JP5376798B2 - Roller bearing cage and design method thereof - Google Patents

Roller bearing cage and design method thereof Download PDF

Info

Publication number
JP5376798B2
JP5376798B2 JP2007326948A JP2007326948A JP5376798B2 JP 5376798 B2 JP5376798 B2 JP 5376798B2 JP 2007326948 A JP2007326948 A JP 2007326948A JP 2007326948 A JP2007326948 A JP 2007326948A JP 5376798 B2 JP5376798 B2 JP 5376798B2
Authority
JP
Japan
Prior art keywords
cage
width dimension
outer diameter
oil film
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007326948A
Other languages
Japanese (ja)
Other versions
JP2009150434A (en
Inventor
哲人 石井
則秀 佐藤
智也 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007326948A priority Critical patent/JP5376798B2/en
Publication of JP2009150434A publication Critical patent/JP2009150434A/en
Application granted granted Critical
Publication of JP5376798B2 publication Critical patent/JP5376798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retainer for a rolling bearing capable of reducing the friction and wear of the retainer and a race, and increasing an applicable operation limit by setting the width dimension of a retainer outer diameter excluding pocket width and improving a lubrication state on a retainer outer diameter surface and a race inner diameter surface. <P>SOLUTION: The minimum oil film thickness h balanced with an obtained contact force is obtain based on a fluid lubrication theory. A combined surface roughness &sigma; of the retainer outer diameter surface 11A and an outer race 14 facing the retainer outer diameter surface 11A is obtained. The minimum width dimension b<SB>1</SB>making the minimum oil film thickness h equal to the combined surface roughness &sigma; is obtained. The width dimension b of a cylindrical surface is set not smaller than the minimum width dimension b<SB>1</SB>. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、コンロッド大端部で使用される転がり軸受の保持器およびその設計方法に関する。   The present invention relates to a rolling bearing retainer used at a connecting rod large end and a design method thereof.

転がり軸受の保持器案内形式には、ボールまたはころからなる転動体で案内する転動体案内方式、内輪または外輪で案内する軌道輪案内方式がある。軌道輪案内方式では、保持器と軌道輪は滑り接触している。この軌道輪案内方式において、遠心力等によって保持器が軌道輪に強く押し付けられる場合、十分な油膜が形成されず、保持器および軌道輪の接触部が摩耗し、不具合を生じることがある。この対策として、例えば保持器の一部に油溜まりを設け、接触部に十分な潤滑油を供給する技術が提案されている(例えば、特許文献1参照)。
特開平7−167135号公報 村木・木村 潤滑油のトラクション特性に関する研究(第2報),潤滑,28,10(1983)753-760. R. S. Zhou and M. R. Hoeprich Torque of Tapered Roller Bearings, Trans. ASME, J. Trib., 113, 7(1991) 590. 山本・兼田 トライボロジー ,理工学社(1998) 88 橋本 基礎から学ぶトライボロジー ,森北出版(2006) 94 日本規格協会 JISハンドブック 機械要素,日本規格協会(1997)1165-1166 村木・木村 潤滑油のトラクション特性に関する研究(第1報),潤滑,28,1(1983)67-73
Roller bearing cage guide types include a rolling element guide system that guides with rolling elements made of balls or rollers, and a raceway guide system that guides with an inner ring or an outer ring. In the raceway guide system, the cage and the raceway are in sliding contact. In this raceway guide system, when the cage is strongly pressed against the raceway due to centrifugal force or the like, a sufficient oil film is not formed, and the contact portion between the cage and raceway may be worn, resulting in a malfunction. As a countermeasure, for example, a technique has been proposed in which an oil reservoir is provided in a part of the cage and sufficient lubricating oil is supplied to the contact portion (see, for example, Patent Document 1).
JP 7-167135 A Muraki and Kimura Study on traction characteristics of lubricating oil (2nd report), Lubrication, 28, 10 (1983) 753-760. RS Zhou and MR Hoeprich Torque of Tapered Roller Bearings, Trans. ASME, J. Trib., 113, 7 (1991) 590. Yamamoto / Kaneda Tribology, Science and Technology (1998) 88 Hashimoto Tribology Learned from Fundamentals, Morikita Publishing (2006) 94 Japanese Standards Association JIS Handbook Machine Element, Japanese Standards Association (1997) 1165-1166 Muraki and Kimura Study on traction characteristics of lubricating oil (1st report), Lubrication, 28, 1 (1983) 67-73

前記軌道輪案内方式では、保持器の一部に油溜まりを設けたものであっても、遠心力等によって保持器が軌道輪に強く押し付けられる場合、十分な油膜が形成されず、保持器および軌道輪の接触部が摩耗し、不具合を生じることがある。   In the raceway guide system, even if an oil reservoir is provided in a part of the cage, when the cage is strongly pressed against the raceway by centrifugal force or the like, a sufficient oil film is not formed, and the cage and The contact part of the bearing ring may be worn out, resulting in a malfunction.

この発明の目的は、保持器外径面のうちポケット幅を除く幅寸法を設定し、保持器外径面と軌道輪内径面の潤滑状態を向上することで、保持器および軌道輪の摩擦および摩耗を低減でき、かつ適用可能な運転限界の向上を図ることが可能な転がり軸受の保持器およびその設計方法を提供することである。   An object of the present invention is to set the width dimension excluding the pocket width of the outer diameter surface of the cage, and improve the lubrication state between the outer diameter surface of the cage and the inner surface of the raceway ring, thereby improving the friction between the cage and the raceway ring. It is an object of the present invention to provide a rolling bearing retainer capable of reducing wear and improving an applicable operation limit, and a design method thereof.

この発明の転がり軸受の保持器は、コンロッド大端に組み込まれる転がり軸受の保持器であって、転動体を保持する複数のポケットを有する略円筒状に形成された保持器において、この略円筒状の保持器外径面のうち前記ポケットの保持器軸方向両側に形成された、周方向に連続した円筒面の片側の幅寸法をbとし、前記円筒面と、この円筒面に対峙する外輪軌道面との間の最小油膜厚さをhとし、前記保持器外径面と外輪軌道面との間の接触力を式(1)で定義し、
この式(1)で求めた接触力と釣り合う最小油膜厚さhを、流体潤滑理論に基づく次式(1a)を用いて、接触力Fと油膜力Wの値を等価として求め、
ここで、η は粘度,Pa・s、N’は軸回転数,rps、Lは軸受幅,m、cは半径すきま,m、Rは軸受半径,mを表し、
前記保持器外径面と、この保持器外径面に対峙する外輪軌道面との合成表面粗さσを求め、
前記最小油膜厚さhとクランク軸の回転速度との関係を式(2)で表し、
前記式(2)において、前記最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bである最小幅寸法b1を求め、前記円筒面の幅寸法bを、最小幅寸法b1以上に設定したものである。
前記合成表面粗さとは、保持器外径面の二乗平均表面粗さ(Rq)を二乗した値に、外輪軌道面の二乗平均表面粗さ(Rq)に二乗した値を加えた合計値を求め、この合計値の平方根をとり算出した粗さと同義である。
A rolling bearing cage of the present invention is a rolling bearing cage incorporated at the connecting rod large end, and is a substantially cylindrical shape having a plurality of pockets for holding rolling elements. The width dimension of one side of the cylindrical surface continuous in the circumferential direction formed on both sides in the cage axial direction of the pocket among the outer diameter surfaces of the cage is b, and the outer ring raceway facing the cylindrical surface and the cylindrical surface The minimum oil film thickness between the surface and h is defined as h, and the contact force between the outer diameter surface of the cage and the outer ring raceway surface is defined by equation (1),
Using the following equation (1a) based on the fluid lubrication theory, the value of the contact force F and the oil film force W is obtained as equivalent values by using the following equation (1a) based on the fluid lubrication theory,
Where η is the viscosity, Pa · s, N ′ is the shaft speed, rps, L is the bearing width, m, c is the radial clearance, m, R is the bearing radius, m,
Obtain the combined surface roughness σ of the outer diameter surface of the cage and the outer ring raceway surface facing the outer diameter surface of the cage,
The relationship between the minimum oil film thickness h and the rotational speed of the crankshaft is expressed by equation (2),
In the formula (2), when the minimum oil film thickness h is equal to the synthetic surface roughness σ between the outer diameter surface of the cage and the outer raceway surface facing the outer diameter surface of the cage, the width dimension b The minimum width dimension b 1 is obtained, and the width dimension b of the cylindrical surface is set to be equal to or greater than the minimum width dimension b 1 .
The synthetic surface roughness is a total value obtained by adding a value obtained by squaring the root mean square surface roughness (Rq) of the outer ring raceway surface to the square mean surface roughness (Rq) of the outer ring raceway surface. This is synonymous with the roughness calculated by taking the square root of the total value.

この構成によると、最小油膜厚さhを求め、この最小油膜厚さhが合成表面粗さσに等しくなる最小幅寸法b1を求め、この最小幅寸法b1を円筒面の幅寸法bの下限値に設定したため、油膜形成性が向上し、保持器および軌道輪の摩耗を抑え、軸受の長寿命化を図ることができる。すなわち、最小油膜厚さhを合成表面粗さσで除した値が1より小さくなる条件、つまりh/σ<1で摩耗量が急増するという村木らの報告(非特許文献1参照)を基に、1≦h/σとなるように設定した。また、従来の保持器の一部に油溜まりを設けた場合よりも、保持器の構成を簡単化し、かつ設計の自由度を高めることができる。したがって、製造コストの低減を図ることができる。 According to this configuration, determining the minimum oil film thickness h, determining the minimum width b 1 of the minimum oil film thickness h is equal to the synthetic surface roughness sigma, the width b of the cylindrical surface of the minimum width b 1 Since the lower limit is set, the oil film forming property is improved, the wear of the cage and the bearing ring can be suppressed, and the life of the bearing can be extended. That is, based on a report by Muraki et al. (See Non-Patent Document 1) that the amount of wear rapidly increases when the value obtained by dividing the minimum oil film thickness h by the synthetic surface roughness σ is smaller than 1, that is, h / σ <1. And 1 ≦ h / σ. Further, the structure of the cage can be simplified and the degree of freedom in design can be increased as compared with the case where an oil sump is provided in a part of the conventional cage. Therefore, the manufacturing cost can be reduced.

この発明において、前記最小油膜厚さhと保持器外径の片側の幅寸法bとの関係を表す前記式(2)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bを最小幅寸法bmin.とし、前記式(2)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσの3倍となる場合の幅寸法bを最大幅寸法bmax.とし、前記円筒面の幅寸法bを、最小幅寸法bmin.以上最大幅寸法bmax.以下に設定しても良い。 In this inventions, in the formula representing the relation between the width b of one side of the cage outer diameter as the previous SL minimum oil film thickness h (2), the minimum oil film thickness h is, and the cage outer diameter surface this The width dimension b when the outer ring raceway surface facing the cage outer diameter surface is equal to the composite surface roughness σ is defined as the minimum width dimension bmin. In the above formula (2), the minimum oil film thickness h is the width b of the case where the cage outer diameter surface and three times the combined surface roughness σ of the outer ring raceway surface that faces to the cage outer diameter surface and the maximum width bmax., the width of the front Symbol cylindrical surface The dimension b may be set to be not less than the minimum width dimension bmin. And not more than the maximum width dimension bmax .

この構成によると、上記式(2)では、円筒面の幅寸法bが最小油膜厚さhの陰関数の形で表現されている。最小油膜厚さhに対して陽関数の形で表現することができないため、特定の条件下の最小油膜厚さhを求めるには、収束計算をする必要があるが、例えば数値計算プログラム等により油膜圧力を計算するよりも、最小油膜厚さhを容易に推定することができる。また、最小油膜厚さhが、前記合成表面粗さσに等しくなる最小幅寸法bmin.を求め、この最小幅寸法bmin.を円筒面の幅寸法の下限値に設定したため、油膜形成性が向上し、保持器および軌道輪の摩耗を抑え、軸受の長寿命化を図ることができる。
ここで、1≦h/σ≦3において、h/σが大きくなるほど摩耗量は低減するが、3<h/σにおいて摩耗量は殆んど変化しない。幅寸法bを増やすと、ころ長さが減少し軸受の負荷容量が低下する。3<h/σにおいては、摩耗量低減のメリットは無く、負荷容量低下のデメリットしかないため、最小油膜厚さhが、前記合成表面粗さσの3倍となる最大幅寸法bmax.を求め、この最大幅寸法bmax.を円筒面の幅寸法の上限値に設定した。その他第1の発明と同様の作用、効果を奏する。
According to this configuration, in the above equation (2), the width dimension b of the cylindrical surface is expressed in the form of an implicit function of the minimum oil film thickness h. Since it cannot be expressed in the form of an explicit function with respect to the minimum oil film thickness h, it is necessary to perform convergence calculation in order to obtain the minimum oil film thickness h under specific conditions. Rather than calculating the oil film pressure, the minimum oil film thickness h can be estimated easily. Further, since the minimum width dimension bmin. In which the minimum oil film thickness h is equal to the synthetic surface roughness σ is obtained, and this minimum width dimension bmin. Is set as the lower limit value of the width dimension of the cylindrical surface, the oil film forming property is improved. In addition, the wear of the cage and the bearing ring can be suppressed, and the life of the bearing can be extended.
Here, when 1 ≦ h / σ ≦ 3, the wear amount decreases as h / σ increases, but the wear amount hardly changes when 3 <h / σ. When the width dimension b is increased, the roller length decreases and the load capacity of the bearing decreases. When 3 <h / σ, there is no merit in reducing the amount of wear and there is only a demerit in reducing the load capacity. Therefore, the maximum width dimension bmax. Where the minimum oil film thickness h is three times the synthetic surface roughness σ is obtained. The maximum width dimension bmax. Was set to the upper limit value of the width dimension of the cylindrical surface. Other operations and effects similar to those of the first invention are provided.

前記保持器をアキシアル平面で切断して視た断面が、略門形または略M字形であっても良い。前記略門形の断面形状にした場合、柱強度に優れ且つころ落ちしない保持器を実現できる。前記略M字形の断面形状にした場合、形状を簡単化でき、且つころ落ちしない保持器を実現できる。   The cross section of the cage viewed by cutting along an axial plane may be substantially gate-shaped or substantially M-shaped. When the substantially gate-shaped cross-sectional shape is used, a cage that has excellent column strength and does not fall off can be realized. When the substantially M-shaped cross-sectional shape is used, the shape can be simplified and a cage that does not fall off can be realized.

プレス加工により、リング状部材にポケットを打ち抜き製作される保持器としても良い。プレス加工により、帯状部材にポケットを打ち抜き、この帯状部材の長手方向一端部と他端部とを対向させてリング状に丸め、前記長手方向一端部と他端部とを溶接接合して製作される保持器としても良い。これらの場合、保持器の製造コストの低減を図ることができる。なお、保持器外径面の仕上げ工程では、研削加工を用いても良い。   It is good also as a holder | retainer by which a pocket is punched and manufactured by a press process. It is manufactured by punching a pocket in a band-shaped member by pressing, rounding it into a ring shape with one end and the other end in the longitudinal direction facing each other, and welding and joining the one end and the other end in the longitudinal direction. It is good also as a cage. In these cases, the manufacturing cost of the cage can be reduced. In the finishing process of the outer diameter surface of the cage, grinding may be used.

保持器の少なくとも前記円筒面に、軟質金属めっき処理または樹脂被膜処理を施しても良い。軟質金属としては、銀や銅などがよく用いられる。樹脂被膜としは、ポリアミドイミドなどが耐熱性や耐摩耗性の点で好ましい。前記円筒面に、軟質金属めっき処理または樹脂被膜処理を施した場合、保持器外径面と外輪軌道面間のなじみ性(表面粗さの改善性)に優れるため、保持器外径部の摩耗が問題になるようなアプリケーションでは特に有効である。   At least the cylindrical surface of the cage may be subjected to soft metal plating treatment or resin coating treatment. As the soft metal, silver or copper is often used. As the resin film, polyamideimide or the like is preferable in terms of heat resistance and wear resistance. When the cylindrical surface is subjected to a soft metal plating treatment or a resin coating treatment, it has excellent conformability between the outer diameter surface of the cage and the outer raceway surface (improvement of surface roughness). This is especially effective in applications where this is a problem.

この発明の保持器の設計方法は、転動体を保持する複数のポケットを有する略円筒状に形成され、クランク運動する保持器の設計方法において、この略円筒状の保持器外径面のうち、前記ポケットの保持器軸方向両側に形成された、周方向に連続した円筒面の片側の幅寸法をbとし、前記円筒面と、この円筒面に対峙する外輪軌道面との間の最小油膜厚さをhとし、前記最小油膜厚さhと、クランク半径rcrおよびクランク角速度wcrとの関係を式(3)で表し、
前記最小油膜厚さhを式(3)に基づき求める過程と、前記保持器外径面と、この保持器外径面に対峙する外輪軌道面との合成表面粗さσを求める過程と、前記最小油膜厚さhと保持器外径の片側の幅寸法bとの関係を表す上記式(3)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bを最小幅寸法bmin.とし、上記式(3)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσの3倍となる場合の幅寸法bを最大幅寸法bmax.とする過程と、前記円筒面の幅寸法bを、最小幅寸法bmin.以上最大幅寸法bmax.以下に設定し、これら最小幅寸法bmin.および最大幅寸法bmax.を出力する過程とを有するものである。
The cage design method of the present invention is formed in a substantially cylindrical shape having a plurality of pockets for holding rolling elements, and in the cage design method for crank motion, among the substantially cylindrical cage outer diameter surfaces, The minimum oil film thickness between the cylindrical surface and the outer ring raceway surface facing the cylindrical surface is defined as b, where b is a width dimension on one side of the circumferentially continuous cylindrical surface formed on both sides of the pocket in the cage axial direction. And the relationship between the minimum oil film thickness h, the crank radius r cr and the crank angular velocity w cr is expressed by equation (3),
A step of obtaining the minimum oil film thickness h based on the formula (3), a step of obtaining a composite surface roughness σ of the cage outer diameter surface and an outer ring raceway surface facing the cage outer diameter surface , in the above following formula (3) representing the relation between the width b of one side of the minimum oil film thickness h and the retainer outer diameter, the minimum oil film thickness h is, the cage outer diameter surface and the cage outer diameter surface the minimum width dimension the width b of the case before Symbol synthetic surface ing equal to roughness σ of the outer ring raceway surface facing the bmin. and then, in the above formula (3), the minimum oil film thickness h is, the retainer the method comprising the width b of the case where the outer diameter surface and ing tripled before Symbol synthetic surface roughness σ of the outer ring raceway surface that faces to the cage outer diameter surface and the maximum width bmax., said cylindrical surface The width dimension b is set to be not less than the minimum width dimension bmin. And not more than the maximum width dimension bmax., And the minimum width dimension bmin. And the maximum width dimension bmax. Those having.

この構成によると、特に、式(3)に基づき求めた最小油膜厚さhが、前記合成表面粗さσに等しくなる最小幅寸法bmin.を求め、上記式(3)に基づき求めた最小油膜厚さhが、前記合成表面粗さσの3倍となる最大幅寸法bmax.を求めて、円筒面の幅寸法の下限値および上限値を設定したため、油膜形成性が向上し、保持器および軌道輪の摩耗を抑え、軸受の長寿命化を図ることができ、かつ軸受の負荷容量の低下を最小に抑えることができる。その他第1,第2の発明と同様の作用、効果を奏する。   According to this configuration, in particular, the minimum oil film thickness h determined based on the formula (3) is determined to obtain the minimum width dimension bmin. That is equal to the synthetic surface roughness σ, and the minimum oil film determined based on the formula (3) above. Since the maximum width dimension bmax. In which the thickness h is three times the synthetic surface roughness σ was determined and the lower limit value and the upper limit value of the width dimension of the cylindrical surface were set, the oil film forming property was improved, The wear of the bearing ring can be suppressed, the bearing life can be extended, and the load capacity of the bearing can be minimized. In addition, the same operations and effects as the first and second inventions are exhibited.

この発明の転がり軸受の保持器は、コンロッド大端に組み込まれる転がり軸受の保持器であって、転動体を保持する複数のポケットを有する略円筒状に形成された保持器において、この略円筒状の保持器外径面のうち前記ポケットの保持器軸方向両側に形成された、周方向に連続した円筒面の片側の幅寸法をbとし、前記円筒面と、この円筒面に対峙する外輪軌道面との間の最小油膜厚さをhとし、前記保持器外径面と外輪軌道面との間の接触力を式(1)で定義し、
この式(1)で求めた接触力と釣り合う最小油膜厚さhを、流体潤滑理論に基づく次式(1a)を用いて、接触力Fと油膜力Wの値を等価として求め、
ここで、η は粘度,Pa・s、N’は軸回転数,rps、Lは軸受幅,m、cは半径すきま,m、Rは軸受半径,mを表し、
前記保持器外径面と、この保持器外径面に対峙する外輪軌道面との合成表面粗さσを求め、
前記最小油膜厚さhとクランク軸の回転速度との関係を式(2)で表し、
前記式(2)において、前記最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bである最小幅寸法b1を求め、前記円筒面の幅寸法bを、最小幅寸法b1以上に設定し、保持器外径面と軌道輪内径面の潤滑状態を向上することで、保持器および軌道輪の摩擦および摩耗を低減でき、かつ適用可能な運転限界の向上を図ることができる。
A rolling bearing cage of the present invention is a rolling bearing cage incorporated at the connecting rod large end, and is a substantially cylindrical shape having a plurality of pockets for holding rolling elements. The width dimension of one side of the cylindrical surface continuous in the circumferential direction formed on both sides in the cage axial direction of the pocket among the outer diameter surfaces of the cage is b, and the outer ring raceway facing the cylindrical surface and the cylindrical surface The minimum oil film thickness between the surface and h is defined as h, and the contact force between the outer diameter surface of the cage and the outer ring raceway surface is defined by equation (1),
Using the following equation (1a) based on the fluid lubrication theory, the value of the contact force F and the oil film force W is obtained as equivalent values by using the following equation (1a) based on the fluid lubrication theory,
Where η is the viscosity, Pa · s, N ′ is the shaft speed, rps, L is the bearing width, m, c is the radial clearance, m, R is the bearing radius, m,
Obtain the combined surface roughness σ of the outer diameter surface of the cage and the outer ring raceway surface facing the outer diameter surface of the cage,
The relationship between the minimum oil film thickness h and the rotational speed of the crankshaft is expressed by equation (2),
In the formula (2), when the minimum oil film thickness h is equal to the synthetic surface roughness σ between the outer diameter surface of the cage and the outer raceway surface facing the outer diameter surface of the cage, the width dimension b The minimum width dimension b 1 is determined, the width dimension b of the cylindrical surface is set to be equal to or greater than the minimum width dimension b 1 , and the lubrication state of the outer diameter surface of the cage and the inner diameter surface of the bearing ring is improved. In addition, the friction and wear of the bearing ring can be reduced, and the applicable operating limit can be improved.

この発明の保持器の設計方法は、転動体を保持する複数のポケットを有する略円筒状に形成され、クランク運動する保持器の設計方法において、この略円筒状の保持器外径面のうち、前記ポケットの保持器軸方向両側に形成された、周方向に連続した円筒面の片側の幅寸法をbとし、前記円筒面と、この円筒面に対峙する外輪軌道面との間の最小油膜厚さをhとし、前記最小油膜厚さhと、クランク半径rcrおよびクランク角速度ωcrとの関係を式(3)で表し、
前記最小油膜厚さhを式(3)に基づき求める過程と、前記保持器外径面と、この保持器外径面に対峙する外輪軌道面との合成表面粗さσを求める過程と、前記最小油膜厚さhと保持器外径の片側の幅寸法bとの関係を表す上記式(3)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bを最小幅寸法bmin.とし、上記式(3)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσの3倍となる場合の幅寸法bを最大幅寸法bmax.とする過程と、前記円筒面の幅寸法bを、最小幅寸法bmin.以上最大幅寸法bmax.以下に設定し、これら最小幅寸法bmin.および最大幅寸法bmax.を出力する過程とを有するため、保持器外径面のうちポケット幅を除く幅寸法を設定し、軸受の負荷容量の低下を抑えつつ、保持器外径面と軌道輪内径面の潤滑状態を向上することで、保持器および軌道輪の摩擦および摩耗を低減でき、かつ適用可能な運転限界の向上を図ることが可能となる。
The cage design method of the present invention is formed in a substantially cylindrical shape having a plurality of pockets for holding rolling elements, and in the cage design method for crank motion, among the substantially cylindrical cage outer diameter surfaces, The minimum oil film thickness between the cylindrical surface and the outer ring raceway surface facing the cylindrical surface is defined as b, where b is a width dimension on one side of the circumferentially continuous cylindrical surface formed on both sides of the pocket in the cage axial direction. The relationship between the minimum oil film thickness h, the crank radius r cr and the crank angular velocity ω cr is expressed by equation (3).
A step of obtaining the minimum oil film thickness h based on the formula (3), a step of obtaining a composite surface roughness σ of the cage outer diameter surface and an outer ring raceway surface facing the cage outer diameter surface , in the above following formula (3) representing the relation between the width b of one side of the minimum oil film thickness h and the cage outer diameter, the minimum oil film thickness h is, the cage outer diameter surface and the cage outer diameter surface the minimum width dimension the width b of the case before Symbol synthetic surface ing equal to roughness σ of the outer ring raceway surface facing the bmin. and then, in the above formula (3), the minimum oil film thickness h is, the retainer the method comprising the width b of the case where the outer diameter surface and ing tripled before Symbol synthetic surface roughness σ of the outer ring raceway surface that faces to the cage outer diameter surface and the maximum width bmax., said cylindrical surface The width dimension b is set to be not less than the minimum width dimension bmin. And not more than the maximum width dimension bmax., And the minimum width dimension bmin. And the maximum width dimension bmax. Therefore, by setting the width dimension excluding the pocket width on the outer diameter surface of the cage, and suppressing the decrease in the load capacity of the bearing, the lubrication state of the outer diameter surface of the cage and the inner surface of the bearing ring is improved. It is possible to reduce the friction and wear of the vessel and the race, and to improve the applicable operating limit.

この発明の一実施形態を図1ないし図8と共に説明する。
本実施形態は、コンロッド大端部で使用されるニードル軸受(針状ころ軸受)に適用される。この実施形態では、ニードル軸受の保持器を適用したが、ニードル軸受の保持器だけに必ずしも限定されるものではない。例えば円筒ころ軸受の保持器に適用することも可能である。なお、以下の説明は、保持器の設計方法についての説明をも含む。
このニードル軸受は、保持器15A(15B)と複数個の転動体Tとを有する。本実施形態に係るニードル軸受NJは、図2に示すように、コンロッド大端部CRの嵌合孔CRaに設けられる。この嵌合孔CRaを形成したコンロッド大端部CRが軌道輪つまり外輪となり、前記嵌合孔CRaの内径面が外輪軌道面に相当する。本実施形態に係るニードル軸受は、軌道輪を構成要件としていない。ただし、コンロッド以外の用途において、軌道輪を構成要件としても良い。前記保持器15A(15B)をアキシアル平面で切断して視た断面が、図1(A)に示すように略M字形、または図1(B)に示すように略門形となる。ただし、前記略M字形はM字形を含み、前記略門形は門形を含む。
An embodiment of the present invention will be described with reference to FIGS.
This embodiment is applied to a needle bearing (needle roller bearing) used at the connecting rod large end. In this embodiment, the needle bearing retainer is applied. However, the present invention is not necessarily limited to the needle bearing retainer. For example, it can be applied to a cage of a cylindrical roller bearing. In addition, the following description also includes the description about the design method of a holder | retainer.
This needle bearing has a cage 15A (15B) and a plurality of rolling elements T. As shown in FIG. 2, the needle bearing NJ according to the present embodiment is provided in the fitting hole CRa of the connecting rod large end CR. The connecting rod large end portion CR in which the fitting hole CRa is formed serves as a race ring, that is, an outer ring, and the inner diameter surface of the fitting hole CRa corresponds to the outer ring raceway surface. The needle bearing according to this embodiment does not have a raceway as a constituent feature. However, the raceway may be a constituent requirement in applications other than the connecting rod. A cross section of the cage 15A (15B) viewed by cutting along an axial plane is substantially M-shaped as shown in FIG. 1 (A) or substantially portal-shaped as shown in FIG. 1 (B). However, the substantially M shape includes an M shape, and the approximate gate shape includes a gate shape.

クランク運動下の保持器は、遠心力によって保持器外径面がコンロッド大端部内径と接触する。この時の接触力を下記の仮定条件(i)ないし(ix)の下、後述する動力学計算プログラムで算出した結果、図3に示すように保持器と外輪間の干渉力Fは、下記式(1)に略等しくなることが明らかになった。図3においては、ニードル軸受の寸法が、内径円径φ26mm、外径円径φ33mm、幅13.8mm、ころ16本、エンジン諸元:排気量125cc、単気筒における干渉力Fを表す。前記干渉力Fは、摩擦力成分を含めた互いに干渉しあう力と同義である。   In the cage under the crank motion, the outer diameter surface of the cage comes into contact with the inner diameter of the connecting rod large end by centrifugal force. As a result of calculating the contact force at this time by a dynamics calculation program to be described later under the following assumptions (i) to (ix), the interference force F between the cage and the outer ring as shown in FIG. It became clear that it was almost equal to (1). In FIG. 3, the dimensions of the needle bearing indicate the inner diameter circle diameter φ26 mm, the outer diameter circle diameter φ33 mm, the width 13.8 mm, 16 rollers, the engine specifications: the displacement of 125 cc, and the interference force F in a single cylinder. The interference force F is synonymous with forces that interfere with each other including a frictional force component.

仮定条件について説明する。
(i)ころ、保持器およびコンロッドは、3自由度(2並進変位、および1角変位の自由度)を持つ。
(ii)ピストンは、往復運動方向の並進自由度のみを持つ。ただし、コンロッドとは、滑らかな回転ジョイントによりその小端部で結合される。
(iii)クランクの中心は固定とし、一定角速度で回転する。
(iv)ピストンへは筒内圧力による荷重が作用する。
(v)保持器の弾性変形を考慮する。ただし軸受中心のラジアル平面に対して面対称な変形モードのみを考慮する。
(vi)ころ-軌道面間、ころ-保持器間、および保持器-軌道面間の各干渉部での接触力は、弾性接触理論に準じる。
(vii)トラクション特性は村木らの計算式に準じる(非特許文献1参照)。
(viii)ころと軌道面との接触部にはEHL油膜による転がり粘性抵抗(非特許文献2参照)が存在する。
(ix)保持器外径部-外輪軌道間、および保持器柱-ころ間の接触部潤滑モードは、境界潤滑と仮定する。
The assumption conditions will be described.
(I) Rollers, cages and connecting rods have three degrees of freedom (two translational displacements and one degree of angular freedom).
(Ii) The piston has only translational freedom in the reciprocating direction. However, the connecting rod is joined at its small end by a smooth rotary joint.
(Iii) The center of the crank is fixed and rotates at a constant angular velocity.
(Iv) A load due to in-cylinder pressure acts on the piston.
(V) Consider elastic deformation of the cage. However, only deformation modes that are plane-symmetric with respect to the radial plane at the center of the bearing are considered.
(Vi) The contact force at each interference portion between the roller and raceway surface, between the roller and cage, and between the cage and raceway surface conforms to the elastic contact theory.
(Vii) Traction characteristics conform to Muraki's formula (see Non-Patent Document 1).
(Viii) The rolling viscous resistance (see Non-Patent Document 2) due to the EHL oil film exists at the contact portion between the roller and the raceway surface.
(Ix) The lubrication mode of the contact part between the outer diameter part of the cage and the outer ring raceway and between the cage pillar and the roller is assumed to be boundary lubrication.

前記動力学計算プログラム等について説明する。
3次元での転がり軸受の保持器応力の動力学解析システムは、各種転がり軸受に適用可能である。しかしながら、3次元での動力学解析では、各部品の6自由度ならびに保持器の3次元的な弾性変形の自由度の全てを同時に数値積分するため、計算コストは高い。ところで、ニードル軸受や円筒ころ軸受などでは、ラジアル平面上の物体の挙動のみを取り扱いたい場合がある。この場合に上記の3次元全ての自由度を考慮する動力学解析では効率的でない。また、剛体部品の運動の自由度の拘束は容易にできるが、弾性体として取り扱う保持器の軸方向変位、ならびに自転を除く2軸周りの角変位を拘束するのは難しい。
The dynamic calculation program and the like will be described.
The dynamic analysis system of the cage stress of the three-dimensional rolling bearing can be applied to various rolling bearings. However, in the three-dimensional dynamic analysis, since all the six degrees of freedom of each part and the three-dimensional degree of freedom of elastic deformation of the cage are simultaneously numerically integrated, the calculation cost is high. By the way, in a needle bearing, a cylindrical roller bearing, etc., there are cases where it is desired to handle only the behavior of an object on a radial plane. In this case, the dynamic analysis considering all the three-dimensional degrees of freedom is not efficient. In addition, although the degree of freedom of movement of the rigid parts can be easily constrained, it is difficult to constrain the axial displacement of the cage handled as an elastic body and the angular displacement around two axes excluding rotation.

そこで、本実施形態に係る転がり軸受の保持器応力の動力学解析プログラムでは、保持器の弾性変形の自由度を2次元上に限定し、かつ転動体や軌道輪の運動の自由度も2次元上に限定することで、数値積分の必要処理量を減少させている。これにより、転がり軸受の保持器応力を、3次元解析で行った場合よりも短時間で計算を完了させ得る。
図4に示すように、前記動力学解析プログラムが格納される保持器の応力解析システム1は、入力手段2と演算手段3と出力手段4とを含む。前記演算手段3は、軸受構成部品を剛体とみなした転がり軸受の動力学解析モデルが定められ、この動力学解析モデルに、保持器の動的な弾性変形の特性をモード合成法に基づき入力可能な解析モデル設定部3aと、前記解析モデル設定部3aで入力される弾性変形の自由度と、予め定める軸受構成部品の運動の自由度とを同時に数値積分することで、変形の動特性を含む保持器の変形履歴を算出し、該算出される変形履歴を応力分布に変換する応力演算部3bと、前記応力演算部3bで変換された保持器応力を前記出力手段4へ出力する出力処理部3cと、を有し、保持器の弾性変形ならびに転動体、軌道輪ならびに保持器の剛体モードの運動の自由度を2次元上に限定する構成となっている。
Therefore, in the dynamic analysis program for the cage stress of the rolling bearing according to the present embodiment, the degree of freedom of elastic deformation of the cage is limited to two dimensions, and the degree of freedom of motion of the rolling elements and the races is also two-dimensional. By limiting to the above, the processing amount required for numerical integration is reduced. As a result, the calculation of the cage stress of the rolling bearing can be completed in a shorter time than in the case of performing the three-dimensional analysis.
As shown in FIG. 4, the cage stress analysis system 1 in which the dynamic analysis program is stored includes an input unit 2, a calculation unit 3, and an output unit 4. The calculation means 3 is provided with a dynamic analysis model of a rolling bearing in which the bearing component is regarded as a rigid body, and the dynamic elastic deformation characteristics of the cage can be input to the dynamic analysis model based on a mode synthesis method. The dynamic analysis characteristics are included by simultaneously numerically integrating the analysis model setting unit 3a, the degree of freedom of elastic deformation input by the analysis model setting unit 3a, and the degree of freedom of movement of the predetermined bearing components. A stress calculation unit 3b that calculates a deformation history of the cage, converts the calculated deformation history into a stress distribution, and an output processing unit that outputs the cage stress converted by the stress calculation unit 3b to the output unit 4. 3c, and is configured to limit the degree of freedom of elastic deformation of the cage and the motion of the rolling element, the raceway, and the rigid body mode of the cage to two dimensions.

図4(A),(B)は、本発明の実施形態に係る応力解析システムの電気的構成を表すブロック図である。応力解析システム1は、主に、入力手段2と、演算手段3と、出力手段4とを有する。入力手段2は、たとえばキーボードやポインティングデバイスなどによって実現される。演算手段3は、解析モデル設定部3aと、応力演算部3bと、出力処理部3cとからなる。解析モデル設定部3aは、前述の動力学解析モデルを設定し、この動力学解析モデルに、保持器の動的な弾性変形の特性(固有変形モードおよびその周波数)を、モード合成法に基づき入力可能としたものである。   4A and 4B are block diagrams showing an electrical configuration of the stress analysis system according to the embodiment of the present invention. The stress analysis system 1 mainly includes an input unit 2, a calculation unit 3, and an output unit 4. The input unit 2 is realized by, for example, a keyboard or a pointing device. The calculation means 3 includes an analysis model setting unit 3a, a stress calculation unit 3b, and an output processing unit 3c. The analysis model setting unit 3a sets the above-described dynamic analysis model, and inputs the dynamic elastic deformation characteristics (natural deformation mode and its frequency) of the cage based on the mode synthesis method to the dynamic analysis model. It is possible.

応力演算部3bは、解析モデル設定部3aで入力される弾性変形の自由度と、予め定める軸受構成部品(ころ)の運動の自由度とを同時に数値積分することで、変形の動特性を含む保持器の変形履歴を算出する変形履歴算出部3baと、該算出される変形履歴を応力分布に変換する応力分布変換部3bbとを有する。出力処理部3cは、応力分布変換部3bbで変換した応力分布を出力手段4へ出力する。演算手段3は、たとえば、中央演算処理装置5(略称CPU:Central Processing Unit)、リードオンリーメモリ6(略称ROM: Read Only Memory)、およびランダムアクセスメモリ7(略称RAM: Random Access Memory)を含むマイクロコンピュータと、バス8と、入出力インターフェース9と、出力手段4を駆動するための駆動回路10とを有する。   The stress calculation unit 3b includes deformation dynamic characteristics by simultaneously numerically integrating the degree of freedom of elastic deformation input by the analysis model setting unit 3a and the degree of freedom of movement of the predetermined bearing component (roller). It has a deformation history calculation unit 3ba that calculates the deformation history of the cage, and a stress distribution conversion unit 3bb that converts the calculated deformation history into a stress distribution. The output processing unit 3c outputs the stress distribution converted by the stress distribution conversion unit 3bb to the output unit 4. The computing means 3 is, for example, a micro that includes a central processing unit 5 (abbreviated as CPU: Central Processing Unit), a read only memory 6 (abbreviated as ROM: Read Only Memory), and a random access memory 7 (abbreviated as RAM: Random Access Memory). It has a computer, a bus 8, an input / output interface 9, and a drive circuit 10 for driving the output means 4.

入出力インターフェース9には、バス8を介してCPU5,ROM6,RAM7がそれぞれ電気的に接続されている。入出力インターフェース9に、入力手段2が電気的に接続されるうえ、駆動回路10を介して出力手段4が電気的に接続されている。出力手段4は、たとえば表示出力可能なディスプレイやプリンタなどによって実現される。たとえばROM6に、前述の変形の動特性を含む保持器の変形履歴を算出し、該算出される変形履歴を応力分布に変換するためのプログラムが格納される。RAM7には、入力値、算出される値などが一時的に記憶される。CPU5を制御主体として、演算が実行される。   CPU 5, ROM 6, and RAM 7 are electrically connected to the input / output interface 9 via the bus 8. The input means 2 is electrically connected to the input / output interface 9, and the output means 4 is electrically connected via the drive circuit 10. The output unit 4 is realized by, for example, a display or a printer capable of display output. For example, the ROM 6 stores a program for calculating the deformation history of the cage including the above-described dynamic characteristics of the deformation, and converting the calculated deformation history into a stress distribution. The RAM 7 temporarily stores input values, calculated values, and the like. Arithmetic is executed with the CPU 5 as the controlling entity.

この構成によると、動力学解析モデルに保持器の動的な弾性変形の特性をモード合成法に基づき導入し、弾性変形の自由度と、軸受構成部品の運動の自由度とを同時に数値積分することで、変形の動特性を含む保持器の変形履歴を得ることができる。該変形履歴に基づいて保持器応力を得ることができる。特に、保持器の弾性変形ならびに転動体、軌道輪ならびに保持器の剛体モードの運動の自由度を2次元上に限定する構成により、3次元解析で行った場合よりも短時間で保持器応力の計算結果を得ることが可能となる。   According to this configuration, dynamic elastic deformation characteristics of the cage are introduced into the dynamic analysis model based on the mode synthesis method, and the degree of freedom of elastic deformation and the degree of freedom of motion of the bearing components are numerically integrated simultaneously. Thus, the deformation history of the cage including the dynamic characteristics of the deformation can be obtained. Cage stress can be obtained based on the deformation history. In particular, the structure that restricts the elastic deformation of the cage and the motion of the rolling element, the raceway, and the rigid body mode of the cage to two dimensions in a shorter time than the case of the three-dimensional analysis. Calculation results can be obtained.

次に、保持器外径部の油膜厚さの計算方法について説明する。
図1に示すように、保持器外径部11は、円周方向に一定間隔おきに形成される、換言すれば断続したポケット柱部12と、円周方向に連続した円筒部13とに分類される。油膜圧力をレイノズル方程式に基づき求める数値計算プログラムを用いて、前記ポケット柱部12に生じる油膜を計算したが、その効果は認められなかった。
これに対して、前記円筒部13で生じる油膜は比較的大きな負荷能力が認められた。よって、円周方向に連続した円筒部13での最小油膜厚さのみに着目して、この円筒部13の幅寸法bを決定すればよい。この幅寸法bは、円筒部13の円筒面のうち、面取部13cの幅寸法Lcを除く残余の幅寸法である。
Next, a method for calculating the oil film thickness of the outer diameter portion of the cage will be described.
As shown in FIG. 1, the outer diameter portion 11 of the cage is classified into a pocket column portion 12 that is formed at regular intervals in the circumferential direction, that is, an intermittent pocket column portion 12 and a cylindrical portion 13 that is continuous in the circumferential direction. Is done. The oil film generated in the pocket column 12 was calculated using a numerical calculation program for obtaining the oil film pressure based on the Ray Nozzle equation, but the effect was not recognized.
On the other hand, the oil film produced in the cylindrical portion 13 has a relatively large load capacity. Therefore, the width dimension b of the cylindrical portion 13 may be determined by paying attention only to the minimum oil film thickness in the cylindrical portion 13 continuous in the circumferential direction. This width dimension b is the remaining width dimension of the cylindrical surface of the cylindrical part 13 excluding the width dimension Lc of the chamfered part 13c.

上記のように数値計算プログラムの援用により、流体潤滑理論に基づく油膜による力が式(1)の保持器外径部11への荷重と釣り合う最小油膜厚さhを求めることができる。この最小油膜厚さhが、保持器外径面11Aとこれに対峙する外輪軌道面14との合成表面粗さσに等しくなる幅寸法b1を求める。この幅寸法b1を最小幅寸法として設定すれば、油膜が支持する荷重の割合が増えることから、保持器外径面11Aの摩耗を軽減できる。
前記合成表面粗さσは、保持器外径面11Aの二乗平均表面粗さ(Rq)を二乗した値に、外輪軌道面14の二乗平均表面粗さ(Rq)に二乗した値を加えた合計値を求め、この合計値の平方根をとり算出した粗さである。具体的に、保持器外径面11Aの二乗平均表面粗さ(Rq)がα(μm)、外輪軌道面14の二乗平均表面粗さ(Rq)がβ(μm)とすると、合成表面粗さσは、√(α+β)により求められる。
なお、後述のように、クランク回転速度が上昇すると、保持器外径面11Aの最小油膜厚さhが減少することから、クランク回転速度としては最も厳しい条件の使用限界速度を用いて、保持器幅寸法を決定すればよい。
As described above, with the aid of the numerical calculation program, it is possible to obtain the minimum oil film thickness h at which the force by the oil film based on the fluid lubrication theory balances with the load on the cage outer diameter portion 11 of Equation (1). A width dimension b 1 is determined such that the minimum oil film thickness h is equal to the combined surface roughness σ of the cage outer diameter surface 11A and the outer ring raceway surface 14 opposed thereto. If the width dimension b 1 is set as the minimum width dimension, the ratio of the load supported by the oil film increases, so that the wear of the outer diameter surface 11A of the cage can be reduced.
The synthetic surface roughness σ is a sum obtained by adding a value obtained by squaring the root mean square surface roughness (Rq) of the outer ring raceway surface 14 to a value squared by the root mean square surface roughness (Rq) of the cage outer diameter surface 11A. It is the roughness which calculated | required the value and calculated by taking the square root of this total value. Specifically, when the root mean square surface roughness (Rq) of the cage outer diameter surface 11A is α (μm) and the root mean square surface roughness (Rq) of the outer ring raceway surface 14 is β (μm), the synthetic surface roughness. σ is obtained by √ (α 2 + β 2 ).
As will be described later, when the crank rotational speed increases, the minimum oil film thickness h of the retainer outer diameter surface 11A decreases. What is necessary is just to determine a width dimension.

ところで、一般的には保持器における本円筒部13の幅径比が小さい。つまり、保持器の全幅寸法Lに占める円筒部13の幅寸法の比率は小さい。その場合、無限小幅軸受理論(非特許文献3参照)に基づき、油膜による力すなわち最小油膜厚さhを計算できると考えられる。油膜による力は、以下の式(2)により表される。なお、該無限小幅軸受理論の適用条件は、保持器直径寸法Dに対する幅寸法の比が0.25以下の場合である(非特許文献3参照)。   By the way, generally, the width-diameter ratio of the main cylindrical portion 13 in the cage is small. That is, the ratio of the width dimension of the cylindrical portion 13 to the entire width dimension L of the cage is small. In that case, it is considered that the force by the oil film, that is, the minimum oil film thickness h can be calculated based on the infinitesimal width bearing theory (see Non-Patent Document 3). The force by the oil film is represented by the following formula (2). The application condition of the infinitesimal width bearing theory is when the ratio of the width dimension to the cage diameter dimension D is 0.25 or less (see Non-Patent Document 3).

クランクピンは転がり軸受の内輪軌道に相当し、内輪軌道はクランク軸と共にクランク軸回転速度ωcrで回転する。通常、内輪回転する転がり軸受の保持器は、およそ内輪0.4倍の速度で回転することから、コンロッド大端のニードル軸受の保持器も、慣性系でおよそクランク軸回転速度ωcrに0.4を乗じた0.4ωcrで回転する。
ところで、保持器15A(15B)と軌道輪の接触は、遠心力のため絶えずクランク中心から半径方向外方側の保持器外径部11で生じるため、慣性座標系を基準とすると、クランク角速度ωcrで回転していることになる。保持器外径面11Aと外輪軌道面14との接触位置を基準として見ると、保持器15A(15B)はおよそ−0.6ωcrで移動し、外輪16は−ωcrで移動する。
The crankpin corresponds to the inner ring raceway of the rolling bearing, and the inner ring raceway rotates with the crankshaft at a crankshaft rotational speed ω cr . Normally, the cage of the rolling bearing that rotates on the inner ring rotates at a speed approximately 0.4 times the inner ring, and therefore the cage of the needle bearing at the large end of the connecting rod also has a crankshaft rotational speed ω cr of about 0. Rotate at 0.4ω cr multiplied by 4.
By the way, the contact between the cage 15A (15B) and the raceway is constantly generated in the cage outer diameter portion 11 radially outward from the center of the crank due to centrifugal force. Therefore, when the inertial coordinate system is used as a reference, the crank angular velocity ω It is rotating at cr . Looking at the contact position between the cage outer diameter surface 11A and the outer ring raceway surface 14 as a reference, the cage 15A (15B) moves at about −0.6ω cr and the outer ring 16 moves at −ω cr .

上記式(2)において、保持器外径部11の油膜の力は表面速度の和に比例するため、軸回転数N´=1.6ωcr/2πとすればよい。
上記式(2)に対して、軸受幅Lに保持器15A(15B)の幅寸法b、軸受半径R(図示せず)に保持器外径Dの2分の1、N´=1.6ωcr/2πならびに油膜力に上記式(1)による保持器荷重の2分の1を代入すれば、保持器15A(15B)における軸方向片側の連続した円筒部13と、軌道輪である外輪16との間に存在する最小油膜厚さとクランク軸の回転速度との関係が得られ、下記式(3)となる。
In the above formula (2), since the force of the oil film of the cage outer diameter portion 11 is proportional to the sum of the surface velocities, the shaft rotational speed N ′ = 1.6ω cr / 2π may be set.
For the above formula (2), the bearing width L is the width b of the cage 15A (15B), the bearing radius R (not shown) is half the cage outer diameter D, N ′ = 1.6Ω. If 1/2 of the cage load according to the above equation (1) is substituted for cr / 2π and the oil film force, the cylindrical portion 13 on one side in the axial direction of the cage 15A (15B) and the outer ring 16 that is the raceway ring The relationship between the minimum oil film thickness existing between and the rotation speed of the crankshaft is obtained, and the following equation (3) is obtained.


式(3)において、幅寸法bのみを左辺に残すよう整理すると、式(4)を得る。

In the equation (3), when only the width dimension b is left on the left side, the equation (4) is obtained.

上記式(4)では、幅寸法bが最小油膜厚さhの陰関数の形で表現されている。最小油膜厚さhに対して陽関数の形で式を表現することができないため、特定の条件下の最小油膜厚さhを求めるには収束計算をする必要がある。しかし、上記式(4)によれば、前述の数値計算プログラムによる油膜圧力を計算するよりも、容易に最小油膜厚さhを推定することができる。よって、幅寸法bを容易に求めることが可能となる。求めた幅寸法bは、図4の出力手段4により出力される。   In the above equation (4), the width dimension b is expressed in the form of an implicit function of the minimum oil film thickness h. Since an expression cannot be expressed in the form of an explicit function with respect to the minimum oil film thickness h, it is necessary to perform a convergence calculation to obtain the minimum oil film thickness h under specific conditions. However, according to the above equation (4), the minimum oil film thickness h can be estimated more easily than calculating the oil film pressure by the above-described numerical calculation program. Therefore, the width dimension b can be easily obtained. The obtained width dimension b is output by the output means 4 of FIG.

上記式(4)によるクランク回転速度に対する保持器外径部11の最小油膜厚さhの計算例を図5に示す。図1も参照しつつ説明する。クランク回転速度の増加により保持器外径面11Aの荷重が増加するため、最小油膜厚さhは減少する。また保持器外径面11Aの連続した円筒部13の幅寸法bが大きいと、最小油膜厚さhが大きいこともわかる。具体的に、潤滑油粘度グレード ISO VG22 130℃、保持器外径面11A、外輪軌道面14間の半径すきま 0.1mmの条件下で、たとえばクランク回転速度が2000rpmの場合、幅寸法bが1.0mmのものは、最小油膜厚さhが約0.26μmとなる。同一条件下で、クランク回転速度が2000rpmの場合、幅寸法bが2.0mmのものは、最小油膜厚さhが約0.74μmとなる。
よって、クランク軸の最高回転速度において、保持器15A(15B)の適切な幅寸法bを選定すれば、保持器15A(15B)と外輪16との間に常に油膜が存在し、保持器15A(15B)および外輪16の摩耗を軽減することが可能と考えられる。
FIG. 5 shows a calculation example of the minimum oil film thickness h of the cage outer diameter portion 11 with respect to the crank rotation speed according to the above equation (4). This will be described with reference to FIG. Since the load on the outer diameter surface 11A of the cage increases due to the increase in the crank rotation speed, the minimum oil film thickness h decreases. It can also be seen that the minimum oil film thickness h is large when the width dimension b of the continuous cylindrical portion 13 of the cage outer diameter surface 11A is large. Specifically, under the conditions of the lubricant viscosity grade ISO VG22 130 ° C., the radial clearance between the cage outer diameter surface 11A and the outer ring raceway surface 0.1 mm, for example, when the crank rotation speed is 2000 rpm, the width dimension b is 1 In the case of 0.0 mm, the minimum oil film thickness h is about 0.26 μm. Under the same conditions, when the crank rotation speed is 2000 rpm, the minimum oil film thickness h is about 0.74 μm when the width dimension b is 2.0 mm.
Therefore, if an appropriate width dimension b of the cage 15A (15B) is selected at the maximum rotation speed of the crankshaft, an oil film always exists between the cage 15A (15B) and the outer ring 16, and the cage 15A ( 15B) and the wear of the outer ring 16 can be reduced.

上記式(4)の妥当性について説明する。
エンジンを模擬したクランク運動する試験装置にて、保持器15Bの幅寸法bをいくつか変更して、保持器外径面11Aの摩耗を目視確認した結果を図6、図7および表1に示す。運転条件は、回転速度5000rpm、試験時間1時間、潤滑油粘度グレードISO VG22を適用した。試験に供した保持器15Bは、いずれも鋼製で表面被膜なしの状態である。試験個数は、同一幅寸法bにつき各2個づつである。
The validity of the above equation (4) will be described.
FIG. 6, FIG. 7 and Table 1 show the results of visual confirmation of wear of the outer diameter surface 11A of the cage by changing some of the width dimension b of the cage 15B in a test apparatus that performs crank motion simulating an engine. . The operating conditions were a rotational speed of 5000 rpm, a test time of 1 hour, and lubricating oil viscosity grade ISO VG22 was applied. The cages 15B subjected to the test are all made of steel and have no surface coating. The number of tests is two for each of the same width dimension b.

円環幅つまり保持器15Bの幅寸法bが図6(a)に示すように2.2mmのものは、保持器外径面11Aに摩耗痕が全く認められなかった。この状態を表1において、保持器摩耗状態として「◎」と表記した。幅寸法bが1.8mmのものは、軽微な摩耗が認められ、この状態を表1において、保持器摩耗状態として「○」と表記した。幅寸法bが1.5mmのものは、部分的に凝着摩耗が認められ、この状態を表1において、保持器摩耗状態として「△」と表記した。幅寸法bが1mmのものは、円環部のほぼ全幅にわたって激しい凝着摩耗が認められ、この状態を表1において、保持器摩耗状態として「×」と表記した。
この試験結果によると、保持器15Bの幅寸法bの増加に伴い、保持器外径面11Aにおいて目視確認できる摩耗痕が減少した。本実験から、実際のコンロッド大端用ニードル軸受の保持器15A(15B)においても、保持器15A(15B)の幅寸法bの増加により、保持器外径面11Aの油膜厚さの増加が確認できる。
When the annular width, that is, the width dimension b of the cage 15B is 2.2 mm as shown in FIG. 6 (a), no wear marks were observed on the outer diameter surface 11A of the cage. In Table 1, this state is indicated as “◎” as the cage wear state. Minor wear was observed when the width dimension b was 1.8 mm, and this state was indicated as “◯” as the cage wear state in Table 1. In the case where the width dimension b is 1.5 mm, adhesive wear is partially recognized, and this state is indicated as “Δ” in Table 1 as the cage wear state. When the width dimension b was 1 mm, severe adhesive wear was observed over almost the entire width of the annular portion, and this state was indicated as “x” in Table 1 as the cage wear state.
According to this test result, with the increase in the width dimension b of the cage 15B, wear marks that can be visually confirmed on the outer diameter surface 11A of the cage decreased. From this experiment, it was confirmed that the retainer 15A (15B) of the actual connecting rod large end needle bearing also increased the oil film thickness of the outer diameter surface 11A of the cage due to the increase in the width dimension b of the cage 15A (15B). it can.

また、外輪静止条件下で保持器単体を運転し、その間の金属接触率を測定したところ、図8のようになった。図8において、横軸の膜厚比は、上記式(2)に基づき求めた最小油膜厚さhを、実測した保持器外径面11Aと外輪軌道面14との合成粗さσで除算したものである。縦軸の金属接触率は、印加電圧をVI、外輪と保持器間の電位差をVBとし、

のように定義される。
この膜厚比が「3」以上では金属接触率は10%以下でほぼ一定だったが、膜厚比が「3」を下回ると金属接触率は急増し、且つ膜厚比に対して大きなばらつき無く、ほぼ直線的な変化を呈した。合成表面粗さσは、表面粗さの突起高さの標準偏差であり、最小油膜厚さhが合成表面粗さσの3倍を超えると確率論的に殆んど保持器15A(15B)と外輪16とが接触しなくなるはずである。金属接触率の測定結果は、この知見ともよく合致する。
図6,7、図8に示す2つの試験結果より、保持器外径面11Aの油膜厚さは上記式(4)にほぼ合致すると考えられる。
Further, when the cage was operated under the outer ring stationary condition and the metal contact rate was measured during that time, it was as shown in FIG. In FIG. 8, the horizontal axis film thickness ratio is obtained by dividing the minimum oil film thickness h obtained based on the above equation (2) by the measured roughness σ of the cage outer diameter surface 11A and the outer ring raceway surface 14 measured. Is. The metal contact ratio on the vertical axis is the applied voltage V I , the potential difference between the outer ring and the cage is V B ,

Is defined as follows.
When the film thickness ratio is “3” or more, the metal contact ratio is almost constant at 10% or less. However, when the film thickness ratio is less than “3”, the metal contact ratio increases rapidly and greatly varies with respect to the film thickness ratio. There was almost no linear change. The synthetic surface roughness σ is a standard deviation of the projection height of the surface roughness. When the minimum oil film thickness h exceeds three times the synthetic surface roughness σ, the cage 15A (15B) is almost stochastically. And the outer ring 16 should not come into contact with each other. The metal contact rate measurement results are in good agreement with this finding.
From the two test results shown in FIGS. 6, 7, and 8, it is considered that the oil film thickness of the retainer outer diameter surface 11 </ b> A substantially matches the above formula (4).

上記式(4)では、円筒面の幅寸法bが最小油膜厚さhの陰関数の形で表現されている。最小油膜厚さhに対して陽関数の形で表現することができないため、特定の条件下の最小油膜厚さhを求めるには、収束計算をする必要があるが、例えば数値計算プログラム等により油膜圧力を計算するよりも、最小油膜厚さhを容易に推定することができる。   In the above equation (4), the width b of the cylindrical surface is expressed in the form of an implicit function of the minimum oil film thickness h. Since it cannot be expressed in the form of an explicit function with respect to the minimum oil film thickness h, it is necessary to perform convergence calculation in order to obtain the minimum oil film thickness h under specific conditions. Rather than calculating the oil film pressure, the minimum oil film thickness h can be estimated easily.

上記式(4)により求めた最小油膜厚さhが、合成表面粗さσに等しくなる最小幅寸法bmin.を求め、上記式(4)により求めた最小油膜厚さhが、合成表面粗さσの3倍となる最大幅寸法bmax.を求める。保持器15A(15B)の円筒面の幅寸法bを、前記最小幅寸法bmin.以上とすれば、油膜で支持する荷重が増加し、摩耗が軽減され、前記最大幅寸法bmax.以下に設定すれば、油膜でほぼ完全に荷重を支持し、かつ軸受の負荷容量の低下を最小に抑えることができ、軸受の長寿命化を図ることができる。なお、クランク回転速度が上昇すると、保持器外径面11Aの最小油膜厚さhが減少することから、クランク回転速度は使用限界速度を用いて最小幅寸法bmin.を決定しなければならない。   The minimum width bmin. Where the minimum oil film thickness h obtained by the above equation (4) is equal to the composite surface roughness σ is obtained, and the minimum oil film thickness h obtained by the above equation (4) is the synthetic surface roughness. The maximum width dimension bmax. that is three times σ is obtained. If the width dimension b of the cylindrical surface of the cage 15A (15B) is set to the minimum width dimension bmin. Or more, the load supported by the oil film increases, wear is reduced, and the maximum width dimension bmax. For example, the load can be almost completely supported by the oil film, and a decrease in the load capacity of the bearing can be minimized, so that the life of the bearing can be extended. When the crank rotational speed is increased, the minimum oil film thickness h of the retainer outer diameter surface 11A is decreased. Therefore, the minimum rotational width bmin. Must be determined for the crank rotational speed using the use limit speed.

以上説明した保持器15A(15B)は、鋼製で表面被膜等が施されていないものについて説明した。この発明の他の実施形態として、保持器表面に、軟質金属めっき処理または樹脂被膜処理を施しても良い。軟質金属としては、銀や銅などが適用される。たとえば、保持器表面に銅めっきを施した外径φ32.9mm、軸受幅13.8mm、幅寸法b=1.475mm、表面粗さおよそ0.4μmの保持器をコンロッド大端に組み込み、クランク回転数10000rpmで5時間運転した後の保持器外径部11およびコンロッド大端内径の接触部の粗さは、それぞれおよそ0.15μm、0.07μmとなった。したがって、合成表面粗さσは、√(0.15+0.07)=0.17μmと求められる。 The cage 15 </ b> A (15 </ b> B) described above is made of steel and has no surface coating or the like. As another embodiment of the present invention, the surface of the cage may be subjected to soft metal plating treatment or resin coating treatment. As the soft metal, silver or copper is applied. For example, a cage with an outer diameter of 32.9 mm with copper plating on the cage surface, a bearing width of 13.8 mm, a width dimension b = 1.475 mm, and a surface roughness of about 0.4 μm is incorporated at the connecting rod large end, and crank rotation The roughness of the contact portion of the cage outer diameter portion 11 and the connecting rod large end inner diameter after operating at several 10000 rpm for 5 hours was approximately 0.15 μm and 0.07 μm, respectively. Therefore, the synthetic surface roughness σ is obtained as √ (0.15 2 +0.07 2 ) = 0.17 μm.

軟質金属めっきは、接触によりその表面粗さが容易に小さくなるため、製造時の粗さとは無関係に保持器外径面11Aの最小油膜厚さhが0.17μmとなる幅寸法bを下限値bmin.とする。幅寸法bの上限値bmax.として無限小幅軸受理論の適用限界である0.25Dを採用する。または幅寸法bの上限値bmax.として、合成表面粗さσとして求めた0.17μmの3倍となる「0.51」を採用する。このような幅寸法bの下限値、上限値を採用すると、耐摩耗性の点で好ましい。   Since the surface roughness of soft metal plating is easily reduced by contact, the width dimension b where the minimum oil film thickness h of the outer diameter surface 11A of the cage is 0.17 μm is set to the lower limit regardless of the roughness during manufacture. bmin. As an upper limit value bmax. Of the width dimension b, 0.25D which is an application limit of the infinitesimal width bearing theory is adopted. Alternatively, “0.51” that is three times 0.17 μm obtained as the combined surface roughness σ is employed as the upper limit value bmax of the width dimension b. Adopting such lower and upper limits of the width dimension b is preferable in terms of wear resistance.

樹脂被膜としては、ポリアミドイミドなどが耐熱性や耐摩耗性の点で好ましい。ただし、樹脂被膜はポリアミドイミドに限定されるものではない。
以上説明したように、保持器15A(15B)に軟質金属めっき処理または樹脂被膜処理を施した場合、保持器外径面11Aと外輪軌道面14間のなじみ性つまり表面粗さの改善性に優れる。このため、保持器外径部11の摩耗が問題になるようなアプリケーションでは特に有効である。この実施形態では、保持器15A(15B)全体に軟質金属めっき処理または樹脂被膜処理を施しているが、この形態に限定されるものではない。たとえば、保持器外径面11Aの円筒面だけに、軟質金属めっき処理または樹脂被膜処理を施してもよい。図1に示すように、保持器側面11Bおよび前記円筒面に、軟質金属めっき処理または樹脂被膜処理を施してもよい。このような場合であっても、上記と同様の効果を奏する。
As the resin coating, polyamideimide or the like is preferable in terms of heat resistance and wear resistance. However, the resin coating is not limited to polyamideimide.
As described above, when the retainer 15A (15B) is subjected to a soft metal plating process or a resin coating process, the conformability between the retainer outer diameter surface 11A and the outer ring raceway surface 14, that is, the surface roughness is excellent. . For this reason, it is particularly effective in applications where wear of the cage outer diameter portion 11 becomes a problem. In this embodiment, the entire cage 15A (15B) is subjected to a soft metal plating process or a resin film process, but the present invention is not limited to this form. For example, only the cylindrical surface of the cage outer diameter surface 11A may be subjected to a soft metal plating process or a resin coating process. As shown in FIG. 1, the cage side surface 11B and the cylindrical surface may be subjected to a soft metal plating process or a resin film process. Even in such a case, the same effects as described above can be obtained.

図1(A)に示すように、保持器15Aを略M字形の断面形状にした場合、形状を簡単化でき、且つころ落ちしない保持器を実現できる。図1(B)に示すように、保持器15Bを略門形の断面形状にした場合、柱強度に優れ且つころ落ちしない保持器を実現できる。
この保持器15A(15B)は、プレス加工によりリング状部材からポケットPtを打ち抜き製作されるものとしても良い。プレス加工により、帯状部材にポケットPtを打ち抜き、この帯状部材の長手方向一端部と他端部とを対向させてリング状に丸め、前記長手方向一端部と他端部とを溶接接合して製作される保持器としても良い。また、必要に応じて削り加工を用いて製造しても良い。これらの場合、保持器の製造コストの低減を図ることができる。なお、保持器外径面11Aの仕上げ工程では、研削加工を用いても良い。
以上説明した転がり軸受の保持器15A(15B)を、コンロッド大端部以外のクランク運動する箇所に設けても良い。この場合、保持器15A(15B)および軌道輪の摩擦および摩耗を低減でき、かつ適用可能な運転限界の向上を図ることができる。
As shown in FIG. 1A, when the cage 15A has a substantially M-shaped cross section, the shape can be simplified and a cage that does not roll off can be realized. As shown in FIG. 1B, when the cage 15B has a substantially gate-like cross-sectional shape, a cage that has excellent column strength and does not fall off can be realized.
The cage 15A (15B) may be manufactured by punching the pocket Pt from the ring-shaped member by press working. By punching, the pocket Pt is punched into the band-shaped member, the longitudinal end of the band-shaped member is opposed to the other end and rounded into a ring shape, and the longitudinal end and the other end are welded to each other. It is good also as a cage to be used. Moreover, you may manufacture using a shaving process as needed. In these cases, the manufacturing cost of the cage can be reduced. Note that grinding may be used in the finishing process of the cage outer diameter surface 11A.
The rolling bearing cage 15A (15B) described above may be provided at a place where the crank motion is performed other than the large end of the connecting rod. In this case, the friction and wear of the cage 15A (15B) and the race can be reduced, and the applicable operating limit can be improved.

(A)この発明の一実施形態に係る略M字形の断面形状の保持器の断面図であり、(B)この発明の一実施形態に係る略門形の断面形状の保持器の断面図である。(A) It is sectional drawing of the retainer of the substantially M-shaped cross-sectional shape which concerns on one Embodiment of this invention, (B) It is sectional drawing of the retainer of the substantially portal-shaped cross-sectional shape which concerns on one Embodiment of this invention. is there. 同保持器が組込まれるコンロッドの平面図である。It is a top view of the connecting rod in which the same holder is assembled. クランク軸回転速度に対する保持器外径面の干渉力を表す図である。It is a figure showing the interference force of the holder outer diameter surface with respect to a crankshaft rotational speed. (A)本発明の実施形態に係る応力解析システムの電気的構成を概略表すブロック図、同応力解析システムの演算手段を主に表すブロック図である。(A) It is a block diagram which represents roughly the electrical structure of the stress analysis system which concerns on embodiment of this invention, and the block diagram which mainly represents the calculating means of the same stress analysis system. クランク軸回転速度に対する保持器外径面の最小油膜厚さを表す図である。It is a figure showing the minimum oil film thickness of the holder outer diameter surface with respect to a crankshaft rotational speed. クランク運動下での保持器円環幅の試験後外観を表す図であり、図6(a)は円環幅2.2mmの外観を表す図、図6(b)は円環幅1.8mmの外観を表す図である。It is a figure showing the external appearance after the test of the cage | basket ring width under a crank motion, FIG. 6 (a) is a figure showing the external appearance with an annular width of 2.2 mm, FIG.6 (b) is an annular width of 1.8 mm. FIG. クランク運動下での保持器円環幅の試験後外観を表す図であり、図7(a)は円環幅1.5mmの外観を表す図、図7(b)は円環幅1mmの外観を表す図である。It is a figure showing the external appearance after a test of the cage ring width under the crank motion, FIG. 7 (a) is a view showing the external appearance with an annular width of 1.5 mm, and FIG. 7 (b) is the external appearance with an annular width of 1 mm. FIG. 外輪静止下での保持器外径部の計算による膜厚比と、金属接触率との関係を表す図である。It is a figure showing the relationship between the film thickness ratio by the calculation of the outer diameter part of a holder | retainer in a stationary outer ring, and a metal contact rate.

符号の説明Explanation of symbols

11…保持器外径部
11A…保持器外径面
13…円筒部
14…外輪軌道面
15A,15B…保持器
16…外輪
b…幅寸法
DESCRIPTION OF SYMBOLS 11 ... Cage outer diameter part 11A ... Cage outer diameter surface 13 ... Cylindrical part 14 ... Outer ring raceway surface 15A, 15B ... Cage 16 ... Outer ring b ... Width dimension

Claims (7)

コンロッド大端に組み込まれる転がり軸受の保持器であって、転動体を保持する複数のポケットを有する略円筒状に形成された保持器において、
この略円筒状の保持器外径面のうち前記ポケットの保持器軸方向両側に形成された、周方向に連続した円筒面の片側の幅寸法をbとし、前記円筒面と、この円筒面に対峙する外輪軌道面との間の最小油膜厚さをhとし、
前記保持器外径面と外輪軌道面との間の接触力を式(1)で定義し、
この式(1)で求めた接触力と釣り合う最小油膜厚さhを、流体潤滑理論に基づく次式(1a)を用いて、接触力Fと油膜力Wの値を等価として求め、
ここで、η は粘度,Pa・s、N’は軸回転数,rps、Lは軸受幅,m、cは半径すきま,m、Rは軸受半径,mを表し、
前記保持器外径面と、この保持器外径面に対峙する外輪軌道面との合成表面粗さσを求め、
前記最小油膜厚さhとクランク軸の回転速度との関係を式(2)で表し、
前記式(2)において、前記最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bである最小幅寸法b1を求め、
前記円筒面の幅寸法bを、最小幅寸法b1以上に設定した転がり軸受の保持器。
A rolling bearing retainer incorporated into the connecting rod large end, wherein the retainer is formed in a substantially cylindrical shape having a plurality of pockets for retaining rolling elements.
The width dimension of one side of the cylindrical surface continuous in the circumferential direction formed on both sides in the cage axial direction of the pocket of the substantially cylindrical outer diameter surface of the pocket is b, and the cylindrical surface and the cylindrical surface The minimum oil film thickness between the opposing outer ring raceway surface is h,
The contact force between the outer diameter surface of the cage and the outer ring raceway surface is defined by equation (1),
Using the following equation (1a) based on the fluid lubrication theory, the value of the contact force F and the oil film force W is obtained as equivalent values by using the following equation (1a) based on the fluid lubrication theory,
Where η is the viscosity, Pa · s, N ′ is the shaft speed, rps, L is the bearing width, m, c is the radial clearance, m, R is the bearing radius, m,
Obtain the combined surface roughness σ of the outer diameter surface of the cage and the outer ring raceway surface facing the outer diameter surface of the cage,
The relationship between the minimum oil film thickness h and the rotational speed of the crankshaft is expressed by equation (2),
In the formula (2), when the minimum oil film thickness h is equal to the synthetic surface roughness σ between the outer diameter surface of the cage and the outer raceway surface facing the outer diameter surface of the cage, the width dimension b The minimum width dimension b 1 is
The width b of the cylindrical surface, the cage of the rolling bearing which is set to the minimum width dimension b 1 or more.
請求項1において、前記最小油膜厚さhと保持器外径の片側の幅寸法bとの関係を表す前記式(2)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bを最小幅寸法bmin.とし、前記式(2)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσの3倍となる場合の幅寸法bを最大幅寸法bmax.とし、
前記円筒面の幅寸法bを、最小幅寸法bmin.以上最大幅寸法bmax.以下に設定した転がり軸受の保持器。
In Claim 1, in said Formula (2) showing the relationship between the said minimum oil film thickness h and the width dimension b of one side of a cage outer diameter, the minimum oil film thickness h is the said cage outer diameter surface and this holding | maintenance. The width dimension b in the case where it is equal to the composite surface roughness σ with the outer ring raceway surface facing the outer diameter surface of the vessel is defined as the minimum width dimension bmin. In the formula (2), the minimum oil film thickness h is The width dimension b when the outer surface of the cage and the outer ring raceway surface facing the cage outer diameter surface is three times the synthetic surface roughness σ is the maximum width dimension bmax.
A rolling bearing cage in which a width dimension b of the cylindrical surface is set to a minimum width dimension bmin. Or more and a maximum width dimension bmax.
請求項1または請求項2において、前記保持器をアキシアル平面で切断して視た断面が、略門形または略M字形である転がり軸受の保持器。   The rolling bearing retainer according to claim 1 or 2, wherein a cross section of the retainer cut along an axial plane is substantially a gate shape or a substantially M shape. 請求項1ないし請求項3のいずれか1項において、プレス加工により、リング状部材にポケットを打ち抜き製作される転がり軸受の保持器。   The rolling bearing retainer according to any one of claims 1 to 3, wherein a pocket is formed by punching a ring-shaped member by pressing. 請求項1ないし請求項3のいずれか1項において、プレス加工により、帯状部材にポケットを打ち抜き、この帯状部材の長手方向一端部と他端部とを対向させてリング状に丸め、前記長手方向一端部と他端部とを溶接接合して製作される転がり軸受の保持器。   The pocket according to any one of claims 1 to 3, wherein a pocket is punched into the band-shaped member by pressing, the one end and the other end in the longitudinal direction of the band-shaped member are opposed to each other, and are rounded into a ring shape. A rolling bearing cage manufactured by welding one end and the other end. 請求項1ないし請求項5のいずれか1項において、保持器の少なくとも前記円筒面に、軟質金属めっき処理または樹脂被膜処理を施した転がり軸受の保持器。   The rolling bearing retainer according to any one of claims 1 to 5, wherein at least the cylindrical surface of the retainer is subjected to a soft metal plating treatment or a resin coating treatment. 転動体を保持する複数のポケットを有する略円筒状に形成され、クランク運動する保持器の設計方法において、
この略円筒状の保持器外径面のうち、前記ポケットの保持器軸方向両側に形成された、周方向に連続した円筒面の片側の幅寸法をbとし、前記円筒面と、この円筒面に対峙する外輪軌道面との間の最小油膜厚さをhとし、
前記最小油膜厚さhと、クランク半径rcrおよびクランク角速度ωcrとの関係を式(3)で表し、
前記最小油膜厚さhを式(3)に基づき求める過程と、
前記保持器外径面と、この保持器外径面に対峙する外輪軌道面との合成表面粗さσを求める過程と、
前記最小油膜厚さhと保持器外径の片側の幅寸法bとの関係を表す上記式(3)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσに等しくなる場合の幅寸法bを最小幅寸法bmin.とし、上記式(3)において、最小油膜厚さhが、前記保持器外径面とこの保持器外径面に対峙する外輪軌道面との前記合成表面粗さσの3倍となる場合の幅寸法bを最大幅寸法bmax.とする過程と、
前記円筒面の幅寸法bを、最小幅寸法bmin.以上最大幅寸法bmax.以下に設定し、これら最小幅寸法bmin.および最大幅寸法bmax.を出力する過程と、
を有する保持器の設計方法。
In a method of designing a cage that is formed in a substantially cylindrical shape having a plurality of pockets that hold rolling elements and that performs a crank motion,
Of the substantially cylindrical cage outer diameter surface, the width dimension on one side of the circumferentially continuous cylindrical surface formed on both sides in the cage axial direction of the pocket is b, and the cylindrical surface and the cylindrical surface Where h is the minimum oil film thickness between the outer ring raceway surface facing
The relationship between the minimum oil film thickness h, the crank radius r cr and the crank angular velocity ω cr is expressed by equation (3),
Obtaining the minimum oil film thickness h based on the equation (3);
A process of obtaining a composite surface roughness σ of the cage outer diameter surface and the outer ring raceway surface facing the cage outer diameter surface;
In the above formula (3) representing the relationship between the minimum oil film thickness h and the width dimension b on one side of the cage outer diameter, the minimum oil film thickness h is applied to the cage outer diameter surface and the cage outer diameter surface. The width dimension b when the outer ring raceway surface facing the synthetic surface roughness σ is equal to the minimum width dimension bmin., And in the above equation (3), the minimum oil film thickness h is equal to the cage outer diameter surface. A process of setting the width dimension b to be the maximum width dimension bmax when the synthetic surface roughness σ of the outer ring raceway surface facing the outer diameter surface of the cage is three times the synthetic surface roughness σ;
Setting the width dimension b of the cylindrical surface to a minimum width dimension bmin. Or more and a maximum width dimension bmax. Or less, and outputting the minimum width dimension bmin. And the maximum width dimension bmax.
Method for designing a cage having
JP2007326948A 2007-12-19 2007-12-19 Roller bearing cage and design method thereof Expired - Fee Related JP5376798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326948A JP5376798B2 (en) 2007-12-19 2007-12-19 Roller bearing cage and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326948A JP5376798B2 (en) 2007-12-19 2007-12-19 Roller bearing cage and design method thereof

Publications (2)

Publication Number Publication Date
JP2009150434A JP2009150434A (en) 2009-07-09
JP5376798B2 true JP5376798B2 (en) 2013-12-25

Family

ID=40919779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326948A Expired - Fee Related JP5376798B2 (en) 2007-12-19 2007-12-19 Roller bearing cage and design method thereof

Country Status (1)

Country Link
JP (1) JP5376798B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196093B2 (en) * 2012-12-25 2017-09-13 Ntn株式会社 Vibration analysis method for bearing device, vibration analysis device for bearing device, and state monitoring device for rolling bearing
CN109492242B (en) * 2018-08-30 2023-04-07 中国船舶重工集团公司第七一五研究所 Long-distance polar coordinate constraint finite element analysis method
CN115935687B (en) * 2022-12-27 2023-09-08 哈尔滨工程大学 Method for calculating coupling lubrication and dynamic characteristic parameters of flanging bearing
CN116415462B (en) * 2023-04-14 2023-11-17 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449715A (en) * 1987-08-20 1989-02-27 Diesel Kiki Co Needleform roller bearing
JP3668274B2 (en) * 1995-02-08 2005-07-06 日本トムソン株式会社 Roller with cage
JPH10169637A (en) * 1996-12-10 1998-06-23 Sumitomo Metal Ind Ltd Crankshaft design method and crankshaft
JP2000213545A (en) * 1999-01-25 2000-08-02 Nsk Ltd Retainer for roller bearing
JP2004011657A (en) * 2002-06-03 2004-01-15 Nsk Ltd Radial needle bearing
JP2005325929A (en) * 2004-05-14 2005-11-24 Yaskawa Electric Corp Rolling bearing and use method thereof
JP2007071344A (en) * 2005-09-08 2007-03-22 Ntn Corp Outboard motor engine and crank shaft support structure for outboard motor engine

Also Published As

Publication number Publication date
JP2009150434A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
Liu et al. An investigation for the friction torque of a needle roller bearing with the roundness error
Nogi et al. A dynamic analysis of cage instability in ball bearings
JP5376798B2 (en) Roller bearing cage and design method thereof
Leblanc et al. Ball motion and sliding friction in a four-contact-point ball bearing
JP2011226582A (en) Rolling bearing and rolling bearing device
Sarangi et al. Stiffness and damping characteristics of lubricated ball bearings considering the surface roughness effect. Part 1: theoretical formulation
Ma et al. Structural optimization of ball bearings with three-point contact at high-speed
JP5228654B2 (en) Tapered roller bearing cage and tapered roller bearing
JP2018028328A (en) Ball bearing, spindle device and machine tool
JP2018021609A (en) Ball bearing, spindle device for machine tool
CN108071683B (en) Tapered roller bearing and power transmission device
Wu et al. Analysis of dynamic characteristics of grease-lubricated tapered roller bearings
JPWO2018199285A1 (en) Angular ball bearing cage and angular ball bearing
JP2017026080A (en) Sealing device and bearing device having the same
JP4920238B2 (en) Tapered roller bearing
JP5532157B2 (en) Tapered roller bearing cage and tapered roller bearing
JP6244959B2 (en) Tapered roller bearing
CN109989998B (en) Rolling bearing and rotating device comprising a rolling bearing
Xu et al. Friction torque study on double-row tapered roller bearing
JP2012177429A (en) Tapered roller bearing for roll neck
JP2006342820A (en) Angular contact ball bearing
JP2016173152A (en) Cage and rolling bearing
WO2008023787A1 (en) Angular ball bearing
JP6379477B2 (en) Bearing device and spindle device
Thamaraiselvan et al. Design and development of reliable integral shaft bearing for water pump in automotive engine to reduce assemble time and increase production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees