JP5380674B2 - Grinding wheel retainer - Google Patents

Grinding wheel retainer

Info

Publication number
JP5380674B2
JP5380674B2 JP2009239826A JP2009239826A JP5380674B2 JP 5380674 B2 JP5380674 B2 JP 5380674B2 JP 2009239826 A JP2009239826 A JP 2009239826A JP 2009239826 A JP2009239826 A JP 2009239826A JP 5380674 B2 JP5380674 B2 JP 5380674B2
Authority
JP
Japan
Prior art keywords
grinding wheel
grinding
coolant
annular
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009239826A
Other languages
Japanese (ja)
Other versions
JP2010284791A (en
JP2010284791A5 (en
Inventor
泰弘 八尾
Original Assignee
伊藤 幸男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤 幸男 filed Critical 伊藤 幸男
Priority to JP2009239826A priority Critical patent/JP5380674B2/en
Publication of JP2010284791A publication Critical patent/JP2010284791A/en
Publication of JP2010284791A5 publication Critical patent/JP2010284791A5/ja
Application granted granted Critical
Publication of JP5380674B2 publication Critical patent/JP5380674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、研削ホイールとその保持具、更に冷却方法と冷却装置等に係わり、特に、高圧冷却液を研削ホイールの砥石内部を通過させ、又は砥石側面沿いのフランジ隙間から砥石外周面(研削面)に供給可能とし、更にワークの研削面を高圧冷却液でウオータールーム雰囲気に包囲して、研削効率を飛躍的に向上させた研削ホイールと研削ホイールの保持具とその冷却方法と冷却装置を提供するものである。The present invention relates to a grinding wheel and its holder, and further to a cooling method and a cooling device, and in particular, allows high-pressure coolant to pass inside the grinding wheel of the grinding wheel, or from the flange clearance along the grinding wheel side surface (grinding surface). In addition, the grinding surface of the workpiece is surrounded by a water-room atmosphere with high-pressure coolant to provide a grinding wheel, a grinding wheel holder, a cooling method and a cooling device that dramatically improve the grinding efficiency. To do.

近年、例えば、航空機による国際的な物流増大に対応する事と、対地球環境向上を図るための低燃費性の要求が高まり、航空機のジェットエンジンの軽量化と燃費改善が図られている。その具体的方策として、ジェットエンジンの2基化や小型化、更には、タービンブレードの薄肉化等で対応している。特に、タービンブレードの薄肉化には、高精度な研削技術が必須になっている。この従来の研削方法には、冷却水を研削ホイールの表面に噴射して表面の水冷と切粉塵埃除去をするものが一般的に知られている。In recent years, for example, there has been an increase in demand for low fuel consumption in order to cope with an increase in international logistics by aircraft and to improve the environment of the earth, and lightening of jet engines and improvement in fuel consumption have been attempted. As specific measures, two jet engines are made smaller and smaller, and further, turbine blades are made thinner. In particular, high-precision grinding technology is essential for reducing the thickness of turbine blades. As this conventional grinding method, there is generally known a method in which cooling water is sprayed onto the surface of a grinding wheel to cool the surface and remove chips and dust.

そこで、研磨ホイールの研磨面に付着する研磨屑を高い原料除去率で除去するクリープ研削処理を達成させるべくした(高速研磨装置)が提供されている。その構成は、薄板切断加工機を対象とし、多孔性の研磨ホイールと、研磨ホイールを取付けると共に毎秒80mにまで達する周速で研磨ホイールを回転させる機械と、高圧で噴出する冷却剤を実質的に加工点に先立つ研磨ホイールの周縁の照準点に方向付ける少なくとも1つのノズル手段を有する高圧冷却剤供給システムと、を備えた高速研磨装置である。上記ノズル手段は、冷却剤の噴射を、実質的に放射方向に研磨ホイールの周の照準点に方向付けるようになし、また、ノズル手段は、研磨ホイールの周の照準点を、加工点に約30mmから40mm先立つ距離に向けられており、また、冷却剤ノズル手段は、加工点に対して相対的に冷却剤噴射照準点を再位置決めするために、機械のスピンドル軸周りに回転可能である(例えば、特許文献1参照。)。  In view of this, a high-speed polishing apparatus has been provided that achieves a creep grinding process for removing polishing debris adhering to the polishing surface of a polishing wheel at a high raw material removal rate. Its structure is intended for thin plate cutting machines, and it consists essentially of a porous grinding wheel, a machine that attaches the grinding wheel and rotates the grinding wheel at a peripheral speed of up to 80 m per second, and a coolant jetted at high pressure. And a high-pressure coolant supply system having at least one nozzle means for directing to a sighting point on the periphery of the polishing wheel prior to the processing point. The nozzle means directs the jet of coolant substantially radially to the aiming point around the grinding wheel, and the nozzle means approximately sets the aiming point around the grinding wheel to the processing point. Oriented at a distance of 30 mm to 40 mm and the coolant nozzle means is rotatable about the spindle axis of the machine to reposition the coolant injection aim point relative to the processing point ( For example, see Patent Document 1.)

更に、研削ホイールに改良を加えて、供給される冷却液を研削ホイール及び被研削物(例えば、半導体ウエハ)の冷却に充分効果的に利用できるようになした研削ホイールが提供されている。その構成は、環状基台と、該基台の下面に装着された砥石手段とから構成された研削ホイールにおいて、該基台の内周には半径方向内方に開放された冷却液溜が形成されており、該基台の内周面及び下面には周方向に間隔をおいて該冷却液溜から該砥石手段まで延びる複数個の冷却液案内溝が形成されている。該冷却液案内溝は該冷却液溜から該砥石手段に向かって周方向片方に傾斜して延びている。また、該冷却液溜は周方向に連続して延在せしめられている。また、該冷却液溜は下方に向かって半径方向外方に傾斜して延びる上部傾斜面と該上部傾斜面の下方を半径方向内方に実質上水平に又は半径方向内方に向かって下方に傾斜して延びる突出面との間に規定されている。更に、該基台にはその上面から該冷却液溜に連通する複数個の連通切欠又は連通穴が周方向に間隔をおいて形成されている。更に、該基台は該突出面の下方において下方に向かって半径方向外方に傾斜して延びる下部傾斜面を有する。そして、該砥石手段は周方向に間隔をおいて配設され周方向に弧状に延びる複数個の砥石から構成されており、該冷却液案内溝は該砥石の各々に対応して形成されているものである(例えば、特許文献2参照。)。  Further, there is provided a grinding wheel in which the grinding wheel is improved so that the supplied coolant can be effectively used for cooling the grinding wheel and an object to be ground (for example, a semiconductor wafer). In the grinding wheel comprised of an annular base and grinding wheel means mounted on the lower surface of the base, a cooling liquid reservoir opened radially inward is formed on the inner periphery of the base. A plurality of cooling liquid guide grooves extending from the cooling liquid reservoir to the grinding wheel means are formed on the inner peripheral surface and the lower surface of the base at intervals in the circumferential direction. The coolant guide groove extends from the coolant reservoir so as to incline in one circumferential direction toward the grinding wheel means. The coolant reservoir is continuously extended in the circumferential direction. The cooling liquid reservoir has an upper inclined surface extending obliquely outward in the radial direction and a lower portion of the upper inclined surface substantially horizontally inward in the radial direction or downward inward in the radial direction. It is prescribed | regulated between the protrusion surfaces extended in inclination. Further, a plurality of communication cutouts or communication holes communicating with the coolant reservoir from the upper surface are formed in the base at intervals in the circumferential direction. Further, the base has a lower inclined surface extending downward and inclined radially outward below the projecting surface. The grindstone means is composed of a plurality of grindstones arranged at intervals in the circumferential direction and extending in an arc shape in the circumferential direction, and the coolant guide groove is formed corresponding to each of the grindstones. (For example, see Patent Document 2).

更に、研削部における冷却性能を向上させることができると共に、超精密仕上げ研削も行うことができる研削砥石及び研削液供給方法がある。その構成は、砥石台金の周囲に砥粒層が設けられ、回転されることにより、前記砥粒層の表面で工作物を研削する研削砥石において、前記砥石台金の側面部に、研削液ノズルから噴射された研削液を受ける研削液受け部を形成すると共に、前記砥石台金に、該研削液受け部から前記砥粒層まで研削液を案内する研削液管路を形成する一方、前記砥粒層は、前記研削液管路からの研削液が砥粒層表面ににじみ出るように多孔質に形成した研削砥石である。また、その研削液供給方法は、研削砥石を回転させると共に、該研削砥石の研削液受け部に研削液を噴射させ、該研削液が遠心力により、前記研削液管路を通して前記砥粒層まで導かれ、該砥粒層中から多孔質を通して該砥粒層の表面までにじみ出させて研削部に研削液を供給するものである(例えば、特許文献3参照。)。  Furthermore, there is a grinding wheel and a grinding fluid supply method that can improve the cooling performance in the grinding section and can also perform ultra-precision finish grinding. In the grinding wheel for grinding a workpiece on the surface of the abrasive grain layer by providing an abrasive grain layer around the grinding wheel base metal and rotating, a grinding liquid is provided on a side surface of the grinding stone base metal. While forming a grinding fluid receiving portion for receiving the grinding fluid ejected from the nozzle, and forming a grinding fluid conduit for guiding the grinding fluid from the grinding fluid receiving portion to the abrasive layer on the grindstone base metal, The abrasive layer is a grinding wheel formed porous so that the grinding fluid from the grinding fluid conduit oozes out to the surface of the abrasive layer. In addition, the grinding fluid supply method rotates the grinding wheel and injects the grinding fluid into the grinding fluid receiving portion of the grinding stone, and the grinding fluid is centrifugally applied to the abrasive layer through the grinding fluid conduit. It is guided and oozes out from the abrasive layer to the surface of the abrasive layer through a porous material and supplies a grinding liquid to the grinding part (for example, refer to Patent Document 3).

特開平11−254324号公報  JP-A-11-254324 特開2003−89065号公報  JP 2003-89065 A 特開平10−118940号公報  Japanese Patent Laid-Open No. 10-118940

上記研削ホイールの研削面に付着する研削屑を高い原料除去率で除去するクリープ研削処理を達成させるべくした(高速研磨装置)では、冷却水ク−ラントが砥石の高速回転に伴い形成される外周の空気層により跳ね飛ばされ、砥石の目詰まり除去とワーク冷却が十分にできない。重研削では、ワークの研削焼けが発生し易いという問題が解決されていない。In the creep grinding process (high-speed polishing device) that removes grinding scraps adhering to the grinding surface of the grinding wheel at a high raw material removal rate, cooling water and coolant are formed with high-speed rotation of the grindstone. The air is blown off by the outer air layer, and clogging of the grindstone and work cooling cannot be sufficiently performed. In the heavy grinding, the problem that the grinding burn of the workpiece easily occurs is not solved.

また、上記特開平11−254324号公報の研削ホイールでは、多孔質砥石に限定し、高圧冷却剤を砥石に噴射し外縁に形成された空気層を破壊して砥石の目詰まり除去をして新たは砥石研削面を生成し、且つ砥石とワーク面を冷やし重研削してもワークの研削焼けさせないメリットがある。これを確保するには、冷却剤のノズルを2軸NC制御で砥石径の摩耗変化に合わせ追随させる方式とし、常に砥石外周の照準点に合わせて高圧水(約40乃至70Barの圧力)を噴射させることが必須となる。これが為に、高価な高圧冷却剤供給システムが必須であるばかりか、7軸(クーラントノズルが2軸必要)制御のため操作が煩雑で高価(1億円以上)となる欠点問題点がある。また、この冷却方法では、ブロック材等からの削り出しには向いているものの、薄肉中量生産のブレード研削には適さないという問題が解決されていない。In addition, the grinding wheel disclosed in Japanese Patent Laid-Open No. 11-254324 is limited to a porous grindstone, and a high-pressure coolant is sprayed onto the grindstone to destroy the air layer formed on the outer edge, thereby removing clogging of the grindstone. Has a merit that a grinding wheel surface is generated, and even if the grinding wheel and the workpiece surface are cooled and subjected to heavy grinding, the workpiece is not ground and burned. In order to ensure this, the coolant nozzle is made to follow the wear change of the grinding wheel diameter by biaxial NC control, and high pressure water (pressure of about 40 to 70 Bar) is always injected in accordance with the aiming point of the grinding wheel circumference. It is essential that For this reason, not only is an expensive high-pressure coolant supply system indispensable, but there are also disadvantages and problems that the operation is complicated and expensive (over 100 million yen) for controlling 7 axes (2 coolant nozzles are required). . Further, although this cooling method is suitable for cutting out from a block material or the like, the problem that it is not suitable for blade grinding for thin-walled and medium-volume production has not been solved.

更に、上記特開2003−89065号公報の研削ホイールは、基台の内周に半径方向内方に開放された冷却液溜を形成し、更に基台の内周面及び下面に冷却液溜から砥石手段まで延びる冷却液案内溝を形成し、研削ホイールの基台に供給された冷却液の半径方向外方への流動を冷却液溜によって一旦阻止した後に、主として冷却液案内溝を通して砥石手段及び被研削物に向けて流出するものである。これにより、供給される冷却液を研削ホイール及び被研削物の冷却に充分効果的に利用できるメリットを有する。しかし、上記研削ホイールは、例えば、半導体ウエーハの如く、平面板のワークに限定され、本発明における主たる目的である薄肉中量生産のブレード研削には適さないという問題が解決されていない。Furthermore, the grinding wheel of the above-mentioned JP-A-2003-89065 forms a cooling liquid reservoir that is opened radially inward on the inner periphery of the base, and further from the cooling liquid reservoir on the inner peripheral surface and the lower surface of the base. A cooling liquid guide groove extending to the grinding wheel means is formed, and the flow of the cooling liquid supplied to the base of the grinding wheel is prevented from flowing radially outward by the cooling liquid reservoir. It flows out toward the workpiece. Thereby, it has the merit which can utilize the cooling fluid supplied sufficiently effectively for cooling of a grinding wheel and a to-be-ground object. However, the above-described grinding wheel is limited to a flat plate workpiece such as a semiconductor wafer, and the problem that it is not suitable for thin-wall , medium-volume production blade grinding, which is the main purpose of the present invention, has not been solved.

更に、上記特開特開平10−118940号公報の研削砥石及び研削液供給方法は、研削砥石が多孔質に限定されるから、高速回転させてワークを高速度に研削するには多孔質を通過する研削液の供給量に限界があり、研削液の供給不足により研削部でのウオーターカーテン雰囲気が作られず、また、研削砥石の多孔質に目詰まり現象を来す。これにより、本発明における主たる目的である薄肉中量生産のブレード研削には適さないという問題が解決されていない。Furthermore, since the grinding wheel and the grinding fluid supply method disclosed in Japanese Patent Application Laid-Open No. 10-118940 are limited to a porous grinding wheel, the porous grinding wheel is used to grind the workpiece at a high speed by rotating at a high speed. There is a limit to the amount of grinding fluid to be supplied. Due to insufficient supply of the grinding fluid, a water curtain atmosphere is not created in the grinding section, and the porous grinding wheel is clogged. As a result, the problem that the main object of the present invention is not suitable for thin-walled and medium-volume production blade grinding is not solved.

本発明は、上記研削ホイール及びその冷却水の砥石への噴射方法、研削砥石及び研削液供給方法における問題点に鑑みてなされたもので、特に、高圧冷却液を研削ホイールの砥石内部を通過させ、又は砥石側面沿いのフランジ隙間から砥石外周面(研削面)に供給可能とし、更にワークの研削面を高圧冷却液でウオータールーム雰囲気に包囲して、研削効率を飛躍的に向上させた研削ホイールと研削ホイールの保持具とその冷却方法と冷却装置を提供するものである。The present invention has been made in view of the problems in the grinding wheel and its cooling water injection method to the grinding wheel, the grinding wheel and the grinding fluid supply method, and in particular, allows the high pressure cooling liquid to pass through the grinding wheel. Grinding wheel that can be supplied to the grinding wheel outer peripheral surface (grinding surface) from the flange clearance along the side of the grinding wheel, and the grinding surface of the workpiece is surrounded by a water room atmosphere with a high-pressure coolant to dramatically improve grinding efficiency And a grinding wheel holder, a cooling method thereof, and a cooling device.

上記目的を達成するべく本発明の請求項1による研削ホイールの保持具は、外周に気体または液体を流通させる連絡孔を開けた環状基台と、上記環状基台に芯材となり通気性の有るセラミック円板と、上記セラミック円板の両側面に接合する同形の環状砥石と、上記環状砥石の両側面に接合させるとともに内面側に放射状の通路を形成した小径なフランジ円板と、上記環状基台の連絡孔をセラミック円板及びフランジ円板の通路と連絡させてなる研削ホイールとし、上記研削ホイールの環状基台は高圧冷却液を流通させるセンタースルー孔が開けられた支持軸に嵌着させたことを特徴とする。In order to achieve the above object, a grinding wheel holder according to claim 1 of the present invention has an annular base having a communication hole through which gas or liquid is circulated on the outer periphery, and has a breathability as a core material on the annular base. A ceramic disc, an identical annular grindstone to be joined to both side surfaces of the ceramic disc, a small-diameter flange disc to be joined to both side surfaces of the annular grindstone and forming a radial passage on the inner surface side, and the annular base The connecting hole of the base is a grinding wheel which is connected to the passage of the ceramic disk and the flange disk, and the annular base of the grinding wheel is fitted to the support shaft having a center through hole through which the high-pressure coolant flows. characterized in that was.

本発明の請求項2による研削ホイールの保持具は、請求項1の研削ホイールの保持具において、上記高圧冷却液は、約7メガパスカル相当の圧力としたことを特徴とする。The grinding wheel holder according to claim 2 of the present invention is characterized in that in the grinding wheel holder according to claim 1, the high-pressure coolant has a pressure equivalent to about 7 megapascals.

本発明の請求項1による研削ホイールの保持具によると、高圧冷却液は、環状砥石の両側面沿いに通過し易く、砥石外周面から被研削面ワークの被研削面に向けて効率良く噴射される。更に、高圧冷却液は、環状砥石内の通気性のあるセラミック円板内を浸透通過してこの外周面から被研削面ワークの被研削面に向けて効率良く噴射される。 According to the grinding wheel holder according to claim 1 of the present invention , the high-pressure cooling liquid easily passes along both side surfaces of the annular grindstone, and is efficiently injected from the outer peripheral surface of the grindstone toward the ground surface of the workpiece to be ground. The Further, the high-pressure coolant penetrates through the air-permeable ceramic disc in the annular grindstone and is efficiently injected from the outer peripheral surface toward the ground surface of the workpiece to be ground.

本発明の請求項2による研削ホイールの保持具によると、高圧噴射ノズルからの約7メガパスカル相当に加圧された高圧冷却液の噴出で超高能率重研削と連続無人加工ができる。 According to the grinding wheel holder according to claim 2 of the present invention , ultra-high-efficiency heavy grinding and continuous unmanned machining can be performed by ejecting a high-pressure coolant pressurized to about 7 megapascals from a high-pressure spray nozzle.

本発明の研削ホイールの保持具について、項目別にその作用効果を記載すれば、(1)、例えば、ブレード研削加工は、高圧噴射ノズルからの約7メガパスカル相当に加圧された高圧冷却液の噴出で超高能率重研削と連続無人加工ができる。(2)、砥石は、多孔質の他電着砥石等の全ての砥石に適用できる。(3)、更に、高圧噴出する冷却液Kは、ワークとの研削面との加工点に噴射して発生する加工熱(摩擦熱)で体積比率3000倍前後に膨張することで、蒸気爆発効果で気化圧力を発生させる。これで、砥石内に堆積する研削塵を吹き飛ばして砥石目詰まり防止効果とワークの研削焼け防止効果が相乗的に発揮できる。即ち、砥石がフィルターとなり砥石内を通過する冷却液Kに対する除塵効果(冷却液に対するフィルター効果)も得られる。(4)、研削ホイールの保持具に包囲体を設ければ、研削面の周辺に高圧冷却液によるウオータールーム雰囲気を形成でき、更なるワークの研削焼け防止効果が相乗的に発揮できる。(5)、NC制御装置が不要で、マシニングセンター,旋盤,研削盤等の加工機に適用できて汎用性が高く、しかも簡単な操作性と装置の低廉化(数千万円前後に抑えられる)が図れる。The operation and effect of the grinding wheel holder of the present invention will be described for each item. (1) For example, the blade grinding process is performed by using a high-pressure coolant pressurized to about 7 megapascals from a high-pressure injection nozzle. Super-high efficiency heavy grinding and continuous unmanned machining can be performed by jetting. (2) The grindstone can be applied to all grindstones such as porous other electrodeposition grindstones. (3) Furthermore, the coolant K that is jetted out at a high pressure expands to a volume ratio of about 3000 times by the processing heat (friction heat) generated by being injected to the processing point of the workpiece and the grinding surface, thereby causing a steam explosion effect. Generate vapor pressure. Thus, the grinding dust accumulated in the grindstone is blown away, and the effect of preventing clogging of the grindstone and the effect of preventing grinding burn of the workpiece can be exhibited synergistically. That is, a dust removing effect (filter effect on the cooling liquid) with respect to the cooling liquid K that passes through the whetstone becomes a filter. (4) If a surrounding body is provided in the holding tool of the grinding wheel, a water room atmosphere by the high-pressure coolant can be formed around the grinding surface, and a further effect of preventing grinding burn of the workpiece can be exhibited synergistically. (5) No NC control device is required, it can be applied to machining centers, lathes, grinders and other processing machines, is highly versatile, and has simple operability and low cost of equipment (reduced to around tens of millions of yen) Can be planned.

本発明の第1の実施の形態で、研削ホイールの側面図と断面図である。In the 1st Embodiment of this invention, it is the side view and sectional drawing of a grinding wheel. 本発明の第1の実施の形態で、研削ホイールの作用側面図と作用断面図である。In the 1st Embodiment of this invention, the action side view and action | operation sectional drawing of a grinding wheel are shown. 本発明の第1の実施の形態で、研削ホイールの保持具の展開図と断面図である。In the 1st Embodiment of this invention, it is the expanded view and sectional drawing of the holder of a grinding wheel. 本発明の第2の実施の形態で、研削ホイールの側面図と断面図である。In the 2nd Embodiment of this invention, it is the side view and sectional drawing of a grinding wheel. 本発明の第2の実施の形態で、研削ホイールの作用側面図と作用断面図である。In the 2nd Embodiment of this invention, it is an action side view and action | operation sectional drawing of a grinding wheel. 本発明の第2の実施の形態で、研削ホイールの保持具の展開図と断面図である。In the 2nd Embodiment of this invention, it is an expanded view and sectional drawing of the holder of a grinding wheel. 本発明の第3の実施の形態で、研削ホイールの加工装置の側面図である。In the 3rd Embodiment of this invention, it is a side view of the processing apparatus of a grinding wheel. 本発明の第4の実施の形態で、研削ホイールの加工装置の側面図である。In the 4th Embodiment of this invention, it is a side view of the processing apparatus of a grinding wheel. 本発明の第5の実施の形態で、研削ホイールの加工装置の作用図である。In the 5th Embodiment of this invention, it is an effect | action figure of the processing apparatus of a grinding wheel. 本発明の第5の実施の形態で、研削ホイールの加工装置の作用図である。In the 5th Embodiment of this invention, it is an effect | action figure of the processing apparatus of a grinding wheel. 本発明の第6の実施の形態で、研削ホイールの加工装置の作用図である。In the 6th Embodiment of this invention, it is an effect | action figure of the processing apparatus of a grinding wheel. 本発明の第7の実施の形態で、研削ホイールの加工装置の作用図である。In the 7th Embodiment of this invention, it is an effect | action figure of the processing apparatus of a grinding wheel. 公知構成となる第1の研削ホイールの側面図と断面図である。It is the side view and sectional drawing of the 1st grinding wheel used as a well-known structure. 公知構成となる第2の研削ホイールの側面図と断面図である。It is the side view and sectional drawing of the 2nd grinding wheel used as a well-known structure.

以下、図1乃至図14を参照して本発明の各実施の形態を順次に説明する。Hereinafter, sequentially illustrating each embodiment of the present invention with reference to FIGS. 1 to 14.

本発明の第1の実施の形態となる研削ホイールを図1に示す。この研削ホイール30は、両縁にフランジ1F,1Fを備えた環状基台1と、上記環状基台1の外周面1Bに内周面2Aを装着された環状砥石2とで構成されている。上記環状基台1の内周面1Aは回転主軸5に嵌着され、上記環状基台1の両縁フランジ1F,1Fが環状砥石2の両側面2F,2Fと接する部位に凹状断面の通路1Gを放射状に設け、上記通路1Gは上記回転主軸5の内部から外周5Aに繋がる冷却液K(高圧冷却液K)の冷却液供給通路Aから連絡孔H0,H1とで連絡させるとともにフランジ外周端で環状砥石2の両側面2F,2Fに開口されている。 FIG. 1 shows a grinding wheel according to a first embodiment of the present invention. The grinding wheel 30 includes an annular base 1 having flanges 1F and 1F on both edges, and an annular grindstone 2 in which an outer peripheral surface 1B of the annular base 1 is mounted with an inner peripheral surface 2A . An inner peripheral surface 1A of the annular base 1 is fitted to the rotation main shaft 5, and a passage 1G having a concave cross section is formed at a portion where both edge flanges 1F, 1F of the annular base 1 are in contact with both side faces 2F, 2F of the annular grindstone 2. The passage 1G communicates with the communication holes H0 and H1 from the coolant supply passage A of the coolant K (high-pressure coolant K) connected from the inside of the rotating main shaft 5 to the outer periphery 5A, and at the outer peripheral end of the flange. Opened to both side surfaces 2F, 2F of the annular grindstone 2.

上記研削ホイール30の保持具60は、図3に示すように、外周に気体または液体を流通させる連絡孔H1を開けた環状基台1と、上記環状基台の外周面1Bに内周面2Aを嵌合された通気性の有る環状砥石2とからなる研削ホイールにおいて、上記研削ホイールの環状基台を回転主軸5に替えて、センター孔33Aが開けられた支持軸33に嵌着させたもので、環状砥石2と、この環状砥石2を2枚のフランジ円板1F,1Fで挟持したものである。その詳細構成は、外周1Bに気体または液体の高圧冷却液Kを流通させる連絡孔H1を複列開けた環状基台1に対して、これに嵌合する環状砥石2と、上記環状砥石の両側面を挟持する小径なフランジ円板1F,1Fとからなり、上記フランジ円板1F,1Fは、環状砥石の両側面2F,2Fに接合する内面側に放射状の通路1G,1Gを形成している。上記環状基台の連絡孔H1は、通路1G,1Gに連絡されている。上記支持軸33の後端に繋がるテーパーシャンク42の中心軸位置に高圧冷却液Kを流通させるセンタースルー孔41があけられている。As shown in FIG. 3 , the holder 60 of the grinding wheel 30 includes an annular base 1 having a communication hole H1 through which gas or liquid flows on the outer periphery, and an inner peripheral surface 2A on the outer peripheral surface 1B of the annular base. in the fitted grinding wheel made of breathable annular grindstone 2 which shall, instead the annular base of the grinding wheel rotation spindle 5, the center hole 33A was fitted to a support shaft 33 that is opened The annular grindstone 2 and the annular grindstone 2 are sandwiched between two flange disks 1F and 1F. The detailed configuration includes an annular grindstone 2 fitted to an annular base 1 having double rows of communication holes H1 for circulating a gas or liquid high-pressure coolant K on the outer periphery 1B, and both sides of the annular grindstone. The flange discs 1F and 1F are formed with radial passages 1G and 1G on the inner surface side joined to both side surfaces 2F and 2F of the annular grindstone. . The communication hole H1 of the annular base is in communication with the passages 1G and 1G. A center through hole 41 through which the high-pressure coolant K is circulated is formed at the center axis position of the taper shank 42 connected to the rear end of the support shaft 33.

続いて、上記研削ホイール30と、この研削ホイール30の保持具60による作用及び冷却方法を説明する。図2に示すように、研削ホイール30は、環状基台1の外周面に環状砥石2が嵌着され、両縁にフランジ1F,1Fを備え、上記フランジ円板1F,1Fは、環状砥石2の両側面2F,2Fに接合する内面側に放射状の通路1G,1Gを形成している。これにより、回転主軸の軸芯に穿かれた冷却液供給通路Aから高圧冷却液Kを環状砥石の両側面2F,2Fに接合する内面側の通路1G,1Gに供給される。これで、上記環状砥石2に供給された高圧冷却液Kが環状砥石の両側面2F,2Fから外周面2Bの外部へ噴出されるとともに、研削ホイール30の高速回転による遠心力で、高圧冷却液Kの外周面2Bの外部へ噴出を助長するから、被研削面ワークWの被研削面W1を外側から完全に包囲することで効果的に冷却する。
更に、高圧冷却液Kの高圧噴出は、直接にワークとの研削面に停滞付着する研削塵の高能率な排除効果と砥石ワーク研削面の高能率な冷却効果が期待でき、ワークの研削焼け防止効果が期待できる。即ち、高圧噴出する冷却液Kは、ワークとの研削面との加工点に噴射して発生する加工熱(摩擦熱)で体積比率3000倍前後に膨張することで、蒸気爆発効果で気化圧力を発生させる。
Next, the action and cooling method of the grinding wheel 30 and the holder 60 of the grinding wheel 30 will be described. As shown in FIG. 2 , the grinding wheel 30 has an annular grindstone 2 fitted on the outer peripheral surface of the annular base 1, and flanges 1 </ b> F and 1 </ b> F on both edges. Radial passages 1G and 1G are formed on the inner surface side joined to both side surfaces 2F and 2F. As a result, the high pressure coolant K is supplied from the coolant supply passage A bored in the axis of the rotating spindle to the inner passages 1G and 1G where the two sides 2F and 2F of the annular grindstone are joined. Thus, the high-pressure coolant K supplied to the annular grindstone 2 is ejected from the both side surfaces 2F, 2F of the annular grindstone to the outside of the outer peripheral surface 2B , and the high-pressure coolant is generated by centrifugal force due to the high-speed rotation of the grinding wheel 30. Since the ejection to the outside of the outer peripheral surface 2B of K is promoted, the surface to be ground W1 of the surface W to be ground is completely surrounded from the outside, thereby effectively cooling.
Furthermore, the high-pressure jet of the high-pressure coolant K can be expected to have a highly efficient removal effect of grinding dust adhering and adhering directly to the workpiece grinding surface and a highly efficient cooling effect of the grinding wheel and workpiece grinding surface. Anti-burn effect can be expected. That is, the coolant K that is jetted out at a high pressure expands to a volume ratio of about 3000 times by the processing heat (frictional heat) generated by being injected at the processing point between the workpiece and the grinding surface, thereby increasing the vaporization pressure by the steam explosion effect. generate.

更に、第1の実施の形態となる研削ホイール30の効果は、高圧冷却液Kが環状砥石2の両側面2F,2F沿いに通過し易く、上記高圧冷却液Kにより、被研削面W1をウオータールーム雰囲気にして外気との遮蔽が行われて効率良く冷却する。また、空気や窒素ガス等の気体を使用した時は、被研削面W1を気流雰囲気に包み込み、外部空気を遮断する。更に、高圧冷却液が環状砥石2の両側面2F,2F沿いに通過し易く、砥石の目詰まり防止やワークの研削焼け防止効果が期待できる。
更に、研削ホイール30の保持具60は、研削盤の主軸テーパー対して、テーパーシャンク42を介して簡便に着脱交換できる。
Furthermore, the effect of the grinding wheel 30 according to the first embodiment is that the high-pressure coolant K easily passes along both side surfaces 2F and 2F of the annular grindstone 2 , and the ground surface W1 is water- washed by the high-pressure coolant K. The room is shielded from the outside air and cooled efficiently. Further, when a gas such as air or nitrogen gas is used, the surface to be ground W1 is wrapped in an air flow atmosphere to block external air. Further, the high-pressure coolant is likely to pass along both side surfaces 2F, 2F of the annular grindstone 2, and the effect of preventing clogging of the grindstone and preventing grinding burn of the workpiece can be expected.
Furthermore, the holder 60 of the grinding wheel 30 can be easily attached and detached via the taper shank 42 with respect to the main spindle taper of the grinding machine.

本発明の第2の実施の形態となる研削ホイール40は、図4図6に示す。研削ホイール40は、環状基台1と、上記基台1の外周面1Bに装着された環状砥石2とで構成されたものである。上記基台1の内周面1Aには、回転主軸5に嵌着されるとともに該回転主軸内に開けた冷却液Kの供給通路Aが外周5Aに設けた複数の連絡孔H0から冷却液を受ける連絡孔H1を設けている。上記連絡孔H1は、環状砥石内に放射状に開けた通路2Gに繋げられていて、内周面2Aから外周面2Bへ貫通されている。更に、上記環状基台1は両縁にフランジ1F,1Fを備え、上記基台の両縁フランシが環状砥石2の両側面2F,2Fと接する部位に凹状断面の通路1Gを放射状に設けている。上記通路1Gは、上記回転主軸5の軸芯に穿かれた冷却液供給通路Aからこの外周面5Aに繋がる通路孔H0から冷却液を受ける環状記基台の連絡孔H1と連絡されており、複数の冷却液放出口としてフランジ外周端で環状砥石2の両側面2F,2Fに開口されている。Grinding wheels 40 according to the second embodiment of the present invention, shown in FIGS. 4 to 6. The grinding wheel 40 is composed of an annular base 1 and an annular grindstone 2 mounted on the outer peripheral surface 1B of the base 1. The coolant 1 is supplied to the inner peripheral surface 1A of the base 1 from a plurality of communication holes H0 provided in the outer periphery 5A. A receiving hole H1 is provided. The communication hole H1 is connected to a passage 2G opened radially in the annular grindstone, and penetrates from the inner peripheral surface 2A to the outer peripheral surface 2B. Further, the annular base 1 is provided with flanges 1F and 1F on both edges, and a concave cross-section passage 1G is provided radially at a portion where both edge franchis of the base are in contact with both side surfaces 2F and 2F of the annular grindstone 2. . The passage 1G communicates with a communication hole H1 of an annular base that receives the coolant from a coolant hole A0 that is connected to the outer peripheral surface 5A from a coolant supply passage A that is drilled in the axis of the rotating spindle 5 . A plurality of coolant discharge ports are opened on both side surfaces 2F, 2F of the annular grindstone 2 at the outer peripheral end of the flange.

上記第2の実施の形態となる研削ホイール40による作用及び研削ホイールによる冷却方法を説明する。図5に示すように、上記基台1の内周1A面に設けた連絡孔H1には、回転主軸5に嵌着されるとともに該回転主軸5の外周5Aに設けた複数の連絡孔H0から冷却液Kが供給される。そして、環状砥石の高速回転による遠心力で回転主軸5から加圧供給される冷却液Kは、上記基台1の連絡孔H1から環状砥石内に開けた通路2Gを通過して砥石外周面2Bの中央位置から被研削面ワークWの被研削面W1に向けて噴射され、被研削面W1の中央位置からその全面を冷却する。更に、上記環状基台1は両縁にフランジ1F,1Fを備え、上記基台の両縁フランジ1F,1Fが環状砥石の両側面2F,2Fと接する部位に凹状断面の通路1Gを放射状に設けている。これで、環状砥石の高速回転による遠心力で回転主軸5から加圧供給される冷却液Kは、上記回転主軸5の内部から基台1の通路1Gに送り込まれる。更に、冷却液Kは、フランジ外周端の開口から環状砥石2の両側面2F,2Fに沿って砥石の外周面及び、被研削面ワークWの被研削面W1の外周縁に噴出され、この部分を冷却する。The action by the grinding wheel 40 and the cooling method by the grinding wheel according to the second embodiment will be described. As shown in FIG. 5 , the communication hole H <b> 1 provided on the inner peripheral surface 1 </ b> A of the base 1 is fitted to the rotation main shaft 5 and from a plurality of communication holes H <b> 0 provided on the outer periphery 5 </ b> A of the rotation main shaft 5. Coolant K is supplied. Then, the coolant K pressurized and supplied from the rotary spindle 5 by the centrifugal force generated by the high-speed rotation of the annular grindstone 2 passes through the passage 2G opened in the annular grindstone from the communication hole H1 of the base 1, and the outer peripheral surface of the grindstone. It is sprayed from the central position of 2B toward the surface to be ground W1 of the workpiece W to be ground, and the entire surface is cooled from the central position of the surface to be ground W1. Further, the annular base 1 is provided with flanges 1F and 1F on both edges , and a concave cross-section passage 1G is radially provided at a portion where both the flanges 1F and 1F of the base are in contact with both side surfaces 2F and 2F of the annular grindstone. ing. Thus, the coolant K pressurized and supplied from the rotary spindle 5 by the centrifugal force generated by the high-speed rotation of the annular grindstone is sent from the inside of the rotary spindle 5 to the passage 1G of the base 1. Further, the coolant K is jetted from the opening at the outer peripheral edge of the flange along the both side surfaces 2F and 2F of the annular grindstone 2 to the outer peripheral surface of the grindstone and the outer peripheral edge of the surface to be ground W1 of the workpiece W to be ground. Cool down.

上記第2の実施の形態となる研削ホイール40の効果について、高圧冷却液Kは、環状砥石2の両側面2F,2F沿いに目詰まりすること無く通過し易く、被研削面ワークWの被研削面W1に向けて効率良く噴射できる。更に、高圧冷却液Kは、環状砥石内に開けた通路2Gを通過して砥石外周面の中央位置から被研削面ワークWの被研削面W1の全面に向けて効率良く噴射できる
しかして、上記高圧冷却液Kにより、被研削面W1をウオータールーム雰囲気にして外気との遮蔽が完璧に行われて効率良く冷却できる。また、空気や窒素ガス等の気体を使用した時は、被研削面W1を気流雰囲気に包み込み、外部空気が遮断できる。更に、高圧冷却液が環状砥石2の両側面2F,2F沿いに通過し易く、砥石の目詰まり防止やワークの研削焼け防止効果が期待できる。
Regarding the effect of the grinding wheel 40 according to the second embodiment, the high-pressure coolant K easily passes along the both side surfaces 2F and 2F of the annular grindstone 2 without clogging, and the workpiece W to be ground is ground. It can be efficiently ejected toward the surface W1. Further, the high-pressure coolant K can be efficiently injected from the center position of the grindstone outer peripheral surface toward the entire surface to be ground W1 of the work surface to be ground W through the passage 2G opened in the annular grindstone.
Thus, the high-pressure coolant K makes the surface to be ground W1 a water room atmosphere and is completely shielded from the outside air so that it can be cooled efficiently. Moreover, when gas, such as air and nitrogen gas , is used, the to-be-ground surface W1 is wrapped in an air flow atmosphere, and external air can be shut off . Further, the high-pressure coolant is likely to pass along both side surfaces 2F, 2F of the annular grindstone 2, and the effect of preventing clogging of the grindstone and preventing grinding burn of the workpiece can be expected.

本発明の第2の実施の形態となる研削ホイール40の保持具65は、図6に示す。その構成は、上記第2の実施の形態となる研削ホイール40叉は設計変更して研削ホイール40Aとしたものである。先ず、冷却液Kを砥石内中央から外周面2Bに噴射させる通路2Gの代用とする1枚の通気性のあるセラミック円板31と、これを挟む2枚の環状砥石21,22と、この環状砥石21,22を2枚のフランジ円板24,25の両内側面24A,25Aで挟持するように設計変更したものである。具体的には、外周1Bに気体または液体の高圧冷却液Kを流通させる連絡口H0を複列開けた環状基台1に対して、上記環状基台1に芯材となり通気性の有るセラミック円板31と、上記セラミック円板の両側面31A,31Bに接合する同形の環状砥石21,22と、上記環状砥石の両側面21A,22Aに接合する内面側24A,25Aに放射状の溝(通路)24G,25Gを形成した小径なフランジ円板24,25とを積層挟持し、上記環状基台の連絡孔H1をセラミック円板及びフランジ円板の溝(通路)24G,25Gと連絡させた研削ホイール40Aとした。上記研削ホイールの環状基台1は、センター孔33Aが開けられた支持軸33に嵌着させ、これに繋がるテーパーシャンク42の中心軸位置に高圧冷却液Kを流通させるセンタースルー孔41があけられている。
更に、上記環状砥石21,22の少なくとも片側をセラミック円板31と同質とするか、又は両側の環状砥石21,22を異質としたものである。このように、環状砥石21,22を異質とすることにより、研削面の品質と加工能率の向上に貢献することが可能となる。
A holder 65 of the grinding wheel 40 according to the second embodiment of the present invention is shown in FIG . The configuration of the grinding wheel 40 or the design of the grinding wheel 40A according to the second embodiment is changed. First, one air-permeable ceramic disc 31 serving as a substitute for the passage 2G for injecting the cooling liquid K from the center in the grindstone to the outer peripheral surface 2B, two annular grindstones 21 and 22 sandwiching this , and this ring The design is changed so that the grindstones 21 and 22 are sandwiched between the inner surfaces 24A and 25A of the two flange disks 24 and 25. Specifically, in contrast to the annular base 1 having double rows of connection ports H0 through which gas or liquid high-pressure coolant K is circulated on the outer periphery 1B, the circular base 1 serves as a core material for the ceramic base having air permeability. Radial grooves ( passages ) on the plate 31, the same annular grindstones 21 and 22 joined to both side surfaces 31A and 31B of the ceramic disc, and the inner surface sides 24A and 25A joined to both side surfaces 21A and 22A of the annular grindstone A grinding wheel in which small-diameter flange disks 24 and 25 formed with 24G and 25G are stacked and sandwiched, and the communication holes H1 of the annular base are connected to grooves ( passages ) 24G and 25G of the ceramic disk and the flange disk. 40 A. The annular base 1 of the grinding wheel is fitted with a support shaft 33 having a center hole 33A, and a center through hole 41 through which the high-pressure coolant K is circulated is formed at the center axis position of the taper shank 42 connected thereto. ing.
Further, at least one side of the annular grindstones 21 and 22 is made the same quality as the ceramic disc 31, or the annular grindstones 21 and 22 on both sides are made different. Thus, by making the annular grindstones 21 and 22 heterogeneous, it becomes possible to contribute to the improvement of the quality and processing efficiency of the grinding surface.

上記第2の実施の形態となる研削ホイール40Aの保持具65は、以下のように作用する。先ず、保持具40Aは、マシニングセンター旋盤研削盤等の加工機における主軸に装着でき汎用性が高い、テーパーシャンク42を備えているから、上記加工機の主軸に容易に装着される。加工機の主軸に装着後は、研削ホイール40Aの保持具65における中心軸位置のセンタースルー孔41から高圧冷却液Kが供給される。その高圧冷却液Kの流れは、1枚の通気性のあるセラミック円板31内を浸透通過してこの外周面から外部へと噴射される。これで、砥石の外周面2Bの中央位置に対面する被研削面ワークWの被研削面W1に向けて噴出して、この部分を冷却する。また、他方、高圧冷却液Kの流れは、2枚の環状砥石21,22の両側面を2枚のフランジ円板24,25で挟持する両内側面24A,25Aに設けた放射状の溝(通路)24G,25Gを通過して、フランジ外周端の開口から環状砥石21,22の両側面21A,22Aに沿って砥石の両側面から被研削面ワークWにおける被研削面W1の外周縁に噴出され、この部分を冷却する。The holder 65 of the grinding wheel 40A according to the second embodiment operates as follows. First, the holder 40A includes a tapered shank 42 that can be attached to a spindle of a processing machine such as a machining center , a lathe , or a grinding machine and has high versatility. Therefore, the holder 40A is easily attached to the spindle of the processing machine. After being mounted on the spindle of the processing machine, the high-pressure coolant K is supplied from the center through hole 41 at the center axis position of the holder 65 of the grinding wheel 40A . The flow of the high-pressure coolant K is permeated through one air-permeable ceramic disk 31 and is ejected from the outer peripheral surface to the outside. Now, it sprays toward the to- be-ground surface W1 of the to-be-ground surface W which faces the center position of the outer peripheral surface 2B of the grindstone, and this part is cooled. On the other hand, the flow of the high-pressure coolant K is a radial groove ( passage) provided on both inner side surfaces 24A and 25A that sandwich the both side surfaces of the two annular grindstones 21 and 22 between the two flange disks 24 and 25. ) 24G, through the 25G, ejected from the opening of the flange outer peripheral end sides 21A of the annular grinding wheel 21, from both sides of the grindstone along the 22A on the outer circumferential edge of the ground surface W1 of the ground surface the workpiece W Cool this part.

上記研削ホイール40Aの保持具65による効果について、高圧冷却液Kは、環状砥石21,22の両側面21A,22A沿いに通過し易く、被研削面ワークWの被研削面W1に向けて効率良く噴射される。更に、高圧冷却液Kは、環状砥石内のセラミック円板31内を容易に通過して砥石外周面から被研削面ワークWの被研削面W1に向けて効率良く噴射される。
しかして、冷却液Kを使用した時は、被研削面W1をウオータールーム雰囲気にして外気との遮蔽が行われて効率良く冷却できる。また、窒素ガス等の気体を使用した時は、被研削面W1を気流雰囲気に包み込み、外部空気を遮断できる。更に、高圧冷却液が環状砥石21,22の両側面21A,22A沿いに通過し易く、砥石の目詰まり防止やワークの研削焼け防止効果が期待できる。更に、冷却液の高圧噴出は、直接にワークとの研削面に停滞付着する研削塵の高能率な排除効果と砥石ワーク研削面の高能率な冷却効果が期待できる。
Regarding the effect of the holder 65 of the grinding wheel 40A , the high-pressure coolant K easily passes along both side surfaces 21A and 22A of the annular grinding stones 21 and 22, and efficiently toward the ground surface W1 of the ground surface workpiece W. Be injected. Further, the high-pressure coolant K easily passes through the ceramic disk 31 in the annular grindstone and is efficiently injected from the grindstone outer peripheral surface toward the ground surface W1 of the workpiece W to be ground.
Thus, when the coolant K is used, the surface to be ground W1 is made into a water room atmosphere and is shielded from the outside air, so that it can be cooled efficiently . Moreover, when gas, such as nitrogen gas , is used, the to-be-ground surface W1 can be wrapped in an air flow atmosphere, and external air can be shut off . Furthermore, the high-pressure coolant is likely to pass along both side surfaces 21A and 22A of the annular grindstones 21 and 22, so that the effect of preventing clogging of the grindstone and preventing grinding burn of the workpiece can be expected. Furthermore, the high-pressure jet of coolant can be expected to have a high-efficiency removal effect of grinding dust that stagnates and adheres directly to the grinding surface of the workpiece and a high-efficiency cooling effect of the grinding wheel and workpiece grinding surface .

更に、本発明の研削ホイール30,40,40Aの保持具60,65によると、NC制御装置が不要で、具体的な手段として、マシニングセンター旋盤研削盤等の加工機における主軸に装着でき汎用性が高い。しかも、簡単な操作性と加工機の低廉化(数千万円前後に抑えられる)が図れる。Furthermore, according to the holders 60 , 65 of the grinding wheels 30 , 40 , 40A of the present invention, an NC control device is not required, and as a specific means, it can be mounted on a spindle of a processing machine such as a machining center , a lathe , a grinding machine, etc. High nature. In addition, simple operability and low cost of the processing machine (which can be reduced to around tens of millions of yen) can be achieved.

続いて、本発明の第3の実施の形態となる上記研削ホイールの冷却装置100Aについて、図7により説明する。加工機の回転主軸5には、研削ホイール30,40,40Aの他、公知構成となる研削ホイール10,20も嵌着される。上記研削ホイール10の構成は図13に示す。両縁にフランジ1F,1Fを備えた環状基台1と、上記環状基台1の外周面1Bに内周面2Aを装着させた環状砥石2と、環状基台1はこの内周面1Aを回転主軸5に嵌着させている。そして、上記環状基台1と回転主軸5の外周壁5Aとに連絡孔Hが穿かれ、上記回転主軸の軸芯に穿かれた通路孔(通路)Aから高圧冷却液Kを環状砥石2の内周面2Aに供給可能とした構成になっている。上記環状砥石2は、多孔質の砥石粉を焼結又は接着させたもので、環状砥石2の内周面2Aに供給された高圧冷却液Kを容易に通過させるとともに、高圧冷却液K内に混入する僅かな塵,埃等を濾過するフィルター効果を発揮する。
また、上記研削ホイール20の構成は、図14に示す。研削ホイール20は、両縁にフランジ1F,1Fを備えた環状基台1と、上記環状基台1の外周面1Bに内周面2Aを装着させた環状砥石2と、環状基台1はこの内周面1Aを回転主軸5に嵌着させている。そして、上記環状基台1と回転主軸5の外周壁5Aとに連絡孔H0が穿かれ、上記環状基台の連絡孔H0が環状砥石2内を放射方向に貫通する通孔2Cと連通させ、上記回転主軸の軸芯に穿かれた冷却液供給通路Aから連絡孔H1を介して高圧冷却液Kを環状砥石2の通孔2Cから外周面2Bに供給可能としたものである。尚、上記環状砥石2は、多孔質の砥石粉を焼結又は接着させることで、環状砥石2の通孔2Cに供給された高圧冷却液Kの一部が多孔質の砥石内を容易に通過させ、高圧冷却液K内に混入する僅かな塵,埃等を濾過するフィルター効果を発揮する。
Next, the cooling apparatus 100A for the grinding wheel according to the third embodiment of the present invention will be described with reference to FIG . In addition to the grinding wheels 30, 40 and 40A, grinding wheels 10 and 20 having a known configuration are also fitted to the rotating spindle 5 of the processing machine . The configuration of the grinding wheel 10 is shown in FIG. An annular base 1 having flanges 1F and 1F on both edges, an annular grindstone 2 having an inner peripheral surface 2A attached to the outer peripheral surface 1B of the annular base 1, and the annular base 1 have an inner peripheral surface 1A. The rotating main shaft 5 is fitted. A communication hole H is formed in the annular base 1 and the outer peripheral wall 5A of the rotary main shaft 5. The high-pressure coolant K is supplied to the annular grindstone 2 from a passage hole (passage) A formed in the axial center of the rotary main shaft. The configuration is such that it can be supplied to the inner peripheral surface 2A. The annular grindstone 2 is obtained by sintering or adhering porous grindstone powder. The annular grindstone 2 easily allows the high-pressure coolant K supplied to the inner peripheral surface 2A of the annular grindstone 2 to pass therethrough and enters the high-pressure coolant K. Demonstrates a filter effect that filters out small amounts of dust and dirt.
The configuration of the grinding wheel 20 is shown in FIG. The grinding wheel 20 includes an annular base 1 having flanges 1F and 1F on both edges, an annular grindstone 2 in which an inner peripheral surface 2A is mounted on the outer peripheral surface 1B of the annular base 1, and the annular base 1 The inner peripheral surface 1 </ b> A is fitted to the rotation main shaft 5. Then, contact holes H0 to the outer peripheral wall 5A of the annular base 1 and the rotating main shaft 5 is grave, the annular base of the contact hole H0 is in communication with the hole 2C that penetrates the annular grinding wheel 2 in the radial direction, The high-pressure coolant K can be supplied from the coolant hole 2C of the annular grindstone 2 to the outer peripheral surface 2B through the communication hole H1 from the coolant supply passage A bored in the axis of the rotating main shaft. The annular grindstone 2 sinters or bonds porous grindstone powder so that a part of the high-pressure coolant K supplied to the through-hole 2C of the annular grindstone 2 easily passes through the porous grindstone. And exerts a filter effect for filtering a small amount of dust, dust and the like mixed in the high-pressure coolant K.

上記回転主軸5は、中心部に冷却液供給通路Aが開けられたセンタースルー方式であり、高圧液供給機200から約7メガパスカル相当に加圧された高圧冷却液Kが研削ホイール10〜40Aに供給されている。また、高圧冷却液Kは、研削ホイールの外周面の噴射位置に高圧冷却液を噴射させる高圧噴射ノズルHNにも供給されている。また、研削ホイールの外周面に向けて外径測定センサDSが配置されており、環状砥石2の摩耗を検出するとともにその検出値は、外径変位値hとして高圧噴射ノズルの噴射位置を微調節する調節手段300に繋がれている。上記調節手段300は、外径変位値hに基づき、駆動ユニットDUを作動して高圧噴射ノズルHNを最適位置に位置制御する。また、被研削面ワークWの被研削面W1の周辺にウオータールーム雰囲気WBを形成させるべく、研削ホイールの約半分をカバーする包囲体70を具備している。更に、上記高圧噴射ノズルHNに併設して窒素ガス噴射ノズルNNを上記包囲体70内に向けて配置され、包囲体70内の空間雰囲気を無酸素と高圧冷却液Kの噴霧状態とする。 The rotating spindle 5 is a center-through system in which a coolant supply passage A is opened at the center, and the high-pressure coolant K pressurized to about 7 megapascals from the high-pressure fluid supply machine 200 is supplied to the grinding wheels 10 to 40A. Has been supplied to. The high-pressure coolant K is also supplied to a high-pressure injection nozzle HN that injects the high-pressure coolant to the injection position on the outer peripheral surface of the grinding wheel. Further, an outer diameter measuring sensor DS is arranged toward the outer peripheral surface of the grinding wheel, and the wear of the annular grindstone 2 is detected and the detected value is finely adjusted as the outer diameter displacement value h for the injection position of the high pressure injection nozzle. Connected to the adjusting means 300. The adjusting means 300 operates the drive unit DU based on the outer diameter displacement value h to control the position of the high pressure injection nozzle HN at the optimum position. Further, in order to form a water room atmosphere WB around the surface to be ground W1 of the work surface to be ground W, an enclosure 70 covering about half of the grinding wheel is provided. Further, the nitrogen gas injection nozzle NN is disposed in the enclosure 70 along with the high-pressure injection nozzle HN, and the space atmosphere in the enclosure 70 is in a state of spraying oxygen-free and high-pressure coolant K.

尚、図8に示すように、本発明の第4の実施の形態となる研削ホイ−ルの冷却装置100A´としても良い。この冷却装置100A´は、上記図7に示す第3の実施の形態となる上記研削ホイ−ルの冷却装置100Aにおいて、外径測定センサDSと窒素ガス噴射ノズルNNとを省略させたものである。その他の構成は、上記研削ホイ−ルの冷却装置100Aと同一につき、説明を省略する。In addition, as shown in FIG. 8 , it is good also as cooling apparatus 100A 'of the grinding wheel used as the 4th Embodiment of this invention. This cooling device 100A 'is obtained by omitting the outer diameter measurement sensor DS and the nitrogen gas injection nozzle NN in the grinding wheel cooling device 100A according to the third embodiment shown in FIG. . Other configurations are the same as those of the grinding wheel cooling device 100A, and the description thereof is omitted.

上記研削ホイ−ルの冷却装置100Aにおいて、研削ホイール10を使用した図9に示す第4の実施の形態の冷却装置100Aは、以下のように作用する。先ず、マシニングセンター旋盤研削盤等の加工機における回転主軸5に研削ホイール10が装着される。上記研削ホイール10は、環状基台1の外周面に環状砥石2が嵌着され、両縁にフランジ1F,1Fを備え、上記環状基台1の内周面1Aは回転主軸5に嵌着されている。これにより、回転主軸の軸芯に穿かれた冷却液供給通路Aから高圧冷却液Kを環状砥石2の内周面2Aに供給されると、上記環状砥石2は、多孔質の砥石粉を焼結又は接着させたものであるから、環状砥石2の内周面2Aに供給された高圧冷却液Kを容易に通過させるとともに、高圧冷却液K内に混入する僅かな塵埃等を濾過するフィルター効果が得られる。即ち、高圧噴出する冷却液Kは、ワークとの研削面との加工点に噴射して発生する加工熱(摩擦熱)で体積比率3000倍前後に膨張することで、蒸気爆発効果で気化圧力を発生させる。これで、砥石内に堆積する研削塵を吹き飛ばして砥石目詰まりを防止するとともに、砥石がフィルターとなり砥石内を通過する冷却液Kに対する除塵効果(冷却液に対するフィルター効果)も得られる。In the cooling device 100A for the grinding wheel , the cooling device 100A of the fourth embodiment shown in FIG. 9 using the grinding wheel 10 operates as follows. First, a grinding wheel 10 is mounted on a rotating spindle 5 in a processing machine such as a machining center , a lathe , or a grinding machine. The grinding wheel 10 has an annular grindstone 2 fitted on the outer peripheral surface of the annular base 1 and flanges 1F and 1F on both edges, and an inner peripheral surface 1A of the annular base 1 is fitted on the rotary spindle 5. ing. As a result, when the high-pressure coolant K is supplied to the inner peripheral surface 2A of the annular grindstone 2 from the coolant supply passage A bored in the axis of the rotary spindle, the annular grindstone 2 burns porous grindstone powder. Since it is bonded or bonded, the high-pressure cooling liquid K supplied to the inner peripheral surface 2A of the annular grindstone 2 is easily passed, and a small amount of dust , dust, etc. mixed in the high-pressure cooling liquid K is filtered. A filter effect is obtained. That is, the coolant K that is jetted out at a high pressure expands to a volume ratio of about 3000 times by the processing heat (frictional heat) generated by being injected at the processing point between the workpiece and the grinding surface, thereby increasing the vaporization pressure by the steam explosion effect. generate. As a result, grinding dust accumulated in the grindstone is blown off to prevent clogging of the grindstone, and a dust removal effect on the coolant K passing through the grindstone (filter effect on the coolant) is also obtained.

更に、高圧冷却液Kは、図7に示すように、研削ホイール10の外周面の噴射位置に高圧冷却液を噴射させる高圧噴射ノズルHNにも供給され、研削ホイール10の外周面の冷却作用を確保する。また、被研削面ワークWの被研削面W1の周辺に形成されるウオータールーム雰囲気WBを更に確保すべく、包囲体70が研削ホイールの約半分をカバーしている。これにより、上記高圧噴射ノズルHNに併設して窒素ガス噴射ノズルNNを上記包囲体70内に向けて配置しているから、包囲体70内の空間雰囲気を窒素ガスで満たされた無酸素と高圧冷却液Kによるウオータールーム雰囲気WBの噴霧状態とする。しかして、ウオータールーム雰囲気WB内は、この中に閉じ込められた噴霧状態の高圧冷却液Kと、窒素ガスで満たされた無酸素状態となり、より一層強力に環状砥石2の目詰まり除去による被研削面ワークWの被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が図られる。Further, as shown in FIG. 7 , the high-pressure coolant K is also supplied to the high-pressure injection nozzle HN that injects the high-pressure coolant to the injection position on the outer peripheral surface of the grinding wheel 10, thereby cooling the outer peripheral surface of the grinding wheel 10. Secure. Further, in order to further secure a water room atmosphere WB formed around the surface to be ground W1 of the workpiece W to be ground, the enclosure 70 covers about half of the grinding wheel. As a result, the nitrogen gas injection nozzle NN is disposed in the enclosure 70 along with the high-pressure injection nozzle HN, so that the space atmosphere in the enclosure 70 is filled with nitrogen gas and oxygen-free and high-pressure. The water room atmosphere WB is sprayed with the coolant K. Therefore, the water room atmosphere WB is in an oxygen-free state filled with the high-pressure coolant K in a spray state and nitrogen gas confined in the water-room atmosphere WB, and is more strongly ground by removing clogging of the annular grindstone 2. An increase in the heat generation suppression effect and an oxidation suppression effect on the ground surface W1 of the surface workpiece W can be achieved.

また、研削ホイール10の外周面に向けて配置した外径測定センサDSは、環状砥石2の摩耗を検出している。その検出値は、外径変位値hとして高圧噴射ノズルの噴射位置を微調節する調節手段300により演算される。これにより、上記調節手段300は、外径変位値hに基づき、駆動ユニットDUを作動して高圧噴射ノズルHNを最適位置に位置制御することができるから、環状砥石2の摩耗に係わりなく高圧噴射ノズルの噴射位置を微調節できる。これにより、高圧冷却液Kを環状砥石2の最適位置に噴出でき、被研削面ワークWの被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が常時確保できる。  The outer diameter measuring sensor DS arranged toward the outer peripheral surface of the grinding wheel 10 detects the wear of the annular grindstone 2. The detected value is calculated by the adjusting means 300 for finely adjusting the injection position of the high-pressure injection nozzle as the outer diameter displacement value h. As a result, the adjusting means 300 can operate the drive unit DU to control the position of the high pressure injection nozzle HN at the optimum position based on the outer diameter displacement value h, so that the high pressure injection can be performed regardless of the wear of the annular grindstone 2. The injection position of the nozzle can be finely adjusted. As a result, the high-pressure coolant K can be ejected to the optimum position of the annular grindstone 2, and an increase in the heat generation suppression effect and the oxidation suppression effect on the ground surface W1 of the ground surface workpiece W can always be ensured.

尚、上記研削ホイ−ルの冷却装置100Aにおいては、高圧冷却液Kを使用したが、空気中の窒素ガスを回収した窒素ガスや窒素ボンベからの窒素ガス等を砥石の冷却に使用したドライ冷却方式としても良い。この方式の最大のメリットは、被研削面ワークWの被研削面W1の無酸素効果での研磨焼けを積極的に防止でき、被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が常時確保できる。In the cooling device 100A for the grinding wheel , the high-pressure coolant K is used. However, dry cooling using nitrogen gas collected from the air, nitrogen gas from a nitrogen cylinder, or the like for cooling the grinding wheel. It may be a method. The greatest merit of this method is that it is possible to actively prevent polishing burn due to the oxygen-free effect of the surface to be ground W1 of the workpiece W to be ground, and to increase the heat generation suppression effect and the oxidation suppression effect of the surface to be ground W1. Always secure.

上記研削ホイ−ルの冷却装置100Aと研削ホイール20を使用した図10に示す第5の実施の形態となる上記研削ホイ−ルの冷却装置100Bは、以下のように作用する。研削ホイール20は、環状基台1の外周面に環状砥石2が嵌着され、両縁にフランジ1F,1Fを備え、上記環状基台1の内周面1Aは回転主軸5に嵌着されている。これにより、回転主軸5の軸芯に穿かれた冷却液供給通路Aから高圧冷却液Kを環状砥石2の放射方向に貫通する通孔2Cに供給されると、上記環状砥石2に供給された高圧冷却液Kが容易に通過して外周面2Bから外部へ噴出され、被研削面ワークWの被研削面W1を効果的に冷却する。The grinding wheel cooling device 100B according to the fifth embodiment shown in FIG. 10 using the grinding wheel cooling device 100A and the grinding wheel 20 operates as follows. The grinding wheel 20 has an annular grindstone 2 fitted on the outer peripheral surface of the annular base 1 and flanges 1F and 1F on both edges. The inner peripheral surface 1A of the annular base 1 is fitted on the rotary spindle 5. Yes. As a result, when the high-pressure coolant K is supplied from the coolant supply passage A bored in the axis of the rotary spindle 5 to the through hole 2 </ b> C penetrating in the radial direction of the annular grindstone 2, the annular grindstone 2 is supplied. The high-pressure coolant K easily passes through and is ejected to the outside from the outer peripheral surface 2B, thereby effectively cooling the surface to be ground W1 of the workpiece W to be ground.

更に、上記研削ホイール20による作用効果として、冷却液Kの高圧噴出は、直接にワークとの研削面に停滞付着する研削塵の高能率な排除効果と環状砥石2と被研削面W1の高能率な冷却効果が期待でき、ワークの研削焼け防止効果が期待できる。即ち、高圧噴出する冷却液Kは、ワークとの研削面との加工点に噴射して発生する加工熱(摩擦熱)で体積比率3000倍前後に膨張することで、蒸気爆発効果で気化圧力を発生させる。Further, operation of the above grinding wheel 20, as an effect, the high pressure ejection of the coolant K, directly stagnation on the grinding surface of the workpiece, highly efficient elimination effect of the grinding dust adheres and an annular grindstone 2 of the ground surface W1 A highly efficient cooling effect can be expected, and an effect of preventing grinding burn of the workpiece can be expected. That is, the coolant K that is jetted out at a high pressure expands to a volume ratio of about 3000 times by the processing heat (frictional heat) generated by being injected at the processing point between the workpiece and the grinding surface, thereby increasing the vaporization pressure by the steam explosion effect. generate.

更に、高圧冷却液Kは、研削ホイール20の外周面の噴射位置に高圧冷却液を噴射させる高圧噴射ノズルHNにも供給され、研削ホイール20の外周面の冷却作用を確保する。また、被研削面ワークWの被研削面W1の周辺に形成されるウオータールーム雰囲気WBを更に確保すべく、包囲体70が研削ホイールの約半分をカバーしている。これにより、上記高圧噴射ノズルHNに併設して窒素ガス噴射ノズルNNを上記包囲体70内に向けて配置され、包囲体70内の空間雰囲気を窒素ガスで満たされた無酸素と高圧冷却液Kによるウオータールーム雰囲気WBの噴霧状態とする。しかして、ウオータールーム雰囲気WB内は、この中に閉じ込められた噴霧状態の高圧冷却液Kと、窒素ガスで満たされた無酸素状態となり、より一層強力に砥石2の目詰まり除去による被研削面ワークWの被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が図られる。Furthermore, the high pressure coolant K is also supplied to the high-pressure injection nozzle HN for injecting high-pressure coolant injection position of the outer peripheral surface of the grinding wheel 20, to ensure the cooling effect of the outer peripheral surface of the grinding wheel 20. Further, in order to further secure a water room atmosphere WB formed around the surface to be ground W1 of the workpiece W to be ground, the enclosure 70 covers about half of the grinding wheel. As a result, the nitrogen gas injection nozzle NN is arranged facing the inside of the enclosure 70 along with the high-pressure injection nozzle HN, and the space atmosphere in the enclosure 70 is filled with nitrogen gas and oxygen-free and high-pressure coolant K. It is set as the spray state of the water room atmosphere WB by. Thus, the water room atmosphere WB is in an oxygen-free state filled with the high-pressure coolant K in a spray state and nitrogen gas confined in this, and the surface to be ground by removing clogging of the grindstone 2 more powerfully. An increase in the heat generation suppression effect and the oxidation suppression effect on the surface W1 to be ground of the workpiece W can be achieved.

また、研削ホイール20の外周面に向けて配置した外径測定センサDSは、環状砥石2の摩耗を検出している。その検出値は、外径変位値hとして高圧噴射ノズルの噴射位置を微調節する調節手段300により演算される。これにより、上記調節手段300は、外径変位値hに基づき、駆動ユニットDUを作動して高圧噴射ノズルHNを最適位置に位置制御することができるから、環状砥石2の摩耗に係わりなく高圧噴射ノズルの噴射位置を微調節できる。これにより、高圧冷却液Kを環状砥石2の最適位置に噴出でき、被研削面ワークWの被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が常時確保できる。An outer diameter measuring sensor DS arranged toward the outer peripheral surface of the grinding wheel 20 detects the wear of the annular grindstone 2. The detected value is calculated by the adjusting means 300 that finely adjusts the injection position of the high-pressure injection nozzle as the outer diameter displacement value h. As a result, the adjusting means 300 can operate the drive unit DU to control the position of the high pressure injection nozzle HN at the optimum position based on the outer diameter displacement value h, so that the high pressure injection can be performed regardless of the wear of the annular grindstone 2. The injection position of the nozzle can be finely adjusted. As a result, the high-pressure coolant K can be ejected to the optimum position of the annular grindstone 2, and an increase in the heat generation suppression effect and the oxidation suppression effect on the ground surface W1 of the ground surface workpiece W can always be ensured.

尚、上記第5の実施の態様においては、高圧冷却液Kを使用したが、空気中の窒素ガスを回収した窒素ガスや窒素ボンベからの窒素ガス等を砥石の冷却に使用したドライ冷却方式としても良い。この方式の最大のメリットは、被研削面ワークWの被研削面W1の無酸素効果での研磨焼けを積極的に防止でき、被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が常時確保できる。In the fifth embodiment, the high-pressure coolant K is used. However, as a dry cooling method using nitrogen gas collected from the air, nitrogen gas from a nitrogen cylinder, or the like for cooling the grindstone. Also good. The greatest merit of this method is that it is possible to actively prevent polishing burn due to the oxygen-free effect of the surface to be ground W1 of the workpiece W to be ground, and to increase the heat generation suppression effect and the oxidation suppression effect of the surface to be ground W1. Always secure.

上記研削ホイールの冷却装置100Aと研削ホイール30を使用した図11に示す第6の実施の形態となる上記研削ホイールの冷却装置100Cは、以下のように作用する。先ず、上記研削ホイール30を使用時には、図7図12に示すように、マシニングセンター旋盤研削盤等の加工機における回転主軸5に研削ホイール30が装着される。上記研削ホイール30は、回転主軸5にこの環状基台1の内面1Aが嵌着されるとともに、環状基台1の両縁フランジ1F,1Fが環状砥石2の両側面2F,2Fと接する部位に凹状断面の通路1Gが放射状に設けられ、この通路1Gは回転主軸5の内部から外周に繋がる冷却液供給通路Aと連絡され、これがフランジ外周端で環状砥石2の両側面2F,2Fに開口されている。これにより、環状砥石の高速回転による遠心力で回転主軸5から加圧供給される冷却液Kは、環状砥石2の両側面2F,2Fに沿って効率良く噴出され、被研削面ワークWの被研削面W1の周辺にウオータールーム雰囲気WBを形成する。これで、被研削面ワークWの被研削面W1に噴出された冷却液Kが周辺に飛散することなく浸漬保持され、効果的に環状砥石2の目詰まりを除去して冷却することが出来て、摩擦熱(研磨焼け)を積極的に除去する。The grinding wheel cooling device 100C according to the sixth embodiment shown in FIG. 11 using the grinding wheel cooling device 100A and the grinding wheel 30 operates as follows. First, when the grinding wheel 30 is used, as shown in FIGS. 7 and 12 , the grinding wheel 30 is mounted on the rotary spindle 5 in a processing machine such as a machining center , a lathe , or a grinding machine. In the grinding wheel 30, the inner surface 1 </ b> A of the annular base 1 is fitted to the rotation main shaft 5, and both edge flanges 1 </ b> F and 1 </ b> F of the annular base 1 are in contact with both side faces 2 </ b> F and 2 </ b> F of the annular grindstone 2. Concave cross-section passages 1G are provided radially, and this passage 1G communicates with a coolant supply passage A connected from the inside of the rotating spindle 5 to the outer periphery, and this is opened to both side surfaces 2F, 2F of the annular grindstone 2 at the outer peripheral end of the flange. ing. As a result, the coolant K pressurized and supplied from the rotary spindle 5 by the centrifugal force generated by the high-speed rotation of the annular grindstone is efficiently ejected along the both side surfaces 2F, 2F of the annular grindstone 2, and the workpiece W to be ground W A water room atmosphere WB is formed around the grinding surface W1. As a result, the coolant K sprayed onto the surface to be ground W1 of the surface to be ground W is immersed and held without scattering to the periphery, and the clogging of the annular grindstone 2 can be effectively removed and cooled. Actively remove frictional heat (polishing burn).

即ち、環状砥石の高速回転による加工熱(摩擦熱)で冷却液Kは体積比率3000倍前後に膨張する。これで、蒸気爆発し、この効果で気化圧力を発生させ、砥石内に堆積する研削塵を吹き飛ばして砥石の目詰まり防止効果と砥石による冷却液のフィルター効果、ワークの研削焼け防止効果が相乗的に発揮される。  That is, the coolant K expands to a volume ratio of about 3000 times by processing heat (friction heat) due to high-speed rotation of the annular grindstone. This causes a vapor explosion, which generates vaporization pressure, blows away the grinding dust that accumulates in the grinding wheel, and prevents the clogging of the grinding wheel, the filter effect of the coolant by the grinding stone, and the grinding burn prevention effect of the workpiece To be demonstrated.

更に、高圧冷却液Kは、研削ホイール30の外周面の噴射位置に高圧冷却液を噴射させる高圧噴射ノズルHNにも供給され、研削ホイール30の外周面の冷却作用を確保する。また、被研削面ワークWの被研削面W1の周辺に形成されるウオータールーム雰囲気WBを更に確保すべく、包囲体70が研削ホイールの約半分をカバーしている。これにより、上記高圧噴射ノズルHNに併設して窒素ガス噴射ノズルNNを上記包囲体70内に向けて配置され、包囲体70内の空間雰囲気を窒素ガスで満たされた無酸素と高圧冷却液Kによるウオータールーム雰囲気WBの噴霧状態とする。しかして、ウオータールーム雰囲気WB内は、この中に閉じ込められた噴霧状態の高圧冷却液Kと、窒素ガスで満たされた無酸素状態となり、より一層強力に環状砥石2の目詰まり除去による被研削面ワークWの被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が図られる。Further, the high-pressure coolant K is also supplied to a high-pressure injection nozzle HN that injects the high-pressure coolant to the injection position on the outer peripheral surface of the grinding wheel 30 to ensure the cooling action of the outer peripheral surface of the grinding wheel 30. Further, in order to further secure a water room atmosphere WB formed around the surface to be ground W1 of the workpiece W to be ground, the enclosure 70 covers about half of the grinding wheel. As a result, the nitrogen gas injection nozzle NN is arranged facing the inside of the enclosure 70 along with the high-pressure injection nozzle HN, and the space atmosphere in the enclosure 70 is filled with nitrogen gas and oxygen-free and high-pressure coolant K. It is set as the spray state of the water room atmosphere WB by. Therefore, the water room atmosphere WB is in an oxygen-free state filled with the high-pressure coolant K in a spray state and nitrogen gas confined in the water-room atmosphere WB, and is more strongly ground by removing clogging of the annular grindstone 2. An increase in the heat generation suppression effect and an oxidation suppression effect on the ground surface W1 of the surface workpiece W can be achieved.

また、研削ホイール30の外周面に向けて配置した外径測定センサDSは、環状砥石2の摩耗を検出している。その検出値は、外径変位値hとして高圧噴射ノズルの噴射位置を微調節する調節手段300により演算される。これにより、上記調節手段300は、外径変位値hに基づき、駆動ユニットDUを作動して高圧噴射ノズルHNを最適位置に位置制御することができるから、環状砥石2の摩耗に係わりなく高圧噴射ノズルの噴射位置を微調節できる。これにより、高圧冷却液Kを環状砥石2の最適位置に噴出でき、被研削面ワークWの被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が常時確保できる。  The outer diameter measuring sensor DS disposed toward the outer peripheral surface of the grinding wheel 30 detects the wear of the annular grindstone 2. The detected value is calculated by the adjusting means 300 for finely adjusting the injection position of the high-pressure injection nozzle as the outer diameter displacement value h. As a result, the adjusting means 300 can operate the drive unit DU to control the position of the high pressure injection nozzle HN at the optimum position based on the outer diameter displacement value h, so that the high pressure injection can be performed regardless of the wear of the annular grindstone 2. The injection position of the nozzle can be finely adjusted. As a result, the high-pressure coolant K can be ejected to the optimum position of the annular grindstone 2, and an increase in the heat generation suppression effect and the oxidation suppression effect on the ground surface W1 of the ground surface workpiece W can always be ensured.

尚、上記第6の実施の態様においては、高圧冷却液Kを使用したが、空気中の窒素ガスを回収した窒素ガスや窒素ボンベからの窒素ガス等を砥石の冷却に使用したドライ冷却方式として良い。この方式の最大のメリットは、被研削面ワークWの被研削面W1の無酸素効果での研磨焼けを積極的に防止でき、被研削面W1の発熱抑制効果の増大と酸化抑制効果の増大が常時確保できる。In the sixth embodiment, the high-pressure coolant K is used. However, as a dry cooling method using nitrogen gas collected from the air, nitrogen gas from a nitrogen cylinder, or the like for cooling the grindstone. good. The greatest merit of this method is that it is possible to actively prevent polishing burn due to the oxygen-free effect of the surface to be ground W1 of the workpiece W to be ground, and to increase the heat generation suppression effect and the oxidation suppression effect of the surface to be ground W1. Always secure.

更に、上記研削ホイ−ルの冷却装置100Dと研削ホイール40,(40A)を使用した図7と図12に示す第7の実施の形態において、上記研削ホイール40を使用した作用を示す。先ず、マシニングセンター旋盤研削盤等の加工機における主軸に上記研削ホイール40を装着時について説明する。上記研削ホイール40は、回転主軸5の軸芯に穿かれた冷却液供給通路Aから高圧冷却液Kを環状砥石2内に開けた通路2Gを通過して砥石外周面から被研削面ワークWの被研削面W1に向けて噴射され被研削面W1を冷却する。更に、上記環状基台1は両縁にフランジ1F,1Fを備え、上記環状基台1の両縁フランジ1F,1Fが環状砥石の両側面2F,2Fと接する部位に凹状断面の通路1Gを放射状に設けている。これで、環状砥石の高速回転による遠心力で回転主軸5から加圧供給される冷却液Kは、上記回転主軸5の冷却液供給通路Aから外周5Aに繋がる通路孔H0,H1から環状砥石2の通路1Gに送り込まれる。更に、冷却液Kは、フランジ外周端の開口から環状砥石2の両側面2F,2Fに沿って環状砥石2の外周面2B及び被研削面ワークWの被研削面W1に噴出される。これで、被研削面ワークWの被研削面W1の周辺にウオータールーム雰囲気WBを形成する。しかして、ウオータールーム雰囲気WB内において、冷却液Kは、環状砥石の中央通路2Gから被研削面W1に向けて噴射冷却されるとともに、冷却液Kは、環状砥石2の両側面2F,2Fに沿って効率良く噴出されるも、冷却液Kが周辺に飛散することなく浸漬保持され、効果的に砥石2の目詰まりを除去して冷却することが出来て、摩擦熱(研磨焼け)を積極的に除去する。Further, the operation using the grinding wheel 40 in the seventh embodiment shown in FIGS. 7 and 12 using the cooling device 100D for the grinding wheel and the grinding wheel 40 , (40A) will be described. First, a description will be given of the case where the grinding wheel 40 is mounted on a spindle of a processing machine such as a machining center , a lathe , or a grinding machine. The grinding wheel 40 passes through the passage 2G in which the high-pressure coolant K is opened in the annular grindstone 2 from the coolant supply passage A bored in the axis of the rotating spindle 5, and passes through the grinding wheel outer peripheral surface of the workpiece W to be ground. Sprayed toward the surface to be ground W1 to cool the surface to be ground W1. Further, the annular base 1 is provided with flanges 1F and 1F on both edges , and a concave cross-section passage 1G is radially formed at a portion where both edge flanges 1F and 1F of the annular base 1 are in contact with both side surfaces 2F and 2F of the annular grindstone. Provided. Thus, the coolant K pressurized and supplied from the rotary spindle 5 by the centrifugal force generated by the high-speed rotation of the annular grindstone 5 passes through the annular grindstone 2 from the passage holes H0 and H1 connected from the coolant supply passage A to the outer periphery 5A. It is sent to the passage 1G. Further, the coolant K is jetted from the opening at the outer peripheral end of the flange along the both side surfaces 2F and 2F of the annular grindstone 2 to the outer peripheral surface 2B of the annular grindstone 2 and the surface to be ground W1 of the workpiece W to be ground. Thus, a water room atmosphere WB is formed around the surface to be ground W1 of the surface W to be ground. Thus, in the water room atmosphere WB, the cooling liquid K is jet-cooled from the central passage 2G of the annular grindstone toward the ground surface W1, and the cooling liquid K is applied to both side surfaces 2F and 2F of the annular grindstone 2. Although the coolant K is efficiently ejected along the surface, the coolant K is immersed and held without splashing to the periphery, and the clogging of the grindstone 2 can be effectively removed and cooled, and frictional heat (polishing burn) is positively generated. To remove.

特に、ウオータールーム雰囲気WB内において、環状砥石の中央通路2Gから被研削面W1に向けて噴射冷却されるとともに、環状砥石2の両側面2F,2Fに沿って砥石の外周面及び被研削面ワークWの被研削面W1に噴出されるから、被研削面W1での冷却目詰まり除去研削焼け防止効果が相乗的に格段に高くなる。その他の作用効果は、上記研削ホイール10〜30を使用時と同様に付き、説明を省略する。In particular, in the water room atmosphere WB, jet cooling is performed from the central passage 2G of the annular grindstone toward the surface to be ground W1, and the outer peripheral surface of the grindstone and the workpiece to be ground along both side surfaces 2F and 2F of the annular grindstone 2 Since W is ejected onto the surface to be ground W1, the cooling , clogging removal , and grinding burn prevention effects on the surface to be ground W1 are synergistically enhanced. Other operations and effects are the same as when the grinding wheels 10 to 30 are used, and the description thereof is omitted.

上記第3〜7の実施の形態となる上記研削ホイ−ルの冷却装置100A〜100Dによると、下記の効果が発揮される。(1)、例えば、ブレード研削加工は、高圧噴射ノズルからの約7メガパスカル相当に加圧された高圧冷却液の噴出で超高能率重研削と連続無人加工ができる。(2)、砥石は、多孔質の他電着砥石等の全ての砥石に適用できる。(3)、更に、高圧噴出する冷却液Kは、ワークとの研削面との加工点に噴射して発生する加工熱(摩擦熱)で体積比率3000倍前後に膨張することで、蒸気爆発効果で気化圧力を発生させる。これで、砥石内に堆積する研削塵を吹き飛ばして砥石目詰まり防止効果とワークの研削焼け防止効果が相乗的に発揮できる。即ち、砥石がフィルターとなり砥石内を通過する冷却液Kに対する除塵効果(冷却液に対するフィルター効果)も得られる。(4)、高圧噴射ノズルに併設して窒素ガス噴射ノズルを設けているから、ワークの研削焼け防止効果を更に高められる。(5)、環状砥石の摩耗を検出する外径測定センサにより、砥石の外径変位により高圧噴射ノズルの噴射位置を微調節できるから、高圧噴射ノズルを常に最適位置に調節できる。(6)、研削ホイールの包囲体を設けたから、研削面の周辺に高圧冷却液によるウオータールーム雰囲気を形成でき、更なるワークの研削焼け防止効果が相乗的に発揮できる。(7)、NC制御装置が不要で、マシニングセンター旋盤研削盤等の加工機に適用できて汎用性が高く、しかも簡単な操作性と装置の低廉化(数千万円前後に抑えられる)が図れる。The grinding wheel becomes the first 3-7 embodiment - According to Le cooling device 100A to 100D, the following effects are exhibited. (1) For example, in the blade grinding process, ultra-high-efficiency heavy grinding and continuous unmanned machining can be performed by ejecting the high-pressure coolant K pressurized to about 7 megapascals from a high-pressure spray nozzle. (2) The grindstone can be applied to all grindstones such as porous other electrodeposition grindstones. (3) Furthermore, the coolant K that is jetted out at a high pressure expands to a volume ratio of about 3000 times by the processing heat (friction heat) generated by being injected to the processing point of the workpiece and the grinding surface, thereby causing a steam explosion effect. Generate vapor pressure. Thus, the grinding dust accumulated in the grindstone is blown away, and the effect of preventing clogging of the grindstone and the effect of preventing grinding burn of the workpiece can be exhibited synergistically . That is, a dust removing effect (filter effect on the cooling liquid) with respect to the cooling liquid K that passes through the whetstone becomes a filter. (4) Since the nitrogen gas injection nozzle is provided in addition to the high-pressure injection nozzle, the effect of preventing grinding and burning of the workpiece can be further enhanced. ( 5) Since the outer diameter measuring sensor for detecting the wear of the annular grindstone can finely adjust the injection position of the high pressure injection nozzle by the outer diameter displacement of the grindstone, the high pressure injection nozzle can always be adjusted to the optimum position. (6) Since the surrounding body of the grinding wheel is provided, a water room atmosphere by a high-pressure coolant can be formed around the grinding surface, and a further effect of preventing grinding burn of the workpiece can be exhibited synergistically. (7) No NC control device is required, it can be applied to machining centers , lathes , grinders and other processing machines, is highly versatile, and has simple operability and low equipment cost (reduced to around tens of millions of yen) Can be planned.

本発明の研削ホイールとその冷却方法と冷却装置及び研削ホイールの保持具は、上記各実施の形態例に限定されず、その発明の要旨内における設計変更が自由に行える。例えば、通路の個数やその放射形状、環状砥石も多孔質や電着やセラミックス等々の任意な物が使用できる。また、冷却液Kは、水クーラント液特殊成分入りの物が使用できるほか、空気窒素ガスその他の気流を使用できる。更には、研削ホイ−ルの冷却装置100A〜100Dにおいて、その詳細な構成変更や機能の増減も自由にできる。そして、上記各研削ホイール10〜40において、各研削ホイール10〜40を複合構成させた第5の研削ホイールとしても良い。即ち、環状砥石の外周面2Bや両縁2Fや外周面2Bに明けた通孔2Cから総合的に多量の冷却液Kを被研削面ワークWの被研削面W1に均等に噴出させても良い。The grinding wheel of the present invention, the cooling method thereof, the cooling device, and the holder of the grinding wheel are not limited to the above embodiments, and the design can be changed freely within the scope of the invention. For example, the number of passages, the radial shape thereof, and the circular grindstone can be any material such as porous, electrodeposited or ceramic. The coolant K can be water , a coolant , or a special component, or can be air , nitrogen gas , or other airflow. Furthermore, in the cooling devices 100A to 100D for the grinding wheel, detailed configuration changes and increase / decrease in functions can be freely performed. And in each said grinding wheel 10-40, it is good also as a 5th grinding wheel which combined each grinding wheel 10-40. That is, a large amount of the cooling liquid K may be uniformly ejected to the ground surface W1 of the workpiece W to be ground from the outer peripheral surface 2B of the annular grindstone, the two edges 2F, or the through holes 2C opened in the outer peripheral surface 2B. .

本発明は、その対象物を航空機のジェットエンジンや発電機に使用されているブレードの薄板状の被加工物を対象の実施例で説明したものであるが、様々な製品装置における板状の被加工物を対象としての適用が可能である。  In the present invention, the target object is a thin plate-like workpiece of a blade used in an aircraft jet engine or a generator. However, the target object is a plate-like workpiece in various product apparatuses. Application to workpieces is possible.

1 環状基台
1A 内周面
1B 外周面
1F 両縁フランジ
1G 通路
2 環状砥石
2A 内周面
2B 外周面
2C 通孔
2F 両側面
2G 通路
5 回転主軸
5A 外周
10〜40A 研削ホイール
31 セラミック円板
31A,31B 両側面
33A センター孔
21,22 環状砥石
24,25 フランジ円板
24A,25A 両内側面
24G,25G 溝(通路
60,65 保持具
41 センタースルー孔
70 包囲体
100A〜100D 研削ホイールの冷却装置
200 高圧液供給機
300 調節手段
A 冷却液供給通路
DS 外径測定センサ
DU 駆動ユニット
H0 連絡孔
H1 連絡孔
HN 高圧噴射ノズル
h 外径変位値
NN 窒素ガス噴射ノズル
K 冷却液(高圧冷却液)
W 被研削面ワーク
W1 被研削面
WB ウオータールーム雰囲気
DESCRIPTION OF SYMBOLS 1 Annular base 1A Inner peripheral surface 1B Outer peripheral surface 1F Both edges flange 1G Passage 2 Annular grindstone 2A Inner peripheral surface 2B Outer peripheral surface 2C Through hole 2F Both side surfaces 2G Passage 5 Rotating spindle 5A Outer periphery 10-40A Grinding wheel 31 Ceramic disc 31A , 31B Both side surfaces 33A Center holes 21, 22 Annular grindstones 24, 25 Flange discs 24A, 25A Both inner side surfaces 24G, 25G Groove ( passage )
60, 65 Holder 41 Center through hole 70 Enclosures 100A to 100D Cooling device 200 for grinding wheel High pressure liquid supply machine 300 Adjusting means A Coolant supply passage DS Outer diameter measurement sensor DU Drive unit H0 communication hole H1 communication hole HN High pressure injection Nozzle h Outer diameter displacement value NN Nitrogen gas injection nozzle K Coolant (high pressure coolant)
W Surface to be ground W1 Surface to be ground WB Water room atmosphere

Claims (2)

外周に気体または液体を流通させる連絡孔を開けた環状基台と、上記環状基台に芯材となり通気性の有るセラミック円板と、上記セラミック円板の両側面に接合する同形の環状砥石と、上記環状砥石の両側面に接合させるとともに内面側に放射状の通路を形成した小径なフランジ円板と、上記環状基台の連絡孔をセラミック円板及びフランジ円板の通路と連絡させてなる研削ホイールとし、上記研削ホイールの環状基台は高圧冷却液を流通させるセンタースルー孔が開けられた支持軸に嵌着させたことを特徴とする研削ホイールの保持具。  An annular base having a communication hole through which gas or liquid flows on the outer periphery, a ceramic disk having air permeability as a core material on the annular base, and an annular ring of the same shape joined to both side surfaces of the ceramic disk A small-diameter flange disc bonded to both side surfaces of the annular grindstone and having a radial passage formed on the inner surface thereof, and grinding in which the communication hole of the annular base is in communication with the passage of the ceramic disc and the flange disc A grinding wheel holder, wherein the annular base of the grinding wheel is fitted to a support shaft having a center through hole through which a high-pressure coolant flows. 請求項1の研削ホイールの保持具において、上記高圧冷却液は、約7メガパスカル相当の圧力としたことを特徴とする研削ホイールの保持具In the holder of the grinding wheel of claim 1, the high-pressure coolant, the retainer of the grinding wheel, characterized in that it has about 7 MPa considerable pressure.
JP2009239826A 2009-05-11 2009-09-24 Grinding wheel retainer Expired - Fee Related JP5380674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239826A JP5380674B2 (en) 2009-05-11 2009-09-24 Grinding wheel retainer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009132530 2009-05-11
JP2009132530 2009-05-11
JP2009239826A JP5380674B2 (en) 2009-05-11 2009-09-24 Grinding wheel retainer

Publications (3)

Publication Number Publication Date
JP2010284791A JP2010284791A (en) 2010-12-24
JP2010284791A5 JP2010284791A5 (en) 2012-09-20
JP5380674B2 true JP5380674B2 (en) 2014-01-08

Family

ID=43540895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239826A Expired - Fee Related JP5380674B2 (en) 2009-05-11 2009-09-24 Grinding wheel retainer

Country Status (1)

Country Link
JP (1) JP5380674B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105538093A (en) * 2015-12-14 2016-05-04 苏州新协力机器制造有限公司 Grinding device for cylinder cover
CN106607774A (en) * 2015-10-22 2017-05-03 中国砂轮企业股份有限公司 Grinding wheel with internal fluid supply structure
EP3744477A1 (en) * 2019-05-29 2020-12-02 Tur & Development SL Device and method for removing a low emission layer from a glass panel

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574243B2 (en) * 2011-03-08 2014-08-20 伊藤 幸男 Grinding method and equipment using foam coolant
DE202011004912U1 (en) * 2011-04-06 2011-08-10 Deckel Maho Seebach Gmbh polishing tool
DE102012223029A1 (en) * 2012-12-13 2014-06-18 Lufthansa Technik Ag Grinding wheel for use with integrated aperture for machine tool, has two contiguous sub-grinding wheels and groove provided in one of surfaces of sub-grinding wheels, where groove forms recess
JP2014200866A (en) * 2013-04-02 2014-10-27 エーアイ・マシンテック株式会社 Grinding device and grinder attached thereto
JP6315565B2 (en) * 2014-04-03 2018-04-25 株式会社クロイツ Rotating tool
JP6061253B2 (en) * 2014-09-24 2017-01-18 伊藤 幸男 Grooved grinding wheel and manufacturing method thereof
JP6195421B2 (en) * 2015-04-08 2017-09-13 三菱日立パワーシステムズ株式会社 Grinding apparatus and manufacturing method of grinding apparatus
CN105563361A (en) * 2015-12-09 2016-05-11 张嵩 Grinding wheel
CN105563318B (en) * 2015-12-28 2017-10-13 宁波鑫晟工具有限公司 The sanding machine of automatic heat radiation
CN108714856B (en) * 2018-04-08 2020-08-21 洛阳双瑞金属复合材料有限公司 Inflammable and explosive dust absorbs dust pelletizing system
CN108406620A (en) * 2018-05-03 2018-08-17 西安增材制造国家研究院有限公司 With spray lubricating fluid grinding wheel in modularization abrasive grain and including the grinding attachment of the grinding wheel
CN108356629A (en) * 2018-05-11 2018-08-03 广西钟山县天顺石材有限公司 A kind of grinding device of large size slabstone
JP6918239B2 (en) * 2018-06-25 2021-08-11 三菱電機株式会社 Elevator guide rail processing equipment
CN109822451B (en) * 2019-03-20 2023-10-27 深圳市宏通新材料有限公司 Quick cooling grinding head and grinding device
TWM583351U (en) * 2019-05-10 2019-09-11 北聯研磨科技股份有限公司 Grinding wheel center hole protection pad
CN114144282B (en) * 2019-07-15 2024-10-15 3M创新有限公司 Abrasive article having internal coolant features and method of making same
CN112873045B (en) * 2021-03-15 2024-10-01 广东思蒙数控设备有限公司 Grinding head
KR102309539B1 (en) * 2021-06-09 2021-10-05 문병갑 Composite diamond wheel system in lens processing machine
CN114310563B (en) * 2021-12-20 2024-04-09 湖南理工学院 Self-adaptive supply instantaneous cooling block type slice diamond grinding wheel
KR102709971B1 (en) * 2022-03-18 2024-09-24 강주원 Cutting oil supply structure inside grinding
CN118269241A (en) * 2022-12-30 2024-07-02 桂林磨院材料科技有限公司 Resin type semiconductor cutter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506890U (en) * 1973-05-14 1975-01-24
JPS5988260A (en) * 1982-11-02 1984-05-22 Matsushita Electric Ind Co Ltd Grinding fluid supplier
JPS60167769A (en) * 1984-02-10 1985-08-31 Tohoku Metal Ind Ltd Coolant process for grinding wheel
JPS6442111U (en) * 1987-05-28 1989-03-14
JPH02126761U (en) * 1989-03-29 1990-10-18
JPH03109765U (en) * 1990-02-27 1991-11-11
JPH11235670A (en) * 1998-02-20 1999-08-31 Toshiba Mach Co Ltd Grinding liquid supplying method for grinding wheel and its grinding wheel
JP2006000982A (en) * 2004-06-18 2006-01-05 Japan Atom Power Co Ltd:The Method of grinding object to be ground

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607774A (en) * 2015-10-22 2017-05-03 中国砂轮企业股份有限公司 Grinding wheel with internal fluid supply structure
CN105538093A (en) * 2015-12-14 2016-05-04 苏州新协力机器制造有限公司 Grinding device for cylinder cover
EP3744477A1 (en) * 2019-05-29 2020-12-02 Tur & Development SL Device and method for removing a low emission layer from a glass panel

Also Published As

Publication number Publication date
JP2010284791A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5380674B2 (en) Grinding wheel retainer
JP2010284791A5 (en)
JP5520795B2 (en) Tool holder
JP2895171B2 (en) Grinding wheel device and its tool holder
JP3160335U (en) Grinding wheel and its cooling device
EP0340026B1 (en) Arbor for mounting a tool to a spindle of a machine tool and a machining method of employing the same
CN106607775A (en) Abrasive Disc with Internal Fluid Supply Structure
CN212095976U (en) High-rotation-speed cup-shaped grinding wheel
JP6850591B2 (en) Spindle unit
JP3158872U (en) Grinding wheel unit
JP4786949B2 (en) Cutting equipment
JP5787235B2 (en) Grinding fluid supply device and grinding method for superabrasive electrodeposition grinding wheel
JP6318034B2 (en) Cutting equipment
JP2018015859A (en) Spindle unit
JP6084455B2 (en) Rotary cutting tool
JP5557141B2 (en) Processing control device
JP2828377B2 (en) Grinding method and apparatus
JP4182172B2 (en) Grinding equipment
JP3162200U (en) Machining tools
JP7273610B2 (en) spindle unit
JP2007326192A (en) Grinding fluid supplying device
JP2009137000A (en) Wire cut electric discharge machine and working fluid nozzle device therefor
KR102060842B1 (en) The structure for preventing inlet particle of the machine tool
JPH0639699A (en) Groove processing device
RU2158669C2 (en) Method of cutting zone protection against spreading of cutting fluid vapors and splashes beyond its boundaries and device intended for its embodiment

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5380674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees