JP5382738B2 - 流体処理装置及び処理方法 - Google Patents

流体処理装置及び処理方法 Download PDF

Info

Publication number
JP5382738B2
JP5382738B2 JP2010540238A JP2010540238A JP5382738B2 JP 5382738 B2 JP5382738 B2 JP 5382738B2 JP 2010540238 A JP2010540238 A JP 2010540238A JP 2010540238 A JP2010540238 A JP 2010540238A JP 5382738 B2 JP5382738 B2 JP 5382738B2
Authority
JP
Japan
Prior art keywords
processing
fluid
pressure
ring
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010540238A
Other languages
English (en)
Other versions
JPWO2010061430A1 (ja
Inventor
眞一 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Technique Co Ltd
Original Assignee
M Technique Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Technique Co Ltd filed Critical M Technique Co Ltd
Publication of JPWO2010061430A1 publication Critical patent/JPWO2010061430A1/ja
Application granted granted Critical
Publication of JP5382738B2 publication Critical patent/JP5382738B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2712Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2714Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

本願発明は、近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行う流体処理装置に関する。
特開2006−104448号 特開2003−159696号 特開2003−210957号 特開2004−49957号 「マイクロリアクター−新時代の合成技術−」吉田潤一監修 シーエムシー出版 p3 X. F. Zhang, M. Enomura, M. Tsutahara, K. Takebatashi, M. Abe "Surface Coatings International PratB: Coatings Transactions.",Vol. 89, B4, 269-274, December 2006
微小な流路や微小な反応容器を用いた流体処理装置として、マイクロリアクターやマイクロミキサーが提供されている。そのような装置で与えられるミクロな反応場はこれまでビーカーやフラスコで行ってきた化学反応そのものにも本質的な影響を与える可能性も秘めている。(非特許文献1参照)
典型的なマイクロミキサー及びマイクロリアクターには、直径が数十μm〜数百μm程度の複数本のマイクロチャンネル及び、これらのマイクロチャンネルと繋がる混合空間が設けられており、このマイクロミキサー及びマイクロリアクターでは、複数本のマイクロチャネルと呼ばれる流路を通して複数の溶液をそれぞれ混合空間へ導入することで、複数の溶液を混合し、又は混合と共に化学反応を生じさせる。このようなマイクロリアクター並びにマイクロミキサーとしては、例えば、特許文献1〜3に開示されている構造のものがある。これらのマイクロリアクターやマイクロミキサーは、何れも、少なくとも2種類の溶液をそれぞれ微細なマイクロチャネルを通し、極めて薄い薄片状の断面を有する層流として混合空間内へ供給することで、この混合空間内で二種類の溶液同士を混合及び/または反応させるものである。
しかし、マイクロリアクター及びシステムの利点は数あるとしても、実際にはマイクロ流路径が狭くなればなるほどその圧力損失は流路の4乗に反比例する。つまり実際には流体を送り込むポンプが入手し難いくらい大きな送液圧力が必要となる。また析出を伴う反応の場合、生成物が流路に詰まる現象や反応によって生じる泡によってマイクロ流路が閉鎖してしまう問題がある。さらに基本的には分子の拡散速度にその反応を期待するため、全ての反応に対してマイクロ空間が有効・適応可能と言う訳ではなく、現実的にはトライアルアンドエラー方式に反応を試行し、首尾良いものを選択する必要性があるなど、その問題も多い。さらにスケールアップについても、マイクロリアクターそのものの数を増やす方法、つまりナンバリングアップで解決されて来たが、実際には積層可能数は数十が限界であり、自ずと製品価値の高い製品に的が絞られやすい。また、装置が増えるという事は、その故障原因の絶対数も増えるという事であり、実際に詰まりなどの問題が発生した場合、その故障箇所など、問題箇所を検出する事が大変困難と成りうる可能性がある。
さらに本願出願人によって出願された特許文献4の装置のように近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用面の間において、被処理物を含む流体(第1流体)を処理用面間に導入し、前記流体を導入した流路とは独立し、処理用面間に通じる別の流路から被処理物を含む少なくとももう一つの流体(第2流体)を処理用面間に導入して処理用面間で混合・攪拌して反応を行う事を可能とする装置がある。この装置を用いれば、これまでのマイクロリアクターが目的としてきた温度均一化速度の向上、濃度均一化速度の向上、さらに分子拡散の補助による処理時間の短縮化等をこれまで以上に効果的に行う事ができる。
しかし、上記のような機構を用いた装置を用いて、処理用面間にて処理を行う場合に、処理用面間に通じる、第2流体を導入する流路の出口部の横断面積が大きすぎる場合には、処理用面間に導入した第2流体が、処理用面間で第1流体と効率良く混合攪拌できない場合があった。具体的には、例えば近接・離反可能な相対的に回転する処理用面間に導入された第1流体が、処理用面間で薄膜化されており、第1流体が導入された流路とは独立し、処理用面間に通じる別の流路から第2流体を導入する際、第2流体は処理用面間の第1流体薄膜中に割り込むような形で導入され、その後、処理用面間の攪拌によって第1流体と第2流体が混合される。その際に処理用面間では、第2流体を導入する流路の出口部からの、前記出口部とほぼ同径、あるいはそれ以上の幅を持つ第2流体の流れが存在する場合がある。よって、上記第2流体の流れの内側では、効率的に第1流体との接触が行われておらず、混合・攪拌が不十分となる場合があった。また、例えば第1流体に含まれる反応物と、第2流体に含まれる反応物とを処理用面間で反応させたい場合、第1流体と第2流体を効率的に接触させられない事により、処理用面間で全ての反応を完了させられない場合や、未反応物が処理用面間よりそのまま吐出されてしまう可能性があった。
本願発明は上記知見により、特許文献4の装置を更に改良して、より安定的に均一な処理を行う事を可能とした流体処理装置及び処理方法を提供せんとするものである。
上記課題を解決するために、本願の請求項1に係る発明は、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行うものであって、第1の流体を処理用面間に導入し、上記第1の流体を導入した流路とは独立し、処理用面間に通じる別の流路から第2流体を処理用面間に導入して処理用面間で混合・攪拌して上記処理を行う装置において、上記処理用部として、第1処理用部、及び、この第1処理用部に対して相対的に近接・離反可能な第2処理用部の、少なくとも2つの処理用部を備え、上記の各処理用部において互いに対向する位置に、第1処理用面及び第2処理用面の少なくとも2つの処理用面が設けられ、上記第1処理用部と第2処理用部の少なくとも何れか一方の内部には、上記第2流体が流される少なくとも1本の流路が形成され、上記少なくとも1本の流路は、上記処理用面間へ通じる開口部を備え、上記開口部にて、複数の分割流路に分割されたものであり、上記の個々の分割流路の方が上記開口部よりも小さな横断面積を有するものであることを特徴とする流体処理装置を提供する。
また、本願の請求項2に係る発明は、上記複数の分割流路が、上記第2流体が流される少なくとも1本の流路内に、当該流体の流れを二つ以上の流れに分割する分割体が配置されて形成された事を特徴とする請求項1記載の流体処理装置を提供する。
また、本願の請求項3に係る発明は、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行うものであって、第1の流体を処理用面間に導入し、上記第1の流体を導入した流路とは独立し、処理用面間に通じる別の流路から第2流体を処理用面間に導入して処理用面間で混合・攪拌して上記処理を行う装置において、上記第2流体が流される流路の、処理用面間への出口部に取り外し可能な流路分割部材が取り付けられたものであり、上記流路分割部材は、分割体を備えたものであって、上記分割体は、上記第2流体の流れを二つ以上の流れに分割するものであり、上記分割体によって、上記流路の出口部に複数の分割流路が形成されたものである事を特徴とする流体処理装置を提供する。
また、本願の請求項4に係る発明は、上記流路の出口部が、上記処理用面に開口した開口部であることを特徴とする請求項3記載の流体処理装置を提供する。
また、本願の請求項5に係る発明は、上記流路分割部材が、焼結フィルター、メンブレンフィルター、ワイヤーメッシュ、ウェッジワイヤー、パンチングプレートから選ばれた一つ、あるいは複数の組み合わせから形成された事を特徴とする請求項3または4記載の流体処理装置を提供する。
また、本願の請求項6に係る発明は、上記流路の出口部が、上記処理用面に開口した開口部であり、上記第2流体が流される流路を備えた処理用部に取り付け持具が収容されており、この取り付け持具は、上記処理用部に対して脱着が可能とされており、内部には上記第2流体を流すための流路を有しており、上記処理用面に上記の流路分割部材が取り付けられた事を特徴とする請求項3〜5のいずれか記載の流体処理装置を提供する。
また、本願の請求項7に係る発明は、請求項1〜6の何れかに記載の流体処理装置を用いて、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行うものであって
1の流体を処理用面間に導入し、上記第1の流体を導入した流路とは独立し、処理用面間に通じる開口部を備えた別の流路から第2流体を処理用面間に導入して処理用面間で混合・攪拌して上記処理を行う装置において、これらの流体を処理用面間で混合・攪拌しながら流体処理を行わせることを特徴とする流体処理方法を提供する。
上記の各発明により、出口部の各々の横断面積を小さくし、また出口部の数を多くする事ができる。それにより、分割された流れの数の分、処理用面間での第1流体と第2流体の接触面積が大きくなるため第1流体と第2流体との混合・攪拌がこれまで以上に効果的かつ効率的に行え、分子拡散を助長する事ができる。また、混合・攪拌に反応が伴う場合には、その反応をより迅速に効率よく効果的に行える。また、出口部に対して取り外し可能な流路分割部材を用いる事により、洗浄が可能でかつ簡単であり、さらにこの流路分割部材のみを交換可能となるため、実験においても生産においても非常に扱いやすい。さらに、処理用面への直接の微細な加工が必要なくなり、安価な製品とできる。
本願発明は、より安定的に均一な処理を行う事を可能とした流体処理装置及び処理方法を提供することができたものである。例えば、近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で処理を行う場合、処理用面方向に開口部径とほぼ同径の第2流体の線幅の内側で、効率的に第1流体との接触が行われないというような事が無く、第1流体に含まれる反応物と、第2流体に含まれる反応物とを処理用面間で反応させたい場合にも、第1流体と第2流体を効率的に接触させ、処理用面間で全ての反応を完了できず、未反応物が処理用面間よりそのまま吐出されてしまう可能性を回避できる。
反応により粒子の析出・晶析が伴う場合にも、より微細な粒子を析出・晶析させる事ができ、これまで以上に微細で単分散な粒度分布の微粒子が得られる。そして、処理用面間での均一な処理条件を提供し、温度均一化速度の向上、濃度均一化速度の向上、さらに分子拡散時間の短縮化等をこれまで以上に効果的かつ安定的に得る事ができる。
本願発明の装置の概要を説明するための縦断面の概略図である。 (A)は図1に示す装置の第1処理用面の略平面図であり、(B)は図1に示す装置の第1処理用面の要部拡大図である。 (A)は第2導入路の断面図であり、(B)は第2導入路を説明するための処理用面の要部拡大図である。 (A)は本願発明の実施に用いる装置の概念を示す略縦断面図であり、(B)は上記装置の他の実施の形態の概念を示す略縦断面図であり、(C)は上記装置のまた他の実施の形態の概念を示す略縦断面図であり、(D)は上記装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図4に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)は図5(C)に示す装置の要部略底面図であり、(B)は上記装置の他の実施の形態の要部略底面図であり、(C)はまた他の実施の形態の要部略底面図であり、(D)は上記装置の更に他の実施の形態の概念を示す略底面図であり、(E)は上記装置のまた更に他の実施の形態の概念を示す略底面図であり、(F)は上記装置の更にまた他の実施の形態の概念を示す略底面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(C)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)及び(B)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図であり、(C)は図4(A)に示す装置の要部略底面図である。 (A)は図4(A)に示す装置の受圧面について、他の実施の形態を示す要部略縦断面図であり、(B)は当該装置の更に他の実施の形態の要部略縦断面図である。 図15(A)に示す装置の接面圧付与機構について、他の実施の形態の要部略縦断面である。 図15(A)に示す装置に、温度調整用ジャケットを設けた、他の実施の形態の要部略縦断面図である。 図15(A)に示す装置の接面圧付与機構について、更に他の実施の形態の要部略縦断面図である。 (A)は図15(A)に示す装置の更に他の実施の形態の要部略横断面であり、(B)(C)(E)〜(G)は当該装置のまた他の実施の形態の要部略横断面図であり、(D)は当該装置のまた他の実施の形態の一部切欠要部略縦断面図である。 図15(A)に示す装置の更に他の実施の形態の要部略縦断面図である。 (A)は本願発明の実施に用いる装置の更に他の実施の形態の概念を示す略縦断面図であり、(B)は当該装置の一部切欠要部説明図である。 (A)は図15(A)に示す装置の第1処理用部の平面図であり、(B)はその要部縦断面図である。 (A)は図15(A)に示す装置の第1及び第2処理用部の要部縦断面図であり、(B)は微小間隔が開けられた上記第1及び第2処理用部の要部縦断面図である。 (A)は上記第1処理用部の他の実施の形態の平面図であり、(B)はその要部略縦断面図である。 (A)は上記第1処理用部の、更に他の実施の形態の平面図であり、(B)はその要部略縦断面図である。 (A)は第1処理用部のまた他の実施の形態の平面図であり、(B)は第1処理用部の更にまた他の実施の形態の平面図である。 (A)(B)(C)は、夫々、処理後の被処理物の分離方法について、上記以外の実施の形態を示す説明図である。 (A)及び(B)は、夫々、処理用部に設けられた傾斜面を説明するための要部拡大断面図である。 処理用部に設けられた受圧面を説明するための図であり、(A)は第2処理用部の底面図、(B)は第1及び第2処理用部の要部拡大断面図である。 第2処理用部20の実施の形態を示す略縦断面図である。 流路分割部材の実施の形態を示す概略図であり、(A)はパンチングプレートを示す平面図、(B)(C)はワイヤーメッシュを示す平面図、(D)はウェッジワイヤーを示す側面図、(E)は(D)に対して直交する方向からの側面図、(F)(G)はロッドによって形成されたスリットを示す平面図である。
以下、図面を用いて本願発明の好ましい実施の形態について説明する。図1は近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用面の間で被処理物を処理する流体処理装置の略断面図である。図2の(A)は図1に示す装置の第1処理用面の略平面図であり、(B)は図1に示す装置の処理用面の要部拡大図である。図3の(A)は第2導入路の断面図であり、(B)は第2導入路を説明するための処理用面の要部拡大図である。
図1においてUは上方を、Sは下方をそれぞれ示している。
図2(A)、図3(B)においてRは回転方向を示している。
図3(B)においてCは遠心力方向(半径方向)を示している。
この装置は、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間で上記の各流体を合流させて薄膜流体とするものであり、当該薄膜流体中において上記の被処理物を処理する装置である。なお、前記の「処理」とは、被処理物が反応する形態に限られず、反応を伴なわずに混合・分散のみがなされる形態も含む。
図1に示す通り、この装置は、第1ホルダ11と第1ホルダ11の上方に配置された第2ホルダ21と共に流体圧付与機構Pと接面圧付与機構とを備える。接面圧力付与機構は、スプリング43と、エア導入部44とにて構成されている。
第1ホルダ11には第1処理用部10と回転軸50が設けられている。第1処理用部10はメインティングリングと呼ばれる環状体であり鏡面加工された第1処理用面1を備える。回転軸50は第1ホルダ11の中心にボルトなどの固定具81にて固定されたものであり、その後端が電動機などの回転駆動装置82(回転駆動機構)と接続され、回転駆動装置82の駆動力を第1ホルダ1に伝えて当該第1ホルダ11を回転させる。第1処理用部10は上記第1ホルダ11と一体となって回転する。
第1ホルダ11の上部には、第1処理用部10を受容する事が可能な受容部が設けられており、当該受容部内にはめ込む事にて、第1ホルダ11への第1処理用部10の上記取り付けが行われている。さらに第1処理用部10は回り止めピン83にて第1ホルダ11に対して回転しないように固定されている。ただし、回り止めピン83に代え、焼き嵌めなどの方法にて回転しないように固定するものとしても良い。
上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21を臨む。第1処理用面の材質は、セラミックや焼結金属、対磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、鍍金などを施工したものを採用する。
第2ホルダ21には、第2処理用部20と、処理用部内側より流体が導入する第1導入部d1と、接面圧力付与機構としてスプリング43と、エア導入部44とが設けられている。
第2処理用部20は、コンプレッションリングと呼ばれる環状体であり、鏡面加工された第2処理用面2と、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23(以下離反用調整面23とも呼ぶ。)とを備える。図示の通り、この離反用調整面23は、傾斜面である。第2処理用面2に施す鏡面加工は、第1処理用面1と同様の方法を採用する。また、第2処理用部20の素材についても、第1処理用部10と同様のものを採用する。離反用調整面23は、環状の第2処理用部20の内周面25と隣接する。
第2ホルダ21の底部(下部)には、リング収容部41が形成され、そのリング収容部41内に、Oリングと共に第2処理用部20が受容されている。また、回り止め84にて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。この状態において、第2処理用面2は、第1処理用部10の第1処理用面1と対面する。
この第2ホルダ21が備えるリング収容部41は、第2リング20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、環状に形成された、溝である。
リング収容部41は、第2リング20の寸法より大きく形成され、第2リング20との間に十分なクリアランスを持って、第2リング20を収容する。
このクリアランスにより、当該第2処理用部20はこのリング収容部41内にて収容部41の軸方向について、さらに、当該軸方向と交差する方向について変位する事ができるように収容されている。またリング収容部41に対して第2処理用部20の中心線(軸方向)を上記リング収容部41の軸方向と平行ではなくなるように変位可能に当該第2処理用部20は収容されている。
少なくとも第2ホルダ21のリング収容部41には、処理用部付勢部としてスプリング43が設けられている。スプリング43は第2処理用部20を第1処理用部10に向けて付勢する。さらに他の付勢方法として、空気導入部44などの空気圧またはその他の流体圧を供給する加圧手段を用いて第2ホルダ21が保持する第2処理用部20を第1処理用部10へ近づける方向に付勢する方法でもよい。
スプリング43及び空気導入部44などの接面圧付与機構は第2処理用部20の周方向の各位置(処理用面の各位置)を均等に、第1処理用部10へ向けて付勢する。
この第2ホルダ21の中央に上記の第1導入部d1が設けられ、第1導入部d1から処理用部外周側へ圧送されてくる流体は、まず当該第2ホルダ21が保持する第2処理用部20と第1処理用部10と当該第1処理用部10を保持する第1ホルダ11とに囲まれた空間内に導かれる。そして第1処理用部10から第2処理用部20を付勢部の付勢に抗して離反させる方向に、第2処理用部20に設けられた受圧面23に流体圧付与機構Pによる上記流体の送圧(供給圧)を受ける。
なお、他の箇所においては説明を簡略にするため、受圧面23についてのみ説明をしているが、正確に言えば、図29(A)(B)に示すように、上記の受圧面23と共に、後述する溝状の凹部13の第2処理用部20に対する軸方向投影面のうちで、上記受圧面23が設けられていない部分23Xも受圧面として、流体圧付与機構Pによる上記流体の送圧(供給圧)を受ける。
上記受圧面23を設けずに実施する事もできる。その場合、図2(A)に示されたように、接面圧力付与機構が機能するように形成された溝状の凹部13を備えた第1処理用面1が回転する事によって得られる処理用面間への被処理流動体の導入効果(マイクロポンプ効果)を用いても良い。ここでのマイクロポンプ効果とは第1処理用面1が回転する事で凹部内の流体が凹部の外周方向先端へと速度を持って進み、次に凹部13の先端に送り込まれた流体がさらに凹部13の内周方向からの圧力を受け、最終的に処理用面を離反させる方向への圧力となり、同時に流体が処理用面間に導入される効果である。さらに回転していない場合であっても第1処理用面1に設けられた凹部13内の流体が受けた圧力は最終的に離反側に作用する受圧面として第2処理用面2に作用する。
処理用面に設けられた凹部13については、被処理物及び生成物を含む流体の物性に対応してその深さ、処理用面に対して水平方向への総面積、本数、及び形状を実施できる。
なお、上記受圧面23と上記凹部13とを一装置内に共に設けても実施できる。
この凹部13の深さについては1μm〜50μm、さらに好ましくは3μmから20μmとし、さらの前記処理用面に設けられた凹部であって、処理用面に対して水平方向への総面積が処理用面全体に対して5%〜50%、好ましくは15%〜25%とし、さらに前記処理用面に設けられた凹部であって、形状が処理用面上をカーブ、もしくは渦巻状で伸びるもの、またはL字状に屈曲するものと、さらに深さに勾配を持たせる事で高粘度域から低粘度域まで、またマイクロポンプ効果を用いて導入する流体が固体を含む場合にも安定的に処理用面間に流体を導入できる。また、処理用面に設けられた凹部は導入側つまり処理用面内側で各凹部同士がつながっていても良いし、分断されていても良い。
上記のように受圧面23は傾斜面とされている。この傾斜面(受圧面23)は、被処理流動体の流れ方向を基準とした上流側端部での、凹部13が設けられた処理用部の処理用面に対する軸方向における距離が、下流側端部での同距離に比べて大きくなるように形成される。そしてこの傾斜面は、被処理流動体の流れ方向を基準とした下流側端部が上記凹部13の軸方向投影面上に設置されたものとすることが好ましい。この受圧面23の形成により、被処理物の導入を均一に行うことができる。
具体的には図28(A)に示すように、上記傾斜面(受圧面23)の下流側端部60が上記凹部13の軸方向投影面上となるように設置する。上記傾斜面の第2処理用面2に対する角度θ1は0.1°から85°の範囲である事が好ましく、10°から55°の範囲がより好ましく、15°から45°の範囲がさらに好ましい。この角度θ1は、被処理物の処理前の性状によって適宜変更できる。また、上記傾斜面の下流側端部60は、第1処理用面1に設けられた凹部13の上流側端部13−bから下流側に0.01mm離れた位置より、下流側端部13−cから上流側に0.5mm離れた位置までの領域内に設けられる。より好ましくは、上流側端部13−bから下流側に0.05mm離れた位置より、下流側端部13−cから上流側に1.0mm離れた位置までの領域内に設けられる。上記傾斜面の角度と同様、この下流側端部60の位置についても、被処理物の性状に応じて適宜変更できる。また、図28(B)に示すように、傾斜面(受圧面23)をアール面としても実施できる。これにより、被処理物の導入をさらに均一に行うことができる。
凹部13は上記のように連続したものの他、断続するものであっても実施可能である。断続する場合にあっては、断続する凹部13の、第1処理用面1の最も内周側における上流側端部が上記13−bとなり、同じく第1処理用面1の最も外周側における上流側端部が上記13−cとなる。
また、上記では凹部13を第1処理用面1に形成するものとし、受圧面23を第2処理用面2に形成するものとしたが、逆に、凹部13を、第2処理用面2に形成するものとし、受圧面23を第1処理用面1に形成するものとしても実施可能である。
更には、凹部13を第1処理用面1と第2処理用面2の両方に形成し、凹部13と受圧面23を各処理用面1,2の周方向に交互に設けることによって、第1処理用面1に形成した凹部13と第2処理用面2に形成した受圧面23とが対向し、同時に、第1処理用面1に形成した受圧面23と第2処理用面2に形成した凹部13とが対向するものとすることも可能である。
処理用面に、凹部13とは異なる溝を施す事もできる。具体的な例としては図19(F)や図19(G)のように凹部13よりも径方向外側(図19(F))もしくは径方向内側(図19(G))に、放射状に伸びる新規な凹部14を施す事ができる。これは、処理用面間の滞留時間を延ばしたい場合や、高粘稠物の流体を処理する場合に有利である。
尚、凹部13とは異なる溝については、形状、面積、本数、深さに関しては特に限定されない。目的に応じて当該溝を施す事ができる。
上記の第2処理用部20には上記処理用面に導入された流体の流路とは独立し、処理用面間に通じる開口部d20を備える第2導入部d2が形成されている。この第2導入部d2は第2流体が流される流路であって、処理用面間への出口部である開口部d20が、複数の分割流路90・・・90を備えたものとされている。以下においては、図1などに示すように、開口部d20が第2処理用面2に開口している場合を例にとり説明するが、本願発明はこの形態に限定されず、例えば、図5(A)に示すように、第2リング20の内周面の、第2処理用面2に隣接する位置に第2導入部d2の開口部を設けたものであっても良い。
上記複数の分割流路90・・・90は、流される流体の流れを二つ以上の流れに分割する分割体91が上記第2導入部d2内に配置されて形成されたものである。つまり、流路内に障害物である分割体91を置くことで、この分割体を挟んで第2流体の流れを二つ以上に分けることのできるものである。分割体91は例えば棒状、線状、繊維状、網状のものや、パンチングプレート(図31(A)参照)の貫通穴の形成されていない部分が相当する。分割体91のない空間が上記の分割流路90となるが、分割体91の形状に応じて当然分割流路90の形状も変わり、例えば図31(A)に示すように平面状に散在する空間、同(B)に示すような碁盤状の空間、同(G)に示すようなスリット状の空間、あるいは、下記の各種フィルター内に存在する入り組んだ空間が分割流路90となる。個々の分割流路90の横断面積については、特別に範囲を指定するわけではないが好ましくは0.0001〜3mm、より好ましくは0.01〜0.5mmとする。
この複数の分割流路90・・・90は、第2処理用部20の開口部d20に直接形成することも可能ではあるが、1mmよりも小さな径、特に500μm以下の径の出口部を形成する事は、非常に作業に難を要するため、第2処理用部20の製造が困難となるしコスト高にもなる。そして、洗浄作業などのメンテナンスも困難になってしまう問題がある。よって、上記分割体91を開口部d20に対して取り外し可能な構造とすることが望ましい。
上記取り外し可能な構造としては、分割体91を単体で開口部d20に取り付けたものであっても良いが、図30に示すように、開口部d20に流路分割部材d30を設ける事もできる。この流路分割部材d30としては、上記のように分割体91を備えたものであり、個々の分割流路90の方が開口部d20よりも小さな横断面積を有するものであれば特に限定されないが、機械加工による2流路以上の分割形状やワイヤーメッシュや、焼結フィルターやメンブレンフィルター、またはパンチングプレートなどが挙げられる。また、スリットを有するものとしてはウェッジワイヤーなどが挙げられ、分割体91をそのまま流路分割部材d30としたり、枠体で分割体91の周囲を支持したもの、容器内に分割体91を収納したものとする。
開口部d20に流路分割部材d30を設ける事によって、第2導入部d2より導入される第2流体が上記処理用面間に導入された第1流体と混合・攪拌をされる場合、複数の分割流路90・・・90に対応した、開口部d20の径よりも小さな幅の複数の流れをもって、第2導入部d2より処理用面間に第2流体を導入する事ができる。そのため、第1流体と第2流体の接触面積を分割された流れの数の分大きくする事ができ、第1流体と第2流体との混合・攪拌がこれまで以上に効果的かつ効率的に行え、分子拡散を助長する事ができる。また、混合・攪拌に反応が伴う場合には、その反応をより迅速に効率よく効果的に行える。
流路分割部材d30の開口部d20への取り付け方法としては特に限定されないが、一例として、図30に示すように、取り付け持具d40を使用する事が挙げられる。取り付け持具d40は処理用部20に脱着可能に収容されるものであって、この取り付け持具d40の内部に通路d50を有している。前記の通路d50は、第2処理用部20に設けられている第2導入部d2に接続される通路であり、取り付け持具d40が第2処理用部20に収容されたことで第2導入部d2の一部となる。そして、取り付け持具d40の第2処理用面2の側に流路分割部材d30を保持している。なお、この取り付け持具d40と流路分割部材d30とを一体に形成したものであって良い。
流路分割部材d30の処理用面側の面は、処理用面間の流体の流れを阻害しないために第2処理用面2と同一平面にあることが好ましく、この処理用面側の面が実質的に開口部d20となる。好ましくは、開口部d20に流路分割部材d30を設けた後、第2処理用面2に対してラッピングなどの研磨を行うことにより、流路分割部材d30の処理用面側の面と第2処理用面2とを、段差の無い同一平面となるように加工する事が好ましい。取り付け持具d40を使用せず、流路分割部材d30を直接第2処理用部20に取り付ける場合も同様である。
この取り付け持具d40の第2処理用部20への固定方法としては、特に限定されないが、図30に示されるように、第2処理用部20の第2処理用面2が設けられた側とは反対側から、ネジ60と取り付け持具固定部品70などによって固定する事も可能であるし、取り付け持具40の一部と第2処理用部20とにネジ加工を施し、第2処理用部20に取り付け持具40をネジ込み式にて固定する事もできる。また、取り付け持具d40にO−リング80を収容し、第2処理用部20に設けられた取り付け持具d40の収容部と取り付け持具d40との隙間を密栓し、第2処理用部20と取り付け持具d40との隙間への流体の侵入を防ぐ事が好ましい。取り付け持具d40を使用せず、流路分割部材d30を直接第2処理用部20に取り付ける場合も同様であり、流路分割部材d30の一部と第2処理用部20とにネジ加工を施し、第2処理用部20に流路分割部材d30をネジ込み式にて固定する事などができる。
流路分割部材d30の形状としては、特に限定されない。図31(A)に示すように、平面視の形状が円形であってもよいし、図31(B)に示すような正方形や長方形、図31(C)に示すような楕円形であっても良い。流路分割部材d30は上記のように分割体91を備えており、分割体91のない空間が上記の分割流路90となるが、この分割流路90は穴やスリットの形状となる。穴としては、例えば、図31(A)に示すようにパンチングプレートに設けられた貫通穴が例示でき、スリットとしては、例えば、図31(F)(G)に示されたように開口部d20に1本以上、任意の間隔のロッド91aを施したような形状や、図31(D)(E)に示されるように、任意の間隔のロッド91aにワイヤー91bを交差させたものとして、ウェッジワイヤー等が挙げられる。平行に並べられたワイヤー91b・・・91b間には連続した隙間としてスリット状の分割流路90が形成される。第2流体は、上記のロッド91a及びワイヤー91bの間を通過する。好ましくは、第2流体を、ワイヤー91b・・・91bの隙間の広い方から狭い方向、つまり、図31(D)中の矢印方向へ流すようにする事が好ましい。ワイヤーの断面形状は特に限定されないが図31(D)に示すような三角形や、五角形などが挙げられる。
取り付け持具d40及び流路分割部材d30は第2処理用部20から取り外し可能なため、例えば、取り付け持具d40内の通路50や分割流路90に、第2流体に含まれるほこりや未溶解物などの固形物が詰まった場合にも部品の洗浄、交換が可能である。
また、これまで取り付け持具d40若しくは流路分割部材d30を用いずに第2流路d2を第2処理用面2に設けていた場合、第2処理用面2に硬質材等をライニングやコーティングしたり、鍍金などを施工する際、施工後、第2処理用面2上の開口部d20の角に鍍金材などの施工材の一部が迫り出すような形となる場合があり、実質的に開口部d20を塞いでしまう場合があったが、開口部d20に流路分割部材d30を設けた後で、ライニングやコーティング、鍍金などの加工を施すか、あるいは開口部d20を金属部品やふっ素樹脂加工された部品などで栓をした後、ライニングやコーティング、鍍金などの加工を施し、その後、上記のように開口部d20に栓をするために用いた部品を流路分割部材d30と交換する事で、上記問題を解決できる。
次に、第2導入部d2は、図3(A)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角(θ1)で傾斜したものであっても良い。なお本願発明にあっては、上記のように開口部d20が、複数の分割流路90・・・90を備えたものとされているが、上記仰角(θ1)は、第2導入部d2のうちこの分割流路90・・・90を除いた部分で規定するものとする(下記の角度(θ2)についても同じ)。この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、図3(B)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、上記の第2処理用面2に沿う平面において、方向性を有するものである。この第2流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向である。言い換えると、開口部d20を通る半径方向であって外方向の線分を基準線gとして、この基準線gから回転方向Rへの所定の角度(θ2)を有するものである。
この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、角度(θ2)についても、0度を超えて90度未満に設定されており、図3(B)の網かけ部分に向けて開口部d20から吐出される。さらに反応速度が速い反応の場合には、当該角度(θ2)は小さいものであってもよく、反応速度が遅い場合には、当該角度(θ2)も大きく設定することが好ましい。また、この角度は、流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。
開口部d20の口径は、好ましくは0.2μm〜3000μm、より好ましくは10μm〜1000μmとする。また実質的には、開口部d20の径が流体の流れに影響を及ばさない場合には、第2導入部d2の径が当該範囲内に設定されればよい。また、直進性を求める場合と、拡散性を求める場合とで、開口部d20の形状などを変化することも好ましく、これらは流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。
さらに、前記別流路における開口部d20は、第1処理用面1に設けられた凹部からマイクロポンプ効果によって導入される際の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも外径側に設置すればよい。つまり図2(B)において、第1処理用面1に設けられた凹部13の最も処理用面径方向外側から径方向外側への距離nを0.5 mm以上とするのが好ましい。さらに開口部を同じ流体に対して複数個設ける場合には同心円上に設置するのが好ましい。また、開口部を異なる流体に対して複数個設ける場合には半径の異なる同心円上に設置するのが好ましい。(1) A+B→C (2) C+D→E のような反応が順番どおり実行され、A+B+C→F のような本来同時反応すべきでは無い反応が起こることや、被処理物が効率よく接触せず、反応が実行されないというような問題を回避するのに効果的である。
また上記処理用部を流体中に浸し、上記処理用面間にて混合(反応)させて得られた流体を直接処理用部の外部にある液体、もしくは空気以外の気体に投入して実施できる。
さらに処理用面間もしくは処理用面から吐出された直後の被処理物に超音波エネルギーを付加する事もできる。
また、図1に示すように、上記第1処理用面1と第2処理用面2との間、つまり処理用面間に温度差を生じさせるために、第1処理用部10及び第2処理用部20の少なくとも一つに温調機構(温度調整機構)J1,J2を設けても良い。
この温調機構は特に限定されないが、冷却が目的の場合には処理用部10,20に冷却部を設ける。具体的には、温調用媒体としての氷水や各種の冷媒を通す配管、あるいはペルチェ素子などの、電気的もしくは化学的に冷却作用をなすことのできる冷却素子を処理用部10,20に取り付ける。
加熱が目的の場合には処理用部10,20に加熱部を設ける。具体的には、温調用媒体としてのスチームや各種の温媒を通す配管、あるいは電気ヒーターなどの、電気的もしくは化学的に発熱作用をなすことのできる発熱素子を処理用部10,20に取り付ける。
また、リング収容部に処理用部と直接接する事の出来る新たな温調用媒体用の収容部を設けても良い。それらにより、処理用部の熱伝導を用いて処理用面を温調する事ができる。また、処理用部10,20の中に冷却素子や発熱素子を埋め込んで通電させたり、冷温媒通過用通路を埋め込んでその通路に温調用媒体(冷温媒)を通す事で、内側より処理用面を温調する事もできる。なお、図1に示した温調機構J1,J2は、その一例であって、各処理用部10,20の内部に設けられた温調用媒体を通す配管(ジャケット)である。
上記温調機構J1,J2を利用して、一方の処理用面が他方の処理用面よりも温度が高いものとし、処理用面間に温度差を発生させる。例えば、第1処理用部10を上記いずれかの方法で60℃に加温し、第2処理用部20を上記いずれかの方法で15℃とする。この際、処理用面間に導入された流体の温度は第1処理用面1から第2処理用面2に向かって60℃から15℃に変化する。つまり、この処理用面間における流体に温度勾配が発生する。そして、処理用面間の流体はその温度勾配によって対流し始め、処理用面に対して垂直方向の流れが発生する事になる。なお、上記「垂直方向の流れ」とは、流れの方向成分に、少なくとも上記処理用面に対して垂直方向の成分が含まれるものを指す。
第1処理用面1もしくは第2処理用面2が回転している場合にも、その処理用面に対して垂直方向の流れは継続されるので、処理用面が回転する事による処理用面間のスパイラル状で層流の流れに、垂直方向の流れを付加する事ができる。この処理用面間の温度差は1℃〜400℃、好ましくは5℃〜100℃で実施できる。
尚、本装置における回転軸50は、鉛直に配置されたものに限定するものではない。例えば斜めに配置されていてもよい。処理中、両処理用面1,2間に形成される流体の薄膜により、実質的に重力の影響を排除できるからである。図1に示す通り、第1導入部d1は、第2ホルダ21において、第2リング20の軸心と一致し、上下に鉛直に伸びる。但し、第1導入部d1は、第2リング20の軸心と一致しているものに限定するものではなく、両リング10,20に囲まれた空間に、第1被処理流動体を供給できるものであれば、第2ホルダ21の中央部分22において、上記軸心以外の位置に設けられていてもよく、更に、鉛直でなく、斜めに伸びるものであってもよい。そのどの配置角度の場合であっても、処理用面間の温度勾配によって処理用面に対して垂直な流れを発生させる事を可能としている。
上記処理用面間における流体の温度勾配において、その温度勾配が小さければ流体に熱伝導が行われるだけであるが、温度勾配がある臨界値を越えると、流体中にベナール対流という現象が発生する。その現象は、処理用面間の距離をL、重力の加速度をg、流体の体積熱膨張率をβ、流体の動粘性率をν、流体の温度伝導率をα、処理用面間の温度差をΔTとするとき、
Ra=L3・g・β・ΔT/(α・ν)
で定義される無次元数であるレイリー数Raによって支配される。ベナール対流が生じ始める臨界レイリー数は処理用面と被処理物流体との境界面の性質によって異なるが約1700とされている。それより大きな値ではベナール対流が発生する。さらに、そのレイリー数Raが1010付近より大きな値の条件となると流体は乱流状態となる。つまり、その処理用面間の温度差ΔTもしくは処理用面の距離Lを、レイリー数Raが1700以上になるようにして本装置を調節する事で、処理用面間に処理用面に対して垂直方向の流れを発生する事ができ、上記混合(反応)操作を実施できる。
しかし上記ベナール対流は、1〜10μm程度の処理用面間の距離においては発生しにくい。厳密には10μm以下の間隔中の流体に上記レイリー数を適用し、ベナール対流発生条件を検討すると、水の場合でその温度差に数千℃以上を必要とする事になり、現実的には難しい。ベナール対流は流体の温度勾配における密度差による対流、つまり重力に関係する対流である。10μm以下の処理用面の間は微小重力場である可能性が高く、そのような場所では浮力対流は抑制される。つまり、この装置で現実的にベナール対流が発生するのは、処理用面間の距離が10μmを超える場合である。
処理用面間の距離が1〜10μm程度では、密度差による対流ではなく、温度勾配による流体の表面張力差によって対流が発生している。そのような対流がマランゴニ対流であり、処理用面間の距離をL、流体の動粘性率をν、流体の温度伝導率をα、処理用面間の温度差をΔT、流体の密度をρ、表面張力の温度係数(表面張力の温度勾配)をσとするとき、
Ma=σ・ΔT・L/(ρ・ν・α)
で定義される無次元数であるマランゴニ数によって支配される。マランゴニ対流が発生し始める臨界マランゴニ数は80付近であり、その値よりも大きな値となる条件ではマランゴニ対流が発生する。つまり、その処理用面間の温度差ΔTもしくは処理用面の距離Lを、マランゴニ数Ma が80以上になるようにして本装置を調節する事で、10μm以下の微小流路であっても処理用面間に処理用面に対して垂直方向の流れを発生させる事ができ、上記混合(反応)操作を実施できる。
レイリー数の計算には以下の式を用いた。
L:処理用面間の距離[m], β:体積熱膨張率[1/K], g:重力加速度[m/s2]
ν:動粘性率[m2/s], α:温度伝導率[(m2/s)], ΔT:処理用面間の温度差[K]
ρ:密度[kg/m3], Cp:定圧比熱[J/kg・K], k:熱伝導率[W/m・K]
T1:処理用面における高温側の温度[K], T0:処理用面における低温側の温度[K]
ベナール対流の発生し始めるときのレイリー数を臨界レイリー数RaCとした場合、そのときの温度差ΔTC1は以下のように求められる。
マランゴニ数の計算には以下の式を用いた。
L:処理用面間の距離[m], ν:動粘性率[m2/s], α:温度伝導率[(m2/s)]
ΔT:処理用面間の温度差[K], ρ:密度[kg/m3], Cp:定圧比熱[J/kg・K]
k:熱伝導率[W/m・K], σ:表面張力温度係数[N/m・K]
T1:処理用面における高温側の温度[K], T0:処理用面における低温側の温度[K]
マランゴニ対流の発生し始めるマランゴニ数を臨界マランゴニ数MaCとした場合、そのときの温度差ΔTC2は以下のように求められる。
以下、本願発明の実施に適した流体処理装置について、上記で説明した部分及びそれ以外も含んだ全般的な説明を行う。
図4(A)へ示す通り、この装置は、対向する第1及び第2の、2つの処理用部10,20を備え、少なくとも一方の処理用部が回転する。両処理用部10,20の対向する面が、夫々処理用面として、両処理用面間にて、被処理流動体の処理を行う。第1処理用部10は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
両処理用面1,2は、被処理流動体の流路に接続され、被処理流動体の流路の一部を構成する。
より詳しくは、この装置は、少なくとも2つの被処理流動体の流路を構成すると共に、各流路を、合流させる。
即ち、この装置は、第1の被処理流動体の流路に接続され、当該第1被処理流動体の流路の一部を形成すると共に、第1被処理流動体とは別の、第2被処理流動体の流路の一部を形成する。そして、この装置は、両流路を合流させて、処理用面1,2間において、両流動体を混合し、反応を伴う場合においては反応させる。図4(A)へ示す実施の形態において、上記の各流路は、密閉されたものであり、液密(被処理流動体が液体の場合)・気密(被処理流動体が気体の場合)とされている。
具体的に説明すると、図4(A)に示す通り、この装置は、上記の第1処理用部10と、上記の第2処理用部20と、第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構4と、回転駆動部と、第1導入部d1と、第2導入部d2と、流体圧付与機構p1と、第2流体供給部p2と、ケース3とを備える。
尚、回転駆動部は図示を省略する。
第1処理用部10と第2処理用部20とは、少なくとも何れか一方が、少なくとも何れか他方に、接近・離反可能となっており、両処理用面1,2は、接近・離反できる。
この実施の形態では、第1処理用部10に対して、第2処理用部20が接近・離反する。但し、これとは逆に、第1処理用部10が、第2処理用部20に対して接近・離反するものであってもよく、両処理用部10,20が互いに接近・離反するものであってもよい。
第2処理用部20は、第1処理用部10の上方に配置されており、第2処理用部20の、下方を臨む面即ち下面が、上記の第2処理用面2であり、第1処理用部10の、上方を臨む面即ち上面が、上記の第1処理用面1である。
図4(A)へ示す通り、この実施の形態において、第1処理用部10及び第2処理用部20は、夫々環状体、即ちリングである。以下、必要に応じて第1処理用部10を第1リング10と呼び、第2処理用部20を第2リング20と呼ぶ。
この実施の形態において、両リング10,20は、金属製の一端が鏡面研磨された部材であり、当該鏡面を第1処理用面1及び第2処理用面2とする。即ち、第1リング10の上端面が第1処理用面1として、鏡面研磨されており、第2リングの下端面が第2処理用面2として、鏡面研磨されている。
少なくとも一方のホルダは、回転駆動部にて、他方のホルダに対して相対的に回転することができる。図4(A)の50は、回転駆動部の回転軸を示している。回転駆動部には電動機を採用することができる。回転駆動部にて、一方のリングの処理用面に対して、他方のリングの処理用面を相対的に回転させることができる。
この実施の形態において、第1ホルダ11は、回転軸50にて、回転駆動部から駆動力を受けて、第2ホルダ21に対して回転するものであり、これにて、第1ホルダ11と一体となっている第1リング10が第2リング20に対して回転する。第1リング10の内側において、回転軸50は、平面視、円形の第1リング10の中心と同心となるように、第1ホルダ11に設けられている。
第1リング10の回転は、リング10の軸心を中心とする。図示はしないが、軸心は、リング10の中心線を指し、仮想線である。
上記の通り、この実施の形態において、第1ホルダ11は、第1リング10の第1処理用面1を上方に向けて、第1リング10を保持し、第2ホルダ21は、第2リング20の第2処理用面2を下方に向けて、第2リング20を保持している。
具体的には、第1及び第2ホルダ11,21は、夫々は、凹状のリング収容部を備える。この実施の形態において、第1ホルダ11のリング収容部に、第1リング10が嵌合し、第1ホルダ11のリング収容部から出没しないように、第1リング10はリング収容部に固定されている。
即ち、上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21側を臨む。
第1リング10の材質は、金属の他、セラミックや焼結金属、耐磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用する。特に、回転するため、軽量な素材にて第1処理用部10を形成するのが望ましい。第2リング20の材質についても、第1リング10と同様のものを採用して実施すればよい。
一方、第2ホルダ21が備えるリング収容部41は、第2リング20の処理用部2を出没可能に収容する。
この第2ホルダ21が備えるリング収容部41は、第2リング20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、円を呈する、即ち環状に形成された、溝である。
リング収容部41は、第2リング20の寸法より大きく形成され、第2リング20との間に十分なクリアランスを持って、第2リング20を収容する。
このクリアランスにより、当該第2リング20は、このリング収容部41内にて、環状のリング収容部41の軸方向について、更に、当該軸方向と交差する方向について、変位することができる。言い換えれば、このクリアランスにより、当該第2リング20は、リング収容部41に対して、リング20の中心線を、上記リング収容部41の軸方向と平行の関係を崩すようにも変位できる。
以下、第2ホルダ21の、第2リング20に囲まれた部位を、中央部分22と呼ぶ。
上記について、換言すると、当該第2リング20は、このリング収容部41内にて、リング収容部41のスラスト方向即ち上記出没する方向について、更に、リング収容部41の中心に対して偏心する方向について、変位することが可能に収容されている。また、リング収容部41に対して、リング20の周方向の各位置にて、リング収容部41からの出没の幅が夫々異なるようにも変位可能に即ち芯振れ可能に、当該第2リング20は収容されている。
上記の3つの変位の自由度、即ち、リング収容部41に対する第2リング20の、軸方向、偏心方向、芯振れ方向についての自由度を備えつつも、第2リング20は、第1リング10の回転に追従しないように第2ホルダ21に保持される。図示しないが、この点については、リング収容部41と第2リング20との夫々に、リング収容部41に対してその周方向に対する回転を規制する適当な当たりを設けて実施すればよい。但し、当該当たりは、上記3つの変位の自由度を損なうものであってはならない。
上記の接面圧付与機構4は、第1処理用面1と第2処理用面2とを接近させる方向に作用させる力を、処理用部に付与する。この実施の形態では、接面圧付与機構4は、第2ホルダ21に設けられ、第2リング20を第1リング10に向けて付勢する。
接面圧付与機構4は、第2リング20の周方向の各位置即ち処理用面2の各位置を均等に、第1リング10へ向けて付勢する。接面圧付与機構4の具体的な構成については、後に詳述する。
図4(A)へ示す通り、上記のケース3は、両リング10,20外周面の外側に配置されたものであり、処理用面1,2間にて生成され、両リング10,20の外側に排出される生成物を収容する。ケース3は、図4(A)へ示すように、第1ホルダ10と第2ホルダ20を、収容する液密な容器である。但し、第2ホルダ20は、当該ケースの一部としてケース3と一体に形成されたものとして実施することができる。
上記の通り、ケース3の一部とされる場合は勿論、ケース3と別体に形成される場合も、第2ホルダ21は、両リング10,20間の間隔、即ち、両処理用面1,2間の間隔に影響を与えるようには可動となっていない。言い換えると、第2ホルダ21は、両処理用面1,2間の間隔に影響を与えない。
ケース3には、ケース3の外側に生成物を排出するための排出口32が設けられている。
第1導入部d1は、両処理用面1,2間に、第1の被処理流動物を供給する。
上記の流体圧付与機構p1は、直接或いは間接的に、この第1導入部d1に接続されて、第1被処理流動体に、流圧を付与する。流体圧付与機構p1には、コンプレッサをその他のポンプを採用することができる。
この実施の形態において、第1導入部d1は、第2ホルダ21の上記中央部分22の内部に設けられた流体の通路であり、その一端が、第2ホルダ21の、第2リング20が平面視において呈する円の中心位置にて、開口する。また、第1導入部d1の他の一端は、第2ホルダ20の外部即ちケース3の外部において、上記流体圧付与機構p1と接続されている。
第2導入部d2は、第1の被処理流動体と、混合させる第2の流動体を処理用面1,2へ供給する。この実施の形態において、第2導入部は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第2流体供給部p2が接続されている。
第2流体供給部p2には、コンプレッサ、その他のポンプを採用することができる。
流体圧付与機構p1により、加圧されている、第1の被処理流動体は、第1導入部d1から、両リング10,20の内側の空間に導入され、第1処理用面1と第2処理用面2との間を通り、両リング10,20の外側に通り抜けようとする。
このとき、第1被処理流動体の送圧を受けた、第2リング20は、接面圧付与機構4の付勢に抗して、第1リング10から遠ざかり、両処理用面間に微小な間隔を開ける。両処理用面1,2の接近・離反による、両面1,2間の間隔について、後に詳述する。
両処理用面1,2間において、第2導入部d2から第2の被処理流動体が供給され、第1の被処理流動体と合流し、処理用面の回転により、混合(反応)が促進される。そして、両流動体の混合(反応)による生成物が両処理用面1,2から、両リング10,20の外側に排出される。リング10,20の外側に排出された生成物は、最終的に、ケースの排出口からケースの外部に排出される(自己排出)。
上記の被処理流動体の混合及び反応(反応を伴う場合)は、第2処理用部20に対する第1処理用部10の駆動部5による回転にて、第1処理用面1と第2処理用面2とによって行われる。
第1及び第2の処理用面1,2間において、第2導入部d2の開口部m2の下流側が、上記の第1の被処理流動体と第2の被処理流動体とを混合させる処理室となる。具体的には、両処理用面1,2間において、第2リング20の底面を示す図14(C)にて、斜線で示す、第2リング20の径の内外方向r1について、第2導入部の開口部m2即ち第2開口部m2の外側の領域Hが、上記の処理室として機能する。従って、この処理室は、両処理用面1,2間において、第1導入部d1と第2導入部d2の両開口部m1,m2の下流側に位置する。
第1開口部m1からリングの内側の空間を経て両処理用面1,2間へ導入された第1の被処理流動体に対して、第2開口部m2から、両処理用面1,2間に導入された第2の被処理流動体が、上記処理室となる領域Hにて、混合され、反応を伴う場合においては両被処理流動体は反応する。流体圧付与機構p1により送圧を受けて、流体は、両処理用面1,2間の微小な隙間にて、リングの外側に移動しようとするが、第1リング10は回転しているので、上記反応の領域Hにおいて、混合された流動体は、リングの径の内外方向について内側から外側へ直線的に移動するのではなく、処理用面を平面視した状態において、リングの回転軸を中心として、渦巻き状にリングの内側から外側へ移動する。このように、混合(反応)を行う領域Hにて、渦巻状に内側から外側へ移動することによって、両処理用面1,2間の微小間隔にて、十分な混合(反応)に要する区間を確保することができ、均一な反応を促進することができる。
また、混合(反応)にて生ずる生成物は、上記の微小な第1及び第2の処理用1,2間にて、均質な生成物となり、特に晶析や析出の場合微粒子となる。
少なくとも、上記の流体圧付与機構p1が負荷する送圧と、上記の接面圧付与機構4の付勢力と、リングの回転による遠心力のバランスの上に、両処理用面1,2間の間隔を好ましい微小な間隔にバランスさせることができ、更に、流体圧付与機構p1が負荷する送圧とリングの回転による遠心力を受けた被処理流動体が、上記の処理用面1,2間の微小な隙間を、渦巻き状に移動して、混合(反応)が促進される。
上記の混合(反応)は、流体圧付与機構p1が負荷する送圧やリングの回転により、強制的に行われる。即ち、混合(反応)は、近接・離反可能に互いに対向して配設され且つ少なくとも一方が他方に対して回転する処理用面1,2で、強制的に、均一に起こる。
従って、特に、反応による生成物の晶出又は析出は、流体圧付与機構p1が負荷する送圧の調整や、リングの回転速度即ちリングの回転数の調整という、比較的コントロールし易い方法により、制御できる。
このように、この流体処理装置は、送圧や遠心力の調整にて、生成物の大きさ影響を与える処理用面1,2間の間隔の制御を行え、更に、生成物の均一な生成に影響を与える上記反応の領域Hにて移動する距離の制御が行える点で優れたものである。
また、上記の処理は、生成物が析出するものに限らず、液体の場合も含む。また、生成物が微粒子などの微細な固まりである場合、生成物が処理後の流体中に沈殿するものであっても良く、また、連続相中に分散相が存在する分散液の状態にあるものであっても良い。
尚、回転軸50は、鉛直に配置されたものに限定するものではなく、水平方向に配位されたものであってもよく、傾斜して配位されたものであってよい。処理中、図示は両処理用面1,2間の微細な間隔にて混合(反応)がなされるものであり、実質的に重力の影響を排除できるからである。
図4(A)にあっては、第1導入部d1は、第2ホルダ21において、第2リング20の軸心と一致し、上下に鉛直に伸びたものを示している。但し、第1導入部d1は、第2リング20の軸心と一致しているものに限定するものではなく、両リング10,20に囲まれた空間に、第1被処理流動体を供給できるものであれば、第2ホルダ21の中央部分22の他の位置設けられていてもよく、更に、鉛直でなく、斜めに伸びるものであってもよい。
図15(A)へ、上記装置のより好ましい実施の形態を示す。図示の通り、第2処理用部20は、上記の第2処理用面2と共に、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23とを備える。以下この受圧面23を離反用調整面23と呼ぶ。図示の通り、この離反用調整面23は、傾斜面である。
前述の通り、第2ホルダ21の底部即ち下部には、リング収容部41が形成され、そのリング収容部41内に、第2処理用部20が受容されている。また、図示はしないが、回り止めにて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。
この実施の形態において、処理用面1,2間の、第1処理用部10及び第2処理用部20の内側が、被処理物の流入部であり、第1処理用部10及び第2処理用部20の外側が、被処理物の流出部である。
前記の接面圧力付与機構4は、第1処理用面1に対して第2処理用面2を、圧接又は近接した状態に押圧するものであり、この接面圧力と流体圧力などの両処理用面1、2間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる。言い換えれば、上記力の均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保つ。
具体的には、この実施の形態において、接面圧力付与機構4は、上記のリング収容部41と、リング収容部41の奥に即ちリング収容部41の最深部に設けられた発条受容部42と、スプリング43と、エア導入部44とにて構成されている。
但し、接面圧力付与機構4は、上記リング収容部41と、上記発条受容部42と、スプリング43と、エア導入部44の少なくとも、何れか1つを備えるものであればよい。
リング収容部41は、リング収容部41内の第2処理用部20の位置を深く或いは浅く、即ち上下に、変位することが可能なように、第2処理用部20を遊嵌している。
上記のスプリング43の一端は、発条受容部42の奥に当接し、スプリング43の他端は、リング収容部41内の第2処理用部20の前部即ち上部と当接する。図4において、スプリング43は、1つしか現れていないが、複数のスプリング44にて、第2処理用部20の各部を押圧するものとするのが好ましい。即ち、スプリング43の数を増やすことによって、より均等な押圧力を第2処理用部20に与えることができるからである。従って、第2ホルダ21については、スプリング43が数本から数十本取付けられたマルチ型とするのが好ましい。
この実施の形態において、上記エア導入部44にて他から、空気をリング収容部41内に導入することを可能としている。このような空気の導入により、リング収容部41と第2処理用部20との間を加圧室として、スプリング43と共に、空気圧を押圧力として第2処理用部20に与えることができる。従って、エア導入部44から導入する空気圧を調整することにて、運転中に第1処理用面1に対する第2処理用面2の接面圧力を調整することが可能である。尚空気圧を利用するエア導入部44の代わりに、油圧などの他の流体圧にて押圧力を発生させる機構を利用しても実施可能である。
接面圧力付与機構4は、上記の押圧力即ち接面圧力の一部を供給し調節する他、変位調整機構と、緩衝機構とを兼ねる。
詳しくは、接面圧力付与機構4は、変位調整機構として、始動時や運転中の軸方向への伸びや磨耗による軸方向変位にも、空気圧の調整によって追従し、当初の押圧力を維持できる。また、接面圧力付与機構4は、上記の通り、第2処理用部20を変位可能に保持するフローティング機構を採用することによって、微振動や回転アライメントの緩衝機構としても機能するのである。
次に、上記の構成を採る処理装置の使用の状態について、図4(A)に基づいて説明する。
まず、第1の被処理流動体が、流体圧付与機構p1からの送圧を受けて、密閉されたケースの内部空間へ、第1導入部d1より導入される。他方、回転駆動部による回転軸50の回転によって、第1処理用部10が回転する。これにより、第1処理用面1と第2処理用面2とは微小間隔を保った状態で相対的に回転する。
第1の被処理流動体は、微小間隔を保った両処理用面1,2間で、流体膜となり、第2導入部d2から導入された第2被処理流動体は、両処理用面1,2間において、当該流体膜と合流して、同様に流体膜の一部を構成する。この合流により、第1及び第2の被処理流動体が混合されて生成物が形成される。そして反応を伴う場合にあっては、両流動体が反応して、均一な混合状態(反応を伴う場合にあっては均一な反応)が促進されて、その反応生成物が形成される。これにより、析出を伴う場合にあっては比較的均一で微細な粒子の生成が可能となり、析出を伴わない場合にあっても、均一な混合状態(反応を伴う場合にあっては均一な反応)が実現される。なお、析出した生成物は、第1処理用面1の回転により第2処理用面2との間で剪断を受けることにて、さらに微細化される場合もあると考えられる。ここで、第1処理用面1と第2処理用面2とは、1μmから1mm、特に1μmから10μmの微小間隔に調整されることにより、均一な混合状態(反応を伴う場合にあっては均一な反応)を実現すると共に、数nm単位の超微粒子の生成をも可能とする。
生成物は、両処理用面1,2間から出て、ケース3の排出口33からケース外部へ排出される。排出された生成物は、周知の減圧装置にて、真空或いは減圧された雰囲気内にて霧状にされ、雰囲気内の他に当たることによって流動体として流れ落ちたものが脱気後の液状物として回収することができる。
尚、この実施の形態において、処理装置は、ケースを備えるものとしたが、このようなケースを設けずに実施することもできる。例えば、脱気するための減圧タンク即ち真空タンクを設け、そのタンク内部に、処理装置を配置して、実施することが可能である。その場合、当然上記の排出口は、処理装置には備えられない。
上記のように、第1処理用面1と第2処理用面2とは、機械的なクリアランスの設定では不可能とされたμm単位の微小間隔に調整され得るものであるが、そのメカニズムを次に説明する。
第1処理用面1と第2処理用面2とは、相対的に接近離反可能であり、且つ相対的に回転する。この例では、第1処理用面1が回転し、第2処理用面2が軸方向に移動可能な構造(フローティング構造)を持って第1処理用面1に対して接近離反する。
よって、この例では、第2処理用面2の軸方向位置が、力即ち、前述の接面圧力と離反力のバランスによって、μm単位の精度で設定されることにより、両処理用面1,2間の微小間隔の設定がなされる。
図15(A)へ示す通り、接面圧力としては、接面圧力付与機構4において、エア導入部44から空気圧即ち正圧を付与した場合の当該圧力、スプリング43の押圧力を挙げることができる。
尚、図16〜18に示す実施の形態において、図面の煩雑を避けるため、第2導入部d2は、省略して描いてある。この点について、第2導入部d2が設けられていない位置の断面と考えればよい。また、図中、Uは上方を、Sは下方を、夫々示している。
他方、離反力としては、離反側の受圧面、即ち第2処理用面2及び離反用調整面23に作用する流体圧と、第1処理用部1の回転による遠心力と、エア導入部44に負圧を掛けた場合の当該負圧とを挙げることができる。
尚、装置を洗浄するに際して、上記のエア導入部44に掛ける負圧を大きくすることにより、両処理用面1,2を大きく離反させることができ、洗浄を容易に行うことができる。
そして、これらの力の均衡によって、第2処理用面2が第1処理用面1に対して所定の微小間隔を隔てた位置にて安定することにより、μm単位の精度での設定が実現する。
離反力をさらに詳しく説明する。
まず、流体圧に関しては、密閉された流路中にある第2処理用部20は、流体圧付与機構pから被処理流動体の送り込み圧力即ち流体圧を受ける。その際、流路中の第1処理用面に対向する面、即ち第2処理用面2と離反用調整面23が離反側の受圧面となり、この受圧面に流体圧が作用して、流体圧による離反力が発生する。
次に、遠心力に関しては、第1処理用部10が高速にすると、流体に遠心力が作用し、この遠心力の一部は両処理用面1,2を互いに遠ざける方向に作用する離反力となる。
更に、上記のエア導入部44から負圧を第2処理用部20へ与えた場合には、当該負圧が離反力として作用する。
以上、本願の説明においては、第1第2の処理用面1,2を互いに離反させる力を離反力として説明するものであり、上記の示した力を離反力から排除するものではない。
上述のように、密閉された被処理流動体の流路において、処理用面1,2間の被処理流動体を介し、離反力と、接面圧力付与機構4が奏する接面圧力とが均衡した状態を形成することにより、両処理用面1,2間に、均一な混合状態(反応を伴う場合にあっては均一な反応)を実現すると共に、微細な生成物の晶出・析出を行うのに適した流体膜を形成する。このように、この装置は、処理用面1,2間に強制的に流体膜を介することにより、従来の機械的な装置では不可能であった微小な間隔を、両処理用面1,2の間に維持することを可能として、生成物として微粒子を、高精度に生成することを実現したのである。
言い換えると処理用面1,2間における流体膜の膜厚は、上述の離反力と接面圧力の調整により、所望の厚みに調整し、必要とする均一な混合状態(反応を伴う場合にあっては均一な反応)の実現と、微細な生成物の生成処理を行うことができる。従って、流体膜の厚みを小さくしようとする場合、離反力に対して相対的に接面圧力が大きくなるように、接面圧力或いは離反力を調整すればよく、逆に流体膜の厚みを大きくようとすれば、接面圧力に対して相対的に離反力が大きくなるように、離反力或いは接面圧力を調整すればよい。
接面圧力を増加させる場合、接面圧力付与機構4において、エア導入部44から空気圧即ち正圧を付与し、又は、スプリング43を押圧力の大きなものに変更或いはその個数を増加させればよい。
離反力を増加させる場合、流体圧付与機構p1の送り込み圧力を増加させ、或いは第2処理用面2や離反用調整面23の面積を増加させ、またこれに加えて、第2処理用部20の回転を調整して遠心力を増加させ或いはエア導入部44からの圧力を低減すればよい。もしくは負圧を付与すればよい。スプリング43は、伸びる方向に押圧力を発する押し発条としたが、縮む方向に力を発する引き発条として、接面圧力付与機構4の構成の一部又は全部とすることが可能である。
離反力を減少させる場合、流体圧付与機構p1の送り込み圧力を減少させ、或いは第2処理用面2や離反用調整面23の面積を減少させ、またこれに加えて、第2処理用部20の回転を調整して遠心力を減少させ或いはエア導入部44からの圧力を増加させれば良い。もしくは負圧を低減すればよい。
さらに、接面圧力及び離反力の増加減少の要素として、上記の他に粘度などの被処理流動体の性状も加えることができ、このような被処理流動体の性状の調整も、上記の要素の調整として、行うことができる。
なお、離反力のうち、離反側の受圧面即ち、第2処理用面2及び離反用調整面23に作用する流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。
メカニカルシールにあっては、第2処理用部20がコンプレッションリングに相当するが、この第2処理用部20に対して流体圧が加えられた場合に、第2処理用部2を第1処理用部1から離反する力が作用する場合、この力がオープニングフォースとされる。
より詳しくは、上記の第1の実施の形態のように、第2処理用部20に離反側の受圧面即ち、第2処理用面2及び離反用調整面23のみが設けられている場合には、送り込み圧力の全てがオープニングフォースを構成する。なお、第2処理用部20の背面側にも受圧面が設けられている場合、具体的には、後述する図15(B)及び図20の場合には、送り込み圧力のうち、離反力として働くものと接面圧力として働くものとの差が、オープニングフォースとなる。
ここで、図15(B)を用いて、第2処理用部20の他の実施の形態について説明する。
図15(B)に示す通り、この第2処理用部20のリング収容部41より露出する部位であり且つ内周面側に、第2処理用面2と反対側即ち上方側を臨む近接用調整面24が設けられている。
即ち、この実施の形態において、接面圧力付与機構4は、リング収容部41と、エア導入部44と、上記近接用調整面24とにて構成されている。但し、接面圧力付与機構4は、上記リング収容部41と、上記発条受容部42と、スプリング43と、エア導入部44と、上記近接用調整面24の少なくとも、何れか1つを備えるものであればよい。
この近接用調整面24は、被処理流動体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、近接用接面圧力付与機構4の一部として、接面圧力の供給側の役目を担う。一方第2処理用面2と前述の離反用調整面23とは、被処理流動体に掛けた所定の圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、離反力の一部についての供給側の役目を担うものである。
近接用調整面24と、第2処理用面2及び離反用調整面23とは、共に前述の被処理流動体の送圧を受ける受圧面であり、その向きにより、上記接面圧力の発生と、離反力の発生という異なる作用を奏する。
処理用面の接近・離反の方向、即ち第2リング20の出没方向と直交する仮想平面上に投影した近接用調整面24の投影面積A1と、当該仮想平面に投影した第2処理用部20の第2処理用面2及び離反側受圧面23との投影面積の合計面積A2との、面積比A1/A2は、バランス比Kと呼ばれ、上記のオープニングフォースの調整に重要である。
近接用調整面24の先端と離反側受圧面23の先端とは、共に環状の第2調整用部20の内周面25即ち先端線L1に規定されている。このため、近接用調整面24の基端線L2をどこに置くかの決定で、バランス比Kの調整が行われる。
即ち、この実施の形態において、被処理用流動体の送り出しの圧力をオープニングフォースとして利用する場合、第2処理用面2及び離反用調整面23との合計投影面積を、近接用調整面24の投影面積より大きいものとすることによって、その面積比率に応じたオープニングフォースを発生させることができる。
上記のオープニングフォースについては、上記バランスライン、即ち近接用調整面24の面積A1を変更することで、被処理流動体の圧力、即ち流体圧により調整できる。
摺動面実面圧P、即ち、接面圧力のうち流体圧によるものは次式で計算される。
P=P1×(K−k)+Ps
ここでP1は、被処理流動体の圧力即ち流体圧を示し、Kは上記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
このバランスラインの調整により摺動面実面圧Pを調整することで処理用面1,2間を所望の微小隙間量にし被処理流動体による流動体膜を形成させ、生成物を微細とし、また、均一な混合(反応)処理を行うのである。
通常、両処理用面1,2間の流体膜の厚みを小さくすれば、生成物をより細かくすることができる。逆に、当該流体膜の厚みを大きくすれば、処理が粗くなり単位時間あたりの処理量が増加する。従って、上記の摺動面実面圧Pの調整により、両処理用面1,2間の隙間を調整して、所望の均一な混合状態(反応を伴う場合にあっては均一な反応)を実現すると共に微細な生成物を得ることができる。以下、摺動面実面圧Pを面圧Pと呼ぶ。
この関係を纏めると、上記の生成物を粗くする場合、バランス比を小さくし、面圧Pを小さくし、上記隙間を大きくして、上記膜厚を大きくすればよい。逆に、上記の生成物をより細かくする場合、バランス比を大きくし、面圧Pを大きくし、上記隙間を小さくし、上記膜厚を小さくする。
このように、接面圧力付与機構4の一部として、近接用調整面24を形成して、そのバランスラインの位置にて、接面圧力の調整、即ち処理用面間の隙間を調整するものとしても実施できる。
上記の隙間の調整には、既述の通り、他に、前述のスプリング43の押圧力や、エア導入部44の空気圧を考慮して行う。また、流体圧即ち被処理流動体の送り圧力の調整や、更に、遠心力の調整となる、第1処理用部10即ち第1ホルダ11の回転の調整も、重要な調整の要素である。
上述の通り、この装置は、第2処理用部20と、第2処理用部20に対して回転する第1処理用部10とについて、被処理流動体の送り込み圧力と当該回転遠心力、また接面圧力で圧力バランスを取り両処理用面に所定の流体膜を形成させる構成にしている。またリングの少なくとも一方をフローティング構造とし芯振れなどのアライメントを吸収し接触による磨耗などの危険性を排除している。
この図15(B)の実施の形態においても、上記の調整用面を備える以外の構成については、図4(A)に示す実施の形態と同様である。
また、図15(B)に示す実施の形態において、図20に示すように、上記の離反側受圧面23を設けずに実施することも可能である。
図15(B)や図20に示す実施の形態のように、近接用調整面24を設ける場合、近接用調整面24の面積A1を上記の面積A2よりも大きいものとすることにより、オープニングフォースを発生させずに、逆に、被処理流動体に掛けられた所定の圧力は、全て接面圧力として働くことになる。このような設定も可能であり、この場合、他の離反力を大きくすることにより、両処理用面1,2を均衡させることができる。
上記の面積比にて、流体から受ける力の合力として、第2処理用面2を第1処理用面1から離反させる方向へ作用させる力が定まる。
上記の実施の形態において、既述の通り、スプリング43は、摺動面即ち処理用面に均一な応力を与える為に、取付け本数は、多いほどよい。但し、このスプリング43については、図16へ示すように、シングルコイル型スプリングを採用することも可能である。これは、図示の通り、中心を環状の第2処理用部20と同心とする1本のコイル型スプリングである。
第2処理用部20と第2ホルダ21との間は、気密となるようにシールし、当該シールには、周知の手段を採用することができる。
図17に示すように、第2ホルダ21には、第2処理用部20を、冷却或いは加熱して、その温度を調整することが可能な温度調整用ジャケット46が設けられている。また、図17の3は、前述のケースを示しており、このケース3にも、同様の目的の温度調整用ジャケット35が設けられている。
第2ホルダ21の温度調整用ジャケット46は、第2ホルダ21内において、リング収容部41の側面に形成された水回り用の空間であり、第2ホルダ21の外部に通じる通路47,48と連絡している。通路47,48は、何れか一方が温度調整用ジャケット46に、冷却用或いは加熱用の媒体を導入し、何れか他方が当該媒体を排出する。
また、ケース3の温度調整用ジャケット35は、ケース3の外周を被覆する被覆部34にて、ケース3の外周面と当該被覆部34との間に設けられた、加熱用水或いは冷却水を通す通路である。
この実施の形態では、第2ホルダ21とケース3とが、上記の温度調整用のジャケットを備えるものとしたが、第1ホルダ11にも、このようなジャケットを設けて実施することが可能である。
接面圧力付与機構4の一部として、上記以外に、図18に示すシリンダ機構7を設けて実施することも可能である。
このシリンダ機構7は、第2ホルダ21内に設けられたシリンダ空間部70と、シリンダ空間部70をリング収容部41と連絡する連絡部71と、シリンダ空間部70内に収容され且つ連絡部71を通じて第2処理用部20と連結されたピストン体72と、シリンダ空間部70上部に連絡する第1ノズル73と、シリンダ空間部70下部に第2ノズル74と、シリンダ空間部70上部とをピストン体72との間に介された発条などの押圧体75とを備えたものである。
ピストン体72は、シリンダ空間部70内にて上下に摺動可能であり、ピストン体72の当該摺動にて第2処理用部20が上下に摺動して、第1処理用面1と第2処理用面2との間の隙間を変更することができる。
図示はしないが、具体的には、コンプレッサなどの圧力源と第1ノズル73とを接続し、第1ノズル73からシリンダ空間部70内のピストン体72上方に空気圧即ち正圧を掛けることにて、ピストン体72を下方に摺動させ、第2処理用部20を第1及び第2処理用面1,2間の隙間を狭めることができる。また図示はしないが、コンプレッサなどの圧力源と第2ノズル74とを接続し、第2ノズル74からシリンダ空間部70内のピストン体72下方に空気圧即ち正圧を掛けることにて、ピストン体72を上方に摺動させ、第2処理用部20を移動させて第1及び第2処理用面1,2間の隙間を広げる、即ち開く方向に移動させることができる。このように、ノズル73,74にて得た空気圧で、接面圧力を調整できるのである。
リング収容部41内における第2処理用部20の上部と、リング収容部41の最上部との間に余裕があっても、ピストン体7がシリンダ空間部70の最上部70aと当接するよう設定することにより、このシリンダ空間部70の最上部70aが、両処理用面1,2間の隙間の幅の上限を規定する。即ち、ピストン体7とシリンダ空間部70の最上部70aとが、両処理用面1,2の離反を抑止する離反抑止部として、更に言い換えると、両処理用面1,2間の隙間の最大開き量を規制する機構として機能する。
また、両処理用面1,2同士が当接していなくても、ピストン体7がシリンダ空間部70の最下部70bと当接するよう設定することにより、このシリンダ空間部70の最下部70bが、両処理用面1,2間の隙間の幅の下限を規定する。即ち、ピストン体7とシリンダ空間部70の最下部70bとが、両処理用面1,2の近接を抑止する近接抑止部として、更に言い換えると、両処理用面1,2間の隙間の最小開き量を規制する機構として機能する。
このように上記隙間の最大及び最小の開き量を規制しつつ、ピストン体7とシリンダ空間部70の最上部70aとの間隔z1、換言するとピストン体7とシリンダ空間部70の最下部70bとの間隔z2を上記ノズル73,74の空気圧にて調整する。
ノズル73,74は、別個の圧力源に接続されたものとしてもよく、一つの圧力源を切り換えて或いはつなぎ換えて接続するものとしてもよい。
また圧力源は、正圧を供給するものでも負圧を供給するものでも何れでも実施可能である。真空などの負圧源と、ノズル73,74とを接続する場合、上記の動作は反対になる。
前述の他の接面圧力付与機構4に代え或いは前述の接面圧力付与機構4の一部として、このようなシリンダ機構7を設けて、被処理流動体の粘度や性状によりノズル73,74に接続する圧力源の圧力や間隔z1,z2の設定を行い流動体液膜の厚みを所望値にしせん断力をかけて均一な混合状態(反応を伴う場合にあっては均一な反応)を実現し、微細な粒子を生成させることができる。特に、このようなシリンダ機構7にて、洗浄時や蒸気滅菌時など摺動部の強制開閉を行い洗浄や滅菌の確実性を上昇させることも可能とした。
図19(A)〜(C)に示すように、第1処理用部10の第1処理用面1に、第1処理用部10の中心側から外側に向けて、即ち径方向について伸びる溝状の凹部13…13を形成して実施してもよい。この場合、図19(A)へ示すように、凹部13…13は、第1処理用面1上をカーブして或いは渦巻き状伸びるものとして実施可能であり、図19(B)へ示すように、個々の凹部13がL字状に屈曲するものであっても実施可能であり、また、図19(C)に示すように、凹部13…13は真っ直ぐ放射状に伸びるものであっても実施可能である。
また、図19(D)へ示すように、図19(A)〜(C)の凹部13は、第1処理用面1の中心側に向かう程深いものとなるように勾配をつけて実施するのが好ましい。また、溝状の凹部13は、連続したものの他、断続するものであっても実施可能である。
この様な凹部13を形成することにより被処理流動体の吐出量の増加または発熱量の減少への対応や、キャビテーションコントロールや流体軸受け効果などの効果がある。
上記の図19に示す各実施の形態において、凹部13は、第1処理用面1に形成するものとしたが、第2処理用面2に形成するものとしても実施可能であり、更には、第1及び第2の処理用面1,2の双方に形成するものとしても実施可能である。
処理用面に、上記の凹部13やテーパを設けない場合、若しくは、これらを処理用面の一部に偏在させた場合、処理用面1,2の面粗度が被処理流動体に与える影響は、上記凹部13を形成するものに比して、大きいものとなる。従って、このような場合、被処理流動体の粒子が小さくなればなるほど、面粗度を下げる、即ちきめの細かいものとする必要がある。特に均一な混合(反応)を目的とする場合、その処理用面の面粗度については、既述の鏡面即ち鏡面加工を施した面とするほうが均一な混合状態(反応を伴う場合にあっては均一な反応)を実現し、微粒子を得る事を目的とする場合には、微細で単分散な生成物の晶出・析出を実現する上で有利である。
図15乃至図20に示す実施の形態においても、特に明示した以外の構成については図4(A)又は図14(C)に示す実施の形態と同様である。
また、上記の各実施の形態において、ケース内は全て密封されたものとしたが、この他、第1処理用部10及び第2処理用部20の内側のみ密封され、その外側は開放されたものとしても実施可能である。即ち、第1処理用面1及び第2処理用面2との間を通過するまでは流路は密封され、被処理流動体は送圧を全て受けるものとするが、通過後は、流路は開放され処理後の被処理流動体は送圧を受けないものとしてもよい。
流体圧付与機構p1には、加圧装置として、既述のとおり、コンプレッサを用いて実施するのが好ましいが、常に被処理流動体に所定の圧力を掛けることが可能であれば、他の手段を用いて実施することもできる。例えば、被処理流動体の自重を利用して、常に一定の圧力を被処理流動体に付与するものとしても実施可能である。
上記の各実施の形態における処理装置について総括すると、被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路に、第1処理用面1及び第2処理用面2の少なくとも2つの接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させることにより、メカニカルシールにおいてシールに利用される流体膜を、被処理流動体を用いて発生させ、メカニカルシールと逆に(流体膜をシールに利用するのではなく)、当該流体膜を第1処理用面1及び第2処理用面2の間から敢えて漏らして、混合(反応)の処理を、両面間1,2にて膜とされた被処理流動体間にて実現し、回収することを特徴とするものである。
このような画期的な方法により、両処理用面1,2間の間隔を1μmから1mmとする調整、特に、1〜10μmとする調整を可能とした。
上記の実施の形態において、装置内は密閉された流体の流路を構成するものであり、処理装置の(第1被処理流動体の)導入部側に設けた流体圧付与機構pにて、被処理流動体は加圧されたものであった。
この他、このような流体圧付与機構pを用いて加圧するものではなく、被処理流動体の流路は開放されたものであっても実施可能である。
図21乃至図23へ、そのような処理装置の一実施の形態を示す。尚、この実施の形態において、処理装置として、脱気機能を備えたもの、即ち、処理物として生成されたものから、液体を除去し、目的とする固体(結晶)のみを最終的に確保する機能を備えた装置を例示する。
図21(A)は処理装置の略縦断面図であり、図21(B)はその一部切欠拡大断面図である。図22は、図21に示す処理装置が備える第1処理用部1の平面図である。図23は、上記処理装置の第1及び第2処理用部1,2の一部切欠要部略縦断面図である。
この図21乃至図23に示す装置は、上記の通り、大気圧下で、処理の対象となる流体即ち被処理流動体或いはこのような処理の対象物を搬送する流体が投入されるものである。
尚、図21(B)及び図23において、図面の煩雑を避けるため、第2導入部d2は、省略して描いてある(第2導入部d2が設けられていない位置の断面と考えればよい)。
図21(A)に示す通り、この流体処理装置は、混合装置Gと、減圧ポンプQとを備えたものである。この混合装置Gは、回転する部材である第1処理用部101と、当該処理用部101を保持する第1ホルダ111と、ケースに対して固定された部材である第2処理用部102と、当該第2処理用部102が固定された第2ホルダ121と、付勢機構103と、動圧発生機構104(図22(A))と、第1ホルダ111と共に第1処理用部101を回転させる駆動部と、ハウジング106と、第1被処理流動体を供給(投入する)する第1導入部d1と、流体を減圧ポンプQへ排出する排出部108とを備える。駆動部については図示を省略する。
上記の第1処理用部101と第2処理用部102は、夫々、円柱の中心をくり抜いた形状の環状体である。両処理用部101,102は、両処理用部101,102の夫々が呈する円柱の一底面を処理用面110,120とする部材である。
上記の処理用面110,120は、鏡面研磨された平坦部を有する。この実施の形態において、第2処理用部102の処理用面120は、面全体に鏡面研磨が施された平坦面である。また、第1処理用部101の処理用面110は、面全体を第2処理用部102と同様の平坦面とするが、図22(A)へ示す通り、平坦面中に、複数の溝112…112を有する。この溝112…112は、第1処理用部101が呈する円柱の中心を中心側として円柱の外周方向へ、放射状に伸びる。
上記の第1及び第2の処理用部101,102の処理用面110,120についての、鏡面研磨は、面粗度Raを0.01〜1.0μmとするのが好ましい。この鏡面研磨については、Raを0.03〜0.3μmとするのがより好ましい。
処理用部101,102の材質については、硬質且つ鏡面研磨が可能なものを採用する。処理用部101,102のこの硬さについて、少なくともビッカース硬さ1500以上が好ましい。また、線膨張係数が小さい素材を、若しくは、熱伝導の高い素材を、採用するのが好ましい。処理にて熱を発する部分と他の部分との間で、膨張率の差が大きいと歪みが発生して、適正なクリアランスの確保に影響するからである。
このような処理用部101,102の素材として、特に、SIC即ちシリコンカーバイトでビッカース硬さ2000〜2500のもの、表面にDLC即ちダイヤモンドライクカーボンでビッカース硬さ3000〜4000のもの、コーティングが施されたSIC、WC即ちタングステンカーバイトでビッカース硬さ1800のもの、表面にDLCコーティングが施されたWC、ZrB2 やBTC、B4 Cに代表されるボロン系セラミックでビッカース硬さ4000〜5000のものなどを採用するのが好ましい。
図21に示されるハウジング106は、底部の図示は省略するが、有底の筒状体であり、上方が上記の第2ホルダ121に覆われている。第2ホルダ121は、下面に上記第2処理部材102が固定されており、上方に上記導入部d1が設けられている。導入部d1は、外部から流体や被処理物を投入するためのホッパ170を備える。
図示はしないが、上記の駆動部は、電動機などの動力源と、当該動力源から動力の供給を受けて回転するシャフト50とを備える。
図21(A)に示すように、シャフト50は、ハウジング106の内部に配され上下に伸びる。そして、シャフト50の上端部に上記の第1ホルダ111が、設けられている。第1ホルダ111は、第1処理用部101を保持するものであり、上記の通りシャフト50に設けられることにより、第1処理用部101の処理用面110を第2処理用部102の処理用面120に対応させる。
第1ホルダ111は、円柱状体であり、上面中央に、第1処理用部101が固定されている。第1処理用部101は、第1ホルダ111と一体となるように、固着され、第1ホルダ111に対してその位置を変えない。
一方、第2ホルダ121の上面中央には、第2処理用部102を受容する受容凹部124が形成されている。
上記の受容凹部124は、環状の横断面を有する。第2処理用部102は、受容凹部124と、同心となるように円柱状の受容凹部124内に収容される。
この受容凹部124の構成は、図4(A)に示す実施の形態と同様である(第1処理用部101は第1リング10と、第1ホルダ111は第1ホルダ11と、第2処理用部102は第2リング20と、第2ホルダ121は第2ホルダ21と対応する)。
そして、この第2ホルダ121が、上記の付勢機構103を備える。付勢機構103は、バネなどの弾性体を用いるのが好ましい。付勢機構103は、図4(A)の接面圧付与機構4と対応し、同様の構成を採る。即ち、付勢機構103は、第2処理用部102の処理用面120と反対側の面即ち底面を押圧し、第1処理用部101側即ち下方に第2処理用部102の各位置を均等に付勢する。
一方、受容凹部124の内径は、第2処理用部102の外径よりも大きく、これにて、上記の通り同心に配設した際、第2処理用部102の外周面102bと受容凹部124の内周面との間には、図21(B)に示すように、隙間t1が設定される。
同様に、第2処理用部102の内周面102aと受容凹部124の中心部分22の外周面との間には、図21(B)に示すように、隙間t2が設定される。
上記隙間t1、t2の夫々は、振動や偏芯挙動を吸収するためのものであり、動作寸法以上確保され且つシールが可能となる大きさに設定する。例えば、第1処理用部101の直径が100mmから400mmの場合、当該隙間t1、t2の夫々は、0.05〜0.3mmとするのが好ましい。
第1ホルダ111は、シャフト50へ一体に固定され、シャフト50と共に回転する。また、図示しないが、回り止めによって、第2ホルダ121に対して、第2処理用部102は回らない。しかし、両処理用面110,120間に、処理に必要な0.1〜10μmのクリアランス、即ち図23(B)に示す微小な間隔tを確保するため、図21(B)に示すように、受容凹部124の底面、即ち天部と、第2処理用部102の天部124a、即ち上面との間に隙間t3が設けられる。この隙間t3については、上記のクリアランスと共に、シャフト50の振れや伸びを考慮して設定する。
上記のように、隙間t1〜t3の設定により、第1処理用部101は、図21(B)に示すように、第2処理用部102に対して近接・離反する方向z1に可変であるのみならず、その処理用面110の傾き方向z2についても可変としている。
即ち、この実施の形態において、付勢機構103と、上記隙間t1〜t3とが、フローティング機構を構成し、このフローティング機構によって、少なくとも第2処理用部102の中心や傾きを、数μmから数mmの程度の僅かな量、可変としている。これにて、回転軸の芯振れ、軸膨張、第1処理用部101の面振れ、振動を吸収する。
第1処理用部101の研磨用面110が備える前記の溝112について、更に詳しく説明する。溝112の後端は、第1処理用部101の内周面101aに達するものであり、その先端を第1処理用部101の外側y即ち外周面側に向けて伸ばす。この溝112は、図22(A)へ示すように、その横断面積を、環状の第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて、漸次減少するものとしている。
溝112の左右両側面112a,112bの間隔w1は、第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて小さくなる。また、溝112の深さw2は、図22(B)へ示すように、第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて、小さくなる。即ち、溝112の底112cは、第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて、浅くなる。
このように、溝112は、その幅及び深さの双方を、外側y即ち外周面側に向かうにつれて、漸次減少するものとして、その横断面積を外側yに向けて漸次減少させている。そして、溝112の先端即ちy側は、行き止まりとなっている。即ち、溝112の先端即ちy側は、第1処理用部101の外周面101bに達するものではなく、溝112の先端と外周面101bとの間には、外側平坦面113が介在する。この外側平坦面113は、処理用面110の一部である。
この図22へ示す実施の形態において、このような溝112の左右両側面112a,112bと底112cとが流路制限部を構成している。この流路制限部と、第1処理用部101の溝112周囲の平坦部と、第2処理用部102の平坦部とが、動圧発生機構104を構成している。
但し、溝112の幅及び深さの何れか一方についてのみ、上記の構成を採るものとして、断面積を減少させるものとしてよい。
上記の動圧発生機構104は、第1処理用部101の回転時、両処理用部101,102間を通り抜けようとする流体によって、両処理用部101,102の間に所望の微小間隔を確保することを可能とする、両処理用部101,102を離反させる方向に働く力を発生させる。このような動圧の発生により、両処理用面110,120間に、0.1〜10μmの微小間隔を発生させることができる。このような微小間隔は、処理の対象によって、調整し選択すればよいのであるが、1〜6μmとするのが好ましく、より好ましくは、1〜2μmである。この装置においては、上記のような微小間隔による従来にない均一な混合状態(反応を伴う場合にあっては均一な反応)の実現と微細粒子の生成が可能である。
溝112…112の夫々は、真っ直ぐ、中心x側から外側yに伸びるものであっても実施可能である。但し、この実施の形態において、図22(A)に示すように、第1処理用部101の回転方向rについて、溝112の中心x側が、溝112の外側yよりも、先行するように即ち前方に位置するように、湾曲して溝112を伸びるものとしている。
このように溝112…112が湾曲して伸びることにより、動圧発生機構104による離反力の発生をより効果的に行うことができる。
次に、この装置の動作について説明する。
図21(A)に示すように、ホッパ170から投入され、第1導入部d1を通ってくる第1被処理流動体Rは、環状の第2処理用部102の中空部を通り、第1処理用部101の回転よる遠心力を受け、両処理用部101,102間に入り、回転する第1処理用部101の処理用面110と、第2処理用部102の処理用面120との間にて、均一な混合(反応)と、場合により微細な粒子の生成が行われ、その後、両処理用部101,102の外側に出て、排出部108から減圧ポンプQ側へ排出される(以下必要に応じて第1被処理流動体Rを単に流体Rと呼ぶ)。
上記において、環状の第2処理用部102の中空部に入った流体Rは、図23(A)へ示すように、先ず、回転する第1処理用部101の溝112に入る。一方、鏡面研磨された、平坦部である両処理用面110,120は、空気や窒素などの気体を通しても気密性が保たれている。従って、回転による遠心力を受けても、そのままでは、付勢機構103によって、押し合わされた両処理用面110,120の間に、溝112から流体は入り込むことはできない。しかし、流路制限部として形成された溝112の上記両側面112a,112bや底112cに、流体Rは徐々に突き当たり、両処理用面110,120を離反させる方向に働く動圧を発生させる。図23(B)へ示すように、これによって、流体Rが溝112から平坦面に滲み出し、両処理用面110,120の間に微小間隔t即ちクリアランスを確保することができる。そして、このような鏡面研磨された平坦面の間で、均一な混合(反応)と、場合により微細な粒子の生成が行われる。また上述の溝112の湾曲が、より確実に流体へ遠心力を作用させ、上記動圧の発生をより効果的にしている。
このように、この流体処理装置は、動圧と付勢機構103による付勢力との均衡にて、両鏡面即ち処理用面110,120間に、微細で均一な間隔即ちクリアランスを確保することを可能とした。そして、上記の構成により、当該微小間隔は、1μm以下の超微細なものとすることができる。
また、上記フローティング機構の採用により、処理用面110,120間のアライメントの自動調整が可能となり、回転や発生した熱による各部の物理的な変形に対して、処理用面110,120間の各位置における、クリアランスのばらつきを抑制し、当該各位置における上記の微小間隔の維持を可能とした。
尚、上記の実施の形態において、フローティング機構は、第2ホルダ121にのみ設けられた機構であった。この他、第2ホルダ121に代え、或いは第2ホルダ121と共に、フローティング機構を、第1ホルダ111にも設けるものとして実施することも可能である。
図24乃至図26に、上記の溝112について、他の実施の形態を示す。
図24(A)(B)に示すように、溝112は、流路制限部の一部として、先端に平らな壁面112dを備えるものとして実施することができる。また、この図24に示す実施の形態では、底112cにおいて、第1壁面112dと、内周面101aとの間に段差112eが設けられており、この段差112eも流路制限部の一部を構成する。
図25(A)(B)に示すように、溝112は、複数に分岐する枝部112f…112fを備えるものとし、各枝部112fがその幅を狭めることにより流路制限部を備えるものとしても実施可能である。
図24及び図25の実施の形態においても、特に示した以外の構成については、図4(A)、図14(C)、図21乃至図23に示す実施の形態と同様である。
また、上記の各実施の形態において、溝112の幅及び深さの少なくとも何れか一方について、第1処理用部101の内側から外側に向けてその寸法を漸次小さくすることにて、流路制限部を構成するものとした。この他、図26(A)や図26(B)へ示す通り、溝112の幅や深さを変化させずに、溝112に終端面112fを設けることによって、このような溝112の終端面112fを流路制限部とすることができる。図22、図24及び図25に示す実施の形態において示した通り、動圧発生は、溝112の幅及び深さを既述の通り変化させることによって溝112の底や両側面を傾斜面とすることで、この傾斜面が流体に対する受圧部になり動圧を発生させた。一方図26(A)(B)に示す実施の形態では、溝112の終端面が流体に対する受圧部になり動圧を発生させる。
また、この図26(A)(B)に示す場合、溝112の幅及び深さの少なくとも何れか一方の寸法を漸次小さくすることも併せて実施することができる。
尚、溝112の構成について、上記の図22、図24乃至図26に示すものに限定するものではなく、他の形状の流路制限部を備えたものとして実施することが可能である。
例えば、図22、図24乃至図26示すものでは、溝112は、第1処理用部101の外側に突き抜けるものではなかった。即ち、第1処理用部101の外周面と、溝112との間には、外側平坦面113が存在した。しかし、このような実施の形態に限定するものではなく、上述の動圧を発生されることが可能であれば、溝112は、第1処理用部101の外周面側に達するものであっても実施可能である。
例えば、図26(B)に示す第1処理用部101の場合、点線で示すように、溝112の他の部位よりも断面積が小さな部分を、外側平坦面113に形成して実施することができる。
また、溝112を、上記の通り内側から外側へ向けて漸次断面積を小さくするように形成し、溝112の第1処理用部101の外周に達した部分(終端)を、最も断面積が小さいものとすればよい(図示せず)。但し、動圧を効果的に発生させる上で、図22、図24乃至図26に示すように、溝112は、第1処理用部101の外周面側に突き抜けないほうが好ましい。
ここで、上記図21乃至図26に示す各実施の形態について、総括する。
この流体処理装置は、平坦処理用面を有する回転部材と同じく平坦処理用面を有する固定部材とをそれらの平坦処理用面で同心的に相対向させ、回転部材の回転下に固定部材の開口部より被処理原料を供給しながら両部材の対向平面処理用面間にて処理する流体処理装置において機械的にクリアランスを調整するのではなく、回転部材に増圧機構を設けてその圧力発生によりクリアランスを保持しかつ機械的クリアランス調整では、不可能であった1〜6μmの微小クリアランスを可能とし、混合(反応)の均一化及び、場合により生成粒子の微細化の能力が著しく向上出来たものである。
即ち、この流体処理装置は、回転部材と固定部材がその外周部に平坦処理用面を有しその平坦処理用面において、面上の密封機能を有することで、流体静力学的な即ちハイドロスタティックな力、流体動力学的な即ちハイドロダイナミックな力、或いは、エアロスタティック−エアロダイナミックな力を発生させる高速回転式の流体処理装置を提供しようとするものである。上記の力は、上記密封面間に僅かな間隙を発生させ、また非接触で機械的に安全で高度な混合(反応)の均一化の機能を有した流体処理装置を提供することができる。この僅かな隙間が形成されうる要因は、一つは、回転部材の回転速度によるものであり、もう一つは、被処理物(流体)の投入側と排出側の圧力差によるものである。投入側に圧力付与機構が付設されている場合は、投入側に圧力付与機構が付設されていない場合即ち大気圧下で被処理物(流体)を投入される場合、圧力差が無いわけであるから回転部材の回転速度だけで密封面間の分離を生じさせる必要がある。これは、ハイドロダイナミックもしくはエアロダイナミック力として知られている。
図21(A)に示す装置において、減圧ポンプQを上記混合装置Gの排出部に接続したものを示したが、既述の通りハウジング106を設けず、また減圧ポンプQを設けずに、図27(A)に示すように処理装置を減圧用のタンクTとして、当該タンクTの中に、混合装置Gを配設することにて実施することが可能である。
この場合、タンクT内を真空或いは真空に近い状態に減圧することにて、混合装置Gにて生成された被処理物をタンクT内に霧状に噴射せしめ、タンクTの内壁にぶつかって流れ落ちる被処理物を回収すること、或いはこのような流れ落ちる被処理物に対して気体(蒸気)として分離されタンクT内上部に充満するものを回収することにて、処理後の目的物を得ることができる。
また、減圧ポンプQを用いる場合も、図27(B)へ示すように、混合装置Gに、減圧ポンプQを介して、気密なタンクTを接続することにより、当該タンクT内にて、処理後の被処理物を霧状にして、目的物の分離・抽出を行うことができる。
更に、図27(C)へ示すように、減圧ポンプQを直接タンクTに接続し、当該タンクTに、減圧ポンプQと、減圧ポンプQとは別の流体Rの排出部とを接続して、目的物の分離を行うことができる。この場合、気化部については、減圧ポンプQに吸いよせられ、液体R(液状部)は排出部より、気化部とは別に排出される。
上述してきた各実施の形態では、第1及び第2の2つの被処理流動体を、夫々第2ホルダ21,121及び第2リング20,102から、導入して、混合(反応)させるものを示した。
次に、装置への被処理流動体の導入に関する他の実施の形態について、順に説明する。
図4(B)へ示す通り、図4(A)へ示す処理装置に、第3導入部d3を設けて第3の被処理流動体を、両処理用面1,2間へ導入して、第2被処理流動体と同様第1被処理流動体へ混合(反応)させるものとしても実施できる。
第3導入部d3は、第1の被処理流動体と、混合させる第3の流動体を処理用面1,2へ供給する。この実施の形態において、第3導入部d3は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第3流体供給部p3が接続されている。
第3流体供給部p3には、コンプレッサ、その他のポンプを採用することができる。
第3導入部d3の第2処理用面2における開口部は、第2導入部d2の開口部よりも、第1処理用面1の回転の中心の外側に位置する。即ち、第2処理用面2において、第3導入部d3の開口部は、第2導入部d2の開口部よりも、下流側に位置する。第3導入部d3の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられている。
この図4(B)へ示す装置も、第3導入部d3以外の構成については、図4(A)へ示す実施の形態と同様である。尚、この図4(B)、更に、以下に説明する、図4(C)、図4(D)、図5〜図14において、図面の煩雑を避けるため、ケース3を省略する。尚、図12(B)(C)、図13、図14(A)(B)においては、ケース3の一部を描いてある。
更に、図4(C)へ示すように、図4(B)へ示す処理装置に、第4導入部d4を設けて第4の被処理流動体を、両処理用面1,2間へ導入して、第2及び第3の被処理流動体と同様第1被処理流動体へ混合し反応させるものとしても実施できる。
第4導入部d4は、第1の被処理流動体と、混合させる第4の流動体を処理用面1,2間へ供給する。この実施の形態において、第4導入部d4は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第4流体供給部p4が接続されている。
第4流体供給部p4には、コンプレッサ、その他のポンプを採用することができる。
第4導入部d4の第2処理用面2における開口部は、第3導入部d3の開口部よりも、第1処理用面1の回転の中心の外側に位置する。即ち、第2処理用面2において、第4導入部d4の開口部は、第3導入部d3の開口部よりも、下流側に位置する。
この図4(C)へ示す装置について、第4導入部d4以外の構成については、図4(B)へ示す実施の形態と同様である。
また、図示はしないが、更に、第5導入部や、第6導入部など、5つ以上の導入部を設けて、夫々5種以上の被処理流動体を、混合(反応)させるものとしても実施できる。
また、図4(D)へ示す通り、図4(A)の装置では、第2ホルダ21に設けられていた第1導入部d1を、第2ホルダ21に設ける代わりに、第2導入部d2同様、第2処理用面2に設けて実施することができる。この場合、第2処理用面2において、第1導入部d1の開口部は、第2導入部d2よりも、回転の中心側即ち上流側に位置する。
上記の図4(D)へ示す装置では、第2導入部d2の開口部と、第3導入部d3の開口部は、共に第2リング20の第2処理用面2に配置されるものであった。しかし、導入部の開口部は、このような処理用面に対する配置に限定するものではない。特に、図5(A)へ示す通り、第2導入部d2の開口部を、第2リング20の内周面の、第2処理用面2に隣接する位置に設けて実施することもできる。この図5(A)へ示す装置において、第3導入部d3の開口部は、図4(B)へ示す装置と同様第2処理用面2に配置されているが、第2導入部d2の開口部を、このように第2処理用面2の内側であって、第2処理用面2へ隣接する位置に配置することによって、第2の被処理流動体を処理用面に直ちに導入できる。
このように第1導入部d1の開口部を第2ホルダ21に設け、第2導入部d2の開口部を第2処理用面2の内側であって、第2処理用面2へ隣接する位置に配置することで(この場合、上記第3導入部d3を設けることは必須ではない)、特に複数の被処理流動体を反応させる場合において、第1導入部d1から導入される被処理流動体と第2導入部d2から導入される被処理流動体とを反応させない状態で両処理用面1,2間へ導入し、両処理用面1,2間において両者を初めて反応させることができる。よって、上記構成は、特に反応性の高い被処理流動体を用いる場合に適している。
なお、上記の「隣接」とは、第2導入部d2の開口部を、図5(A)に示すように第2リング20の内側側面に接するようにして設けた場合に限られるものではない。第2リング20から第2導入部d2の開口部までの距離が、複数の被処理流動体が両処理用面1,2間へ導入される前に混合(反応)が完全になされない程度とされていれば良く、例えば、第2ホルダ21の第2リング20に近い位置に設けたものであっても良い。また、第2導入部d2の開口部を第1リング10あるいは第1ホルダ11の側に設けても良い。
更に、上記の図4(B)へ示す装置において、第3導入部d3の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられていたが、図5(B)へ示す通り、そのような間隔を設けずに、両処理用面1,2間に第2及び第3の被処理流動体を導入されると直ちに両流動体が合流するものとしても実施できる。処理の対象によって、このような図5(B)へ示す装置を選択すればよい。
また、上記の図4(D)へ示す装置についても、第1導入部d1の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられていたが、そのような間隔を設けずに、両処理用面1,2間に第1及び第2の被処理流動体を導入すると直ちに両流動体が合流するものとしても実施できる。処理の対象によって、このような開口部の配置を選択すればよい。
上記の図4(B)及び図4(C)に示す実施の形態では、第2処理用面2において、第3導入部d3の開口部を、第2導入部d2の開口部の下流側、言い換えると、第2リング20の径の内外方向について第2導入部d2の開口部の外側に配置するものとした。この他、図5(C)及び図6(A)へ示す通り、第2処理用面2において、第3導入部d3の開口部を、第2導入部d2の開口部と、第2リング20の周方向r0について異なる位置に配置するものとしても実施できる。図6において、m1は第1導入部d1の開口部即ち第1開口部を、m2は第2導入部d2の開口部即ち第2開口部を、m3は第3導入部d3の開口部(第3開口部)を、r1はリングの径の内外方向を、夫々、示している。
また、第1導入部d1を、第2リング20に設ける場合も、図5(D)へ示す通り、第2処理用面2において、第1導入部d1の開口部を、第2導入部d2の開口部と、第2リング20の周方向について異なる位置に配置するものとしても実施できる。
上記の図6(A)へ示す装置では、第2リング20の処理用面2において、周方向r0の異なる位置に2つの導入部の開口部が配置されたものを示したが、図6(B)へ示す通り、リングの周方向r0の異なる位置に3つの導入部の開口部を配置し、或いは図6(C)へ示す通り、リングの周方向r0の異なる位置に4つの導入部の開口部を配置して実施することもできる。尚、図6(B)(C)において、m4は、第4導入部の開口部を示し、図6(C)においてm5は第5導入部の開口部を示している。また、図示はしないが、導入部の開口部を、リングの周方向r0の異なる位置に5つ以上設けて実施することもできる。
上記に示す装置において、第2導入部乃至第5導入部は、夫々異なる被処理流動体即ち、第2、第3、第4、第5の被処理流動体を、導入することができる。一方、第2〜第5の開口部m2〜m5から、全て同種の即ち、第2被処理流動体を処理用面間に導入するものとしても実施できる。図示はしないが、この場合、第2導入部乃至第5導入部は、リング内部にて連絡しており、一つの流体供給部、即ち第2流体供給部p2に接続されているものとして実施できる。
また、リングの周方向r0の異なる位置に導入部の開口部を複数設けたものと、リングの径方向即ち径の内外方向r1の異なる位置に導入部の開口部を複数設けたものを、複合して実施することもできる。
例えば、図6(D)へ示す通り、第2処理用面2に8つの導入部の開口部m2〜m9が設けられており、そのうち4つm2〜m5は、リングの周方向r0の異なる位置であり且つ径方向r1について同じ位置に設けられたものであり、他の4つm6〜m9はリングの周方向r0の異なる位置であり且つ径方向r1について同じ位置に設けられている。そして、当該他の開口部m6〜m9は、径方向rについて、上記4つの開口部m2〜m5の径方向の外側に配置さてている。また、この外側の開口部は、夫々、内側の開口部と、リングの周方向r0について、同じ位置に設けてもよいが、リングの回転を考慮して、図6(D)へ示すように、リングの周方向r0の異なる位置に設けて実施することもできる。また、その場合も、開口部について、図6(D)に示す配置や数にするものではい。
例えば、図6(E)へ示す通り、径方向外側の開口部が多角形の頂点位置、即ちこの場合四角形の頂点位置に配置され、当該多角形の辺上に、径方向内側の開口部が位置するように配置することもできる。勿論この他の配置を採ることもできる。
また、第1開口部m1以外の開口部は、何れも第2被処理流動体を処理用面間に導入するものとした場合、各第2被処理流動部を導入する当該開口部を、処理用面の周方向r0について、点在させるのではなく、図6(F)へ示す通り、周方向r0について、連続する開口部として実施することもできる。
尚、処理の対象によっては、図7(A)へ示す通り、図4(A)に示す装置において、第2リング20に設けていた第2導入部d2を、第1導入部d1と同様、第2ホルダ21の中央部分22へ設け実施することもできる。この場合、第2リング20の中心に位置する第1導入部d1の開口部に対し、その外側に、間隔を開けて、第2導入部d2の開口部が位置する。また、図7(B)へ示す通り、図7(A)へ示す装置について、第2リング20に第3導入部d3を設けて実施することもできる。図7(C)へ示す通り、図6(A)へ示す装置において、第1導入部d1の開口部と第2導入部d2の開口部との間に間隔を設けず、第2リング20の内側の空間へ第2及び第3の被処理流動体を導入されると直ちに両流動体が合流するものとしても実施できる。更にまた、処理の対象によっては、図7(D)へ示す通り、図6(A)へ示す装置において、第2導入部d2同様、第3導入部d3も第2ホルダ21に設けて実施することができる。図示はしないが、4つ以上の導入部を第2ホルダ21に設けて実施することもできる。
また、処理の対象によっては、図8(A)へ示す通り、図7(D)へ示す装置において、第2リング20に第4導入部d4を設けて第4の被処理流動体を両処理用面1,2間へ導入するものとしても実施できる。
図8(B)へ示す通り、図4(A)へ示す装置において、第2導入部d2を、第1リング10へ設け、第1処理用面1に第2導入部d2の開口部を備えるものとしても実施できる。
図8(C)へ示す通り、図8(B)へ示す装置において、第1リング10に第3導入部d3を設けて、第1処理用面1において、第3導入部d3の開口部を、第2導入部d2の開口部と、第1リング10の周方向について異なる位置に配置するものとしても実施できる。
図8(D)へ示す通り、図8(B)へ示す装置において、第2ホルダ21へ第1導入部d1を設ける代わりに、第2リング20へ第1導入部d1を設け、第2処理用面2に、第1導入部d1の開口部を配置するものとしても実施できる。この場合、第1及び第2の導入部d1,d2の両開口部は、リングの径の内外方向について、同じ位置に配置されている。
また、図9(A)へ示す通り、図4(A)へ示す装置において、第3導入部d3を、第1リング10へ設け、第1処理用面1へ第3導入部d3の開口部を配置するものとしても実施できる。この場合、第2及び第3の導入部d2,d3の両開口部は、リングの径の内外方向について、同じ位置に配置されている。但し、上記の両開口部を、リングの径の内外方向について、異なる位置に配置するものとしてもよい。
図8(C)へ示す装置において、第1リング10の径の内外方向について同じ位置に設けると共に、第1リング10の周方向即ち回転方向について異なる位置に設けたが、当該装置において、図9(B)へ示す通り、第2及び第3導入部d2,d3の両開口部を、第1リング10の径の内外方向について異なる位置に設けて実施することができる。この場合図9(B)へ示す通り、第2及び第3導入部d2,d3の両開口部の間には、第1リング10の径の内外方向に間隔を開けておくものとしても実施でき、または図示はしないが、当該間隔を開けずに直ちに、第2被処理流動体と第3被処理流動体とが合流するものとしても実施できる。
また、図9(C)へ示す通り、第2ホルダ21へ第1導入部d1を設ける代わりに、第2導入部d2と共に、第1リング10へ第1導入部d1を設けて実施することもできる。この場合、第1処理用面1において、第1導入部d1の開口部を、第2導入部d2の開口部の、上流側(第1リング11の径の内外方向について内側)に設ける。第1導入部d1の開口部と第2導入部d2の開口部との間には、第1リング11の径の内外方向について、間隔を開けておく。但し図示はしないが、このような間隔を開けずに実施することもできる。
また、図9(D)へ示す通り、図9(C)へ示す装置の第1処理用面1にあって、第1リング10周方向の異なる位置に、第1導入部d1と第2導入部d2夫々の開口部を配置するものとして実施することができる。
また、図示はしないが、図9(C)(D)へ示す実施の形態において、第1リング10へ3つ以上の導入部を設けて、第2処理用面2において、周方向の異なる位置に、或いは、リングの径の内外方向の異なる位置に、各開口部を配置するものとして実施することもできる。例えば、第2処理用面2において採った、図6(B)〜図6(F)に示す開口部の配置を第1処理用面1においても採用することができる。
図10(A)へ示す通り、図4(A)へ示す装置において、第2導入部d2を第2リング20へ設ける代わりに、第1ホルダ11へ設けて実施することができる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第1リング10の回転の中心軸の中心に第2導入部d2の開口部を配置するのが好ましい。
図10(B)へ示す通り、図10(A)へ示す実施の形態において、第3導入部d3を、第2リング20へ設けて、第3導入部d3の開口部を第2処理用面2へ配置することができる。
また、図10(C)へ示す通り、第1導入部d1を第2ホルダ21へ設ける代わりに、第1ホルダ11へ設けて実施することができる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第1リング10の回転の中心軸に第1導入部d1の開口部を配置するのが好ましい。また、この場合、図示の通り、第2導入部d2を第1リング10へ設けて、第1処理用面1へ、その開口部を配置することができる。また、図示はしないが、この場合、第2導入部d2を第2リング20へ設けて、第2処理用面2へ、その開口部を配置することができる。
更に、図10(D)へ示す通り、図10(C)へ示す第2導入部d2を、第1導入部d1と共に、第1ホルダ11へ設けて実施することもできる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第2導入部d2の開口部を配置する。また、この場合、図10(C)において、第2リング20へ設けた第2導入部d2を、第3導入部d3とすればよい。
上記の図4〜図10に示す各実施の形態において、第1ホルダ11及び第1リング10が、第2ホルダ21及び第2リング20に対して回転するものとした。この他、図11(A)へ示す通り、図4(A)へ示す装置において、第2ホルダ2に、回転駆動部から回転力を受けて回転する回転軸51を設けて、第1ホルダ11の逆方向に、第2ホルダ21を回転させるものとしても実施できる。回転駆動部は、第1ホルダ11の回転軸50を回転させるものと別に設けるものとしてもよく、或いはギアなどの動力伝達手段により、第1ホルダ11の回転軸50を回転させる駆動部から、動力を受けるものとしても実施できる。この場合、第2ホルダ2は、前述のケースと別体に形成されて、第1ホルダ11と同様、当該ケース内に回転可能に収容されたものとする。
また、図11(B)へ示す通り、図11(A)に示す装置において、第2リング20に第2導入部d2を設ける代わりに、図10(B)の装置と同様に第1ホルダ11に第2導入部d2を設けて実施することができる。
また、図示はしないが、図11(B)へ示す装置において、第2導入部d2を、第1ホルダ11に代え第2ホルダ21へ設けて実施することもできる。この場合、第2導入部d2は、図7(A)の装置と同様である。図11(C)へ示す通り、図11(B)へ示す装置において、第2リング20に第3導入部d3を設けて、当該導入部d3の開口部を、第2処理用面2に配置して実施することもできる。
更に、図11(D)へ示す通り、第1ホルダ11を回転させずに、第2ホルダ21のみを回転させるものとしても実施できる。図示はしないが、図4(B)〜図10に示す装置においても、第1ホルダ11と共に第2ホルダ21を、或いは第2ホルダ21のみ単独で回転させるものとしても実施できる。
図12(A)へ示すように、第2処理用部20は、リングとし、第1処理用部10を、リングでなく、他の実施の形態の第1ホルダ11と同様の、直接回転軸50を備えて回転する部材とすることができる。この場合、第1処理用部10の上面を、第1処理用面1とし、当該処理用面は、環状でなく、即ち中空部分を備えない、一様に平らな面とする。また、この図12(A)に示す装置において、図4(A)の装置と同様、第2導入部d2を、第2リング20に設け、その開口部を第2処理用面2に配置している。
図12(B)へ示す通り、図12(A)へ示す装置において、第2ホルダ21を、ケース3と独立したものとし、ケース3と当該第2ホルダ21との間に、第2リング20が設けられた1処理用部10へ接近・離反させる弾性体などの接面圧付与機構4を設けて実施することもできる。この場合、図12(C)へ示すように、第2処理用部20をリングとするのではなく、上記の第2ホルダ21に相当する部材とし、当該部材の下面を第2処理用面2として形成することができる。更に、図13へ示す通り、図12(C)へ示す装置において、第1処理用部10もリングとするのではなく、図12(A)(B)へ示す装置と同様他の実施の形態において第1ホルダ11に相当する部位を第1処理用部10とし、その上面を第1処理用面1として実施することができる。
上記の各実施の形態において、少なくとも第1の被処理流動体は、第1処理用部10と第2処理用部20即ち、第1リング10と第2リング20の中心部から供給され、他の被処理流動体による処理、即ち混合(反応)後、その径の内外方向について外側へ排出されるものとした。
この他、図13(B)へ示す通り、第1リング10及び第2リング20の外側から、内側に向けて、第1の被処理流動体を供給するものとしても実施できる。この場合、図示の通り、第1ホルダ11及び第2ホルダ21の外側をケース3にて密閉し、第1導入部d1を当該ケース3に直接設けて、ケースの内側であって、両リング10,20の突合せ位置と対応する部位に、当該導入部の開口部を配置する。そして、図4(A)の装置において第1導入部d1が設けられていた位置、即ち第1ホルダ11におけるリング1の中心となる位置に、排出部36を設ける。また、ホルダの回転の中心軸を挟んで、ケースの当該開口部の反対側に、第2導入部d2の開口部を配置する。但し、第2導入部dの開口部は、第1導入部d1の開口部と同様、ケースの内側であって、両リング10,20の突合せ位置と対応する部位に配置するものであればよく、上記のように、第1導入部d1の開口部の反対側に形成するのに限定するものではない。
この場合、両リング10,20の径の外側が、上流となり、両リング10,20の内側が下流側となる。
このように、被処理流動体の移動を外側から内側に向けて行う場合、図16(E)に示すように、第1処理用部10の第1処理用面1に、第1処理用部10の外側から中心側に向けて伸びる溝状の凹部13...13を形成して実施することも可能である。このような凹部13...13を形成することにより、前述のバランス比Kについては、100%以上のアンバランス型とするのが好ましい。この結果、回転時に、上記の溝状の凹部13...13に動圧が発生し、両処理用面1,2は確実に非接触で回転でき、接触による磨耗などの危険がなくなる。この図16(E)に示す実施の形態において、被処理流動体の圧力による離反力は、凹部13の内端13aにて発生する。
図13(C)に示す通り、図13(B)へ示す装置において、ケース3の側部に設けた第2導入部d2を、当該位置に代え、第1リング11に設けて、その開口部を第1処理用面1に配置するものとしても実施できる。この場合において、図13(D)に示す通り、第1処理用部10をリングとして形成するのでなく、図12(A)、図12(B)や図13(A)に示す装置と同様、他の実施の形態において、第1ホルダ11に相当する部位を、第1処理用部10とし、その上面を第1処理用面1とし、更に、当該第1処理用部10内に第2導入部d2を設けて、その開口部を第1処理用面1に配置するものとして実施できる。
図14(A)へ示す通り、図13(D)へ示す装置において、第2処理用部20もリングとして形成するのではなく、他の実施の形態において第2ホルダ21に相当する部材を、第2処理用部2とし、その下面を第2処理用面2として実施することができる。そして、第2処理用部20を、ケース3と独立した部材とし、ケース3と第2処理用部20との間に、図12(B)(C)、図13(A)に示す装置と同じ接面圧付与機構4を設けて実施することができる。
また、図14(B)へ示す通り、図14(A)に示す装置の第2導入部d2を第3導入部d3とし、別途第2導入部d2を設けるものとしても実施できる。この場合、第2処理用面2において第2導入部d2の開口部を第3導入部d3の開口部よりも下流側に配置する。
前述の図7に示す各装置、図8(A)図10(A)(B)(D)、図11(B)(C)に示す装置は、処理用面1,2間に達する前に、第1の被処理流動体に対して、他の被処理流動体が合流するものであり、晶出や析出の反応の速いものには適さない。しかし、反応速度の遅いものについては、このような装置を採用することもできる。
本願発明に係る方法の発明の実施に適した流体処理装置について、以下に纏めておく。
前述の通り、この流体処理装置は、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備え、両処理用面1,2間にて、少なくとも2種の被処理流動体の混合の処理を行う(反応を伴う場合においては反応の処理も行う)ものである。第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体の少なくとも一方に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させる。そして、この装置にあって、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に上記の圧力を受けた被処理流動体が通されることにより、各被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、当該被処理流動体間において、所望の混合状態(反応)が生じる。
また、この流体処理装置において、第1処理用面1及び第2処理用面2の少なくとも一方の、微振動やアライメントを調整する緩衝機構を備えたものを採用するのが好ましい。
また、この流体処理装置において、第1処理用面1及び第2処理用面2 の一方又は双方の、磨耗などによる軸方向の変位を調整して、両処理用面1,2間の流体膜の膜厚を維持することを可能とする変位調整機構を備えたものを採用するのが好ましい。
更に、この流体処理装置にあっては、上記の流体圧付与機構として、被処理流動体に対して一定の送り込み圧を掛けるコンプレッサなどの加圧装置を採用することができる。
尚、上記の加圧装置は、送り込み圧の増減の調整を行えるものを採用する。この加圧装置は、設定した圧力を一定に保つことができる必要があるが、処理用面間の間隔を調整するパラメータとして、調整を行える必要があるからである。
また、この流体処理装置には、上記の第1処理用面1と第2処理用面2との間の最大間隔を規定し、それ以上の両処理用面1,2の離反を抑止する離反抑止部を備えるものを採用することができる。
更にまた、この流体処理装置には、上記の第1処理用面1と第2処理用面2との間の最小間隔を規定し、それ以上の両処理用面1,2の近接を抑止する近接抑止部を備えたものを採用することができる。
更に、この流体処理装置には、第1処理用面1と第2処理用面2の双方が、互いに逆の方向に回転するものを採用することができる。
また、この流体処理装置には、上記第1処理用面1と第2処理用面2の一方或いは双方の温度を調整する、温度調整用のジャケットを備えたものを採用することができる。
また更に、この流体処理装置には、上記第1処理用面1及び第2処理用面2の一方或いは双方の少なくとも一部は、鏡面加工されたものを採用するのが好ましい。
この流体処理装置には、上記第1処理用面1及び第2処理用面2の一方或いは双方は、凹部を備えたものを採用することができる。
更に、この流体処理装置には、一方の被処理流動体に混合(反応)させる他方の被処理流動体の供給手段として、一方の被処理流動体の通路とは独立した別途の導入路を備え、上記第1処理用面と第2処理用面の少なくとも何れ一方に、上記の別途の導入路に通じる開口部を備え、当該別途の導入路から送られてきた他方の被処理流動体を、上記一方の被処理流動体に導入することができるものを採用するのが好ましい。
また、本願発明を実施する処理装置として、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に接続された第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面と、両処理用面1,2間に接面圧力を付与する接面圧力付与機構と、第1処理用面1と第2処理用面2とを相対的に回転させる回転駆動機構と、を備えることにより、両処理用面1,2 間にて、少なくとも2種の被処理流動体の混合(反応)処理を行うものであって、接面圧力が付与されつつ相対的に回転する第1処理用面1と第2処理用面2との間に、流体圧付与機構から圧力を付与された少なくとも一種の被処理流動体が通され、更に、他の一種の被処理流動体が通されることにより、流体圧付与機構から圧力を付与された上記一種の被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過する際に、当該他の一種の被処理流動体が混合され、被処理流動体間にて、所望の混合状態(反応)を生じさせるものを採用することができる。
この接面圧付与機構が、前述の装置における、微振動やアライメントを調整する緩衝機構や、変位調整機構を構成するものとして実施することができる。
更に、本願発明を実施する処理装置として、混合(反応)させる2種の被処理流動体のうち少なくとも一方の被処理流動体を当該装置に導入する第1導入部と、第1導入部に接続されて当該一方の被処理流動体に圧力を付与する流体圧付与機構pと、混合(反応)させる2種の被処理流動体のうち少なくとも他の一方を当該装置に導入する第2導入部と、当該一方の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第2処理用面2が露出するように第2処理用部20を受容するホルダ21と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構と、第1処理用面1に対して第2処理用面2を圧接又は近接した状態に第2処理用部20を押圧する接面圧付与機構4 とを備え、両処理用面1,2間にて、被処理流動体間の混合(反応)処理を行い、上記ホルダ21が、上記第1導入部の開口部を備えると共に、処理用面1,2間の隙間に影響を与えるようには可動でないものであり、第1処理用部10と第2導入部20の少なくとも一方が、上記第2導入部の開口部を備え、第2処理用部20が、環状体であり、第2処理用面2がホルダ21に対して摺動して第1処理用面1に接近離反するものであり、第2処理用部20が受圧面を備え、受圧面は、流体圧付与機構pが被処理流動体に付与する圧力を受けて第1処理用面1 から第2処理用面2を離反させる方向に移動させる力を発生させ、上記受圧面の少なくとも一部は、第2処理用面2にて構成され、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された一方の被処理流動体が通されると共に、他の一方の被処理流動体が、両処理用面1,2間に供給されることにより、両被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過し、通過中の被処理流動体が混合させることで、被処理流動体間における、所望の混合(反応)を促進させるものであり、接面圧力付与機構4の接面圧力と、流体圧付与機構pが付与する流体圧力の両処理用面1,2間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる微小間隔を両処理用面1,2間に保つものを採用することができる。
この流体処理装置において、第2導入部も、第1導入部に接続されたのと同様の、別途の流体圧付与機構に接続されて、加圧されるものとしても実施できる。また、第2導入部から導入される被処理流動体は、別途の流体圧付与機構にて加圧されるのではなく、第1導入部にて導入される被処理流動体の流圧にて第2導入部内に生じる負圧により、両処理用面1,2間に吸引されて供給されるものとしても実施できる。更に、当該他方の被処理流動体は、第2導入部内を、自重にて移動即ち上方より下方に流れて、処理用面1,2間に供給されるものとしても実施できる。
上記のように、一方の被処理流動体の装置内への供給口となる第1導入部の開口部を第2ホルダに設けるものに限定するものではなく、第1導入部の当該開口部を第1ホルダに設けるものとしてもよい。また、第1導入部の当該開口部を、両処理用面の少なくとも一方に形成して実施することもできる。但し、反応によって、先に処理用面1,2間に導入しておく必要のある被処理流動体を、第1導入部から供給する必要がある場合において、他方の被処理流動体の装置内への供給口となる第2導入部の開口部は、何れかの処理用面において、上記第1導入部の開口部よりも、下流側に配置する必要がある。
更に、本願発明の実施に用いる流体処理装置として、次のものを採用することができる。
この流体処理装置は、混合(反応)させる2種以上の被処理流動体を別々に導入する複数の導入部と、当該2種以上の被処理流動体の少なくとも一つに圧力を付与する流体圧付与機構pと、この被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面1,2と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備え、両処理用面1,2間にて、被処理流動体間の混合(反応)処理を行うものであって、第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、更に、第2処理用部20は、第2処理用面2と反対側を向く近接用調整面24を備えるものであり、近接用調整面24は、被処理流動体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、上記近接用調整面24の接近離反方向の投影面積と、上記受圧面の接近離反方向の投影面積との面積比により、被処理流動体から受ける全圧力の合力として、第1処理用面1に対する第2処理用面2の離反方向へ移動する力が決まるものであり、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された被処理流動体が通され、当該被処理流動体に混合(反応)させる他の被処理流動体が両処理用面間において混合され、混合された被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、処理用面間の通過中に所望の生成物を得るものである。
また、本願発明に係る装置にあっては、次のような流体処理方法を実施できる。この流体処理方法は、第1の被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路へ、第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させ且つこれらの処理用面1,2間に被処理流動体を導入するものであり、当該被処理流動体と混合(反応)する第2の被処理流動体を上記と別途の流路により、上記処理用面1,2間に導入し、両被処理流動体を混合(反応)させるものであり、少なくとも第1の被処理流動体に付与した上記の所定の圧力を両処理用面1,2 を離反させる離反力とし、当該離反力と上記接面圧力とを、処理用面1,2間の被処理流動体を介して均衡させることにより、両処理用面1,2間を所定の微小間隔に維持し、被処理流動体を所定の厚みの流体膜として両処理用面1,2間を通過させて、この通過中に両被処理流動体の混合(反応)を均一に行い、析出を伴う反応の場合にあっては所望の反応生成物を晶出または析出させるものである。
次に、本願発明に係る流体処理装置を用いて実施できる処理を以下に例示する。なお、本願発明に係る流体処理装置は下記の例にのみ限定して用いられるものではなく、従来のマイクロリアクターやマイクロミキサーによってなされていた反応はもちろんのこと、その他種々の反応、混合、分散に関する処理に用いることができる。
少なくとも1種類の顔料を硫酸、硝酸、塩酸などの強酸に溶解し調整された顔料酸性溶液を、水を含む溶液と混合して顔料粒子を得る反応(アシッドペースティング法)。
または、少なくとも1種類の顔料を有機溶媒に溶解し調整された顔料溶液を、前記顔料に対しては貧溶媒であり、かつ前記溶液の調整に使用された有機溶媒には相溶性である貧溶媒中に投入して顔料粒子を沈殿させる反応(再沈法)。
または、酸性またはアルカリ性であるpH調整溶液或いは前記pH調整溶液と有機溶媒との混合溶液のいずれかに、少なくとも1種類の顔料を溶解した顔料溶液と、前記顔料溶液に含まれる顔料に溶解性を示さない、若しくは、前記顔料溶液に含まれる溶媒よりも前記顔料に対する溶解性が小さい、前記顔料溶液のpHを変化させる顔料析出用溶液とを混合して顔料粒子を得る反応。
カーボンブラックの表面に液相還元法によって金属微粒子を担持させる反応(前記金属としては、白金、パラジウム、金、銀、ロジウム、イリジウム、ルテニウム、オスミウム、コバルト、マンガン、ニッケル、鉄、クロム、モリブデン、チタンからなる群より選ばれる少なくとも1種の金属が例示できる)。
フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解度が小さな第2溶媒を混合することでフラーレン分子からなる結晶及びフラーレンナノウィスカー・ナノファイバーナノチューブを製造する反応。
金属化合物を還元する反応(前記金属としては、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金のような貴金属、又は銅、又は前記2種以上の金属の合金が例示できる)。
セラミックス原料を加水分解する反応(前記セラミックス原料としては、Al、Ba、Mg、Ca、La、Fe、Si、Ti、Zr、Pb、Sn、Zn、Cd、As、Ga、Sr、Bi、Ta、Se、Te、Hf、Mg、Ni、Mn、Co、S、Ge、Li、B、Ceの中から選ばれた少なくとも1種が例示できる)。
チタン化合物の加水分解により二酸化チタン超微粒子を析出させる反応(前記チタン化合物としては、テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトライソブトキシチタン、テトラ−t−ブトキシチタンなどのテトラアルコキシチタン或はその誘導体、四塩化チタン、硫酸チタニル、クエン酸チタン、及び四硝酸チタンから選ばれる少なくとも1種が例示できる)。
半導体原料である、異種の元素を有するイオンを含む流体を合流させ、共沈・析出により化合物半導体微粒子を生成する反応(化合物半導体としては、II-VI族化合物半導体、III-V族化合物半導体、IV族化合物半導体、I-III-VI族化合物半導体が例示できる)。
半導体元素を還元して半導体微粒子を生成する反応(半導体元素としては、シリコン(Si)、ゲルマニウム(Ge)、炭素(C)、および錫(Sn)からなる群から選ばれた元素が例示できる)。
磁性体原料を還元して磁性体微粒子を生成する反応(磁性体原料としては、ニッケル、コバルト、イリジウム、鉄、白金、金、銀、マンガン、クロム、パラジウム、イットリウム、ランタニド(ネオジウム、サマリウム、ガドリニウム、テルビウム)のうち少なくとも1種が例示できる)。
生体摂取物微粒子原料を少なくとも1種類、第1溶媒に溶解させた流体と、前記第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒とを混合し、生体摂取物微粒子を析出させる反応。
または、酸性物質もしくは陽イオン性物質を少なくとも1種類含む流体と、塩基性物質もしくは陰イオン性物質を少なくとも1種類含む流体とを混合し、中和反応により生体摂取物微粒子を析出させる反応。
脂溶性の薬理活性物質を含有する油相成分を含む被処理流動体と、少なくとも水系分散溶媒よりなる被処理流動体とを混合すること、あるいは、水溶性の薬理活性物質を含有する水相成分を含む被処理流動体と、少なくとも油系分散溶媒よりなる被処理流動体とを混合することによりマイクロエマルション粒子を得る処理。
または、分散相もしくは連続相の少なくともどちらか一方に一種類以上のリン脂質を含み、分散相は薬理活性物質を含み、連続相は少なくとも水系分散溶媒よりなり、分散相の被処理流動体と連続相の被処理流動体とを混合することによりリポソームを得る処理。
樹脂に対して溶解性及び相溶性である溶媒に樹脂を溶解した流体と水性溶媒とを混合し、析出あるいは乳化により樹脂微粒子を得る処理。
または、加温して溶融させた樹脂と水性溶媒とを混合し、乳化・分散により樹脂微粒子を得る処理。
フリーデルクラフツ反応、ニトロ化反応、付加反応、脱離反応、転移反応、重合反応、縮合反応、カップリング反応、アシル化、カルボニル化、アルデヒド合成、ペプチド合成、アルドール反応、インドール反応、求電子置換反応、求核置換反応、Wittig反応、Michael付加反応、エナミン合成、エステル合成、酵素反応、ジアゾカップリング反応、酸化反応、還元反応、多段階反応、選択的添加反応、鈴木・宮浦カップリング反応、Kumada-Corriu反応、メタセシス反応、異性化反応、ラジカル重合反応、アニオン重合反応、カチオン重合反応、金属触媒重合反応、逐次反応、高分子合成、アセチレンカップリング反応、エピスルフィド合成、エピスルフィド合成、Bamberger転位、Chapman転位、Claisen縮合、キノリン合成、Paal-Knorrフラン合成、Paal-Knorrピロール合成、Passerini反応、Paterno-Buchi反応、カルボニル-エン反応(Prins反応)、Jacobsen転位、Koenigs-Knorrグリコシド化反応、Leuckart-Wallach反応、Horner-Wadsworth-Emmons反応、Gassman反応、野依不斉水素化反応、Perkin反応、Petasis反応、Tishchenko反応、Tishchenko反応、Ullmannカップリング、Nazarov環化、Tiffeneau-Demjanov転位、鋳型合成、二酸化セレンを用いる酸化、Reimer-Tiemann反応、 Grob開裂反応、ハロホルム反応、Malapradeグリコール酸化開裂、Hofmann脱離、Lawesson試薬によるチオカルボニル化反応、Lossen転位、FAMSOを利用する環状ケトン合成、Favorskii転位、Feist-Benaryフラン合成、Gabrielアミン合成、Glaser反応、Grignard反応、Cope脱離、Cope転位、アルキン類のジイミド還元、Eschenmoserアミノメチル化反応、[2+2]光環化反応、Appel反応、aza-Wittig反応、Bartoliインドール合成、Carroll転位、Chichibabin反応、Clemmensen還元、Combesキノリン合成 、辻-Trost反応、TEMPO酸化、四酸化オスミウムを用いるジヒドロキシル化、Fries転位、Neber転位、Barton-McCombie脱酸素化、Barton脱カルボキシル化、Seyferth-Gilbertアルキン合成、Pinnick(Kraus)酸化、伊藤-三枝酸化、Eschenmoser開裂反応、Eschenmoser-Claisen転位、Doering--LaFlammeアレン合成、Corey-Chaykovsky反応、アシロイン縮合、Wolff-Kishner還元、IBX酸化、Parikh-Doering酸化、Reissert反応、Jacobsen速度論的光学分割加水分解、ベンジル酸転位、檜山クロスカップリング、Luche還元、オキシ水銀化、Vilismeier-Haak反応、Wolff転位、KolbeSchmitt反応、Corey-Kim酸化、Cannizzaro反応、Henry反応、アルコールのアルカンへの変換、Arndt-Eistert合成、ヒドロホルミル化反応、Petersonオレフィン化、脱カルボニル化反応、Curtius転位、Wohl-Zieglarアリル位臭素化、Pfitzner-Moffatt酸化、McMurryカップリング、Barton反応、Balz-Schiemann反応、正宗−Bergman反応、Dieckmann縮合、ピナコールカップリング、Williamsonエーテル合成 、ヨードラクトン化反応、Harriesオゾン分解、、活性二酸化マンガンによる酸化、アルキンの環化三量化反応、熊田−玉尾-Corriuクロスカップリング、スルホキシドおよびセレノキシドのsyn−β脱離 、Fischerインドール合成、Oppenauer酸化、Darzens縮合反応、Alderエン反応、Sarett-Collins酸化、野崎-檜山-岸カップリング反応、Weinrebケトン合成、DASTフッ素化、Corey-Winterオレフィン合成、細見-桜井反応、PCC(PDC)を用いるアルコールの酸化、Jones酸化(Jones Oxidation)、Keckアリル化反応、永田試薬を用いるシアニド付加、根岸カップリング、Ireland-Claisen転位、Baeyer-Villiger酸化、p-メトキシベンジル(PMB or MPM)、ジメトキシベンジル(DMB)保護、脱保護、Wacker酸化、Myers不斉アルキル化、山口マクロラクトン化、向山-Coreyマクロラクトン化 、Bodeペプチド合成、Lindlar還元、均一系水素化、オルトメタル化、Wagnar-Meerwein転位、Wurtz反応、1,3-ジチアンを利用するケトン合成、Michael付加、Storkエナミンによるケトン合成、Pauson-Khandシクロペンテン合成、Tebbe反応などの、有機化合物を出発原料とする各種反応剤との有機反応によって微粒子を得る反応。

Claims (7)

  1. 少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、
    近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行うものであって、第1の流体を処理用面間に導入し、上記第1の流体を導入した流路とは独立し、処理用面間に通じる別の流路から第2流体を処理用面間に導入して処理用面間で混合・攪拌して上記処理を行う装置において、
    上記処理用部として、第1処理用部、及び、この第1処理用部に対して相対的に近接・離反可能な第2処理用部の、少なくとも2つの処理用部を備え、
    上記の各処理用部において互いに対向する位置に、第1処理用面及び第2処理用面の少なくとも2つの処理用面が設けられ、
    上記第1処理用部と第2処理用部の少なくとも何れか一方の内部には、上記第2流体が流される少なくとも1本の流路が形成され、
    上記少なくとも1本の流路は、上記処理用面間へ通じる開口部を備え、上記開口部にて、複数の分割流路に分割されたものであり、
    上記の個々の分割流路の方が上記開口部よりも小さな横断面積を有するものであることを特徴とする流体処理装置。
  2. 上記複数の分割流路が、上記第2流体が流される少なくとも1本の流路内に、当該流体の流れを二つ以上の流れに分割する分割体が配置されて形成された事を特徴とする請求項1記載の流体処理装置。
  3. 少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、
    近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行うものであって、第1の流体を処理用面間に導入し、上記第1の流体を導入した流路とは独立し、処理用面間に通じる別の流路から第2流体を処理用面間に導入して処理用面間で混合・攪拌して上記処理を行う装置において、
    上記第2流体が流される流路の、処理用面間への出口部に取り外し可能な流路分割部材が取り付けられたものであり、
    上記流路分割部材は、分割体を備えたものであって、上記分割体は、上記第2流体の流れを二つ以上の流れに分割するものであり、
    上記分割体によって、上記流路の出口部に、複数の分割流路が形成されたものである事を特徴とする流体処理装置。
  4. 上記流路の出口部が、上記処理用面に開口した開口部であることを特徴とする請求項3に記載の流体処理装置。
  5. 上記流路分割部材が、焼結フィルター、メンブレンフィルター、ワイヤーメッシュ、ウェッジワイヤー、パンチングプレートから選ばれた一つ、あるいは複数の組み合わせから形成された事を特徴とする請求項3または4記載の流体処理装置。
  6. 上記流路の出口部が、上記処理用面に開口した開口部であり、
    上記第2流体が流される流路を備えた処理用部に取り付け持具が収容されており、
    この取り付け持具は、上記処理用部に対して脱着が可能とされており、
    内部には上記第2流体を流すための流路を有しており、
    上記処理用面に上記の流路分割部材が取り付けられた事を特徴とする請求項3〜5のいずれか記載の流体処理装置。
  7. 請求項1〜6の何れかに記載の流体処理装置を用いて、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物の処理を行うものであって
    1の流体を処理用面間に導入し、上記第1の流体を導入した流路とは独立し、処理用面間に通じる開口部を備えた別の流路から第2流体を処理用面間に導入して処理用面間で混合・攪拌して上記処理を行う装置において、これらの流体を処理用面間で混合・攪拌しながら流体処理を行わせることを特徴とする流体処理方法。
JP2010540238A 2008-11-25 2008-11-25 流体処理装置及び処理方法 Active JP5382738B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071317 WO2010061430A1 (ja) 2008-11-25 2008-11-25 流体処理装置及び処理方法

Publications (2)

Publication Number Publication Date
JPWO2010061430A1 JPWO2010061430A1 (ja) 2012-04-19
JP5382738B2 true JP5382738B2 (ja) 2014-01-08

Family

ID=42225323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540238A Active JP5382738B2 (ja) 2008-11-25 2008-11-25 流体処理装置及び処理方法

Country Status (4)

Country Link
US (1) US8609035B2 (ja)
EP (1) EP2418015B1 (ja)
JP (1) JP5382738B2 (ja)
WO (1) WO2010061430A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2418015B1 (en) * 2008-11-25 2016-01-06 M. Technique Co., Ltd. Fluid treatment equipment and treatment method
US9255202B2 (en) * 2009-03-03 2016-02-09 M. Technique Co., Ltd. Method for treating surface of pigment microparticles
CN102574095B (zh) * 2010-02-26 2015-01-28 M技术株式会社 流体处理装置及处理方法
US9481694B2 (en) * 2010-11-24 2016-11-01 M. Technique Co., Ltd. Solid solution pigment nanoparticles and method for producing solid solution pigment nanoparticles having controlled solid solution ratio
US20140110884A1 (en) * 2011-05-28 2014-04-24 M. Technique Co., Ltd. Method for preventing adhesion of processed material using forced thin film treatment apparatus
CN106157770B (zh) * 2016-09-22 2022-03-04 陕西师范大学 甲烷和氯气取代反应装置及方法
JP7465604B1 (ja) 2023-07-14 2024-04-11 淺田鉄工株式会社 メディアレス型分散装置用の分散ロータ
CN118634685A (zh) * 2024-08-09 2024-09-13 江苏育瑞康生物科技有限公司 一种细胞培养液制备装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049957A (ja) * 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004174297A (ja) * 2002-11-25 2004-06-24 M Technique Co Ltd 微細化装置付脱気機及び微細化による脱気方法
JP2005313102A (ja) * 2004-04-30 2005-11-10 M Technique Co Ltd 微粒子及びその製造方法
JP2006341232A (ja) * 2005-06-10 2006-12-21 Canon Inc 流体処理装置および流体処理方法
JP2008006442A (ja) * 2007-09-18 2008-01-17 M Technique Co Ltd 流動体処理方法及びその装置
WO2009008394A1 (ja) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. 流体処理装置及び処理方法
JP2009131831A (ja) * 2007-11-09 2009-06-18 M Technique Co Ltd 微粒子の製造方法及びその微粒子

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159696A (ja) 2001-11-27 2003-06-03 Starlite Co Ltd 化学マイクロデバイス
JP3727594B2 (ja) 2002-01-18 2005-12-14 富士写真フイルム株式会社 マイクロミキサー
DE60307741T2 (de) * 2002-07-16 2007-08-23 M Technique Co., Ltd., Izumi Verfahren und Verarbeitungsgerät for Flüssigkeiten
US6951704B2 (en) * 2002-11-08 2005-10-04 Canon Kabushiki Kaisha Process for producing toner particles
JP3923000B2 (ja) * 2002-11-11 2007-05-30 株式会社日本ボロン 微小物質分離乾燥方法および装置
US7125527B2 (en) * 2003-09-05 2006-10-24 Kinetichem, Inc. Methods of operating surface reactors and reactors employing such methods
US7528182B2 (en) 2004-09-10 2009-05-05 Canon Kabushiki Kaisha Process for producing colorant dispersoid
JP4551840B2 (ja) 2004-09-10 2010-09-29 キヤノン株式会社 色材物質分散物の製造方法
CN101784258B (zh) * 2007-07-06 2013-07-17 M技术株式会社 生物摄取物微粒子及其制造方法、分散体、医药组成物
CN101784338B (zh) * 2007-07-06 2013-10-30 M技术株式会社 携载金属的碳的制造方法
KR101358261B1 (ko) * 2007-07-06 2014-02-05 엠. 테크닉 가부시키가이샤 세라믹스 나노입자의 제조 방법
WO2009008390A1 (ja) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. 金属微粒子の製造方法及びその金属微粒子を含む金属コロイド溶液
WO2009008388A1 (ja) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. 強制超薄膜回転式反応法を用いた顔料ナノ微粒子の製造方法及びその顔料ナノ粒子、これを用いたインクジェット用インク
WO2009008393A1 (ja) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. 強制超薄膜回転式処理法を用いたナノ粒子の製造方法
JP4458202B2 (ja) * 2007-08-09 2010-04-28 エム・テクニック株式会社 半導体微粒子の製造方法
JP4849647B2 (ja) * 2007-09-10 2012-01-11 エム・テクニック株式会社 生体摂取物の製造方法及びこれにより得られた生体摂取物
WO2009035019A1 (ja) * 2007-09-12 2009-03-19 M.Technique Co., Ltd. 二酸化チタン超微粒子及びその製造方法
CN101801520B (zh) * 2007-09-21 2013-08-28 M技术株式会社 微粒的制造方法
JPWO2009041274A1 (ja) * 2007-09-27 2011-01-20 エム・テクニック株式会社 磁性体微粒子の製造方法、これにより得られた磁性体微粒子及び磁性流体、磁性体製品の製造方法
EP2194087B1 (en) * 2007-09-28 2013-11-20 M Technique Co., Ltd. Method for production of aqueous resin microparticle dispersion, and aqueous resin microparticle dispersion and resin microparticle produced by the method
US8592498B2 (en) * 2007-10-22 2013-11-26 M. Technique Co., Ltd. Method for producing organic compound and organic compound obtained by the method
US8980958B2 (en) * 2007-11-09 2015-03-17 M. Technique Co., Ltd. Method for producing emulsion and thereby obtained emulsion
EP2418015B1 (en) * 2008-11-25 2016-01-06 M. Technique Co., Ltd. Fluid treatment equipment and treatment method
US9255202B2 (en) * 2009-03-03 2016-02-09 M. Technique Co., Ltd. Method for treating surface of pigment microparticles
EP2532715B1 (en) * 2010-02-03 2018-12-26 M Technique Co., Ltd. Method for producing nanoparticles
CN102574095B (zh) * 2010-02-26 2015-01-28 M技术株式会社 流体处理装置及处理方法
WO2011148463A1 (ja) * 2010-05-25 2011-12-01 エム・テクニック株式会社 ドープ元素量を制御された析出物質の製造方法
CN105860577B (zh) * 2010-06-03 2018-03-16 M技术株式会社 铜酞菁微粒的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004049957A (ja) * 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004174297A (ja) * 2002-11-25 2004-06-24 M Technique Co Ltd 微細化装置付脱気機及び微細化による脱気方法
JP2005313102A (ja) * 2004-04-30 2005-11-10 M Technique Co Ltd 微粒子及びその製造方法
JP2006341232A (ja) * 2005-06-10 2006-12-21 Canon Inc 流体処理装置および流体処理方法
WO2009008394A1 (ja) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. 流体処理装置及び処理方法
JP2008006442A (ja) * 2007-09-18 2008-01-17 M Technique Co Ltd 流動体処理方法及びその装置
JP2009131831A (ja) * 2007-11-09 2009-06-18 M Technique Co Ltd 微粒子の製造方法及びその微粒子

Also Published As

Publication number Publication date
JPWO2010061430A1 (ja) 2012-04-19
WO2010061430A1 (ja) 2010-06-03
EP2418015B1 (en) 2016-01-06
US20120024772A1 (en) 2012-02-02
EP2418015A4 (en) 2014-10-15
EP2418015A1 (en) 2012-02-15
US8609035B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
JP5599005B2 (ja) 流体処理装置及び処理方法
TWI441672B (zh) Method for manufacturing nanoparticles using forced ultra - thin film rotary treatment
JP5382738B2 (ja) 流体処理装置及び処理方法
JP5821072B2 (ja) 流体処理装置及び処理方法
JP5959115B2 (ja) 強制薄膜式流体処理装置を用いた微粒子の生産量増加方法
JP2017035689A (ja) 微粒子の製造方法
JP5936142B2 (ja) 強制薄膜式流体処理装置を用いた処理物の付着防止方法
JP6274004B2 (ja) 流体処理方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5382738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250