(ジャッキ)の動作を連動制御することにより建築物を平衡維持しつつ降下させている。ただし、このようなジャッキの連動制御では解体中の建築物のジャッキに加わる水平荷重(せん断力)を抑制することができず、その水平荷重によってジャッキ上部が座屈し又はジャッキ自体が破損するおそれがある。特許文献4は建築物の傾き傾向を修正するように複数のジャッキの作動を連動制御すると記載しているが、建築物1に加わる水平荷重をジャッキの連動制御によって修正することは困難である。建築物の上部荷重をジャッキのみで支持する構造は水平力に対する強度が小さいので、そのような解体中の建築物を安定な状態に維持するためには、ジャッキに加わる水平力を小さく抑えることが有効である。 However, the dismantling method that supports the multi-layered building itself with a jack as in Patent Documents 3 and 4 has a structure in which the upper load of the building is supported by only a plurality of jacks, so that the building being demolished is structural. There are problems that tend to be unstable. For this reason, for example, in the construction method of Patent Document 4, an omnidirectional inclination detection device is provided at the uppermost layer portion of the building being demolished, and the operations of a plurality of hydraulic cylinders (jacks) are interlocked and controlled by signals from the detection device. The building is lowered while maintaining equilibrium. However, such interlocking control of the jack cannot suppress the horizontal load (shearing force) applied to the jack of the building being dismantled, and the horizontal load may cause the upper part of the jack to buckle or damage itself. is there. Patent Document 4 describes that the operations of a plurality of jacks are interlocked so as to correct the inclination tendency of the building, but it is difficult to correct the horizontal load applied to the building 1 by the interlocking control of the jacks. Since the structure that supports the upper load of the building only with a jack has low strength against horizontal force, in order to keep the building under such demolition stable, the horizontal force applied to the jack must be kept small. It is valid.
そこで本発明の目的は、ジャッキに加わる水平力を小さく抑えた多層建築物のジャッキダウン式解体工法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a jack-down dismantling method for a multi-layered building in which the horizontal force applied to the jack is kept small.
本発明者は、多層建築物の下層階Fvの全ての柱、例えば図3(A)に示す柱P1〜P4にそれぞれジャッキ10を介装すると共に、そのジャッキ10の収縮により降下する上方の各階Fjを、ジャッキ介装階Fvではなくその直上階F(v+1)で解体することに着目した。例えば同図(A)に示すように、建築物1のジャッキ介装階Fv(図示例では1階F1)の柱P1〜P4にそれぞれジャッキ10を介装したうえで、ジャッキ10上方の各階Fjを降下させてジャッキ介装階Fvで解体作業を行なう場合は、その直上階F(v+1)(図示例では2階F2)の床梁又は床板の解体時にジャッキ介装階Fvの各柱P1〜P4が解体前より長くなるので、地震時・風負荷時・解体作業時等に加わる水平力(せん断力)によって各柱P1〜P4が変形しやすく(揺動しやすく)なり、ジャッキ介装階Fvの各柱P1〜P4及びその介装ジャッキ10が過大な荷重によって損傷するおそれがある。上述したように、水平力に抵抗できないジャッキ(ジャッキ介装階Fv)に加わる水平力はできる限り小さく抑えることが望ましい。 The inventor installs jacks 10 on all the columns of the lower floor Fv of the multi-layered building, for example, the columns P1 to P4 shown in FIG. We focused on disassembling Fj not on the jack-interposed floor Fv but on the upper floor F (v + 1). For example, as shown in FIG. 1A, after jacks 10 are respectively inserted in the pillars P1 to P4 of the jack-mounted floor Fv (the first floor F1 in the illustrated example) of the building 1, each floor Fj above the jack 10 When the dismantling work is performed on the jack interposing floor Fv and the floor beams or floor boards of the upper floor F (v + 1) (the second floor F2 in the illustrated example) are dismantled, the pillars P1 to P1 of the jack interposing floor Fv are disassembled. Since P4 is longer than before dismantling, the horizontal force (shearing force) applied during earthquakes, wind loads, dismantling, etc. makes the columns P1 to P4 easy to deform (easier to swing), and the jack interposition floor The Fv pillars P1 to P4 and the interposed jack 10 may be damaged by an excessive load. As described above, it is desirable to keep the horizontal force applied to the jack (jack interposing floor Fv) that cannot resist the horizontal force as small as possible.
これに対し、図3(B)に示すようにジャッキ介装階Fvの直上階F(v+1)(図示例では2階F2)の床梁又は床板と柱P1〜P4と切り離し、その直上階F(v+1)を解体作業階Fdとすれば、解体作業階Fdの床梁又は床板によってジャッキ介装階Fvの柱P1〜P4を拘束して変形(揺動)を防ぎ、ジャッキ介装階Fvの柱P1〜P4の長柱化の影響を避けることができる。また、地震時・風負荷時・解体作業時等に解体作業階Fdに加わる水平力を、解体作業階Fdの床梁又は床板からジャッキ介装階Fvの壁4(又は後述の壁柱32)を介してジャッキ下方(基礎部B等)へ伝達して逃がすことができ、ジャッキ介装階Fvに加わる水平力を小さく抑えることができる。本発明は、この着想に基づく研究開発の結果、完成に至ったものである。 On the other hand, as shown in FIG. 3B, the floor beams or floor boards and the pillars P1 to P4 on the upper floor F (v + 1) (second floor F2 in the illustrated example) of the jack interposing floor Fv are separated from the floor F. If (v + 1) is the dismantling work floor Fd, the pillars P1 to P4 of the jack interposing floor Fv are restrained by the floor beams or floor boards of the dismantling work floor Fd to prevent deformation (swing), and the jack interposing floor Fv The influence of making the pillars P1 to P4 long can be avoided. Further, the horizontal force applied to the demolition work floor Fd at the time of an earthquake, wind load, demolition work, etc. is applied to the wall 4 (or a wall column 32 described later) from the floor beam or floor plate of the demolition work floor Fd to the jack interposing floor Fv. Can be transmitted to the lower part of the jack (such as the base portion B) via the jack and escaped, and the horizontal force applied to the jack interposing floor Fv can be kept small. The present invention has been completed as a result of research and development based on this idea.
図1、図2の実施例及び図4の流れ図を参照するに、本発明による多層建築物の解体工法は、解体する多層建築物1の特定下層階Fv(例えば1階1F)の全柱P1〜Pmにそれぞれジャッキ10(図5(B)参照)を介装すると共に、その直上階F(v+1)に床梁又は床板3が建築物1の全柱P1〜Pmと切り離された解体作業階Fdを設け、全柱P1〜Pmのジャッキ10を同時に縮める収縮ステップ(図4のステップS006)と順次にジャッキ直上部を吊るし切りして伸ばす伸長ステップ(図4のステップS012〜S013)とを繰り返すことにより解体作業階Fd上方の柱P1〜Pmに結合した各階Fj(j>d)を徐々に降下させ、降下した各階Fjの柱P以外の躯体(床梁又は床板3や壁4)を解体作業階Fdで順次解体してなるものである(図4のステップS008)。望ましくは、図5又は図7(D)に示すように、解体作業階Fdの床梁又は床板3と全柱P1〜Pmとの隙間dにそれぞれ、解除可能に床梁又は床板3と柱P1〜Pmとを連結する拘束器34を設ける。 1 and FIG. 2 and the flowchart of FIG. 4, the demolition method for a multi-layer building according to the present invention is the entire pillar P1 of the specific lower floor Fv (for example, the first floor 1F) of the multi-layer building 1 to be demolished. ~ Pm with jacks 10 (see FIG. 5 (B)) respectively, and floor beams or floor boards 3 are separated from all the pillars P1 to Pm of the building 1 on the upper floor F (v + 1). A contraction step (step S006 in FIG. 4) for simultaneously contracting the jacks 10 of all the columns P1 to Pm by providing Fd and an extension step (steps S012 to S013 in FIG. 4) for sequentially hanging and extending the upper portion of the jack are repeated. As a result, each floor Fj (j> d) coupled to the pillars P1 to Pm above the dismantling work floor Fd is gradually lowered, and the frame (floor beam or floor board 3 or wall 4) other than the pillar P of each descending floor Fj is dismantled. Sequential dismantling at work floor Fd It is made of Te (step S008 in FIG. 4). Desirably, as shown in FIG. 5 or FIG. 7 (D), the floor beam or floor plate 3 and the pillar P1 are releasably releasable in the gap d between the floor beam or floor plate 3 of the dismantling work floor Fd and all the pillars P1 to Pm, respectively. A restraint 34 for connecting ~ Pm is provided.
好ましくは、図6及び図7に示すように、建築物1の柱P(例えば図2のP52、P42、P43、P53)で囲まれた区画T内にジャッキ介装階Fvの下層階F(v−1)又は基礎部Bから解体作業階Fdを貫く高さの荷重伝達構造体40を設けると共に、解体作業階Fdの直上階F(d+1)の区画Tの周囲柱P(例えばP52、P42、P43、P53)に荷重伝達構造体40の外面に沿って取り外し可能な荷重伝達梁45を架け渡し(図6(A)参照)、解体作業階Fd上方の各階Fjを荷重伝達梁45と共に荷重伝達構造体40の外面に沿って徐々に降下させ(図6(B)参照)、降下した各階Fjの順次解体時に荷重伝達梁45をその階Fjから取り外してその直上階F(j+1)の区画Tの周囲柱P(例えばP52、P42、P43、P53)に順次付け替える(図6(C)参照)。この場合において望ましくは、図7に示すように、荷重伝達構造体40の外面に鉛直方向の溝43を設けると共に、荷重伝達梁45にその溝43内へ間隙s(図7(A)参照)を介して嵌合する突出部46を設ける。それに加えて又は代えて、荷重伝達構造体40と荷重伝達梁45との間にダンパー50を介在させてもよい。 Preferably, as shown in FIGS. 6 and 7, the lower floor F of the jack interposing floor Fv in the section T surrounded by the pillar P of the building 1 (for example, P52, P42, P43, P53 in FIG. 2). v-1) or a load transmission structure 40 having a height penetrating from the foundation part B through the dismantling work floor Fd and surrounding columns P (for example, P52 and P42) of the section T of the floor F (d + 1) immediately above the dismantling work floor Fd. , P43, P53), the removable load transmission beam 45 is bridged along the outer surface of the load transmission structure 40 (see FIG. 6A), and each floor Fj above the dismantling work floor Fd is loaded together with the load transmission beam 45. Gradually descend along the outer surface of the transmission structure 40 (see FIG. 6 (B)), and the load transmission beam 45 is removed from the floor Fj when the lowered floors Fj are sequentially disassembled, and the section of the floor F (j + 1) immediately above it. A peripheral column P of T (for example, P52, P42, 43, P53) successively replace the reference (FIG. 6 (C)). In this case, preferably, as shown in FIG. 7, a vertical groove 43 is provided on the outer surface of the load transmission structure 40, and the load transmission beam 45 has a gap s into the groove 43 (see FIG. 7A). Protruding portion 46 is provided to be fitted through. In addition or instead, a damper 50 may be interposed between the load transmission structure 40 and the load transmission beam 45.
更に好ましくは、図9に示すように、建築物1の全柱P1〜Pmを柱切断時に床梁又は床板3経由で荷重伝達される隣接柱群Q(図9(B)及び(C)参照)が相互に重ならない柱Pを集めた複数の切断グループR1〜Rn(図9(D)及び(E)参照)に分け、上述した伸長ステップ(図4のステップS012〜S013)において、切断グループR1〜Rn毎にグループRi内の各柱Pのジャッキ直上部をそれぞれ同時に所定高さL1だけ吊るし切りしてジャッキ10を伸ばすサイクルを反復することにより、全柱P1〜Pmのジャッキ10を順次に伸ばす(図8(M)参照)。また、建築物1の全柱P1〜Pmを複数の切断グループR1〜Rnに分ければ、ジャッキ介装階Fvにジャッキ10を介装するステップ(図4のステップS004〜S005)においても、R1〜Rn毎にグループRi内の各柱Pをそれぞれ同時に初期高さL0だけ切断してジャッキ10を介装するサイクルを反復することにより、全柱P1〜Pmをそれぞれジャッキ10上に支持することができる(図5(A)及び(B)参照)。 More preferably, as shown in FIG. 9, adjacent column group Q (see FIGS. 9B and 9C) that transmits load via floor beams or floorboard 3 when cutting all the columns P1 to Pm of building 1. ) Are divided into a plurality of cutting groups R1 to Rn (see FIGS. 9D and 9E) in which pillars P that do not overlap each other are collected, and in the above-described extension step (steps S012 to S013 in FIG. 4), the cutting groups For each of R1 to Rn, by repeating the cycle of extending the jack 10 by suspending the jacks directly above the pillars P in the group Ri by a predetermined height L1, respectively, the jacks 10 of all the pillars P1 to Pm are sequentially Stretch (see FIG. 8M). In addition, if all the pillars P1 to Pm of the building 1 are divided into a plurality of cutting groups R1 to Rn, R1 to R1 in steps (steps S004 to S005 in FIG. 4) in which the jack 10 is interposed on the jack interposing floor Fv. It is possible to support all the pillars P1 to Pm on the jack 10 by repeating the cycle in which each pillar P in the group Ri is simultaneously cut by the initial height L0 and the jack 10 is interposed for each Rn. (See FIGS. 5A and 5B).
本発明による多層建築物の解体工法は、解体する多層建築物1の特定下層のジャッキ介装階Fvの全柱P1〜Pmにそれぞれジャッキ10を介装し、ジャッキ介装階Fvの直上階F(v+1)の床梁又は床板3を建築物1の全柱P1〜Pmと切り離すことによりその直上階F(v+1)を解体作業階Fdとし、全柱P1〜Pmのジャッキ10を同時に縮める収縮ステップと順次にジャッキ直上部を吊るし切りして伸ばす伸長ステップとを繰り返すことにより徐々に降下する解体作業階Fdの上方各階Fj(j>d)の柱P以外の躯体を解体作業階Fdで解体するので、次の顕著な効果を奏する。 The method of demolishing a multi-layer building according to the present invention is such that a jack 10 is interposed in each of all the pillars P1 to Pm of the jack interposing floor Fv of the specific lower layer of the multi-layer building 1 to be demolished, and the floor F directly above the jack interposing floor Fv. (V + 1) Floor beam or floor board 3 is separated from all the pillars P1 to Pm of the building 1 so that the immediately upper floor F (v + 1) is the dismantling work floor Fd, and the jacking steps for all the pillars P1 to Pm are simultaneously contracted. The frame other than the pillar P on each floor Fj (j> d) above the dismantling work floor Fd that gradually descends by repeating the extension step of suspending and extending the upper portion of the jack in sequence and extending it is dismantled at the dismantling work floor Fd. Therefore, the following remarkable effects are produced.
(イ)解体作業階dの床梁又は床板3によってジャッキ介装階Fvの柱P1〜Pmを拘束して揺動等を抑えることができ、ジャッキ介装階Fvの柱P1〜Pmの長柱化を避けて解体中の建築物1の構造的な安定性を高めることができる。
(ロ)また、地震時、風負荷時又は解体作業時等に解体作業階Fdに加わる水平力(せん断力)を、解体作業階Fdの床梁又は床板3からジャッキ介装階Fvの壁4(又は後述の壁柱32)を介してジャッキ下方(基礎部B等)へ伝達して逃がすことができ、ジャッキ介装階Fvに加わる水平力を小さく抑えることができる。
(ハ)更に、解体作業階Fdをジャッキ介装階Fvと別階層とすることにより、ジャッキ介装階Fvの作業環境の改善を図ることができる。
(A) The pillars P1 to Pm of the jack-interposed floor Fv can be restrained by the floor beams or the floor board 3 of the dismantling work floor d to suppress swinging, etc., and the long pillars of the columns P1 to Pm of the jack-interposed floor Fv Therefore, the structural stability of the building 1 being demolished can be improved.
(B) Further, the horizontal force (shearing force) applied to the demolition work floor Fd at the time of an earthquake, wind load or dismantling work is applied to the wall 4 of the jack interposing floor Fv from the floor beam or floor plate 3 of the demolition work floor Fd. (Or a wall pillar 32 described later) can be transmitted to the lower part of the jack (base B or the like) and escaped, and the horizontal force applied to the jack interposing floor Fv can be kept small.
(C) Furthermore, the work environment of the jack interposition floor Fv can be improved by making the dismantling work floor Fd different from the jack interposition floor Fv.
(ニ)建築物1の柱Pで囲まれた区画T内にジャッキ介装階Fvの下方又は基礎部Bから解体作業階Fdを貫く高さの荷重伝達構造体40を設け、解体作業階Fdの直上階F(d+1)の区画Tの周囲柱Pに荷重伝達構造体40の外面に沿って荷重伝達梁45を架け渡し、解体作業階Fdの上方各階Fjを荷重伝達梁45と共に荷重伝達構造体40の外面に沿って降下させる工法とすれば、地震時・風負荷時等に解体作業階Fdの上方各階Fjに加わる水平力を荷重伝達梁45及び荷重伝達構造体40を介してジャッキ介装階Fvの下方又は基礎部Bへ伝達して逃がすことができ、解体工事中の建築物1に十分な耐震・耐風性能を保持させることができる。
(ホ)また、荷重伝達梁45及び荷重伝達構造体40を設ければ、ジャッキ介装階Fvだけでなく解体作業階Fdに加わる水平力も低減することができ、解体作業階Fdの解体作業時に解体中の建築物1が構造的に不安定になることも避けられる。
(D) In the section T surrounded by the pillar P of the building 1, a load transmission structure 40 having a height that penetrates the dismantling work floor Fd from the lower part of the jack intervening floor Fv or from the foundation part B is provided, and the dismantling work floor Fd The load transmission beam 45 is bridged along the outer surface of the load transmission structure 40 to the peripheral column P of the section T of the upper floor F (d + 1) of the floor, and the load transmission structure 45 and the upper floor Fj of the dismantling work floor Fd are loaded together. If the construction method is to descend along the outer surface of the body 40, the horizontal force applied to each floor Fj above the dismantling work floor Fd during an earthquake or wind load is via a jack via the load transmission beam 45 and the load transmission structure 40. It can be transmitted to the lower part of the floor Fv or to the foundation part B and escaped, and the building 1 being demolished can have sufficient earthquake resistance and wind resistance performance.
(E) If the load transmission beam 45 and the load transmission structure 40 are provided, not only the jack interposing floor Fv but also the horizontal force applied to the dismantling work floor Fd can be reduced. It is also possible to avoid structural instability of the building 1 being demolished.
図1は、本発明の解体工法を、地上S造20階(1階部分はSRC造)、地下RC造3階、最上部のPH(エレベータ機械室等のペントハウス)2階の高層建築物に適用した実施例を示す。図示例では、建築物1の1階F1をジャッキ介装階Fvとし、その直上階F(v+1)である建築物1の2階F2を解体作業階Fdとしている。図2は、図1の線II−IIにおける建築物1の解体作業階Fdの垂直断面図を示し、建築物1が6行4列の24本の柱P11〜P64を有していることを示す。本発明の解体工法では、建築物1のジャッキ介装階Fvの上部荷重を負担する全ての柱P11〜P64にそれぞれジャッキ10を介装する。ただし、ジャッキ介装階Fvは1階F1に限られるものではなく、建築物1の下部に位置する特定階であれば足りる。例えば、ジャッキ介装階Fvを2階F2、3階F3、又は地下階B1〜B3とし、その上部荷重を支える全柱P11〜P64にそれぞれジャッキ10を介装してもよい。 Fig. 1 shows that the dismantling method of the present invention is applied to a high-rise building on the 20th floor of the ground S structure (the first floor is SRC structure), the 3rd floor of the underground RC structure, and the uppermost PH (penthouse such as an elevator machine room) 2nd floor. An applied example is shown. In the illustrated example, the first floor F1 of the building 1 is set as a jack interposing floor Fv, and the second floor F2 of the building 1, which is the directly upper floor F (v + 1), is set as a dismantling work floor Fd. FIG. 2 shows a vertical sectional view of the demolition work floor Fd of the building 1 along the line II-II in FIG. 1, and that the building 1 has 24 columns P11 to P64 of 6 rows and 4 columns. Show. In the dismantling method of the present invention, the jacks 10 are respectively inserted in all the pillars P11 to P64 that bear the upper load of the jack interposing floor Fv of the building 1. However, the jack interposition floor Fv is not limited to the first floor F1, but may be a specific floor located in the lower part of the building 1. For example, the jack interposing floor Fv may be the second floor F2, the third floor F3, or the underground floors B1 to B3, and the jacks 10 may be interposed in all the pillars P11 to P64 that support the upper load.
図4は、本発明による解体工法の流れ図の一例を示す。先ずステップS001において、ジャッキ介装階Fvの直上階F(v+1)(図示例では2階F2)の床梁又は床板3を建築物1の全柱P1〜Pmと切り離すことにより、ジャッキ介装階Fvの直上階F(v+1)に解体作業階Fdを設ける。解体作業階Fdの床梁又は床板3と建築物1の全柱P1〜Pmとは、例えば図7(D)に示すようなダイヤモンドブレード又はワイヤーソー(ダイヤモンド切刃をワイヤーに巻きつけたもの)等の柱刳り貫き装置31によって切り離すことができる(図7(D)の楕円E部分参照)。 FIG. 4 shows an example of a flowchart of the dismantling method according to the present invention. First, in step S001, a jack interposition floor is separated by separating the floor beams or floor boards 3 of the upper floor F (v + 1) (the second floor F2 in the illustrated example) of the jack interposition floor Fv from all the pillars P1 to Pm of the building 1. A demolition work floor Fd is provided on the floor F (v + 1) immediately above Fv. The floor beam or floor board 3 of the demolition work floor Fd and all the pillars P1 to Pm of the building 1 are, for example, a diamond blade or a wire saw (a diamond cutting blade wound around a wire) as shown in FIG. And the like can be separated by a column drilling device 31 such as an ellipse E (see an ellipse E in FIG. 7D).
また図1及び図2の実施例では、ステップS001において、建築物1の周囲又はその一部分に解体作業階Fdの床梁又は床板3と同じ高さで建築物1に外接する作業架台5を構築している。その作業架台5上に可動ベースマシーン(例えばバックホー)等の解体装置9を配置し、図1及び図2の矢印に示すように、後述する解体作業階Fdの上方各階Fjの解体作業時(ステップS008)に作業架台5から建築物1の解体作業階Fdへ解体装置9を乗り入れて上方各階Fjを解体する。ただし、作業架台5は本発明に必須のものではなく、解体装置9は従来技術に属する適当な方法、例えばジャッキ介装階Fvから解体作業階Fdに至る上昇通路又は吊り上げクレーン等により解体作業階Fdへ搬入してもよい。 In the embodiment of FIGS. 1 and 2, in step S001, a work platform 5 circumscribing the building 1 is constructed around the building 1 or at a part thereof at the same height as the floor beam or floor board 3 of the dismantling work floor Fd. is doing. A dismantling device 9 such as a movable base machine (for example, a backhoe) is disposed on the work platform 5, and as shown by arrows in FIGS. 1 and 2, during the dismantling work on each floor Fj above the dismantling work floor Fd described later (steps) In S008), the dismantling device 9 is put on the dismantling work floor Fd of the building 1 from the work platform 5, and the upper floors Fj are dismantled. However, the work platform 5 is not indispensable for the present invention, and the dismantling device 9 can be disassembled by an appropriate method belonging to the prior art, for example, a lift passage from a jack interposing floor Fv to a dismantling work floor Fd or a lifting crane. You may carry in to Fd.
ステップS001において、全柱P1〜Pmと切り離された解体作業階Fdの床梁又は床板3は、ジャッキ介装階Fvの既存の壁4等によって落下しないように支持することができる。ただし、図示例のように大重量の解体装置9を解体作業階Fdへ乗り入れる場合は、必要に応じて、図6(A)に示すように解体作業階Fdの床梁又は床板3及び/又は解体装置9を支持する強度・耐力の壁柱32をジャッキ介装階Fvに設けてもよい。好ましくは、図5又は図7(D)の楕円F部分に示すように、建築物1の柱Pと解体作業階Fdの床梁又は床板3とを切り離した隙間dに、解除可能に柱Pと床梁又は床板3とを連結する拘束器34を設ける。 In step S001, the floor beam or floor plate 3 of the dismantling work floor Fd separated from all the pillars P1 to Pm can be supported so as not to fall by the existing wall 4 or the like of the jack interposing floor Fv. However, when the heavy-weight dismantling apparatus 9 is to be put on the dismantling work floor Fd as shown in the example, the floor beam or floor plate 3 and / or the dismantling work floor Fd as shown in FIG. You may provide the wall pillar 32 of strength and proof strength which supports the dismantling apparatus 9 in the jack interposed floor Fv. Preferably, as shown in the ellipse F part of FIG. 5 or FIG. 7 (D), the pillar P is releasably releasable in the gap d separating the pillar P of the building 1 and the floor beam or floor board 3 of the demolition work floor Fd. And a restraint 34 for connecting the floor beam or floor plate 3 to each other.
図5の実施例では、床梁又は床板3上の各柱Pの4方向周囲にそれぞれ柱ガイド33を固定すると共に、各柱Pと柱ガイド33との間にそれぞれ楔式拘束器34bを打ち込むことで、床梁又は床板3と各柱Pとを拘束している(図5(D)参照)。後述するジャッキ10の収縮時(ステップS006)には、楔式拘束器34bを抜き取ることで各柱Pを床梁又は床板3に対して移動可能とする(図5(C)参照)。また図7(D)の楕円Fに示すように、解体作業階Fdの床梁又は床板3上の各柱Pの周囲に押しボルト34a付きの柱ガイド33を固定し、その押しボルト式拘束器34aにより床梁又は床板3と各柱Pとを拘束し、ジャッキ10の収縮時(ステップS006)には押しボルト34aを各柱Pから離して各柱Pを床梁又は床板3に対して移動可能としてもよい。ただし、拘束器34は図示例に限定されるものではなく、解体作業階Fdの床梁又は床板3と柱Pとの隙間dが柱Pを十分拘束できる程度の幅であれば拘束器34を省略してもよい。 In the embodiment of FIG. 5, the column guides 33 are fixed around the four directions of the columns P on the floor beam or the floor board 3, and wedge type restrainers 34 b are driven between the columns P and the column guides 33. Thus, the floor beam or floor board 3 and each pillar P are restrained (see FIG. 5D). When the jack 10 which will be described later is contracted (step S006), each column P can be moved with respect to the floor beam or the floor plate 3 by extracting the wedge-shaped restrainer 34b (see FIG. 5C). Further, as shown by an ellipse F in FIG. 7D, a pillar guide 33 with a push bolt 34a is fixed around the floor beam or the pillar P on the floor board 3 of the dismantling work floor Fd, and the push bolt type restrainer. The floor beam or floor plate 3 and each column P are restrained by 34a, and when the jack 10 is contracted (step S006), the push bolt 34a is moved away from each column P to move each column P relative to the floor beam or floor plate 3. It may be possible. However, the restraint 34 is not limited to the illustrated example. If the clearance d between the floor beam of the dismantling work floor Fd or the floor plate 3 and the pillar P is wide enough to restrain the pillar P, the restraint 34 is not limited. May be omitted.
また図4のステップS001では、ジャッキ介装階Fvの直上階F(v+1)に解体作業階Fdを設けると共に、図6(A)に示すように解体作業階Fdの内装、設備、アスベスト等を解体撤去又は除去し、更に解体作業階Fdの直上階F(d+1)(図示例では3階F3)の内装、設備、アスベスト等を解体撤去又は除去している。解体作業階Fdの直上階F(d+1)より更に上方の各階Fj(j>d+1)の内装、設備、アスベスト等については、建築物1の解体に応じて各階Fj毎に解体撤去又は除去することができる(後述するステップS008)。そのように各階Fj毎に内装、設備、アスベスト等を解体撤去又は除去することで建築物1の全体の解体に要する工期の短縮を図ることができるが、必要に応じて、ステップS001において建築物1の全ての階の内装、設備、アスベスト等を予め解体撤去又は除去してもよい。なお、図4の流れ図では、ステップS002において建築物1の柱Pで囲まれた区画T内に荷重伝達構造体40を立ち上げ、その荷重伝達構造体40によって解体工事中の建築物1に耐震・耐風性能を付与しているが、荷重伝達構造体40は本発明の解体工法に必須のものではなく、ステップS002は省略可能である。荷重伝達構造体40の作用の詳細については後述する(実施例1参照)。 In step S001 in FIG. 4, a dismantling work floor Fd is provided on the floor F (v + 1) immediately above the jack interposing floor Fv, and the interior, equipment, asbestos, etc. of the dismantling work floor Fd are provided as shown in FIG. The dismantling is removed or removed, and the interior, equipment, asbestos, etc. of the floor F (d + 1) (the third floor F3 in the illustrated example) immediately above the dismantling work floor Fd are dismantled or removed. The interior, equipment, asbestos, etc. of each floor Fj (j> d + 1) above the floor F (d + 1) immediately above the dismantling work floor Fd should be dismantled or removed for each floor Fj according to the dismantling of the building 1. (Step S008 described later). As described above, it is possible to shorten the construction period required for the entire dismantling of the building 1 by dismantling or removing the interior, equipment, asbestos, etc. for each floor Fj. However, if necessary, the building is constructed in step S001. The interior, equipment, asbestos, etc. on all floors of 1 may be dismantled or removed in advance. In the flow chart of FIG. 4, the load transmission structure 40 is started up in the section T surrounded by the pillar P of the building 1 in step S002, and the building 1 being demolished by the load transmission structure 40 is earthquake resistant. Although wind resistance performance is imparted, the load transmission structure 40 is not essential for the dismantling method of the present invention, and step S002 can be omitted. Details of the operation of the load transmission structure 40 will be described later (see Example 1).
図4のステップS003〜S005は、図5(A)に示すように建築物1のジャッキ介装階Fvの上部鉛直荷重を負担する全ての柱P1〜Pmをそれぞれ初期長さL0だけ切断し、同図(B)に示すように各柱P1〜Pmにそれぞれジャッキ10を介装するステップを示す。建築物1には上部荷重を負担しない二次部材の柱も存在しているが、そのような二次的な柱は本発明において柱以外の躯体と考えることができ、ステップS001において予め解体撤去しておくことができる。ジャッキ介装ステップでは、例えばジャッキ介装階Fvの全柱P1〜Pmを1本ずつ切断してジャッキ10を介装する。柱Pを1本ずつ切断すれば、切断する柱Pの支持荷重を他の柱Pで負担して支持することができ、解体中の建築物1を構造的に安定な状態に維持できる。ただし、同時に切断可能な複数本の柱Pを纏めて切断し、それらの柱Pにジャッキ10を同時に介装してもよい。図4の流れ図では、ステップS003においてジャッキ介装階Fvの全柱P1〜Pmを同時に切断可能な柱Pを集めた複数の切断グループR1〜Rnに分け、ステップS004〜S005において切断グループR1〜Rn毎にジャッキ介装階Fvの柱Pを切断してジャッキ10を介装している。切断グループR1〜Rn毎にグループ内の柱Pを同時に切断してジャッキ10を介装することにより、ジャッキ介装ステップを迅速に進めて解体作業工期の短縮を図ることができる。建築物1の全柱P1〜Pmを切断グループR1〜Rnに分ける方法については後述する(実施例2参照)。 Steps S003 to S005 in FIG. 4 cut all the pillars P1 to Pm that bear the upper vertical load of the jack interposing floor Fv of the building 1 by the initial length L0, respectively, as shown in FIG. As shown in FIG. 5B, steps of inserting the jacks 10 in the respective pillars P1 to Pm are shown. The building 1 also has columns of secondary members that do not bear the upper load, but such secondary columns can be considered as a frame other than the columns in the present invention, and dismantled and removed in advance in step S001. Can be kept. In the jack insertion step, for example, all the columns P1 to Pm of the jack insertion floor Fv are cut one by one and the jack 10 is interposed. If the pillars P are cut one by one, the supporting load of the pillars P to be cut can be borne and supported by the other pillars P, and the building 1 being demolished can be maintained in a structurally stable state. However, a plurality of pillars P that can be cut simultaneously may be cut together, and the jacks 10 may be interposed in the pillars P at the same time. In the flowchart of FIG. 4, all the pillars P1 to Pm of the jacking floor Fv are divided into a plurality of cutting groups R1 to Rn in which the pillars P that can be cut simultaneously are collected in step S003, and the cutting groups R1 to Rn are divided in steps S004 to S005. Each time the pillar P of the jack interposing floor Fv is cut, the jack 10 is interposed. By simultaneously cutting the pillars P in the groups for each of the cutting groups R1 to Rn and interposing the jack 10, it is possible to quickly advance the jack interposing step and shorten the dismantling work period. A method of dividing all the pillars P1 to Pm of the building 1 into the cutting groups R1 to Rn will be described later (see Example 2).
図5(B)に示すジャッキ10は、ジャッキ介装階Fvの床梁又は床板3又は建築物1の基礎部Bにアンカーボルト11aで固定されたアンカープレート11上に設置され、ラム(又はピストン)12と上昇距離センサ14と圧力変換器18とを有している。その圧力変換器18は、油圧供給ケーブル29b及び油圧中継装置27を介して油圧ポンプユニット26に接続されると共に、油圧制御ケーブル28cと制御中継装置25と光ファイバーケーブル28aとを介してジャッキ制御装置20に接続されている。図5(E)に示すジャッキ制御装置20は、光ファイバーケーブル28aを介して直列に接続された複数の制御中継装置25を有しており、その制御中継装置25の各々をジャッキ介装階Fvの各柱P1〜Pmに介装したジャッキ10と接続することにより、ジャッキ介装階Fvの全柱P1〜Pmのジャッキ10の伸縮を同時に制御することができる。 The jack 10 shown in FIG. 5 (B) is installed on the anchor plate 11 fixed to the floor beam or floor plate 3 of the jack interposing floor Fv or the foundation B of the building 1 with the anchor bolt 11a, and the ram (or piston). ) 12, a rising distance sensor 14, and a pressure transducer 18. The pressure converter 18 is connected to the hydraulic pump unit 26 via a hydraulic pressure supply cable 29b and a hydraulic relay device 27, and the jack control device 20 via a hydraulic control cable 28c, a control relay device 25, and an optical fiber cable 28a. It is connected to the. The jack control device 20 shown in FIG. 5 (E) has a plurality of control relay devices 25 connected in series via an optical fiber cable 28a, and each of the control relay devices 25 is connected to a jack interposing floor Fv. By connecting to the jacks 10 interposed between the pillars P1 to Pm, the expansion and contraction of the jacks 10 of all the pillars P1 to Pm on the jack interposing floor Fv can be controlled simultaneously.
図示例のジャッキ10は、油圧ポンプユニット26から圧力変換器18へ供給される油圧をジャッキ制御装置20で制御することにより、ラム(又はピストン)12を伸長又は収縮させることができる。ラム(又はピストン)12の上昇距離をセンサ14で計測し、その計測値をセンサケーブル28b経由で制御中継装置25へ入力することにより伸長又は収縮の制御に利用する。ただし、本発明で利用可能なジャッキ10は油圧ジャッキ装置に限定されず、建築物1の各柱Pを支持できる十分な揚力及び耐荷重性能を有する適当なジャッキ装置を利用することができる。 The jack 10 of the illustrated example can extend or contract the ram (or piston) 12 by controlling the hydraulic pressure supplied from the hydraulic pump unit 26 to the pressure converter 18 with the jack control device 20. The ascending distance of the ram (or piston) 12 is measured by the sensor 14, and the measured value is input to the control relay device 25 via the sensor cable 28b to be used for controlling expansion or contraction. However, the jack 10 that can be used in the present invention is not limited to the hydraulic jack device, and an appropriate jack device having sufficient lift and load-bearing performance capable of supporting each pillar P of the building 1 can be used.
また図示例のジャッキ10は、ラム(又はピストン)12上に凹面座金15及び球面座金16を載置し、その球面座金16上に調整部材(シュー)17を介して切断した柱10の切断面を支持している。建築物1の全柱P1〜Pmの切断面を、それぞれ球面座金16を介してジャッキ10上に滑り支承させることにより、各柱Pの切断面の水平施工誤差を吸収すると共に、地震時・風負荷時等の水平力による柱Pの挙動を吸収することができる。球面座金16の中心は、例えばジャッキ介装階Fvの直上階F(v+1)上に固定した柱ガイド33と同じ高さとすることができる。また、球面座金16と柱Pの切断面との間に調整部材17を設けることにより、柱Pの切断面の凹凸等により生じる不均等な荷重を改善することができる。調整部材17の一例は、砂やライナー等の詰め物、又は木質板等である。このようにジャッキ10上に柱P1〜Pmの切断面を滑り支承させる場合は、本発明による解体工法がとくに有効である。 The jack 10 in the illustrated example has a concave washer 15 and a spherical washer 16 placed on a ram (or piston) 12, and a cut surface of the column 10 cut on the spherical washer 16 via an adjustment member (shoe) 17. Support. By making the cut surfaces of all the pillars P1 to Pm of the building 1 slide on the jack 10 via the spherical washers 16, the horizontal construction errors of the cut surfaces of the pillars P can be absorbed, and the earthquake and wind It is possible to absorb the behavior of the column P due to a horizontal force during loading. The center of the spherical washer 16 can be set to the same height as the pillar guide 33 fixed on the floor F (v + 1) immediately above the jack interposed floor Fv, for example. Further, by providing the adjustment member 17 between the spherical washer 16 and the cut surface of the column P, an uneven load caused by unevenness of the cut surface of the column P can be improved. An example of the adjusting member 17 is padding such as sand or liner, or a wooden board. In this way, when the cut surfaces of the pillars P1 to Pm are slidingly supported on the jack 10, the dismantling method according to the present invention is particularly effective.
図4のステップS006は、図5(C)に示すように、ジャッキ制御装置20によりジャッキ介装階Fvの全柱P1〜Pmのジャッキ10を同時に縮める収縮ステップを示す。全柱P1〜Pmのジャッキ10を同時に収縮させる際に、ジャッキ制御装置20の収縮ステップ手段24により、図6(B)に示すように、建築物1の解体作業階Fd上方の各階Fj(j>d)を平衡に維持しながら徐々に降下させることができる。降下の障害となり得る解体作業階Fdの壁4等は、同図(A)に示すようにステップS001において予め解体撤去しておくことができる。 Step S006 of FIG. 4 shows a contraction step in which the jack control device 20 simultaneously shrinks the jacks 10 of all the pillars P1 to Pm of the jack interposing floor Fv, as shown in FIG. When contracting the jacks 10 of all the pillars P1 to Pm at the same time, the contraction step means 24 of the jack control device 20 causes each floor Fj (j above the dismantling work floor Fd of the building 1 as shown in FIG. > D) can be gradually lowered while maintaining equilibrium. The wall 4 and the like of the dismantling work floor Fd that can be an obstacle to the descent can be dismantled and removed in advance in step S001 as shown in FIG.
収縮ステップS006における1回当たりの収縮高さ(ジャッキ10のストローク)は、建築物1の階層高さL(図5(B)参照)以下の範囲内で任意に選択可能であるが、ストロークが大きくなるとジャッキ10自体も大きくする必要があるので、例えば建築物1の階層高さLの1/4〜1/6程度(例えば600〜900mm程度)とすることが好ましい。ステップS007において、解体作業階Fdの上方各階Fjが解体に適する高さまで降下したか否かを判断し、降下していない場合はステップS008〜011をスキップしてステップS012へ進む。 The contraction height (stroke of the jack 10) per contraction in the contraction step S006 can be arbitrarily selected within the range of the floor height L of the building 1 (see FIG. 5B), but the stroke is Since it will be necessary to enlarge jack 10 itself if it becomes large, it is preferable to set it as about 1 / 4-1 / 6 (for example, about 600-900 mm) of the hierarchy height L of the building 1, for example. In step S007, it is determined whether or not each floor Fj above the demolition work floor Fd has been lowered to a height suitable for demolition. If not, steps S008 to 011 are skipped and the process proceeds to step S012.
図4のステップS012〜S013は、ジャッキ介装階Fvの全柱P1〜Pmのジャッキ10のジャッキ直上部を順次に所定高さL1だけ吊るし切りし、ジャッキ制御装置20によりジャッキ10を順次伸ばす伸長ステップを示す。伸長ステップでは、ジャッキ介装階Fvの全柱P1〜Pmを1本ずつ、例えば図8(M)の作業内容欄に示すようにジャッキ10を若干(例えば50mm程度)下降させたうえで各柱Pのジャッキ直上部を所定高さL1だけ吊るし切りし、その後に各柱Pのジャッキ10を伸ばすサイクルを順次反復することができる。或いは、同時に切断可能な複数本の柱Pのジャッキ直上部を纏めて同時に吊るし切りし、それらの柱Pのジャッキ10を同時に伸ばすサイクルを順次反復してもよい。図4の流れ図では、ステップS003で分類した切断グループR1〜Rnに基づき、ステップS012〜S013において切断グループR1〜Rn毎にグループ内の各柱Pのジャッキ直上部をそれぞれ同時に所定高さL1だけ吊るし切りし、それらの柱Pのジャッキ10を同時に伸長させている。このように切断グループR1〜Rn毎に柱P1〜Pmを吊るし切りしてジャッキ10を伸ばすことにより伸長ステップの時間を短縮できるが、その詳細については後述する(実施例2参照)。 In steps S012 to S013 of FIG. 4, the jack 10 is sequentially extended by a predetermined height L1 immediately above the jack 10 of all the pillars P1 to Pm of the jack interposition floor Fv, and the jack 10 is sequentially extended by the jack controller 20. Steps are shown. In the extension step, all the pillars P1 to Pm of the jack interposing floor Fv are moved down one by one, for example, as shown in the work content column of FIG. A cycle in which the upper portion of the jack of P is suspended and cut by a predetermined height L1, and then the jack 10 of each pillar P is extended can be sequentially repeated. Alternatively, a cycle in which the upper portions of jacks of a plurality of pillars P that can be cut at the same time are collectively suspended and cut and the jacks 10 of the pillars P are simultaneously extended may be sequentially repeated. In the flowchart of FIG. 4, based on the cutting groups R1 to Rn classified in step S003, in steps S012 to S013, the jacks immediately above the jacks P of the pillars P in the groups are simultaneously suspended by a predetermined height L1 in each of the cutting groups R1 to Rn. The jacks 10 of these pillars P are simultaneously extended. In this way, by extending the jack 10 by hanging the pillars P1 to Pm for each of the cutting groups R1 to Rn, the time for the extension step can be shortened. Details thereof will be described later (see Example 2).
ステップS012〜S013において全柱P1〜Pmを順次吊るし切りしてジャッキ10を伸ばしたのちステップS006へ戻り、上述した収縮ステップS006と伸長ステップS012〜S013とを繰り返すことにより、図6(C)に示すように解体作業階Fd上方の各階Fj(j>d)を解体に適する高さ(例えば1階層高さL)だけ降下させる。図8(A)〜(L)は、建築物1の階層高さが3375mmである場合に、伸長ステップS012における柱Pの吊るし切りの所定高さL1を675mm(=3375mm×1/5)とし、収縮ステップ及び伸長ステップの5回の繰り返しにより階層高さLだけ降下させる解体工法を示す。ステップS007において、解体作業階Fdの例えば1ストローク(675mm)上方にその直上階Fj(図示例では3階F3)が降下するまで収縮ステップ及び伸長ステップが繰り返されたことを判断して解体ステップS008へ進む(図8(A)〜(H)参照)。 In steps S012 to S013, all the pillars P1 to Pm are successively suspended and extended to extend the jack 10, and then the process returns to step S006. By repeating the contraction step S006 and the extension steps S012 to S013 described above, FIG. As shown, each floor Fj (j> d) above the dismantling work floor Fd is lowered by a height suitable for dismantling (for example, one floor height L). FIGS. 8A to 8L show that when the floor height of the building 1 is 3375 mm, the predetermined height L1 of the suspension of the pillar P in the extension step S012 is 675 mm (= 3375 mm × 1/5). The dismantling method in which the floor height L is lowered by repeating the contraction step and the extension step five times is shown. In step S007, it is determined that the contraction step and the expansion step are repeated until the upper floor Fj (the third floor F3 in the illustrated example) descends, for example, one stroke (675 mm) above the dismantling work floor Fd, and the dismantling step S008. (See FIGS. 8A to 8H).
図4のステップS008は、降下した階Fj(j>d)の柱P以外の躯体を解体作業階Fdで順次解体する解体ステップを示す(図8(I)参照)。例えば図2及び図6(C)に示すように、建築物1の周囲の作業架台5から解体装置9を建築物1の解体作業階Fdに乗り入れ、降下階Fjの柱P以外の躯体(床梁又は床板3や壁4)を解体する。また、その直上階F(j+1)(図示例では4階F4)の内装、設備、アスベスト等が解体撤去又は除去されていない場合は、降下階Fjの解体作業と並行して、ステップS008においてその直上階F(j+1)の内装、設備、アスベスト等を解体撤去又は除去することができる。ステップS008で降下階Fjの解体が終了したのちステップS009へ進み、建築物1の最上階まで解体が終了したか否かを判断する。 Step S008 of FIG. 4 shows a dismantling step of sequentially dismantling the skeletons other than the pillars P of the lowered floor Fj (j> d) at the dismantling work floor Fd (see FIG. 8I). For example, as shown in FIG. 2 and FIG. 6 (C), the dismantling apparatus 9 is put on the dismantling work floor Fd of the building 1 from the work platform 5 around the building 1 and the frame (floor) other than the pillar P of the descending floor Fj Dismantle the beam or floor 3 or wall 4). If the interior, equipment, asbestos, etc. of the immediately upper floor F (j + 1) (the fourth floor F4 in the illustrated example) have not been dismantled or removed, in step S008, in parallel with the dismantling work of the descending floor Fj. It is possible to dismantle or remove the interior, equipment, asbestos, etc. of the directly upper floor F (j + 1). After the dismantling of the descending floor Fj is completed in step S008, the process proceeds to step S009, and it is determined whether or not the dismantling has been completed up to the top floor of the building 1.
図4のステップS009において、建築物1の最上階まで解体が終了していない場合はステップS010〜S011を介してステップS012へ戻り、再び上述した伸長ステップS012〜S013と収縮ステップS006とを繰り返し(図8(J)〜(L)参照)、解体作業階Fdの更に上方の各階F(j+1)を降下させて順次解体する。図8(L)は同図(A)と同じ状態に復帰することを示しており、同図(J)〜(L)及び同図(A)〜(H)のように収縮ステップ及び伸長ステップを5回繰り返す毎に、解体作業階Fdより上方の各階Fjを階層高さLだけ降下させることができる。図8の流れ図では、収縮ステップ及び伸長ステップを5回繰り返す毎に、収縮ステップと伸長ステップとの間に解体ステップS008を設けて、同図(I)のように上方の各階Fjを解体作業階Fdで階層毎に順次解体する。 In step S009 of FIG. 4, when dismantling has not been completed up to the top floor of the building 1, the process returns to step S012 via steps S010 to S011, and the above-described expansion steps S012 to S013 and the contraction step S006 are repeated again ( 8 (J) to (L)), each floor F (j + 1) further above the dismantling work floor Fd is lowered and sequentially disassembled. FIG. 8 (L) shows that the state returns to the same state as FIG. 8 (A), and the contraction step and extension step as shown in FIG. 8 (J) to (L) and FIG. 8 (A) to (H). Can be lowered by the floor height L at each floor Fj above the dismantling work floor Fd. In the flowchart of FIG. 8, every time the contraction step and the expansion step are repeated five times, a disassembly step S008 is provided between the contraction step and the expansion step, and each upper floor Fj is disassembled as shown in FIG. Dismantle sequentially for each layer with Fd.
なお、解体した降下階Fjの直上階F(j+1)において柱P1〜Pmの一部分が間引きされている場合は、間引きされた柱Pのジャッキ10を撤去したうえで、残された柱Pのジャッキ10のみを利用して伸長ステップS012〜S013と収縮ステップS006を繰り返することにより、その直上階F(j+1)の解体工事を進めることができる。また図4のステップS010〜S011は、建築物1の全柱P1〜Pmを切断グループR1〜Rnに分けている場合に、その直上階F(j+1)を解体する前に、必要に応じて、その直上階F(j+1)の残された柱Pについて切断グループRを更新する処理を示す。ステップS010〜S011の切断グループRの更新処理の詳細については後述する(実施例2参照)。 When a part of the pillars P1 to Pm is thinned out on the floor F (j + 1) immediately above the demolished descending floor Fj, the jack 10 of the pillar P that has been thinned out is removed and the jack of the pillar P that remains is removed. By repeating the expansion steps S012 to S013 and the contraction step S006 using only 10, the dismantling work on the immediately upper floor F (j + 1) can be advanced. In addition, steps S010 to S011 in FIG. 4 are performed as necessary before dismantling the upper floor F (j + 1) when all the pillars P1 to Pm of the building 1 are divided into cutting groups R1 to Rn. The process of updating the cutting group R for the remaining pillar P on the immediately upper floor F (j + 1) is shown. Details of the update processing of the disconnection group R in steps S010 to S011 will be described later (see Example 2).
図4のステップS009において、建築物1の最上階まで解体が終了した場合はステップS014へ進み、建築物1の残部であるジャッキ介装階Fv(図示例ではF1)、解体作業階Fd(図示例ではF2)、及び基礎部Bを解体する。なお、ジャッキ介装階Fvを建築物1の2階F2以上とした場合は、ステップS014において、基礎部Bと共にジャッキ介装階Fvより下層の各階Fj(j<v)を解体すればよい。本発明の解体工法によれば、解体作業階Fdの床梁又は床板3でジャッキ10上方の各柱P1〜Pmを拘束しながら解体作業階Fdの上方各階Fj(j>d)を降下させて解体するので、ジャッキ10上方の柱P1〜Pmの長柱化を避け、解体中の建築物1を構造的に安定な状態に維持しながら解体作業を進めることができる。また、解体ステップS008において解体作業階Fdの各柱P1〜Pmに加わる水平力も、解体作業階Fdの床梁又は床板3からジャッキ介装階Fvの壁4(又は壁柱32)を介してジャッキ介装階Fvの下層階F(v−1)又は建築物1の基礎部Bへ伝達して逃がすことができる。従って、ジャッキ10に加わる水平力(せん断力)を小さく抑え、ジャッキ10上方の各柱P1〜Pmの座屈又はジャッキ10の破損を防止することができる。 In step S009 of FIG. 4, when the dismantling to the top floor of the building 1 is completed, the process proceeds to step S014, the jack interposing floor Fv (F1 in the illustrated example) that is the remaining part of the building 1, the dismantling work floor Fd (FIG. In the example shown, F2) and the base part B are dismantled. In addition, when the jack interposed floor Fv is set to be the second floor F2 or higher of the building 1, in step S014, the floors Fj (j <v) below the jack interposed floor Fv together with the base portion B may be disassembled. According to the demolition work method of the present invention, the upper floors Fj (j> d) above the demolition work floor Fd are lowered while restraining the pillars P1 to Pm above the jack 10 with the floor beams or floor boards 3 of the demolition work floor Fd. Since dismantling is performed, dismantling work can be performed while avoiding the long pillars P1 to Pm above the jack 10 and maintaining the building 1 being dismantled in a structurally stable state. Further, the horizontal force applied to the pillars P1 to Pm of the dismantling work floor Fd in the dismantling step S008 is also jacked from the floor beam or floor plate 3 of the dismantling work floor Fd through the wall 4 (or the wall pillar 32) of the jacking floor Fv. It can be transmitted to the lower floor F (v-1) of the intervening floor Fv or the base part B of the building 1 and escaped. Therefore, the horizontal force (shearing force) applied to the jack 10 can be kept small, and the pillars P1 to Pm above the jack 10 can be prevented from being buckled or damaged.
こうして本発明の目的である「ジャッキに加わる水平力を小さく抑えた多層建築物のジャッキダウン式解体工法」の提供を達成できる。 Thus, the provision of “a jack-down type demolition method for multi-layered buildings in which the horizontal force applied to the jack is suppressed”, which is the object of the present invention, can be achieved.
図1及び図2の実施例では、解体中の建築物1の構造的な安定性を更に高めるため、図4のステップS002において、建築物1の柱P(例えば図2のP53、P43、P42、P52)で囲まれた区画T(以下、中央区画Tということがある)内に、ジャッキ介装階Fvの下層階F(v−1)又は基礎部Bから解体作業階Fdを貫く高さの荷重伝達構造体40を立ち上げ、解体作業階Fdの直上階F(d+1)(図示例では3階F3)の区画Tの周囲柱Pに荷重伝達構造体40の外面に沿って荷重伝達梁45を架け渡している。図2の図示例では、建築物1の2つの中央区画T内にそれぞれ荷重伝達構造体40を設け、その一対の荷重伝達構造体40の外面に沿ってそれぞれ荷重伝達梁45を架け渡すことにより、建築物1の各柱Pの水平荷重が荷重伝達梁45を介して何れかの荷重伝達構造体40へ伝達されるように構成している。ただし、十分大きな水平荷重を負担できる荷重伝達構造体40であれば、建築物1に対して単独の荷重伝達構造体40を設ければ足りる。 In the embodiment of FIGS. 1 and 2, in order to further enhance the structural stability of the building 1 being dismantled, in step S002 of FIG. 4, the pillar P of the building 1 (for example, P53, P43, P42 of FIG. 2). , P52), the height that penetrates the dismantling work floor Fd from the lower floor F (v-1) of the jack interposing floor Fv or the foundation part B in the section T (hereinafter also referred to as the central section T). The load transmission structure 40 is started up, and the load transmission beam is extended along the outer surface of the load transmission structure 40 to the peripheral column P of the section T of the floor F (d + 1) (third floor F3 in the illustrated example) immediately above the dismantling work floor Fd. Over 45. In the illustrated example of FIG. 2, load transmission structures 40 are respectively provided in the two central sections T of the building 1, and the load transmission beams 45 are bridged along the outer surfaces of the pair of load transmission structures 40. The horizontal load of each column P of the building 1 is configured to be transmitted to any one of the load transmission structures 40 via the load transmission beam 45. However, if the load transmission structure 40 can bear a sufficiently large horizontal load, it is sufficient to provide a single load transmission structure 40 for the building 1.
建築物1の中央区画T内に荷重伝達構造体40を設ける理由を、図3(C)を参照して説明する。同図(B)を参照して上述したように、ジャッキ介装階Fvの直上階F(v+1)の床梁又は床板3を残して解体作業階Fdとすれば、その床梁又は床板3によりジャッキ10上方の柱P1〜P4を拘束し、ジャッキ介装階Fvの柱P1〜P4の長柱化の影響を避けることができる。ただし、上述した解体ステップS008において解体作業階Fdの柱P1〜P4が解体前より長くなるので(図8(I)及び(J)参照)、その解体作業階Fdの長柱化の影響により解体中の建築物1が構造的に不安定になるおそれが残る。これに対し同図(C)のように、建築物1の中央区画T内に荷重伝達構造体40を設け、解体作業階Fdの直上階F(d+1)に荷重伝達構造体40の外面に沿って荷重伝達梁45を架け渡し、解体作業階Fdの上方各階Fj(j>d)を荷重伝達梁45と共に荷重伝達構造体40の外面に沿って徐々に降下させる工法とすれば、解体作業階Fdの直上階F(d+1)に加わる水平力を荷重伝達梁45及び荷重伝達構造体40を介してジャッキ介装階Fvの下方又は基礎部Bへ伝達して逃がすことができ、解体作業階Fdの柱P1〜P4の長柱化の影響を避けることができる。また、地震時・風負荷時に上方各階Fjに加わる水平力も解体作業階Fd及びジャッキ介装階Fvを迂回してジャッキ介装階Fvの下方又は基礎部Bへ逃がすことができ、解体時における建築物1の安定性・耐震性・耐風性を高めることができる。 The reason why the load transmission structure 40 is provided in the central section T of the building 1 will be described with reference to FIG. As described above with reference to FIG. 5B, if the floor beam or floor board 3 on the floor F (v + 1) immediately above the jack interposing floor Fv is left as the dismantling work floor Fd, the floor beam or floor board 3 The pillars P1 to P4 above the jack 10 can be restrained to avoid the influence of the long pillars of the pillars P1 to P4 of the jack interposing floor Fv. However, since the columns P1 to P4 of the demolition work floor Fd are longer than before the dismantling in the dismantling step S008 described above (see FIGS. 8I and 8J), the dismantling is caused by the influence of the long column of the dismantling work floor Fd. There remains a risk that the building 1 inside becomes structurally unstable. On the other hand, as shown in FIG. 5C, a load transmission structure 40 is provided in the central section T of the building 1 and along the outer surface of the load transmission structure 40 on the floor F (d + 1) immediately above the dismantling work floor Fd. If the construction is such that the load transmission beam 45 is bridged and each floor Fj (j> d) above the dismantling work floor Fd is gradually lowered along the outer surface of the load transmission structure 40 together with the load transmission beam 45. The horizontal force applied to the upper floor F (d + 1) immediately above Fd can be transmitted to the lower part of the jack interposing floor Fv or the base part B via the load transmission beam 45 and the load transmission structure 40 and escaped. The influence of the long pillars of the pillars P1 to P4 can be avoided. In addition, the horizontal force applied to each upper floor Fj during an earthquake or wind load can bypass the dismantling work floor Fd and the jack interfacing floor Fv and escape to the lower part of the jack interfacing floor Fv or to the base B, and the building at the time of dismantling The stability, earthquake resistance, and wind resistance of the object 1 can be improved.
図6は、荷重伝達構造体40を含む解体作業階Fdの垂直断面図を示す。図示例の荷重伝達構造体40は、建築物1の中央区画T内にジャッキ介装階Fvの下層階F(v−1)又は基礎部Bに固定して立ち上げた、解体作業階Fdの直上階F(d+1)(図示例では3階F3)の床3を貫く高さのS造又はRC造の耐力壁41に囲まれたコア壁であり、地震時・風負荷時等に建築物1に加わる水平力を十分に負担できる強度、耐力、靭性を有している。荷重伝達構造体40を構築する際に、解体作業階Fd及びその直上階F(d+1)の中央区画T内の小梁や床7等は解体撤去することができる。このような荷重伝達構造体40は、例えば従来の高層建築物におけるコア壁構築技術を用いて構築することができる。ただし、従来のコア壁が各階で外周部の床梁又は床板3と結合されているのに対し、図示例の荷重伝達構造体40は解体作業階Fd及びその直上階F(d+1)の床梁又は床板3と離隔して構築されており、その直上階F(d+1)の区画Tの周囲柱Pに環状に架け渡した荷重伝達梁45を荷重伝達構造体40の外面と間隙S(図7(A)参照)を介して対向させている。 FIG. 6 shows a vertical sectional view of the dismantling work floor Fd including the load transmission structure 40. The load transmission structure 40 of the example of illustration is fixed to the lower floor F (v-1) of the jack interposed floor Fv or the foundation part B in the central section T of the building 1 and started up in the dismantling work floor Fd. This is a core wall surrounded by a S or RC bearing wall 41 with a height that penetrates the floor 3 of the directly upper floor F (d + 1) (third floor F3 in the example shown). It has strength, proof stress, and toughness that can sufficiently bear the horizontal force applied to 1. When constructing the load transmitting structure 40, the dismantling work floor Fd and the small beams, the floor 7 and the like in the central section T of the floor F (d + 1) immediately above the floor can be dismantled. Such a load transmission structure 40 can be constructed by using, for example, a core wall construction technique in a conventional high-rise building. However, while the conventional core wall is connected to the floor beam or floor plate 3 at the outer periphery at each floor, the load transmission structure 40 in the illustrated example is the floor beam of the dismantling work floor Fd and the floor F (d + 1) immediately above it. Alternatively, the load transmission beam 45, which is constructed separately from the floor plate 3 and is looped over the peripheral column P of the section T of the immediately upper floor F (d + 1), is connected to the outer surface of the load transmission structure 40 and the gap S (FIG. 7). (See (A)).
図7は、図6(A)の解体作業階Fdの直上階F(d+1)のVIIA−VIIAから見た荷重伝達構造体40及び荷重伝達梁45の頂面図(同図(A))、及び荷重伝達構造体40及び荷重伝達梁45の側面図(同図(D))を示す。図示例の荷重伝達梁45は、図7(B)及び(C)に示すように、両端に取付板49を有する4本の鉄骨部材を、間隙Sを介して荷重伝達構造体40の外周面を環状に取り囲むように、区画Tの周囲柱P(図示例ではP53、P43、P42、P52)に現場溶接したブラケット48へ取付ボルト49a等により取り外し可能に固定したものである。地震時・風負荷時等に荷重伝達構造体40の周囲柱Pが水平方向に変形すると荷重伝達梁45が荷重伝達構造体40と衝突し、荷重伝達梁45を介して周囲柱Pから荷重伝達構造体40に水平力を伝達して逃がすことができる。 FIG. 7 is a top view of the load transmission structure 40 and the load transmission beam 45 as viewed from VIIA-VIIA of the floor F (d + 1) immediately above the dismantling work floor Fd of FIG. 6A (FIG. 7A). And the side view (the figure (D)) of the load transmission structure 40 and the load transmission beam 45 is shown. As shown in FIGS. 7B and 7C, the load transmission beam 45 in the illustrated example includes four steel members having mounting plates 49 at both ends, and an outer peripheral surface of the load transmission structure 40 with a gap S therebetween. Is attached to a bracket 48 welded in situ to a peripheral column P (P53, P43, P42, P52 in the illustrated example) of the section T so as to be detachably fixed by a mounting bolt 49a or the like. When the peripheral column P of the load transmission structure 40 is deformed in the horizontal direction during an earthquake or wind load, the load transmission beam 45 collides with the load transmission structure 40 and the load transmission beam 45 transmits the load from the peripheral column P via the load transmission beam 45. A horizontal force can be transmitted to the structure 40 to escape.
ただし、本発明で用いる荷重伝達構造体40は耐震壁41に囲まれたコア壁に限定されるものではなく、建築物1に加わる水平力を十分に負担できる強度、耐力、靭性を有するS造又はRC造等の構造体であれば足りる。また、荷重伝達梁45も荷重伝達構造体40の外周面を環状に取り囲むものに限定されず、解体作業時の建築物1に加わる水平荷重の方向を考慮して、その方向の水平荷重を伝達すべき荷重伝達構造体40の特定の外面に沿って配置したものであれば足りる。なお、図示例ではジャッキ介装階Fvが1階F1であることから荷重伝達構造体40を建築物1の基礎部B上に立ち上げているが、ジャッキ介装階Fvを2階F2、3階F3等とした場合は、荷重伝達構造体40を基礎部Bに代えてジャッキ介装階Fvの下層階F(v−1)(例えばF1又はF2等)上から立ち上げたものとしてもよい。 However, the load transmission structure 40 used in the present invention is not limited to the core wall surrounded by the earthquake-resistant wall 41, but is an S structure having strength, proof stress and toughness that can sufficiently bear the horizontal force applied to the building 1. Or a structure such as RC structure is sufficient. Further, the load transmission beam 45 is not limited to the one surrounding the outer peripheral surface of the load transmission structure 40 in an annular shape, and the horizontal load in that direction is transmitted in consideration of the direction of the horizontal load applied to the building 1 during the dismantling operation. Any one arranged along a specific outer surface of the load transmission structure 40 to be used is sufficient. In the illustrated example, since the jack interposition floor Fv is the first floor F1, the load transmission structure 40 is raised on the foundation B of the building 1, but the jack interposition floor Fv is the second floor F2, 3 In the case of the floor F3 or the like, the load transmission structure 40 may be raised from the lower floor F (v-1) (for example, F1 or F2) of the jack interposing floor Fv instead of the base portion B. .
荷重伝達梁45と荷重伝達構造体40の外周面との間隙Sは、地震時・風負荷時等に周囲柱Pから荷重伝達梁45を介して荷重伝達構造体40に水平力が直ちに伝達される大きさとすることが望ましい。荷重伝達梁45と荷重伝達構造体40の外周面との間隙Sの調整が難しい場合は、図7に示すように、荷重伝達構造体40の外周面に鉛直方向の溝43を設けると共に、その荷重伝達構造体40の外周面の溝43内に間隙sを介して嵌合する突出部46を荷重伝達梁45に設け、その溝43と突出部46との間隙sを地震時・風負荷時等の水平力が直ちに伝達されるように調整してもよい。 The clearance S between the load transmission beam 45 and the outer peripheral surface of the load transmission structure 40 is such that a horizontal force is immediately transmitted from the peripheral column P to the load transmission structure 40 via the load transmission beam 45 during an earthquake or wind load. It is desirable that the size be as large as possible. When adjustment of the gap S between the load transmission beam 45 and the outer peripheral surface of the load transmission structure 40 is difficult, as shown in FIG. 7, a vertical groove 43 is provided on the outer peripheral surface of the load transmission structure 40, and A protrusion 46 that fits into the groove 43 on the outer peripheral surface of the load transmission structure 40 via the gap s is provided on the load transmission beam 45, and the gap s between the groove 43 and the protrusion 46 is provided during an earthquake or wind load. It is also possible to adjust so that a horizontal force such as is transmitted immediately.
荷重伝達梁45と荷重伝達構造体40の外周面との間に間隙S(又は間隙s)を設けることにより、常時は水平力が伝達可能であるが、上述したジャッキ10の収縮ステップS006において、荷重伝達梁45を解体作業階Fdの上方の各階Fj(j>d)と共に荷重伝達構造体40の外周面に沿って徐々に降下させることができる。ジャッキ10の収縮時以外は荷重伝達梁45と荷重伝達構造体40とを結合しておいてもよく、例えばジャッキ10の収縮時に解除可能な楔(図示せず)を荷重伝達梁45と荷重伝達構造体40との間に打ち込んで両者を結合してもよい。或いは、荷重伝達梁45と荷重伝達構造体40の外周面との間に、地震時・風負荷時等に生じる水平方向の相対的変形を抑制する(変位に応じて振動エネルギーを吸収する)ダンパー50を介在させてもよい。 By providing the gap S (or gap s) between the load transmission beam 45 and the outer peripheral surface of the load transmission structure 40, a horizontal force can be transmitted at all times. However, in the contraction step S006 of the jack 10 described above, The load transmission beam 45 can be gradually lowered along the outer peripheral surface of the load transmission structure 40 together with each floor Fj (j> d) above the dismantling work floor Fd. The load transmission beam 45 and the load transmission structure 40 may be coupled except when the jack 10 is contracted. For example, a wedge (not shown) that can be released when the jack 10 is contracted is connected to the load transmission beam 45 and the load transmission. They may be driven between the structures 40 to couple them together. Alternatively, a damper that suppresses relative horizontal deformation (absorbs vibration energy in accordance with displacement) between the load transmission beam 45 and the outer peripheral surface of the load transmission structure 40 during an earthquake or wind load. 50 may be interposed.
荷重伝達梁45と荷重伝達構造体40との間に介在させるダンパー50は、従来技術に属する軟鋼を利用した鋼材ダンパー、オイルダンパー、粘性体ダンパー等の弾性変形、塑性変形、又は弾塑性変形可能な任意のダンパーとすることができる。図12(A)は、一対の帽子(ハット)形に加工されたフランジ51a付きプレート51、51を互いに向き合わせて両フランジ51aをボルト52aで接合することにより断面多角形(図示例では六角形状)の中空筒状とした弾塑性変形可能なダンパー50の一例を示す。図示例のダンパー50は、同図(B)に示すように荷重伝達梁45と荷重伝達構造体40との間に筒状中空部が鉛直向きとなるように配置され、ダンパー50の一方のプレート51の帽子頂面を荷重伝達梁45にボルト52bで固定すると共に、他方のプレート51の帽子頂面を荷重伝達構造体40にボルト52bで固定する。 The damper 50 interposed between the load transmission beam 45 and the load transmission structure 40 can be elastically deformed, plastically deformed, or elastically plastically deformed by a steel damper, an oil damper, a viscous damper, etc. using mild steel belonging to the prior art. Any damper can be used. FIG. 12A shows a polygonal cross section (hexagonal shape in the illustrated example) by connecting plates 51 and 51 with flanges 51a processed into a pair of hats (hats) to each other and joining both flanges 51a with bolts 52a. An example of a damper 50 having a hollow cylindrical shape and capable of elastic-plastic deformation is shown. The damper 50 in the illustrated example is disposed so that the cylindrical hollow portion is vertically oriented between the load transmission beam 45 and the load transmission structure 40 as shown in FIG. The cap top surface of 51 is fixed to the load transmission beam 45 with a bolt 52b, and the cap top surface of the other plate 51 is fixed to the load transmission structure 40 with a bolt 52b.
荷重伝達梁45に水平力が作用して荷重伝達構造体40との間に相対変位が生じるとダンパー50にも水平力が作用し、弾性域内において断面多角形の中空筒が弾性変形し、相対変位のエネルギーを吸収して復元する。また、弾性域を超えて塑性域に至ったときは、ダンパー50が塑性変形してエネルギーを吸収することで振動を減衰させる。ダンパー50が塑性変形することで、荷重伝達梁45と荷重伝達構造体40との間に生じる反力も低減できる。各柱Pの降下時(ジャッキ10の収縮ステップS006)には、例えばダンパー50のボルト52bを解除することで荷重伝達梁45及び荷重伝達構造体40の一方又は両方からダンパー50を取り外し、荷重伝達梁45を荷重伝達構造体40の外周面に沿って移動可能とする。なお、図示例のダンパー50の構成及び作用は、本出願人による特願2006−175330号の明細書に詳述されている。 When a horizontal force is applied to the load transmitting beam 45 and a relative displacement is generated between the load transmitting beam 45 and the load transmitting structure 40, a horizontal force is also applied to the damper 50, and the hollow cylinder having a polygonal cross section is elastically deformed in the elastic region. It absorbs and restores the energy of displacement. When the elastic region is exceeded and the plastic region is reached, the damper 50 plastically deforms and absorbs energy to attenuate the vibration. By the plastic deformation of the damper 50, the reaction force generated between the load transmission beam 45 and the load transmission structure 40 can also be reduced. When each pillar P descends (the contraction step S006 of the jack 10), for example, the damper 50 is removed from one or both of the load transmission beam 45 and the load transmission structure 40 by releasing the bolt 52b of the damper 50, and the load transmission is performed. The beam 45 can be moved along the outer peripheral surface of the load transmission structure 40. The configuration and operation of the illustrated damper 50 are described in detail in the specification of Japanese Patent Application No. 2006-175330 by the present applicant.
図6(B)に示すように、中央区画Tの周囲柱Pに取り付けた荷重伝達梁45は、上述した収縮ステップS006と伸長ステップS012〜S013との繰り返し時に、解体作業階Fdの上方の各階Fjと共に荷重伝達構造体40の外周面に沿って降下させる。また、同図(C)に示すように、解体ステップS008において、降下した各階Fjを解体作業階Fdで解体する際に、荷重伝達梁45をその降下階Fjから取り外し、その直上階F(j+1)の区画Tの周囲柱Pに荷重伝達構造体40の外周面に沿って付け替える。 As shown in FIG. 6 (B), the load transmission beam 45 attached to the peripheral column P of the central section T is provided on each floor above the dismantling work floor Fd when the above-described contraction step S006 and extension steps S012 to S013 are repeated. It is lowered along the outer peripheral surface of the load transmitting structure 40 together with Fj. Further, as shown in FIG. 5C, when disassembling each lowered floor Fj at the dismantling work floor Fd in the dismantling step S008, the load transmission beam 45 is removed from the descending floor Fj, and the floor F (j + 1) immediately above it is removed. ) Along the outer peripheral surface of the load transmitting structure 40.
解体作業階Fdにおいて降下階Fjの床梁又は床板3を解体する際に、荷重伝達梁45を降下階Fjの直上階F(j+1)に付け替えることにより、解体作業の全工期にわたって解体中の建築物1が構造的に不安定な状態となることを避けることができる。すなわち、降下階Fjの床梁又は床板3の解体時に解体作業階Fdの柱Pが解体前より長柱化しても、その直上階F(j+1)に加わる水平力は解体作業階Fd及びジャッキ介装階Fvを迂回してジャッキ介装階Fvの下層階F(v−1)又は建築物1の基礎部Bへ伝達して逃がすことができるので、解体作業中の建築物1に十分な耐震・耐風性能を保持させることができる。なお、次回の収縮ステップS006の際に障害となり得る中央区画T内の直上階F(j+1)の小梁や床7等は、解体ステップS008で降下階Fjを解体する際に併せて解体撤去することができる。また荷重伝達構造体40は、建築物1の最上階まで解体が終了したのちステップS014において、建築物1の残部及び基礎部Bと共に解体撤去することができる。 When demolishing the floor beam or floor plate 3 of the descending floor Fj at the demolishing work floor Fd, the load transmission beam 45 is replaced with the floor F (j + 1) immediately above the descending floor Fj, so that the building being demolished over the entire construction period of the dismantling work It can be avoided that the object 1 becomes structurally unstable. That is, even when the pillar P of the dismantling work floor Fd becomes longer than that before dismantling when the floor beam or the floorboard 3 of the descending floor Fj is dismantled, the horizontal force applied to the immediately upper floor F (j + 1) is via the dismantling work floor Fd and the jack. Since it can be transferred to the lower floor F (v-1) of the jacking floor Fv or the foundation part B of the building 1 by bypassing the loading floor Fv, the earthquake resistance sufficient for the building 1 being dismantled -Wind resistance can be maintained. It should be noted that the beam or floor 7 on the floor F (j + 1) directly above the central section T, which may become an obstacle during the next contraction step S006, is also dismantled and removed at the time of dismantling the descending floor Fj in the dismantling step S008. be able to. Further, the load transmission structure 40 can be dismantled and removed together with the remaining part of the building 1 and the foundation part B in step S014 after the dismantling to the top floor of the building 1 is completed.
図4の流れ図のステップS003は、建築物1の上部荷重を負担する全ての柱P1〜Pmを、柱切断時に床梁又は床板3を介して荷重伝達される隣接柱群Qが相互に重ならない柱Pを集めた複数の切断グループR1〜Rnに分ける処理を示す。建築物の全柱P1〜Pm、例えば図9(A)に示す柱P1〜P4は各階Fの床梁又は床板3で相互に結合されており、その何れかの柱Px(例えばP2)の切断時に、その柱Pxの支持荷重が隣接する柱P(x−1)及びP(x+1)(例えばP1及びP3)に荷重増加として伝達される。荷重を受ける柱P(例えばP3)は、許容応力や限界耐力を考慮して隣接する1本の柱P(例えばP2)から伝達される程度の荷重増加を負担する強度は有しているが、隣接する2本以上の柱P(例えばP2及びP4)の荷重増加を同時に負担させることは安全上避けることが望ましい。 In step S003 in the flowchart of FIG. 4, all columns P1 to Pm that bear the upper load of the building 1 are not overlapped by adjacent column groups Q that are transmitted through the floor beams or the floorboard 3 when the columns are cut. The process which divides | segments into the some cutting | disconnection group R1-Rn which collected the pillar P is shown. All the pillars P1 to Pm of the building, for example, the pillars P1 to P4 shown in FIG. 9A are connected to each other by floor beams or floor boards 3 of each floor F, and any one of the pillars Px (for example, P2) is cut. Sometimes the support load for that column Px is transmitted as an increase in load to adjacent columns P (x-1) and P (x + 1) (eg, P1 and P3). The column P that receives the load (for example, P3) has the strength to bear the load increase to the extent that it is transmitted from the adjacent column P (for example, P2) in consideration of the allowable stress and the limit proof stress. For safety reasons, it is desirable to avoid simultaneously increasing the load of two or more adjacent pillars P (for example, P2 and P4).
例えば図9(B)のように建築物1の全柱P1〜Pmがそれぞれ格子面上の交差する二方向軸(x軸、y軸)の各交点に配置されている場合は、特定の柱P(x、y)(例えばP32)の切断時に、その柱Pが切断前に支持していた上部荷重は主に床梁又は床板3経由で隣接する4本の隣接柱P(x−1、y)、P(x、y−1)、P(x、y+1)、P(x+1、y)(例えばP22、P31、P33、P42)に荷重増加として伝達される。従って、各交点の柱P(x、y)毎に床梁又は床板3経由で荷重伝達される格子軸方向の4本の隣接柱群Q(P(x−1、y)、P(x、y−1)、P(x、y+1)、P(x+1、y))を想定し、その隣接柱群Qが相互に重ならない柱P(例えば同図の斜線付きの柱P32、P11、P24)をグループとすれば、そのグループ内の複数の柱Pを同時に切断しても他の何れかの柱P(そのグループ以外の柱)に複数の柱Pから同時に荷重が伝達されることはなく、そのグループ以外の柱Pで多層建築物の上部荷重を支持して構造的に不安定な状態となることを避けることができる。 For example, as shown in FIG. 9B, when all the pillars P1 to Pm of the building 1 are arranged at the intersections of two intersecting bi-directional axes (x-axis and y-axis) on the lattice plane, a specific pillar When cutting P (x, y) (for example, P32), the upper load supported by the column P before the cutting is mainly four adjacent columns P (x-1, y), P (x, y−1), P (x, y + 1), and P (x + 1, y) (for example, P22, P31, P33, and P42) are transmitted as load increases. Therefore, for each column P (x, y) at each intersection, four adjacent column groups Q (P (x−1, y), P (x, y-1), P (x, y + 1), P (x + 1, y)), and a column P in which adjacent column groups Q do not overlap each other (for example, shaded columns P32, P11, P24 in the figure) When a plurality of pillars P in the group are cut at the same time, the load is not transmitted simultaneously from the plurality of pillars P to any other pillars P (columns other than the group). It is possible to avoid the structurally unstable state by supporting the upper load of the multi-layer building with the pillars P other than the group.
図9(B)において、柱P32の隣接柱群Q32にはP22、P31、P33、P42の4本の柱が含まれ、柱P23の隣接柱群Q23にはP13、P22、P24、P33の4本の柱が含まれる。ただし、各柱Pxyの隣接4交点には柱の存在しない交点も含まれ、建築物1の外周部の柱Pの隣接柱群Qは3本又は2本の柱のみで構成される。例えば柱P12の隣接柱群Q12にはP11、P22、P13の3本の柱だけが含まれ、柱P11の隣接柱群Q11にはP21、P12の2本の柱だけが含まれる。 9B, the adjacent column group Q32 of the column P32 includes four columns P22, P31, P33, and P42, and the adjacent column group Q23 of the column P23 includes four of P13, P22, P24, and P33. Includes a book pillar. However, the adjacent four intersections of each column Pxy include intersections where no column exists, and the adjacent column group Q of the columns P on the outer peripheral portion of the building 1 is composed of only three or two columns. For example, the adjacent column group Q12 of the column P12 includes only three columns P11, P22, and P13, and the adjacent column group Q11 of the column P11 includes only two columns P21 and P12.
図9(B)から分かるように、隣接柱群Q32と隣接柱群Q23とは一部の柱P(P22及びP33)が重なることから、柱P32と柱P23とを同じ切断グループRとすることはできない。これに対して、隣接柱群Q32と隣接柱群Q11との間に相互に重なる柱Pが存在せず、隣接柱群Q32と隣接柱群Q24の相互間にも重なる柱Pが存在せず、隣接柱群Q11と隣接柱群Q24の相互間にも重なる柱Pが存在しないことから、これらの柱P32、P11、P24は同じ切断グループRとすることができる。ただし、同図に示す全柱P1〜Pmを切断グループRに分類する方法は一通りではなく、同様に隣接柱群Qxyの相互に重なる柱Pが存在しない柱Pxyを検討することにより、例えば図9(C)に示すように、柱P32、P13、P44を同じ切断グループRに分類することも可能である。 As can be seen from FIG. 9 (B), since the adjacent column group Q32 and the adjacent column group Q23 are partially overlapped with the columns P (P22 and P33), the column P32 and the column P23 are defined as the same cutting group R. I can't. On the other hand, there is no overlapping column P between the adjacent column group Q32 and the adjacent column group Q11, and there is no overlapping column P between the adjacent column group Q32 and the adjacent column group Q24. Since there is no overlapping column P between the adjacent column group Q11 and the adjacent column group Q24, these columns P32, P11, and P24 can be the same cutting group R. However, the method of classifying all the pillars P1 to Pm shown in the figure into the cutting group R is not one way. Similarly, by examining the pillars Pxy in which the neighboring pillar groups Qxy do not have mutually overlapping pillars Pxy, for example, FIG. As shown in FIG. 9C, the pillars P32, P13, and P44 can be classified into the same cutting group R.
図4のステップS003では、上述した隣接柱群Qxyの相互の重なりを各交点(x、y)の柱Pxy毎に順次検討することにより、建築物1の全柱P1〜Pmを複数の切断グループR1〜Rnに分類することができる。同じ切断グループRiの各柱Pは、同時に切断しても、そのグループR内の各柱Pに作用する荷重は上部の床梁又は床板3を介して隣接する他のグループRの柱Pに再配分されるので、解体中の建築物1を構造的に安定な状態に保つことができる。切断グループRには1本の柱Pのみからならるグループも合まれる。ただし、解体工期を短縮するためには、各切断グループRiに隣接柱群Qxyが相互に重ならない複数の柱Pを含め、切断グループRiの数をできるだけ少なくすることが有効である。 In step S003 of FIG. 4, all the columns P1 to Pm of the building 1 are divided into a plurality of cutting groups by sequentially examining the overlapping of the adjacent column groups Qxy described above for each column Pxy at each intersection (x, y). It can be classified into R1 to Rn. Even if the pillars P of the same cutting group Ri are cut at the same time, the load acting on the pillars P in the group R is re-applied to the pillars P of the other adjacent groups R via the upper floor beams or floor boards 3. Since it is distributed, the building 1 being demolished can be maintained in a structurally stable state. The group consisting of only one pillar P is combined with the cutting group R. However, in order to shorten the dismantling period, it is effective to reduce the number of cutting groups Ri as much as possible by including a plurality of columns P in which the adjacent column groups Qxy do not overlap each other in each cutting group Ri.
図9(D)及び図10の流れ図は、建築物1の全柱P1〜Pmを5つの切断グループR1〜R5に分類する方法の一例を示す。図10のステップS101では、図9(D)に示すように、先ず建築物1の全柱P1〜Pmが配置された格子面上の全交点(x、y)を、桂馬飛びの位置関係の交点(例えばP11、P32、P24、P53、P61)毎に二軸方向の隣接4交点(x−1、y)、(x、y−1)、(x、y+1)、(x+1、y)を割り付けることにより、5交点単位で区分けする。各5交点単位には、一軸方向の隣接3交点(例えばP52、P53、P54)と、その中心交点(P53)に隣接する他軸方向の2交点(例えばP43、P63)とが含まれる。次に、ステップS102〜S105において、区分けした各5交点単位からそれぞれ対応する位置の交点の柱(例えばP11、P32、P24、P53、P61)を集めて同じ切断グループR1とする。更に、グループ番号iを1つずつ繰り上げながらステップS102〜S105を繰り返し、各5交点単位から前回と異なる対応位置の交点の柱を集めることにより、図9(D)に示すように建築物1の全柱P1〜Pmを5つの切断グループR1〜R5に分類することができる。なお、図示例では6行4列の24本の柱P11〜64の分類を示しているが、図10の流れ図は任意の行列数の柱Pに適用可能である。 The flowchart of FIG.9 (D) and FIG. 10 shows an example of the method of classifying all the pillars P1-Pm of the building 1 into five cutting groups R1-R5. In step S101 of FIG. 10, as shown in FIG. 9D, first, all intersections (x, y) on the lattice plane on which all the pillars P1 to Pm of the building 1 are arranged are in the positional relationship of Keima flying. For each intersection (for example, P11, P32, P24, P53, P61), four adjacent intersections (x-1, y), (x, y-1), (x, y + 1), (x + 1, y) in the biaxial direction are set. By assigning, it is divided in units of 5 intersections. Each 5-intersection unit includes three adjacent intersections in one axis direction (for example, P52, P53, P54) and two intersection points in the other axis direction (for example, P43, P63) adjacent to the central intersection (P53). Next, in steps S102 to S105, intersection columns (for example, P11, P32, P24, P53, and P61) at corresponding positions are collected from each of the divided five intersection units to form the same cutting group R1. Further, steps S102 to S105 are repeated while incrementing the group number i one by one, and by collecting the pillars of intersections at corresponding positions different from the previous one from each of the five intersection units, as shown in FIG. All the pillars P1 to Pm can be classified into five cutting groups R1 to R5. In the illustrated example, the classification of 24 columns P11 to 64 of 6 rows and 4 columns is shown. However, the flowchart of FIG. 10 is applicable to columns P having an arbitrary number of matrices.
図9(D)の分類では複数の切断グループR1〜Rnに属する柱Pの数がグループ毎で相異しているが、切断グループR1〜Rn毎の柱切断効率を向上するためには、何れの切断グループR1〜Rnも同数の切断装置30(図8(A)参照)でグループ内の柱Pが切断できるように、各切断グループR1〜Rnにそれぞれ同数の柱Pを含めることが望ましい。図9(E)及び図11の流れ図は、建築物1の全柱P1〜Pmをそれぞれ4本の柱Pが含まれる切断グループR1〜R6に分類する方法の一例を示す。図11のステップS201では、図9(E)に示すように、先ず建築物1の全柱P1〜Pmが配置された格子面の全交点(x、y)からk行4列を取り出す。なお、図9(E)は6行4列の24本の柱P11〜64の分類を示しているが、図11の流れ図は任意の行数kの配置に適用可能であり、列数が8行、12行等の配置にも適用可能である。 In the classification of FIG. 9D, the number of columns P belonging to a plurality of cutting groups R1 to Rn is different for each group, but in order to improve the column cutting efficiency for each cutting group R1 to Rn, It is desirable to include the same number of pillars P in each of the cutting groups R1 to Rn so that the same number of cutting devices R1 to Rn can cut the pillars P in the group with the same number of cutting devices 30 (see FIG. 8A). The flowchart of FIG.9 (E) and FIG. 11 shows an example of the method of classifying all the pillars P1-Pm of the building 1 into the cutting groups R1-R6 each including the four pillars P. In step S201 of FIG. 11, as shown in FIG. 9E, first, k rows and 4 columns are extracted from all intersections (x, y) of the lattice plane on which all the pillars P1 to Pm of the building 1 are arranged. 9E shows the classification of 24 columns P11 to 64 of 6 rows and 4 columns, the flowchart of FIG. 11 is applicable to an arrangement with an arbitrary number k of rows, and the number of columns is 8 The present invention can also be applied to arrangement of rows, 12 rows, and the like.
図11のステップS202〜S205において、i行1列の柱P(例えばP11)と、その柱Pに対して桂馬飛びの位置関係にある(i−2)行2列及び(i+1)行3列の2本の柱P(例えばP52、P23)と、その2本の柱Pに対して桂馬飛びの位置関係にある(i−1)行4列の1本の柱P(例えばP64)との4本の柱を集めて同じ切断グループRiとする。或いは、i行1列の柱P(例えばP11)に対して、桂馬飛びの位置関係にある(i+2)行2列及び(i−1)行3列の2本の柱P(例えばP32、P63)と、その2本の柱Pに対して桂馬飛びの位置関係にある(i+1)行4列の1本の柱P(例えばP24)との4本の柱を集めて同じ切断グループRiとしてもよい。この場合に、桂馬飛びの位置関係にある交点(x、y)の行座標xがkより大きい(x>k)場合はその行xからkを差し引いた交点(x−k、y)の柱Pを集め、交点(x、y)の行座標xが0より小さい(x<0)場合はその行xにkを加えた交点(x+k、y)の柱Pを集めるものとする。更に、グループ番号iを1つずつ繰り上げながらステップS202〜S205を繰り返すことにより、図9(E)に示すように、建築物1の全柱P1〜Pmをそれぞれ4本の柱Pが含まれる複数の切断グループR1〜R6に分類することができる。 In steps S202 to S205 in FIG. 11, the column P (for example, P11) of i row and 1 column and (i-2) row 2 column and (i + 1) row 3 column, which are in a positional relationship with respect to the column P, Of the two pillars P (for example, P52, P23) and (i-1) one pillar P (for example, P64) in row 4 columns that are in a positional relationship with the two pillars P. Collect the four pillars into the same cutting group Ri. Alternatively, two columns P (for example, P32 and P63) of (i + 2) rows and 2 columns and (i-1) rows and 3 columns, which are in a positional relationship with Keima jumping, with respect to the column P (for example, P11) of i rows and 1 column. ) And (i + 1) one column P (for example, P24) in four rows and four columns that are in a positional relationship with Keima jumping with respect to the two columns P. Good. In this case, when the line coordinate x of the intersection (x, y) in the positional relationship of Keikei jump is larger than k (x> k), the column of the intersection (x−k, y) obtained by subtracting k from the line x. If P is collected and the row coordinate x of the intersection (x, y) is smaller than 0 (x <0), the column P of the intersection (x + k, y) obtained by adding k to the row x is collected. Further, by repeating steps S202 to S205 while incrementing the group number i one by one, as shown in FIG. 9E, all the pillars P1 to Pm of the building 1 each include four pillars P. Can be classified into cutting groups R1 to R6.
ステップS003において建築物1の全柱P1〜Pmを複数の切断グループR1〜Rnに分類しておけば、図4のジャッキ介装ステップS004〜S005において、切断グループR1〜Rn毎にグループ内の各柱Pを同時に切断してジャッキ10を介装することにより、介装ステップを迅速に進めて解体工期の短縮を図ることができる。例えばステップS004において、特定の切断グループRi以外の柱Pで建築物1の上部荷重を支持しつつ、図5(A)に示すようにその特定の切断グループRi内の各柱Pの下端部をそれぞれ同時に初期高さL0だけ切断し、同図(B)に示すように各柱Pの下端部の切断した部分にそれぞれジャッキ10を介装する。ステップS005において、切断グループRiを切り替えながらステップS004をグループ数だけ繰り返すことにより、建築物1の全柱P1〜Pmを介装したジャッキ10上に支持する。 If all the pillars P1 to Pm of the building 1 are classified into a plurality of cutting groups R1 to Rn in step S003, each of the groups in the group for each cutting group R1 to Rn in the jack insertion steps S004 to S005 in FIG. By simultaneously cutting the column P and interposing the jack 10, it is possible to rapidly advance the interposing step and shorten the dismantling work period. For example, in step S004, while supporting the upper load of the building 1 with the pillars P other than the specific cutting group Ri, as shown in FIG. 5 (A), the lower end of each column P in the specific cutting group Ri is Each of them is cut at the initial height L0 at the same time, and jacks 10 are respectively inserted in the cut portions of the lower ends of the pillars P as shown in FIG. In step S005, it repeats step S004 by the number of groups, changing the cutting group Ri, and it supports on the jack 10 in which all the pillars P1-Pm of the building 1 were interposed.
また、建築物1の全柱P1〜Pmを複数の切断グループR1〜Rnに分類しておけば、図4の伸長ステップS012〜S013の迅速化を図ることもできる。上述した図5(E)に示すジャッキ制御装置20は、建築物1の全柱P1〜Pmについてそれぞれ何れの切断グループR1〜Rnに属するかを記憶する記憶手段21と、その切断グループR1〜Rn毎にグループ内の各柱Pのジャッキ10を同時に伸ばすサイクルを反復して全柱P1〜Pmのジャッキ10を伸長する伸長ステップ手段23と、全柱P1〜Pmのジャッキ10を同時に縮める収縮ステップ手段24とを有している。また図示例のジャッキ制御装置20は、例えば上述した図10又は図11の流れ図に従って建築物1の全柱P1〜Pmを複数の切断グループR1〜Rnに分類する柱グループ化手段22を有し、例えばステップS003において柱グループ化手段22で求めた各切断グループR1〜Rnに属する柱Pを記憶手段21に記憶している。 Further, if all the pillars P1 to Pm of the building 1 are classified into a plurality of cutting groups R1 to Rn, the extension steps S012 to S013 in FIG. 4 can be speeded up. The jack control device 20 shown in FIG. 5 (E) described above stores storage means 21 that stores which cutting groups R1 to Rn belong to all the pillars P1 to Pm of the building 1, and the cutting groups R1 to Rn. The extension step means 23 for extending the jacks 10 of all the columns P1 to Pm by repeating the cycle of extending the jacks 10 of the respective columns P in the group at the same time, and the contraction step means for simultaneously contracting the jacks 10 of all the columns P1 to Pm 24. Moreover, the jack control apparatus 20 of the example of illustration has the column grouping means 22 which classify | categorizes all the pillars P1-Pm of the building 1 into the some cutting group R1-Rn according to the flowchart of FIG. 10 or FIG. 11 mentioned above, for example. For example, the column P belonging to each of the cutting groups R1 to Rn obtained by the column grouping unit 22 in step S003 is stored in the storage unit 21.
例えば図4のステップS012において、ジャッキ制御装置20の伸長ステップ手段23により、特定の切断グループRi以外の柱Pのジャッキ10で建築物1の上部荷重を支持しながら、図8(A)に示すようにその切断グループRi内の各ジャッキ10を若干(例えば50mm程度)下降させたうえで各柱Pのジャッキ直上部をそれぞれ同時に所定高さL1だけ吊るし切りし、同図(B)に示すように各柱Pのジャッキ10を所定高さL1だけ伸ばす。ステップS013において、図8(M)に示すように、切断グループRiを順次切り替えながらステップS012をグループ数(図示例では6グループ)だけ繰り返すことにより、ジャッキ介装階Fvの全柱P1〜Pmのジャッキ10をそれぞれ所定高さL1だけ伸長させる。 For example, in step S012 of FIG. 4, the extension step means 23 of the jack control device 20 supports the upper load of the building 1 with the jack 10 of the pillar P other than the specific cutting group Ri, as shown in FIG. As shown in FIG. 4B, the jacks 10 in the cutting group Ri are slightly lowered (for example, about 50 mm) and the jacks directly above the pillars P are simultaneously suspended by a predetermined height L1. The jack 10 of each pillar P is extended by a predetermined height L1. In step S013, as shown in FIG. 8M, step S012 is repeated by the number of groups (six groups in the illustrated example) while sequentially switching the cutting groups Ri, so that all the pillars P1 to Pm of the jack interposing floor Fv Each of the jacks 10 is extended by a predetermined height L1.
本発明者の試算によれば、例えば図9(E)のように建築物1の6行4列の柱P24本を6つの切断グループR1〜R6に分けた場合に、図8(M)のように各切断グループRの柱Pの切断及びジャッキ10の伸長を10分程度で行ない、伸長ステップの6回の繰り返しと収縮ステップとを約70分で完了することができる。また、建築物1の解体作業階Fdの上方各階Fj(j>d)を、収縮ステップS006及び伸長ステップS012〜S013の5回の繰り返しにより、約350分(=70分×5回≒1日の作業時間)で解体作業界Fdまで降下させることができる。従って、降下した各階Fjの解体作業(図4の解体ステップS008)に4日程度を要するとしても、5日程度(≒1週間)で建築物1の降下した各階Fjを解体することが可能である。すなわち、ステップS003において建築物1の全柱P1〜Pmを複数の切断グループR1〜Rnに分類しておけば、例えば地上20階の建築物1(図1参照)を20週程度で解体することが期待できる。 According to the estimation of the present inventor, for example, as shown in FIG. 9 (E), when 24 columns P of 6 rows and 4 columns of the building 1 are divided into six cutting groups R1 to R6, FIG. Thus, the pillar P of each cutting group R can be cut and the jack 10 can be extended in about 10 minutes, and the six repetitions of the extension step and the contraction step can be completed in about 70 minutes. Also, each floor Fj (j> d) above the dismantling work floor Fd of the building 1 is approximately 350 minutes (= 70 minutes × 5 times≈1 day) by repeating the contraction step S006 and the expansion steps S012 to S013 five times. Can be lowered to the dismantling industry Fd. Therefore, even if about 4 days are required for the dismantling work of each descending floor Fj (disassembling step S008 in FIG. 4), it is possible to dismantle each floor Fj where the building 1 descends in about 5 days (≈1 week). is there. That is, if all the pillars P1 to Pm of the building 1 are classified into a plurality of cutting groups R1 to Rn in step S003, for example, the building 1 (see FIG. 1) on the 20th floor is disassembled in about 20 weeks. Can be expected.
なお、図4のステップS010〜S011は、解体ステップS008で解体した降下階Fjの直上階F(j+1)の柱P1〜Pmの一部分が間引きされている場合に、その直上階F(j+1)を解体する前に、必要に応じて、その直上階F(j+1)の残された柱Pについて切断グループRを更新する処理を示す。ステップS010において、直上階F(j+1)の残された柱Pの切断グループRを変更する必要があるか否かを判断し、変更する必要があると判断した場合は、ステップS011においてジャッキ制御装置20の柱グループ化手段22により、直上階F(j+1)の残された全ての柱Pを新たな切断グループR1〜Rn´に分け直す。新たな切断グループR1〜Rn´に更新したうえでステップS012へ進み、その直上階F(j+1)を伸長ステップS012〜S013と収縮ステップS006との繰り返しにより降下させて解体する。図4の流れ図によれば、解体する建築物1の各階Fj毎に、ジャッキ制御装置20の柱グループ化手段22により切断グループRを更新することも可能である。 Note that steps S010 to S011 in FIG. 4 are obtained by substituting a part of the pillars P1 to Pm of the floor F (j + 1) immediately above the descending floor Fj dismantled in the dismantling step S008, with the floor F (j + 1) immediately above the floor Fj. Before dismantling, the process of updating the cutting group R for the remaining pillar P on the immediately upper floor F (j + 1) will be shown as necessary. In step S010, it is determined whether or not it is necessary to change the cutting group R of the pillar P remaining on the immediately upper floor F (j + 1). If it is determined that it is necessary to change, the jack control device is determined in step S011. The 20 pillar grouping means 22 redivides all the remaining pillars P of the immediately upper floor F (j + 1) into new cutting groups R1 to Rn ′. After updating to the new cutting groups R1 to Rn ′, the process proceeds to step S012, and the upper floor F (j + 1) is lowered and disassembled by repeating the expansion steps S012 to S013 and the contraction step S006. According to the flowchart of FIG. 4, the cutting group R can be updated by the pillar grouping means 22 of the jack control device 20 for each floor Fj of the building 1 to be demolished.
1…多層建築物 2…連絡通路
3…床梁又は床板 4…壁
5…作業架台 6…工事用エレベータ
7…小梁又は床 8…搬送装置
9…解体装置 10…ジャッキ
11…アンカープレート 11a…アンカーボルト
12…ラム(又はピストン)
14…上昇距離センサ 15…凹面座金
16…球面座金 17…調整部材(シュー)
18…圧力変換器
20…ジャッキ制御装置 21…記憶手段
22…柱グループ化手段 23…伸張ステップ手段
24…収縮ステップ手段 25…制御中継装置
26…油圧ポンプユニット 27…油圧中継装置
28…制御ケーブル 28a…光ファイバーケーブル
28b…センサケーブル 28c…油圧制御ケーブル
29a…油圧伝送ケーブル 29b…油圧供給ケーブル
30…柱切断装置 31…柱刳り貫き装置
32…壁柱 33…柱ガイド
34…拘束器 34a…押しボルト式拘束器
35b…楔式拘束器
40…荷重伝達構造体(コア壁) 41…耐力壁
42…中空部 43…鉛直溝
45…荷重伝達梁 46…突出部
47…結合器 48…ブラケット
49…取付板 49a…取付ボルト
50…ダンパー
B…基礎部 d…刳り貫き隙間
F…階 Fv…ジャッキ介装階(特定下層階)
Fd…解体作業階 G…地面
L…切断高さ P…柱
Q…隣接柱群 R…切断グループ
S…間隙 s…間隙
T…区画
DESCRIPTION OF SYMBOLS 1 ... Multi-layered building 2 ... Communication passage 3 ... Floor beam or floor board 4 ... Wall 5 ... Work stand 6 ... Construction elevator 7 ... Small beam or floor 8 ... Conveying device 9 ... Dismantling device 10 ... Jack 11 ... Anchor plate 11a ... Anchor bolt 12 ... ram (or piston)
14 ... Ascent distance sensor 15 ... Concave washer 16 ... Spherical washer 17 ... Adjusting member (shoe)
DESCRIPTION OF SYMBOLS 18 ... Pressure converter 20 ... Jack control apparatus 21 ... Memory | storage means 22 ... Pillar grouping means 23 ... Expansion | extension step means 24 ... Contraction step means 25 ... Control relay apparatus 26 ... Hydraulic pump unit 27 ... Hydraulic relay apparatus 28 ... Control cable 28a ... fiber optic cable 28b ... sensor cable 28c ... hydraulic control cable 29a ... hydraulic transmission cable 29b ... hydraulic supply cable 30 ... pillar cutting device 31 ... pillar drilling device 32 ... wall pillar 33 ... pillar guide 34 ... restraint 34a ... push bolt type Restraint 35b ... Wedge type restraint 40 ... Load transmission structure (core wall) 41 ... Load bearing wall 42 ... Hollow portion 43 ... Vertical groove 45 ... Load transmission beam 46 ... Projection 47 ... Coupler 48 ... Bracket 49 ... Mounting plate 49a ... Mounting bolt 50 ... Damper B ... Fundamental part d ... Tear through gap F ... Floor Fv ... Jack interposition floor ( Teishita Sokai)
Fd ... demolition work floor G ... ground L ... cutting height P ... column Q ... adjacent column group R ... cutting group S ... gap s ... gap T ... section
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007314039A JP4986239B2 (en) | 2007-12-04 | 2007-12-04 | Demolition method for multi-story buildings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007314039A JP4986239B2 (en) | 2007-12-04 | 2007-12-04 | Demolition method for multi-story buildings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009138378A JP2009138378A (en) | 2009-06-25 |
JP4986239B2 true JP4986239B2 (en) | 2012-07-25 |
Family
ID=40869274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007314039A Active JP4986239B2 (en) | 2007-12-04 | 2007-12-04 | Demolition method for multi-story buildings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4986239B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101511080B1 (en) | 2013-09-26 | 2015-04-13 | (주)포스코건설 | Apparatus for reverse dismantling and dismantling method using the same |
CN112985209B (en) * | 2021-02-09 | 2022-09-09 | 江西荣达爆破新技术开发有限公司 | Detonation method suitable for blasting demolition |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0733689B2 (en) * | 1986-04-16 | 1995-04-12 | 学校法人早稲田大学 | Push-up method and apparatus |
JPH0730637B2 (en) * | 1990-09-20 | 1995-04-10 | 公典 福岡 | Building demolition method |
JP2990593B2 (en) * | 1996-10-03 | 1999-12-13 | 川崎重工業株式会社 | Demolition method and demolition equipment for building structures |
JP3523223B2 (en) * | 2001-08-07 | 2004-04-26 | シンコー株式会社 | Demolition equipment for high-rise buildings |
JP3811396B2 (en) * | 2001-12-14 | 2006-08-16 | 鹿島建設株式会社 | Reconstruction method of building |
-
2007
- 2007-12-04 JP JP2007314039A patent/JP4986239B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009138378A (en) | 2009-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5177883B2 (en) | Demolition method of multi-layered building and load transmission structure for demolition | |
JP2007016432A (en) | Demolition and curing unit, and construction method for demolishing skyscraper by using it | |
KR101922324B1 (en) | Ceiling lift up construction method | |
JP5627084B2 (en) | Block-type dismantling method for multi-layer buildings | |
CN107476581B (en) | Hoisting and mounting method for steel structure double-layer overhanging structure | |
JP5187822B2 (en) | Demolition method and system for multi-layer buildings | |
JP5382926B2 (en) | Jackdown dismantling method and system for multi-story buildings | |
JP4986239B2 (en) | Demolition method for multi-story buildings | |
JP2012184588A (en) | Lifting and lowering method and system of multistoried building | |
JP5528311B2 (en) | Demolition method for multi-story buildings | |
JP5985263B2 (en) | Structure demolition method | |
JP5382925B2 (en) | Demolition method of adjacent multi-layer building and load transmission structure for demolition | |
JP2010255374A (en) | Demolition method for skyscraper building | |
JP6879613B1 (en) | Curing system at the time of building demolition and demolition method of the building to be demolished | |
JP6418825B2 (en) | Jack reaction force support member and building dismantling method using the reaction force support member | |
JP5952098B2 (en) | Structure demolition method | |
JP5645548B2 (en) | Dismantling method, jack structure | |
JP2012127131A (en) | Structure demolition method and structure demolition system | |
JP5985264B2 (en) | Structure demolition method | |
JP5992218B2 (en) | Structure demolition method | |
JP5498321B2 (en) | Load transmission structure, dismantling method | |
Davidson | Development of testing facilities and procedures for seismic performance of suspended ceilings | |
JP5035850B2 (en) | Horizontal support method and support structure for multi-story building | |
JP5502657B2 (en) | Dismantling method, load transmission structure | |
JP6132349B2 (en) | Structure reconstruction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120420 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4986239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |