JP5379399B2 - Storage device for sodium hypochlorite solution added to tap water - Google Patents

Storage device for sodium hypochlorite solution added to tap water Download PDF

Info

Publication number
JP5379399B2
JP5379399B2 JP2008114036A JP2008114036A JP5379399B2 JP 5379399 B2 JP5379399 B2 JP 5379399B2 JP 2008114036 A JP2008114036 A JP 2008114036A JP 2008114036 A JP2008114036 A JP 2008114036A JP 5379399 B2 JP5379399 B2 JP 5379399B2
Authority
JP
Japan
Prior art keywords
sodium hypochlorite
hypochlorite solution
water
tap water
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008114036A
Other languages
Japanese (ja)
Other versions
JP2009263161A (en
Inventor
義憲 広津
Original Assignee
株式会社ワイドハーバー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワイドハーバー filed Critical 株式会社ワイドハーバー
Priority to JP2008114036A priority Critical patent/JP5379399B2/en
Publication of JP2009263161A publication Critical patent/JP2009263161A/en
Application granted granted Critical
Publication of JP5379399B2 publication Critical patent/JP5379399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preserving a sodium hypochlorite solution utilizing ground water as a means for maintaining the quality of a sodium hypochlorite solution to be poured for disinfecting city water when it is preserved, and to provide an apparatus therefor. <P>SOLUTION: The apparatus, preserving the sodium hypochlorite solution by indirectly cooling the solution with ground water of 14 to 17&deg;C, is composed of: an outer tank flowing in/out the ground water; and a plurality of cylindrical inner tanks for storing and preserving a sodium hypochlorite solution in which the respective ones are arranged at the inside of the outer tank so as to be planarly separated each other. The apparatus is provided with an upper part communication part communicating the respective upper parts of the plurality of cylindrical inner tanks and a lower part communication part communicating the respective lower parts thereof, the upper part communication part is connected with a liquid pouring tube, and the lower part communication part is connected with a discharge tube continued to a liquid feeding pump. Each cylindrical inner tank is made of a metal and whose inside face is coated with a corrosion resistant synthetic resin film. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、水道用水を消毒するために添加する次亜塩素酸ナトリウム溶液の保存方法及びその装置に関するものである。   The present invention relates to a method and apparatus for storing a sodium hypochlorite solution added to disinfect tap water.

水道水の消毒は、水道法の規定により塩素によるものとなっており、その塩素消毒剤として、液化塩素に比べて安全性が高く、取り扱いが容易である次亜塩素酸ナトリウムが主として使用されている。しかし、次亜塩素酸ナトリウムは、反応性が高く、劣化しやすい化学薬品であることや、人が飲用する水に添加するものであることから、適切な取り扱いとその性状を保持するために適した維持管理が必要である。近年、次亜塩素酸ナトリウムの不適切な管理により、次亜塩素酸ナトリウム中の有効塩素の減少や、不純物として含まれる塩素酸の増加などの知見が明らかとなった。   Disinfection of tap water is based on chlorine according to the provisions of the Water Supply Law, and sodium hypochlorite, which is safer and easier to handle than liquefied chlorine, is mainly used as the chlorine disinfectant. Yes. However, sodium hypochlorite is a highly reactive, easy-to-degrade chemical and is added to the water that people drink, making it suitable for maintaining proper handling and properties. Maintenance is necessary. In recent years, due to inappropriate management of sodium hypochlorite, knowledge such as a decrease in available chlorine in sodium hypochlorite and an increase in chloric acid contained as impurities has become clear.

従来例として、地下水を汲み上げて水道用水として利用する場合を、図3のフロー図に示しているが、井戸10からポンプ10aで汲み上げられた地下水は受槽11に入り、さらにポンプ11aで送水受槽12へ送水する途中で、次亜塩素酸ナトリウム溶液槽2から次亜塩素酸ナトリウム溶液が送液ポンプ7により地下水である水道用水に注入されて消毒が行われる。そして、送水ポンプ12aにて水道用水を後処理装置又は需要先へ送水する。   As a conventional example, a case in which groundwater is pumped up and used as tap water is shown in the flow chart of FIG. 3, but the groundwater pumped up from the well 10 by the pump 10a enters the receiving tank 11, and is further supplied by the pump 11a. In the middle of water supply, the sodium hypochlorite solution is injected from the sodium hypochlorite solution tank 2 into the tap water, which is groundwater, by the liquid feed pump 7 for disinfection. And the water for tap water is sent to a post-processing apparatus or a demand destination with the water pump 12a.

通常、市販の水道用次亜塩素酸ナトリウム溶液は主成分である有効塩素が12wt%以上、PH12以上の淡緑黄色の透明な液体である。製品は、次亜塩素酸ナトリウム(塩素分35.5wt%)の他に、その分解を抑制するための水酸化ナトリウム、食塩、次亜塩素酸ナトリウムの酸化物として亜塩素酸ナトリウムと塩素酸ナトリウム、及び製造時の不純物である臭素酸を含む水溶液である。また、次亜塩素酸ナトリウム溶液は不安定な物質であり、保存中に徐々に自己分解して塩化ナトリウムと酸素を生成する。その際の副反応として亜塩素酸ナトリウムを経て、塩素酸ナトリウムを生成する。   Usually, a commercially available sodium hypochlorite solution for water supply is a light green-yellow transparent liquid in which effective chlorine as a main component is 12 wt% or more and PH is 12 or more. In addition to sodium hypochlorite (chlorine content: 35.5 wt%), sodium chlorite and sodium chlorate as oxides of sodium hydroxide, sodium chloride and sodium hypochlorite to suppress decomposition And an aqueous solution containing bromic acid which is an impurity during production. In addition, sodium hypochlorite solution is an unstable substance, and gradually decomposes during storage to produce sodium chloride and oxygen. In this case, sodium chlorate is produced through sodium chlorite as a side reaction.

上記のように、次亜塩素酸ナトリウム溶液の分解は、常温でも不安定な化合物で徐々に自然分解するし、日光、特に紫外線により分解が促進されるし、また、温度の上昇とともに分解率が上昇するという特徴がある。よって、次亜塩素酸ナトリウムは時間とともに分解し、有効塩素は減少し、かつ、塩素酸は増加する。その関係は、有効塩素が1%減少すると塩素酸が約3,500mg/kg増加すると言われる。また、次亜塩素酸ナトリウムは保管温度が高いと分解が速く、有効塩素濃度が急激に減少し、逆に塩素酸濃度が急激に増加する。この温度の影響は、例えば、有効塩素12%のものが10%に減少し、塩素酸が初期濃度よりも更に7,000mg/kg増加するまでの期間は、温度要件だけを考慮した場合、30℃で保管すると約20日、20℃で保管すると約80日と言われる。   As described above, the decomposition of sodium hypochlorite solution gradually decomposes spontaneously with an unstable compound even at room temperature, the decomposition is accelerated by sunlight, particularly ultraviolet rays, and the decomposition rate increases with increasing temperature. It is characterized by rising. Thus, sodium hypochlorite decomposes over time, available chlorine decreases, and chloric acid increases. The relationship is said to increase chloric acid by about 3,500 mg / kg when available chlorine decreases by 1%. In addition, sodium hypochlorite decomposes quickly when the storage temperature is high, the effective chlorine concentration rapidly decreases, and conversely, the chloric acid concentration increases rapidly. The effect of this temperature is, for example, when the effective chlorine 12% is reduced to 10%, and the period until the chloric acid is further increased by 7,000 mg / kg from the initial concentration is 30% when only the temperature requirement is considered. It is said to be about 20 days when stored at ℃ and about 80 days when stored at 20 ℃.

一方、次亜塩素酸ナトリウムなどの水道用水又はその処理過程で水に注入される薬品等の物質は、水道法で規定する薬品基準に適合することが必要で、次亜塩素酸ナトリウムの特に注意すべき薬品基準項目は、塩素酸と臭素酸である。塩素酸については、水道水などの浄水での検出状況を踏まえ、平成20年4月から、水質基準項目(基準値0.6mg/L以下)へ追加され、薬品基準についても現行基準値0.6mg/L以下から0.4mg/L以下と強化される。   On the other hand, tap water such as sodium hypochlorite or chemicals injected into water during the treatment process must comply with the chemical standards stipulated by the Water Supply Law. The chemical criteria items to be listed are chloric acid and bromic acid. Chloric acid was added to the water quality standard item (standard value 0.6 mg / L or less) from April 2008, based on the detection status of clean water such as tap water. Strengthened from 6 mg / L or less to 0.4 mg / L or less.

前述のことから、水道水は飲用目的に使用されるため、水道水中に注入される次亜塩素酸ナトリウムは、不純物含有量が少ない高品質のものが望ましい。次亜塩素酸ナトリウムは、製造段階においてグレードが異なることや、時間の経過とともに塩素酸が増加し品質が劣化するため、水道用の次亜塩素酸ナトリウムは品質のよい順に一級、二級、三級と設定されている。例えば、有効塩素濃度12%、塩素酸4,000mg/kgの一級品を、出荷時から20℃以下で保管すれば、塩素としての最大注入率が10ppmの場合でも、少なくとも7日後までは、塩素酸の薬品基準0.4mg/L以下を確保できるものとされている。また、二級品は塩素酸の含有率がより高く設定されているので、最大注入率は4ppmと低くなる。
「水道用薬品等基準に関する調査報告書」日本水道協会
From the above, since tap water is used for drinking purposes, it is desirable that sodium hypochlorite injected into tap water is of high quality with a low impurity content. Sodium hypochlorite has different grades at the manufacturing stage, and chloric acid increases over time and the quality deteriorates.So, sodium hypochlorite for water supply is first grade, second grade, third grade in order of quality. It is set as a grade. For example, if a primary product with an effective chlorine concentration of 12% and chloric acid of 4,000 mg / kg is stored at 20 ° C. or less from the time of shipment, even if the maximum injection rate as chlorine is 10 ppm, at least 7 days later, It is supposed that the acid chemical standard of 0.4 mg / L or less can be secured. Moreover, since the secondary product has a higher chloric acid content, the maximum injection rate is as low as 4 ppm.
“Survey Report on Standards for Water Supply Chemicals” Japan Waterworks Association

前述したように、水道用水の消毒用に注入する次亜塩素酸ナトリウム溶液の品質を維持して保存することは、貯蔵期間が経過しても、有効塩素量の低下を防ぎ、かつ、有害とされる塩素酸含有量の増加を防止できているので、消毒に際し次亜塩素酸ナトリウム溶液の注入量を徒に増加させる必要がなく、ひいては水道用水の塩素酸含有量の増加を防止し、水質基準を守ることができる。   As mentioned above, maintaining and preserving the quality of the sodium hypochlorite solution injected for disinfecting tap water prevents the amount of available chlorine from decreasing and is harmful even after the storage period has elapsed. Therefore, there is no need to increase the amount of sodium hypochlorite solution injected at the time of disinfection, thus preventing an increase in the chloric acid content of tap water, The standard can be observed.

前述の先行文献には、次亜塩素酸ナトリウム溶液の品質を維持して保存する方法として、時間経過とともに分解することを抑制するのが重要で、低温保存が簡便で効果的とされ、具体的には、日差しを遮る屋根を設けたり、断熱材や水を用いた冷却に効果があり、効率的とされている。特に、室内保管の場合は、風通しを良くしたり、エアコンによる室内冷却もよいとされている。   In the above-mentioned prior literature, as a method of maintaining and maintaining the quality of the sodium hypochlorite solution, it is important to suppress degradation over time, and low temperature storage is considered simple and effective. Is effective in providing a roof to block sunlight and cooling with heat insulating material and water. In particular, in the case of indoor storage, it is said that air ventilation is improved and room cooling by an air conditioner is also good.

本発明は、かかる冷却保存の課題を解決するために為したものであって、地下水を水道用水とする施設において、水道用水を消毒するために注入する次亜塩素酸ナトリウム溶液を保存する場合に、その品質を保持する手段として、注入量に対し消毒処理する地下水が多量であって、かつ、水温が低いことに着目して、地下水を利用する次亜塩素酸ナトリウム溶液の保存方法及びその装置を提供することにある。   The present invention has been made to solve the problem of such cold storage, in the case of storing a sodium hypochlorite solution to be injected to disinfect tap water in a facility where groundwater is used as tap water. As a means of maintaining the quality, paying attention to the fact that the amount of groundwater to be sterilized relative to the injected amount is large and the water temperature is low, a method and apparatus for storing a sodium hypochlorite solution using groundwater Is to provide.

前記の目的を達成するために、水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法の発明は、汲み上げた地下水に次亜塩素酸ナトリウム溶液を注入して消毒する水道用水の処理において、水温14から17℃の該地下水を用いて注入用の次亜塩素酸ナトリウム溶液を間接的に冷却して20℃以下で冷却保存することにより、次亜塩素酸ナトリウム溶液中の有効塩素分の減少と塩素酸含有量の増加を抑制する。また、水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法の発明は、前記次亜塩素酸ナトリウム溶液を分割して複数の容器に収納し、夫々の該容器を前記地下水にて間接冷却する。 To achieve the above object, the invention of method of storing sodium hypochlorite solution added to water canal water, in the processing of tap water to be disinfected by injecting sodium hypochlorite solution into groundwater pumped, Reduction of effective chlorine content in sodium hypochlorite solution by indirectly cooling the sodium hypochlorite solution for injection using the ground water having a water temperature of 14 to 17 ° C and storing it at 20 ° C or lower. and that to suppress the increase of the chlorate content. The invention of method of storing sodium hypochlorite solution added to the waterworks water is pre-divides the KitsugiA sodium chlorate solution accommodated in a plurality of containers, indirect respectively of the container in the ground water you cooling.

地下水を汲み上げ水道用水として利用する場合に、消毒用として注入される次亜塩素酸ナトリウム溶液(以後、薬液とも称する。)の注入量を例えば100ppmとすれば、これに相当する地下水の量は薬注量の10,000倍になるので地下水の量が圧倒的に多く、また地下水は季節を通じて水温の変化が少なく、かつ水温が14〜17℃と、次亜塩素酸ナトリウム溶液の品質が変化しにくい保存温度とされる20℃よりも低いので、この地下水の水温とその量を貯蔵する次亜塩素酸ナトリウム溶液の間接冷却に活用する次亜塩素酸ナトリウム溶液の保存方法である。間接冷却にすると、薬液と冷却水が直接接触しないことになり、薬液の希釈や冷却水による汚染の問題がない。上記のように、次亜塩素酸ナトリウム溶液を20℃以下に冷却保存することにより、次亜塩素酸ナトリウム溶液中の有効塩素分の減少と塩素酸含有量の増加を抑制することができるので、水道用水の消毒に際して、注入有効塩素量を一定とすれば、水道用水への次亜塩素酸ナトリウム溶液の注入量が少なくて済むので、塩素酸含有量も少なくすることが可能となる。   When groundwater is pumped up and used as tap water, if the amount of sodium hypochlorite solution (hereinafter also referred to as chemical solution) injected for disinfection is 100 ppm, the amount of groundwater equivalent to this is The amount of groundwater is overwhelmingly large since it is 10,000 times the injection volume, and groundwater has little change in water temperature throughout the season, and the water temperature is 14 to 17 ° C, so the quality of the sodium hypochlorite solution changes. Since it is lower than 20 ° C., which is a difficult storage temperature, it is a storage method of a sodium hypochlorite solution that is used for indirect cooling of the sodium hypochlorite solution that stores the temperature and amount of the groundwater. When indirect cooling is used, the chemical solution and the cooling water are not in direct contact, and there is no problem of dilution of the chemical solution or contamination by the cooling water. As described above, by cooling and storing the sodium hypochlorite solution at 20 ° C. or lower, it is possible to suppress a decrease in effective chlorine content and an increase in chloric acid content in the sodium hypochlorite solution. If the amount of effective chlorine to be injected is made constant when disinfecting water for tap water, the amount of sodium hypochlorite solution injected into tap water can be small, so that the content of chloric acid can be reduced.

次亜塩素酸ナトリウム溶液は分解し易い物質であるため、冷却のための地下水と薬液の熱交換は、薬液の強制撹拌は分解を促進する恐れがあるために採用できず、自然対流及び伝熱による熱交換となる。この熱交換の効率を上げるために、保存容量に対する保存容器の熱伝達面積をできるだけ増加させる必要がある。これを実現する方法として、保存容器をn個に分割し、かつ結合する手段を採用した。この結果、総熱伝達面積は、分割しない場合に比し、n個に分割すれば√n倍になり、熱伝達に貢献することができる。さらに、分割した保存容器を夫々個別に配設することにより、地下水の水流が夫々の分割容器により乱されて接触するから熱伝達を促進すると考えられる。   Since sodium hypochlorite solution is a substance that can be easily decomposed, heat exchange between groundwater and chemicals for cooling cannot be adopted because forced stirring of chemicals may promote decomposition, and natural convection and heat transfer. It becomes heat exchange by. In order to increase the efficiency of this heat exchange, it is necessary to increase the heat transfer area of the storage container with respect to the storage capacity as much as possible. As a method for realizing this, means for dividing the storage container into n pieces and combining them was adopted. As a result, the total heat transfer area becomes √n times when divided into n, and can contribute to heat transfer, as compared with the case where the total heat transfer area is not divided. Further, it is considered that by arranging the divided storage containers individually, the heat transfer is promoted because the water flow of the groundwater is disturbed and brought into contact with each of the divided containers.

また、請求項に係わる水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置の発明は、次亜塩素酸ナトリウム溶液を水温14から17℃の地下水により間接冷却して保存する装置であって、該地下水を流出入させ、かつ、該地下水を満たしている外槽と、次亜塩素酸ナトリウム溶液を溜めて保存する複数で、かつ、該外槽内に夫々が相互に平面的に離間して配設した筒状の内槽と、から構成することを特徴とする。また、請求項に係わる水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置の発明は、請求項に記載の次亜塩素酸ナトリウム溶液の保存装置において、前記複数の筒状内槽の各上部を連通する上部連通部及び各下部を連通する下部連通部を設け、該上部連通部には注液管を接続して設け、また、該下部連通部には送液ポンプに連なる吐出管を接続して設けて構成することを特徴とする。また、請求項に係わる水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置の発明は、請求項又はに記載の次亜塩素酸ナトリウム溶液の保存装置において、前記筒状の内槽が、内面を耐食性の合成樹脂皮膜で被覆された金属製であることを特徴とする。 The invention of a storage device for sodium hypochlorite solution added to tap water according to claim 1 is a device for storing the sodium hypochlorite solution by indirectly cooling it with ground water at a water temperature of 14 to 17 ° C. A plurality of outer tanks that allow the groundwater to flow into and out of the tank and that stores and stores the sodium hypochlorite solution, and the outer tanks are spaced apart from each other in a plane. It is characterized by comprising a cylindrical inner tub arranged in the manner described above. The invention of a storage device for sodium hypochlorite solution added to tap water according to claim 2 is the storage device for sodium hypochlorite solution according to claim 1 , wherein the plurality of cylindrical inner tanks An upper communication part that communicates with each upper part and a lower communication part that communicates with each lower part are provided, a liquid injection pipe is connected to the upper communication part, and a discharge pipe that is connected to a liquid feed pump is provided at the lower communication part Are connected and provided. The invention of a storage device for sodium hypochlorite solution added to tap water according to claim 3 is the storage device for sodium hypochlorite solution according to claim 1 or 2 , wherein the tubular inner tank Is made of metal whose inner surface is coated with a corrosion-resistant synthetic resin film.

前述の水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法を具現化したものであって、水温14〜17℃の低温の地下水を利用して、次亜塩素酸ナトリウム溶液の貯蔵液を20℃以下に冷却することを目的としたもので、温度が上がると分解しやすい次亜塩素酸ナトリウム溶液を地下水で効率よく冷却することにより分解を抑制することを狙った設備である。その主たる点は、次亜塩素酸ナトリウム溶液は均熱のため、即ち温度勾配を無くして熱交換をよくするための強制攪拌が分解を進める恐れがあってできないので、容器表面から溶液へと通過する熱流を増加させるために、容器を分割して複数の容器とし、その総容器表面積を増加させたこと、容器自体を熱伝導の良い金属製としたこと(但し、次亜塩素酸ナトリウム溶液は腐食性が強いので、容器内面に耐食性の合成樹脂皮膜を設けたこと)、分割した各容器の溶液レベルを同一にするために、容器下部に連通部を設けたこと、また後入れ先出しを狙って、上部に連通部を設け、上部から溶液の補給注入は各容器に対して均一に供給され、かつ下部からはできるだけ均一に払い出しできるようにしたことである。また、分割した容器にすることで、容器内径が小さくなり、溶液温度の断面方向の均一化がやりやすい。また、地下水を流出入させる外槽は、基本的に下部から入れ、温くなった流出水は上部から出すこと、外槽に対して平面的に旋回流を起こすように入れること、流れが槽内でショートカットしないように整流板を設けたことにより、内槽と地下水流との接触を良好にして、地下水から溶液への熱交換を進めたことである。 Be those embodying saving method of sodium hypochlorite solution added to the above-mentioned water canal water, by using the groundwater cold water temperature 14 to 17 ° C., stock solution of sodium hypochlorite solution It aims at cooling to 20 ° C. or lower, and is a facility aimed at suppressing decomposition by efficiently cooling sodium hypochlorite solution, which is easily decomposed when the temperature rises, with groundwater. The main point is that sodium hypochlorite solution passes from the container surface to the solution because it is soaking, that is, forced stirring to eliminate heat gradient and improve heat exchange cannot proceed. In order to increase the heat flow, the container was divided into a plurality of containers, the total surface area of the container was increased, and the container itself was made of metal with good heat conduction (however, the sodium hypochlorite solution was Because it is highly corrosive, a corrosion-resistant synthetic resin film was provided on the inner surface of the container), and in order to make the solution level of each divided container the same, a communication part was provided at the bottom of the container, and the last-in first-out was aimed at In addition, a communication part is provided at the upper part, so that the replenishment / injection of the solution from the upper part is uniformly supplied to each container, and can be dispensed as uniformly as possible from the lower part. In addition, by using divided containers, the inner diameter of the container is reduced, and the solution temperature can be easily uniformed in the cross-sectional direction. In addition, the outer tub from which groundwater flows in and out is basically entered from the lower part, warm effluent water is taken out from the upper part, it is introduced so as to create a swirling flow in a plane with respect to the outer tub, By providing a flow straightening plate so as not to make a shortcut, the contact between the inner tub and the groundwater flow was improved, and the heat exchange from the groundwater to the solution was advanced.

請求項までの本発明装置によれば、消毒用次亜塩素酸ナトリウム溶液を数日分から一ヶ月超分まで貯蔵し保存する装置であって、外槽内に複数の筒状の次亜塩素酸ナトリウム溶液容器である内槽を夫々が相互に平面的に離間して配設したものである。また、各内槽は上部及び下部に相互に内槽を連通する連通部を設けているので、内槽への薬液の注入又は払い出しにおいて、各内槽の薬液高さを同一にすることができるし、また各内槽の注入量又は払出量を同じようにすることができる。また、外槽は内槽以外の部分に冷却用の地下水が満たされ、かつ地下水を外部から旋回流で流入させ、また整流板を設けて、地下水を淀みなく入れ替えるようにしている。被冷却対象である内槽は冷却水中に浸漬していると同時に、流出入する冷却水に表面を洗われて、内槽の槽璧を通じて熱交換を行い、地下水により次亜塩素酸ナトリウム溶液が効率よく冷却されることになる。 According to the apparatus of the present invention as set forth in claims 1 to 3 , an apparatus for storing and preserving a sodium hypochlorite solution for disinfection from several days to more than one month, wherein a plurality of cylindrical next The inner tanks, which are sodium chlorite solution containers, are arranged in a plane spaced from each other. In addition, since each inner tank is provided with a communication part that communicates the inner tank with each other at the upper part and the lower part, the chemical liquid height of each inner tank can be made the same when injecting or dispensing the chemical liquid into the inner tank. In addition, the injection amount or the discharge amount of each inner tank can be made the same. In addition, the outer tank is filled with groundwater for cooling in a portion other than the inner tank, and the groundwater is made to flow in from the outside in a swirling flow, and a rectifying plate is provided to replace the groundwater without stagnation. The inner tank to be cooled is immersed in the cooling water. At the same time, the surface is washed by the cooling water flowing in and out, heat exchange is performed through the inner wall of the inner tank, and the sodium hypochlorite solution is formed by the groundwater. It will be cooled efficiently.

本発明の水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法によれば、地下水の低温を活用して熱交換を行うことにより、次亜塩素酸ナトリウム溶液を分解が進みにくい温度に貯蔵・保存することができるから、次亜塩素酸ナトリウム溶液の有効塩素量が低減することを防止するとともに、塩素酸量の増加を防止することが可能となる。これにより、水道用水の有効塩素による消毒に際し、添加する次亜塩素酸ナトリウム溶液を徒に増加させる必要がなくなるので、塩素酸含有量の増加を少なくすることができ、有害な塩素酸量を水道の水質基準内に抑えることが容易にできる。また、本発明方法は簡易な方法であるから、容易に実施化することができる。 According to method of storing sodium hypochlorite solution added to the onset Ming waterworks water by performing heat exchange by utilizing the low temperature of groundwater, sodium hypochlorite solution decomposition proceeds hardly Temperature Since it can be stored and preserved, it is possible to prevent the amount of effective chlorine in the sodium hypochlorite solution from decreasing and to prevent an increase in the amount of chloric acid. This eliminates the need to increase the amount of sodium hypochlorite solution to be added when disinfecting with effective chlorine in tap water, so that the increase in chloric acid content can be reduced and the amount of harmful chloric acid can be reduced. It can be easily kept within the water quality standards. Further, since the method of the present invention is a simple method, it can be easily implemented.

また、請求項からの水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置によれば、低温の地下水を活用して次亜塩素酸ナトリウム溶液の貯蔵・保存温度を20℃以下に維持できる簡易な設備であるから、装置の設置費用も安価であり、また、運転も簡易で、自動化をし易く、省力的な設備である。また、保全費用も過大にならないと見込まれる。また、本発明装置は、次亜塩素酸ナトリウム溶液の貯蔵量、取扱い量の大小にかかわらず適用ができるので、汎用性がある。 Further, according to the storage device for sodium hypochlorite solution added to tap water according to claims 1 to 3 , the storage and storage temperature of the sodium hypochlorite solution is maintained at 20 ° C. or lower by utilizing low-temperature groundwater. Since it is a simple facility, the installation cost of the apparatus is low, the operation is simple, it is easy to automate, and it is a labor-saving facility. In addition, maintenance costs are not expected to be excessive. Further, the apparatus of the present invention can be applied regardless of the storage amount and handling amount of the sodium hypochlorite solution, and is therefore versatile.

以下、本発明の最良の実施形態を説明すると、図1は、本発明の最良の実施形態である水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法及びその装置の説明図であって、模式的フロー図である。また、図2は、本発明の最良の実施形態である水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置の説明図であって、(a)は、次亜塩素酸ナトリウム溶液の保存装置の模式的断面図、(b)は、A−A矢視断面図、(c)は、B−B矢視断面図である。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best embodiment of the present invention will be described. FIG. 1 is an explanatory view of a method and apparatus for storing a sodium hypochlorite solution added to tap water according to the best embodiment of the present invention, It is a typical flow diagram. FIG. 2 is an explanatory view of a storage device for a sodium hypochlorite solution added to tap water according to the best embodiment of the present invention. FIG. 2 (a) is a storage device for a sodium hypochlorite solution. (B) is an AA arrow directional cross-sectional view, (c) is a BB arrow directional cross-sectional view.

本発明に係る水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法及びその装置を用いる実施の形態を説明すると、図1に示すように、地下水を原水とする水道用水処理設備1であって、浅井戸又は深井戸10から汲み上げた水温14〜17℃の地下水を送水ポンプ10aにて地下水受槽11へ送る。地下水受槽11から送水ポンプ11aにて送水受槽12へ送水するが、その一部は分岐して次亜塩素酸ナトリウム溶液保存槽2の冷却用に経由した後、送水受槽12へ行く。送水受槽12から送水ポンプ12aにより水道水の需要先又は水道用水の最終処理設備へ送水するが、その途中の送水ポンプ12aの出口付近で、送水する水道用水に次亜塩素酸ナトリウム溶液保存槽2から所定注入量を送液ポンプ7により取り出して注入し消毒を行う。この注入システムは定法のものであり、送水量に対して所定比率で注入する注入比例制御を用いることができるので、特に図示しない。   Describing an embodiment of a method for storing a sodium hypochlorite solution added to tap water according to the present invention and an embodiment using the apparatus, as shown in FIG. 1, it is a tap water treatment facility 1 using groundwater as raw water. Then, groundwater with a water temperature of 14 to 17 ° C. pumped from the shallow well or deep well 10 is sent to the groundwater receiving tank 11 by the water pump 10a. Water is supplied from the groundwater receiving tank 11 to the water receiving tank 12 by the water supply pump 11 a, but a part of the water branches and passes through for cooling the sodium hypochlorite solution storage tank 2, and then goes to the water receiving tank 12. Water is supplied from the water receiving tank 12 to the destination of tap water or the final treatment facility of the water for the tap water by the water pump 12a, and the sodium hypochlorite solution storage tank 2 is added to the water for the water to be supplied near the outlet of the water pump 12a. Then, a predetermined injection amount is taken out by the liquid feed pump 7 and injected to disinfect. This injection system is a regular method, and since injection proportional control for injecting at a predetermined ratio with respect to the amount of water to be fed can be used, it is not particularly shown.

図2に基いて本発明に係る次亜塩素酸ナトリウム溶液の保存装置を説明すると、次亜塩素酸ナトリウム溶液保存槽2は円筒形の外槽3と、外槽3内に相互に間隔を持たせ、平面的に環状に配設された6本の円筒形の内槽4と、から主として構成される。例えば、水道用水300m3/日で、有効塩素として10ppm注入可能であるとすれば、1日当たり次亜塩素酸ナトリウム溶液(有効塩素10%)の注入量は30Lに相当し、20日分保存するとすれば600Lの保存槽が必要となる。これに見合う6本構成の内槽4は、内径400mm、高さ900mm位となる。(因みに1本構成の内槽4では内径1000mm、高さ900mm位となる。)外槽3は、内径1600mm、高さ1500mm程度になる。これらの数値は、あくまで例示であり、これらの数字に拘束されることはない。   Referring to FIG. 2, the sodium hypochlorite solution storage device according to the present invention will be described. The sodium hypochlorite solution storage tank 2 has a cylindrical outer tank 3 and a space between the outer tank 3 and each other. And six cylindrical inner tubs 4 arranged annularly in plan view. For example, if it is possible to inject 10 ppm as effective chlorine at 300 m3 / day for tap water, the injection amount of sodium hypochlorite solution (effective chlorine 10%) per day is equivalent to 30 L, and should be stored for 20 days. 600L storage tank is required. The six inner tubs 4 corresponding to this have an inner diameter of 400 mm and a height of about 900 mm. (Incidentally, the inner tank 4 having one structure has an inner diameter of 1000 mm and a height of about 900 mm.) The outer tank 3 has an inner diameter of 1600 mm and a height of about 1500 mm. These numerical values are merely examples, and are not restricted by these numbers.

前述した6本の内槽4の総表面積は、これらの内容量の合計に相当する1本の内槽の表面積に比し、約2.45倍(√6倍)になる。このように、同一の内容量であっても、1本の内槽の表面積に比し、N本分割した内槽の場合には、その総表面積は√N倍と大きくすることができる。内槽4の総表面積の拡大により内槽4の表面壁を挟んで、冷却用の地下水と槽内の溶液との熱交換量が増大することが可能となる。また、内槽4の内径を1本の内槽に比べ小さくすることができるので、内槽4の溶液2aの温度を断面方向において均一化しやすい。   The total surface area of the six inner tanks 4 described above is approximately 2.45 times (√6 times) the surface area of one inner tank corresponding to the total of these internal capacities. As described above, even in the case of the same internal volume, the total surface area can be increased to √N times in the case of an N-divided inner tank as compared with the surface area of one inner tank. The amount of heat exchange between the groundwater for cooling and the solution in the tank can be increased by sandwiching the surface wall of the inner tank 4 by increasing the total surface area of the inner tank 4. Moreover, since the inner diameter of the inner tank 4 can be made smaller than that of one inner tank, the temperature of the solution 2a in the inner tank 4 can be easily made uniform in the cross-sectional direction.

内槽4の材質は、熱交換の観点から熱伝導性の良い金属製であることが好ましい。内部の次亜塩素酸ナトリウム溶液2aは、酸化性、腐食性が高いので、金属はチタンが最適であるが、被加工性とコストの点からの問題がある。よって、鋼管製で、内面に耐食製の合成樹脂皮膜を施すのが好適である。合成樹脂としては、塩化ビニール、ポリ塩化ビニリデン、ポリエチレン、弗素樹脂等がよい。   The material of the inner tank 4 is preferably made of a metal having good thermal conductivity from the viewpoint of heat exchange. The internal sodium hypochlorite solution 2a is highly oxidative and corrosive, so titanium is the optimum metal, but there are problems in terms of workability and cost. Therefore, it is preferable to use a steel pipe and apply a corrosion-resistant synthetic resin film on the inner surface. As the synthetic resin, vinyl chloride, polyvinylidene chloride, polyethylene, fluorine resin, or the like is preferable.

また、6本の内槽4は、夫々の下部が下部連通部5と接続して、相互に連通される。下部連通部5の中央下部に送液ポンプ7が接続され、送液ポンプ7により溶液2aを抜き出して消毒用の注入に用いることができる。また、6本の内槽4は、夫々の上部が上部連通部6と接続して、相互に連通される。上部連通部6の中央上部に注液管8が接続され、注液管8にて次亜塩素酸ナトリウム溶液を補給し、各内槽4にほぼ均等に供給される。この上下連通部6,5は大径の皿状円筒で形成し、この円筒に内槽4の上下端を接続して連通する。これらの連通部5,6の存在により、溶液2aの補給又は抜出しを行っても、各内槽4の溶液レベル2aをほぼ同一に維持することができ、地下水3aによる冷却を均等に、偏りなく行うことができるので、溶液2aの温度が場所に関係なく同じようになり、局部的に液温が高い所が出現しないようにしている。   The six inner tanks 4 are connected to each other with their lower portions connected to the lower communication portion 5. A liquid feed pump 7 is connected to the lower center of the lower communication part 5, and the solution 2 a can be extracted by the liquid feed pump 7 and used for disinfection injection. The six inner tanks 4 are connected to each other with their upper portions connected to the upper communication portion 6. A liquid injection pipe 8 is connected to the central upper part of the upper communication part 6, and the sodium hypochlorite solution is replenished through the liquid injection pipe 8 and supplied to each inner tank 4 almost evenly. The upper and lower communication portions 6, 5 are formed of a large-diameter dished cylinder, and communicate with the cylinder by connecting the upper and lower ends of the inner tank 4. Due to the presence of these communicating portions 5 and 6, even if the solution 2a is replenished or extracted, the solution level 2a of each inner tank 4 can be maintained substantially the same, and the cooling by the groundwater 3a can be evenly and evenly distributed. Since it can be performed, the temperature of the solution 2a is the same regardless of the location, and the location where the liquid temperature is locally high is prevented from appearing.

外槽3は内部に冷却用の水温14〜17℃の地下水3dが充満しているもので、下部の地下水入口3aである配管は槽3に対して接線方向に接続されているので、流入した地下水流は平面的に旋回するように流れる。また、外槽3からの冷却排水は上部に設けられた地下水出口3bから溢流して流出し、送水受槽12へ行く。また、外槽3内には、高さ方向に3段の勾配のある違い棚状の整流板3cを設けている。これらにより、流入した地下水3dがショートカットして溢流することなく、内槽4の外表面を洗うように流れて効率よく冷却することができる。また、整流板3cは6本の内槽4を所定位置に固定する支持具として兼用できる。また、外槽3の天井部は日光や外気を遮断する球面状の覆いを設ける。また、外槽3の本体は鋼板製でも、合成樹脂製でもよく、鋼板製の場合は熱伝導性が良いので、外表面に断熱を施すのがよい。   The outer tub 3 is filled with ground water 3d having a cooling water temperature of 14 to 17 ° C., and the pipe serving as the lower ground water inlet 3a is connected to the tub 3 in a tangential direction. The groundwater flow flows in a plane. Further, the cooling drainage from the outer tub 3 overflows and flows out from the groundwater outlet 3 b provided in the upper part, and goes to the water supply / receiving tank 12. Further, in the outer tub 3, a difference shelf-shaped rectifying plate 3c having a three-stage gradient in the height direction is provided. As a result, the inflowing groundwater 3d can be efficiently cooled by flowing so as to wash the outer surface of the inner tank 4 without overflowing as a shortcut. Further, the current plate 3c can also be used as a support for fixing the six inner tanks 4 at predetermined positions. The ceiling of the outer tub 3 is provided with a spherical cover that blocks sunlight and outside air. Moreover, the main body of the outer tub 3 may be made of a steel plate or a synthetic resin, and in the case of a steel plate, heat conductivity is good. Therefore, it is preferable to insulate the outer surface.

次亜塩素酸ナトリウム溶液保存槽2の中に液温20℃以下で保存された次亜塩素酸ナトリウム溶液2aは、送液ポンプ7により抜き出されて、送水ポンプ12aからの水道用水に、送水ポンプ12a出口付近で所定量が注入されて、水道用水の消毒が行われる。図示していないが、送水ポンプ12aの送水量に対して所定比率が設定された溶液量に等しくなるように、送液ポンプ7からの液量を制御して注入する。これらの注入液量制御は、定法のもので、流量計と流量調節弁から構成する液量制御ループを用い、送水量の測定値に連動する設定比率を掛け合せた設定液量に等しくなるように注入量を制御するやり方で行うことができる。送液ポンプ7の一例として、モータ駆動のダイアフラム式でデジタル定量ポンプ(商品名、グルンドフォス社デジタル定量ポンプ)が吐出量のデジタル制御方式の適用で好適である。   The sodium hypochlorite solution 2a stored in the sodium hypochlorite solution storage tank 2 at a liquid temperature of 20 ° C. or lower is extracted by the liquid feed pump 7 and supplied to the tap water from the water feed pump 12a. A predetermined amount is injected in the vicinity of the outlet of the pump 12a to disinfect tap water. Although not shown, the amount of liquid from the liquid feed pump 7 is controlled and injected so that the predetermined ratio with respect to the amount of water fed by the water feed pump 12a is equal to the set amount of solution. These injection volume control is a regular method, using a liquid volume control loop composed of a flow meter and a flow control valve, so that it is equal to the set liquid volume multiplied by the set ratio linked to the measured value of the water supply volume. This can be done in a manner that controls the injection volume. As an example of the liquid feed pump 7, a motor-driven diaphragm type digital metering pump (trade name, Grundfos Digital Metering Pump) is suitable for application of a digital control system of discharge amount.

また、次亜塩素酸ナトリウム溶液保存槽2に保存されている溶液2aの温度を20℃以下の設定温度に保持する制御には、各内槽4の液温を測定して、設定液温になるように冷却の地下水3dの流量を入り切りするオンーオフ制御又は流量制御を用いることができる。   In order to maintain the temperature of the solution 2a stored in the sodium hypochlorite solution storage tank 2 at a set temperature of 20 ° C. or less, the liquid temperature of each inner tank 4 is measured and the set liquid temperature is set. On-off control or flow rate control that turns on and off the flow rate of the cooling groundwater 3d can be used.

本発明に係る水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法とその装置を用いて、水道用水を消毒する場合に、有効塩素量を多く必要とする際に、有効塩素濃度が12〜13%と高い溶液を注入するのが、注入量が少なくて済むので、水道用水中の塩素酸濃度を0.4mg/L以内の規制値に抑えやすい。この場合には、次亜塩素酸ナトリウム溶液に含有する塩素酸濃度を保存中に増加させないことが重要となる。   When disinfecting tap water using the method and apparatus for storing sodium hypochlorite solution added to tap water according to the present invention, when a large amount of effective chlorine is required, the effective chlorine concentration is 12 to Injecting a solution as high as 13% requires only a small amount of injection, so that the chloric acid concentration in tap water can be easily suppressed to a regulated value within 0.4 mg / L. In this case, it is important not to increase the concentration of chloric acid contained in the sodium hypochlorite solution during storage.

Figure 0005379399
Figure 0005379399

表1に示すように、次亜塩素酸ナトリウム溶液を保存温度20℃で保存すると、保存温度30℃の場合と比較して、経過日数とともに、減少傾向にある有効塩素濃度の低下を少なくすることが、また、低下に伴う塩素酸濃度の増加も極めて少なくすることができる。例えば、保存温度30℃の次亜塩素酸ナトリウム溶液であれば、経過日数とともに有効塩素濃度が低下するから、有効塩素量を一定量必要とする水道用水の消毒のためには、溶液の注入量をさらに増加させる必要があるが、一方では、それに伴う塩素酸濃度が水道用水中に過剰に増加し規制値を超える恐れがあり、結局、溶液の注入量を減らさざるを得ず、所期の消毒の目的が達せられないことになる。   As shown in Table 1, when the sodium hypochlorite solution is stored at a storage temperature of 20 ° C., the decrease in effective chlorine concentration that tends to decrease with the elapsed days is reduced as compared with the storage temperature of 30 ° C. However, the increase in the concentration of chloric acid accompanying the decrease can be extremely reduced. For example, in the case of a sodium hypochlorite solution with a storage temperature of 30 ° C., the effective chlorine concentration decreases with the number of days elapsed. Therefore, for the disinfection of tap water that requires a certain amount of effective chlorine, the amount of solution injected However, on the other hand, the chloric acid concentration accompanying it may increase excessively in the tap water and exceed the regulation value, and eventually the injection amount of the solution must be reduced. The purpose of disinfection will not be achieved.

これらの観点からも、本発明に係る水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法とその装置は、次亜塩素酸ナトリウム溶液を20℃以下に容易に確実に保存することができるので、水道用水の消毒作業により良い効果をもたらし、ひいては、有害な塩素酸濃度の増加を抑制できるので、好適である。   Also from these viewpoints, the method and apparatus for storing a sodium hypochlorite solution added to tap water according to the present invention can easily and reliably store the sodium hypochlorite solution at 20 ° C. or lower. It is preferable because it has a better effect on the disinfection work of tap water and can suppress an increase in harmful chloric acid concentration.

工業及び商業施設を問わず、住宅設備に於いても、水道用水の消毒用に注入する次亜塩素酸ナトリウム溶液に関する保存について広く利用することができる。   Regardless of industrial or commercial facilities, it can be widely used for storage related to sodium hypochlorite solution to be injected for disinfection of tap water even in residential facilities.

本発明の最良の実施形態である水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法及びその装置の説明図であって、模式的フロー図である。It is explanatory drawing of the preservation | save method of the sodium hypochlorite solution added to the water for tap water which is the best embodiment of this invention, and its apparatus, Comprising: It is a typical flowchart. 本発明の最良の実施形態である水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置の説明図であって、(a)は、次亜塩素酸ナトリウム溶液の保存装置の模式的断面図、(b)は、A−A矢視断面図、(c)は、B−B矢視断面図である。It is explanatory drawing of the preservation | save apparatus of the sodium hypochlorite solution added to the tap water which is the best embodiment of this invention, Comprising: (a) is typical sectional drawing of the preservation | save apparatus of a sodium hypochlorite solution, (B) is AA arrow sectional drawing, (c) is BB arrow sectional drawing. 従来の水道用水へ添加する次亜塩素酸ナトリウム溶液の保存方法及びその装置。の説明図であって、模式的フロー図である。A method and apparatus for storing a sodium hypochlorite solution added to conventional tap water. It is explanatory drawing of this, Comprising: It is a typical flowchart.

符号の説明Explanation of symbols

1:水道用水処理設備 2:次亜塩素酸ナトリウム溶液保存槽 2a:溶液
3:外槽 3a:地下水入口 3b:地下水出口 3c:整流板
3d:地下水 4:内槽 5;下部連通部 6:上部連通部
7:送液ポンプ 8:注液管
10:井戸 10a:送水ポンプ 11:地下水受槽 11a:送水ポンプ
12:送水受槽 12a:送水ポンプ
1: Water treatment facility for tap water 2: Sodium hypochlorite solution storage tank 2a: Solution 3: Outer tank 3a: Groundwater inlet 3b: Groundwater outlet 3c: Rectifier 3d: Groundwater 4: Inner tank 5: Lower communication part 6: Upper part Communication part 7: Liquid feed pump 8: Injection pipe
10: Well 10a: Water pump 11: Groundwater receiving tank 11a: Water pump 12: Water receiving tank 12a: Water pump

Claims (3)

汲み上げた地下水に次亜塩素酸ナトリウム溶液を注入して消毒する水道用水の処理において、次亜塩素酸ナトリウム溶液を水温14から17℃の地下水により間接冷却して保存する装置であって、該地下水を流出入させ、かつ、該地下水を満たしている外槽と、次亜塩素酸ナトリウム溶液を溜めて保存する複数で、かつ、該外槽内に夫々が相互に平面的に離間して配設した筒状の内槽と、から構成することを特徴とする水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置In the processing of tap water to be disinfected by injecting sodium hypochlorite solution into groundwater pumped, a device for storing and indirect cooling by groundwater of the sodium hypochlorite solution from the water temperature 14 17 ° C., the A plurality of outer tanks that allow groundwater to flow into and out of the tank and that stores and stores the sodium hypochlorite solution, and that are spaced apart from each other in a plane. A storage device for a sodium hypochlorite solution to be added to tap water, comprising a cylindrical inner tank provided . 前記複数の筒状内槽の各上部を連通する上部連通部及び各下部を連通する下部連通部を設け、該上部連通部には注液管を接続して設け、また、該下部連通部には送液ポンプに連なる吐出管を接続して設けて構成することを特徴とする請求項1に記載の水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置 An upper communication part that communicates each upper part of the plurality of cylindrical inner tanks and a lower communication part that communicates each lower part are provided, and a liquid injection pipe is connected to the upper communication part. 2. A storage device for a sodium hypochlorite solution added to tap water according to claim 1 , wherein a discharge pipe connected to a liquid feed pump is connected and provided . 前記筒状の内槽が、内面を耐食性の合成樹脂皮膜で被覆された金属製であることを特徴とする請求項1又は2に記載の水道用水へ添加する次亜塩素酸ナトリウム溶液の保存装置。 The apparatus for storing a sodium hypochlorite solution added to tap water according to claim 1 or 2, wherein the cylindrical inner tank is made of metal whose inner surface is coated with a corrosion-resistant synthetic resin film. .
JP2008114036A 2008-04-24 2008-04-24 Storage device for sodium hypochlorite solution added to tap water Active JP5379399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114036A JP5379399B2 (en) 2008-04-24 2008-04-24 Storage device for sodium hypochlorite solution added to tap water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114036A JP5379399B2 (en) 2008-04-24 2008-04-24 Storage device for sodium hypochlorite solution added to tap water

Publications (2)

Publication Number Publication Date
JP2009263161A JP2009263161A (en) 2009-11-12
JP5379399B2 true JP5379399B2 (en) 2013-12-25

Family

ID=41389506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114036A Active JP5379399B2 (en) 2008-04-24 2008-04-24 Storage device for sodium hypochlorite solution added to tap water

Country Status (1)

Country Link
JP (1) JP5379399B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096624A (en) * 2011-10-31 2013-05-20 Sumiju Kankyo Engineering Kk Cooling device of chemical for water treatment
KR101530374B1 (en) * 2012-07-24 2015-06-22 (주) 테크윈 A storage apparatus of sodium hypochlorite
JP6231140B2 (en) * 2016-02-17 2017-11-15 住友重機械エンバイロメント株式会社 Manufacturing method of water treatment chemical cooling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422549A (en) * 1987-07-17 1989-01-25 Fujimori Kogyo Co Container for sodium hypochlorite solution
JPH01164701A (en) * 1987-12-18 1989-06-28 Chiyoda Kagaku Kenkyusho:Kk Method for stabilizing aqueous sodium hypochlorite solution
JP2910493B2 (en) * 1993-04-05 1999-06-23 ダイソー株式会社 Stabilization method of sodium hypochlorite solution
JPH08158086A (en) * 1994-10-06 1996-06-18 Mitsubishi Heavy Ind Ltd Salt water electrolytic cell
JPH10110978A (en) * 1996-10-01 1998-04-28 Box:Kk Air conditioning method and air conditioner

Also Published As

Publication number Publication date
JP2009263161A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CA2847966C (en) Methods and stabilized compositions for reducing deposits in water systems
JP5237913B2 (en) Preparation method of molecular hypochlorous acid solution by ion exchange and molecular hypochlorous acid solution
JP6775522B2 (en) Underwater biocide reactor and method
US20170348449A1 (en) Method of disinfecting a thermal control unit
EP2231529B1 (en) Apparatus and method for disinfecting water
CA1324942C (en) Method for the control of biofouling in recirculating water systems
JP5379399B2 (en) Storage device for sodium hypochlorite solution added to tap water
US20130284649A1 (en) Advanced on-site water sanitization system having chlorine generation integrated with copper/silver ionization
US20170314150A1 (en) Aiding device and system for stably producing food-grade chlorine dioxide solution with high purity
JP5758099B2 (en) Hypochlorous acid water production apparatus and production method
MX2014013345A (en) Device and method for producing aqueous chlorine dioxide solutions, and storage units and kits for corresponding usage.
JP2021154288A (en) Sewage treatment system and sewage treatment method
US8940158B2 (en) System and method for chlorine generation and distribution
JP4299012B2 (en) Chlorine dioxide water production apparatus, production method, and sterilization apparatus
JP5750510B2 (en) Electrolyzed water production equipment
US20240317614A1 (en) Chemical reactor systems and methods for generating chlorine dioxide
Musz-Pomorska et al. Modelling studies of water chlorination efficiency in municipal water supply network
JP7019340B2 (en) Grout equipment and cooling tower equipment
JP3144878U (en) Sodium hypochlorite bath
CN211620629U (en) System for generating hypochlorous acid
US20150125551A1 (en) Method and apparatus for making stable acidic chlorinated solutions
JP2570532B2 (en) Large-diameter pipe without dead water
JP2006083056A (en) Method for preparing chlorine dioxide water
JP2570528B2 (en) Large-diameter pipe without dead water
JP2006232687A (en) Biofilm formation inhibitor in circulating water system and method of inhibiting formation of biofilm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250