JP2005325929A - Rolling bearing and use method thereof - Google Patents

Rolling bearing and use method thereof Download PDF

Info

Publication number
JP2005325929A
JP2005325929A JP2004144882A JP2004144882A JP2005325929A JP 2005325929 A JP2005325929 A JP 2005325929A JP 2004144882 A JP2004144882 A JP 2004144882A JP 2004144882 A JP2004144882 A JP 2004144882A JP 2005325929 A JP2005325929 A JP 2005325929A
Authority
JP
Japan
Prior art keywords
bearing
rolling bearing
oil
grease
time ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004144882A
Other languages
Japanese (ja)
Inventor
Tadaki Itabe
忠喜 板部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004144882A priority Critical patent/JP2005325929A/en
Publication of JP2005325929A publication Critical patent/JP2005325929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller bearing of machinery operated at a low speed, avoiding the operational lag and operational disability of the machinery, avoiding a decrease in thickness of an oil film with a temperature rise of a bearing part, and avoiding an increase in price of the machinery due to adoption of a motor having a large output. <P>SOLUTION: In the vacuum machinery operated at a low speed of at most 25000 in DmN, which is the product of pitch circle diameter Dm (mm) of the bearing by rotating speed N (min<SP>-1</SP>), the rolling bearing 11 is filled with lubricating fluorine grease having characteristic of forming an insulating film to increase insulating time ratio between the inner ring and the outer ring of the bearing in addition to an oil film formed by base oil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軸受のピッチ円直径(Dm(mm))と回転速度(N(min-1))の積(Dm×N)が25,000以下の低速度で運転される真空用機械装置の転がり軸受およびその使用方法に関する。 The present invention relates to a vacuum mechanical device that is operated at a low speed of 25,000 or less (Dm × N) of a bearing pitch circle diameter (Dm (mm)) and a rotational speed (N (min −1 )). The present invention relates to a rolling bearing and a method for using the same.

潤滑剤としてグリースを用い、転動体等の表面に十分な潤滑性と防錆性を付与することのできる転がり軸受は公知である(例えば、特許文献1又は2参照)。
また、転がり軸受における潤滑状態の良否判定方法の代表例として油膜パラメータを用いる方法が知られている(非特許文献1参照)。
特開2003−13974号公報 特開2000−65075号公報 「NSKテクニカルレポート」、日本精工株式楷書、CAT.No.728d、1998C−5,p.42〜49
A rolling bearing that uses grease as a lubricant and can impart sufficient lubricity and rust prevention to the surface of a rolling element or the like is known (see, for example, Patent Document 1 or 2).
In addition, a method using oil film parameters is known as a representative example of a method for determining the quality of a lubrication state in a rolling bearing (see Non-Patent Document 1).
JP 2003-13974 A JP 2000-65075 A “NSK Technical Report”, NSK Ltd., CAT. No. 728d, 1998C-5, p. 42-49

そこで、非特許文献1を基に、まず油膜パラメータについて説明する。
油膜パラメータ(記号:Λ)は、弾性流体潤滑理論に基づいて計算される油膜厚さ(記号:h)と転がり軸受の部品の合成表面粗さ(記号:σ)を用いると、次に示す数式1で表される。

Λ=h/σ ・・・・・(数式1)

油膜パラメータ(Λ)が大きいほど、転がり軸受の部品間における金属接触の起こり易さが軽減されるので、転がり軸受の潤滑状態は良好になる。そこで、油膜パラメータ(Λ)は、軸受の寿命や表面損傷の観点から、概ね次のように分類される。
(1)3≦Λ:長寿命の領域、
(2)0.9≦Λ<3:長寿命から短寿命に移行する領域
このうち、0.9≦Λ<1.5:滑りが大きいと表面損傷が起こる
(3)Λ<0.9:短寿命の領域(表面損傷が起こるため)
従って、転がり軸受の潤滑状態を良好にし、転がり軸受の表面損傷を避けるためには、油膜パラメータは、目安としてΛ>1.5であることが望まれる。
ここで、数式1から、油膜パラメータ(Λ)を大きくするためには、
(1)油膜厚さ(h)を大きくする方法と、
(2)合成表面粗さ(σ)を小さくする方法が考えられる。
しかし、合成表面粗さ(σ)を小さくすることは、軸受の機械加工に関する技術的あるいは経済的な理由から容易ではなく、また、既に出来上がった軸受にたいして油膜パラメータ(Λ)を大きくするためには、油膜厚さ(h)を大きくするしかない。
Therefore, based on Non-Patent Document 1, the oil film parameter will be described first.
The oil film parameter (symbol: Λ) can be calculated by using the oil film thickness (symbol: h) calculated based on the elastohydrodynamic lubrication theory and the combined surface roughness (symbol: σ) of the components of the rolling bearing. It is represented by 1.

Λ = h / σ (Formula 1)

The greater the oil film parameter (Λ), the less likely the metal contact between the parts of the rolling bearing will occur, and the better the lubrication of the rolling bearing. Therefore, the oil film parameter (Λ) is generally classified as follows from the viewpoint of bearing life and surface damage.
(1) 3 ≦ Λ: Long-life region,
(2) 0.9 ≦ Λ <3: Region where transition from long life to short life is performed Among these, 0.9 ≦ Λ <1.5: Surface damage occurs when slip is large. (3) Λ <0.9: Short-life area (because of surface damage)
Therefore, in order to improve the lubrication state of the rolling bearing and avoid the surface damage of the rolling bearing, it is desirable that the oil film parameter is Λ> 1.5 as a guide.
Here, from Equation 1, in order to increase the oil film parameter (Λ),
(1) a method of increasing the oil film thickness (h);
(2) A method of reducing the synthetic surface roughness (σ) is conceivable.
However, it is not easy to reduce the composite surface roughness (σ) for technical or economic reasons related to the machining of the bearing, and in order to increase the oil film parameter (Λ) for an already completed bearing. The oil film thickness (h) can only be increased.

次に、油膜厚さ(h)の計算式を、基油の動粘度(υ)、回転速度(N)、荷重(P)を用いて概念的に示すと数式2のようになる。最初のαは軸受諸元の影響を含めた定数、指数のa、b、cも定数である。

h=α・υa・Nb・P-c ・・・(数式2)

機械装置の軸受周りを設計する際、3つの変数の中で、回転速度(N)、荷重(P)は要求仕様から決まってしまう数値であり、油膜厚さ(h)を大きくするためには、基油の動粘度(υ)を大きくすることが必要となる。特に、低速度で回転する軸受の場合は、数式2の中におけるNbの効果が小さくなるため、基油の動粘度(υ)を十二分に大きくする必要がある。
さらに、常温より高い温度で使用される場合は、温度が上がると基油の動粘度(υ)が低下することを考慮して、より高い基油の動粘度(υ)を選定することが必要となる。
このため、従来の低速度で運転される機械装置の転がり軸受の潤滑では、基油の動粘度の極めて高い潤滑油やグリースを転がり軸受に封入する潤滑方法が採られていた。
Next, the equation for calculating the oil film thickness (h) is conceptually expressed as Equation 2 using the kinematic viscosity (υ), rotation speed (N), and load (P) of the base oil. The first α is a constant including the influence of the bearing specifications, and the indices a, b and c are also constants.

h = α · υ a · N b · P −c (Formula 2)

When designing around the bearings of a mechanical device, among the three variables, the rotational speed (N) and load (P) are values that are determined from the required specifications, and in order to increase the oil film thickness (h) It is necessary to increase the kinematic viscosity (υ) of the base oil. Particularly, in the case of a bearing that rotates at a low speed, the effect of N b which definitive in Equation 2 is reduced, it is necessary to increase the kinematic viscosity of the base oil (upsilon) more than enough.
In addition, when used at a temperature higher than normal temperature, it is necessary to select a higher base oil kinematic viscosity (υ) in consideration of a decrease in base oil kinematic viscosity (υ) as the temperature rises. It becomes.
For this reason, in the conventional lubrication of rolling bearings of mechanical devices that are operated at a low speed, a lubricating method in which lubricating oil or grease having extremely high kinematic viscosity of the base oil is enclosed in the rolling bearing has been adopted.

従来の低速度で運転される真空用機械装置の転がり軸受では、基油の動粘度の極めて高い潤滑油やグリースを転がり軸受に封入するようにしていたので、潤滑油やグリースによる軸受内部の粘性抵抗が大きくなり、機械装置に動作遅れを生じたり、最悪の場合は動作不能になったりするという問題があった。
また、粘性抵抗が大きいことから、軸受部の温度が上昇し易いために、軸受部の温度上昇が潤滑油やグリースの基油動粘度の低下を招いて、その結果、必要な油膜厚さを確保できなくなるという問題があった。
さらに、機械装置の動作不良(動作遅れや動作不能)を解消するために出力の大きなモータを採用すると、機械装置が大サイズとなり、またその価格が上昇するという問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、低速度で運転される機械装置の転がり軸受において、基油の動粘度の極めて高い潤滑油やグリースを封入する必要性をなくして機械装置の動作遅れや動作不能が避けられると共に、軸受部の温度上昇に伴う油膜厚さの減少も避けられ、さらに、出力の大きなモータを採用することによる機械装置の価格上昇も避けられる転がり軸受およびその使用方法を提供することを目的とする。
In conventional rolling bearings for vacuum machinery operating at low speed, lubricating oil and grease with extremely high kinematic viscosity of the base oil are sealed in the rolling bearing. There is a problem that the resistance becomes large, causing a delay in the operation of the mechanical device, or in the worst case, becoming inoperable.
In addition, since the viscosity resistance is large, the temperature of the bearing portion is likely to rise, so the temperature rise of the bearing portion causes a decrease in the base oil kinematic viscosity of the lubricating oil or grease, and as a result, the required oil film thickness is reduced. There was a problem that it could not be secured.
Furthermore, when a motor with a large output is employed to eliminate malfunctions (operation delays or inoperability) of the mechanical device, there is a problem that the mechanical device becomes large in size and its price increases.
The present invention has been made in view of such problems, and eliminates the need to enclose lubricating oil or grease having a very high kinematic viscosity of the base oil in a rolling bearing of a mechanical device operated at a low speed. Rolling bearings that can prevent delays and inoperability of machinery, reduce oil film thickness due to bearing temperature rise, and avoid increased machinery costs due to the use of a motor with a large output. And its use.

上記問題を解決するため、請求項1記載の発明は、転がり軸受に係り、軸受のピッチ円直径(Dm(mm))と回転速度(N(min-1))の積:DmNが25,000以下の低速度で運転される真空用機械装置の転がり軸受において、基油が形成する油膜の他に、絶縁性膜が形成し軸受の内輪と外輪の間における絶縁時間割合が増加する特性を有する潤滑用フッ素グリースを封入したことを特徴とする。
請求項2記載の発明は、請求項1記載の転がり軸受において、前記潤滑用フッ素グリースとして、直鎖状パーフルオロポリエーテル油とPTFE(ポリテトラフルオロエチレン樹脂)を混合したグリースを封入したことを特徴とする。
請求項3記載の発明は、請求項1又は2記載の転がり軸受の使用時において、軸受温度を50℃以上として運転することを特徴とする。
In order to solve the above problem, the invention according to claim 1 relates to a rolling bearing, wherein a product of a pitch circle diameter (Dm (mm)) and a rotational speed (N (min −1 )) of the bearing: DmN is 25,000. Rolling bearings for vacuum mechanical devices that are operated at the following low speeds have characteristics that an insulating film is formed in addition to the oil film formed by the base oil and the insulation time ratio between the inner ring and the outer ring of the bearing increases. It is characterized by sealing fluorine grease for lubrication.
According to a second aspect of the present invention, in the rolling bearing according to the first aspect of the present invention, a grease mixed with linear perfluoropolyether oil and PTFE (polytetrafluoroethylene resin) is sealed as the lubricating fluorine grease. Features.
The invention described in claim 3 is characterized in that the bearing is operated at a bearing temperature of 50 ° C. or higher when the rolling bearing according to claim 1 or 2 is used.

請求項1記載の発明によると、グリースの基油から形成される油膜以外に絶縁性膜が形成して、軸受の内輪と外輪の間で絶縁時間割合が増加する。その結果、軸受部品間の金属接触の頻度が低下し、良好な潤滑状態が確保できる。
また、請求項2記載の発明によると、直鎖状パーフルオロポリエーテル油とPTFEを混合したグリースを用いることで絶縁性膜の形成が加速され、良好な潤滑状態が確保できる。
また、請求項3記載の発明によると、軸受温度を50℃以上に上げることで絶縁性膜の厚さが増加するので、より動粘度の低いグリースを用いても、良好な潤滑状態が確保できる。
According to the first aspect of the present invention, the insulating film is formed in addition to the oil film formed from the grease base oil, and the insulating time ratio is increased between the inner ring and the outer ring of the bearing. As a result, the frequency of metal contact between the bearing parts decreases, and a good lubrication state can be ensured.
According to the invention of claim 2, the formation of the insulating film is accelerated by using a grease in which a linear perfluoropolyether oil and PTFE are mixed, and a good lubricating state can be secured.
Further, according to the invention described in claim 3, since the thickness of the insulating film is increased by raising the bearing temperature to 50 ° C. or higher, it is possible to ensure a good lubrication state even if grease having a lower kinematic viscosity is used. .

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

本発明の実施例を説明する前に、転がり軸受の一例として、深溝玉軸受の構成について図1を参照にして説明する。図1は深溝玉軸受の部分断面図である。深溝玉軸受1は、内輪2と、この内輪2の外周に設けられた外輪3と、この外輪3と内輪2との間に転動自在に組み込まれた複数個の球状転動体4と、これらの球状転動体4を内輪2と外輪3の円周方向に等間隔に保持する保持器5とを備えて構成されている。
内輪2と外輪3とに挟まれた空間に、球状転動体4や保持器5に付着してグリースが封入されている。必要に応じてはシールド板を取り付けることも構わない。
このような構成に基づく本発明の実施例を比較例と共に表1に示す。

Figure 2005325929
表1において、
(1)実施例1はKDLグリース(販売元:光洋精工(株))を、
(2)実施例2はデムナムL200(販売元:ダイキン工業(株))を、
(3)実施例3はデムナムL65(販売元:ダイキン工業(株))を、
それぞれ内輪2と外輪3との間に封入したものである。
一方、比較例については、
(1)比較例1はブレイコート602EF(販売元:BPジャパン(株))を、
(2)比較例2はフォンブリンGRM60(販売元:ソルベイ・セレクシス(株))を、
そして、(3)比較例3はクライトックスLVP(販売元:デュポン(株))を、
それぞれ内輪2と外輪3との間に封入したものである。
なお、KDLグリース、デムナムL200、デムナムL65は、潤滑用フッ素グリースとして、直鎖状パーフルオロポリエーテル油とPTFE(ポリテトラフルオロエチレン樹脂)を混合したものとなっている。 Before describing an embodiment of the present invention, a configuration of a deep groove ball bearing as an example of a rolling bearing will be described with reference to FIG. FIG. 1 is a partial sectional view of a deep groove ball bearing. The deep groove ball bearing 1 includes an inner ring 2, an outer ring 3 provided on the outer periphery of the inner ring 2, a plurality of spherical rolling elements 4 that are rotatably incorporated between the outer ring 3 and the inner ring 2, The spherical rolling element 4 is provided with a cage 5 that holds the inner ring 2 and the outer ring 3 in the circumferential direction at equal intervals.
Grease is enclosed in a space between the inner ring 2 and the outer ring 3 while adhering to the spherical rolling element 4 and the cage 5. If necessary, a shield plate may be attached.
Examples of the present invention based on such a configuration are shown in Table 1 together with comparative examples.
Figure 2005325929
In Table 1,
(1) In Example 1, KDL grease (distributor: Koyo Seiko Co., Ltd.)
(2) In Example 2, demnum L200 (distributor: Daikin Industries, Ltd.)
(3) In Example 3, demnum L65 (distributor: Daikin Industries, Ltd.)
Each is enclosed between the inner ring 2 and the outer ring 3.
On the other hand, for the comparative example,
(1) In Comparative Example 1, Braycoat 602EF (distributor: BP Japan Co., Ltd.)
(2) Comparative Example 2 is Fomblin GRM60 (Distributor: Solvay Selexis Co., Ltd.)
And (3) Comparative Example 3 is Krytox LVP (Distributor: DuPont),
Each is enclosed between the inner ring 2 and the outer ring 3.
Note that KDL grease, demnum L200, and demnum L65 are a mixture of linear perfluoropolyether oil and PTFE (polytetrafluoroethylene resin) as lubricating fluorine grease.

次に、今回の試験に用いた潤滑特性試験機の概略構造を図2に示す。
図2において、11は試験軸受、12はコイルばね、13はヒータ、14は絶縁フランジ、15は真空チャンバー、16は真空ポンプ、17はモータ、18はトルクメータ、19は磁性流体シール、20は電流導入端子、21は熱電対、22は電圧測定用リード線、23は電圧測定用ブラシである。
試験軸受11は、コイルばね12によりアキシャル荷重を受けると共に、ヒータ13により加熱される。試験軸受11の温度は熱電対21によって調整される。
モータ17の回転トルクは、磁性流体シール19を介して真空チャンバー15の中に配置された試験軸受11に伝えられ、トルクメータ18によって計測される。そして、電流導入端子20から電圧測定用リード線22を経由して電圧測定用ブラシ23に至る電気回路は、試験軸受11の内輪と外輪の間の電圧を測定するものである。
転がり軸受における潤滑状態の指標となる油膜パラメータ(Λ)の実測は困難なので、代用特性として、試験軸受11の内輪2と外輪3との間の電圧値から次に示す方法を用いて、内輪2と外輪3との間の絶縁時間割合を測定した。
Next, FIG. 2 shows a schematic structure of the lubrication characteristic tester used in this test.
In FIG. 2, 11 is a test bearing, 12 is a coil spring, 13 is a heater, 14 is an insulating flange, 15 is a vacuum chamber, 16 is a vacuum pump, 17 is a motor, 18 is a torque meter, 19 is a magnetic fluid seal, and 20 is A current introduction terminal, 21 is a thermocouple, 22 is a voltage measurement lead, and 23 is a voltage measurement brush.
The test bearing 11 receives an axial load from the coil spring 12 and is heated by the heater 13. The temperature of the test bearing 11 is adjusted by a thermocouple 21.
The rotational torque of the motor 17 is transmitted to the test bearing 11 disposed in the vacuum chamber 15 through the magnetic fluid seal 19 and measured by the torque meter 18. The electric circuit from the current introduction terminal 20 to the voltage measuring brush 23 via the voltage measuring lead wire 22 measures the voltage between the inner ring and the outer ring of the test bearing 11.
Since it is difficult to actually measure the oil film parameter (Λ), which is an index of the lubrication state in the rolling bearing, the inner ring 2 is used as a substitute characteristic by using the following method from the voltage value between the inner ring 2 and the outer ring 3 of the test bearing 11. The insulation time ratio between the outer ring 3 and the outer ring 3 was measured.

絶縁時間割合の測定回路の概略図を図3に示す。
図3において、2は内輪、3は外輪、31は電源、32はシリーズ抵抗、33はアンプ、34は積分回路、35は電圧計である。
内輪2と外輪3との間の電圧(E0)は、
(1)内輪2と外輪3との間の瞬時的な金属接触があればE0=0(V)となり、
(2)金属接触がなければE0=EAB(V)となる。
ここで、EABは内輪2と外輪3の間をオープンにしたときの電位差である。
この0〜EAB(V)の交流信号をアンプ33で増幅後、積分回路34によって平滑にする。得られた信号を0〜100%で表示したものを絶縁時間割合と呼ぶ。
A schematic diagram of the measurement circuit of the insulation time ratio is shown in FIG.
In FIG. 3, 2 is an inner ring, 3 is an outer ring, 31 is a power source, 32 is a series resistor, 33 is an amplifier, 34 is an integrating circuit, and 35 is a voltmeter.
The voltage (E0) between the inner ring 2 and the outer ring 3 is
(1) If there is an instantaneous metal contact between the inner ring 2 and the outer ring 3, E0 = 0 (V),
(2) If there is no metal contact, E0 = EAB (V).
Here, EAB is a potential difference when the inner ring 2 and the outer ring 3 are opened.
The AC signal of 0 to EAB (V) is amplified by the amplifier 33 and then smoothed by the integrating circuit 34. A display of the obtained signal at 0 to 100% is called an insulation time ratio.

次に、図2および図3を用いて、具体的な試験方法について説明する。
試験軸受11は呼び番号6906の深溝玉軸受である。内輪2、外輪3および球状転動体4の材料はSUS440Cである。ラジアル内部隙間の規格はC3で、シールド板は装着していない。試験軸受11は、2個を使用し、アセトンで超音波洗浄した後に、グリースを質量1.4〜1.6gの範囲で封入した。コイルばね12によって98Nのアキシャル荷重を掛けて、潤滑特性試験機10に組み込んだ。真空ポンプ16を起動して、真空チャンバー15の内部を大凡5×10−4Paに排気した後、回転速度200min−1にて、50時間以上の慣らし運転を行った。このとき、ヒータ13はOFFの状態である。
モータ17を一旦停止してから、絶縁時間割合の測定を開始した。モータを回転速度20min-1にて起動し5分間運転後、回転速度を20min-1ずつ上げて300min-1まで加速した。各速度にて5分間運転を継続した。このときもヒータ13はOFFの状態であり、軸受温度の平均値は、大凡30〜40℃の範囲であった。その後、ヒータを動作させ、50、70、90、110℃と加熱し、各温度にて同様に20min-1から300min-1まで段階的に加速して試験した。
得られた試験結果を、横軸を油膜パラメータの計算値、縦軸を絶縁時間割合で整理した。ここで、油膜パラメータの計算値は、Dowson−Higginsonの式(前記非特許文献1、p.44)より求めた油膜厚さの計算値を、転がり軸受の部品の合成表面粗さの測定値(0.05μm)で割って算出した。
まず、比較例1の場合における油膜厚さの計算値と絶縁時間割合の関係を図4に示す。軸受温度は、30、50、70、90、110℃と異なるが、全てのデータはほぼ同じ線上に存在し、計算値である油膜パラメータの代用特性値として、絶縁時間割合の測定値が使用できる。
ここで、先に述べたように、油膜パラメータ(Λ)と転がり軸受の潤滑状態の関係は、おおよそ、Λ<1.5において、転がり軸受の表面損傷が起こり易くなることより、内輪と外輪の間の絶縁時間割合が1%以下となると、転がり軸受の表面損傷が起こり易くなると推測される。
Next, a specific test method will be described with reference to FIGS.
The test bearing 11 is a deep groove ball bearing having a nominal number 6906. The material of the inner ring 2, the outer ring 3 and the spherical rolling element 4 is SUS440C. The standard for the radial internal gap is C3, and no shield plate is attached. Two test bearings 11 were used, and after ultrasonic cleaning with acetone, grease was sealed in a mass range of 1.4 to 1.6 g. An axial load of 98 N was applied by the coil spring 12 and incorporated in the lubrication characteristic tester 10. The vacuum pump 16 was started and the inside of the vacuum chamber 15 was evacuated to about 5 × 10 −4 Pa, and then a break-in operation was performed for 50 hours or more at a rotation speed of 200 min−1. At this time, the heater 13 is in an OFF state.
After the motor 17 was temporarily stopped, the measurement of the insulation time ratio was started. After starting driving 5 minutes motor at a rotation speed 20min -1, it was accelerated to 300 min -1 by increasing the rotational speed by 20min -1. The operation was continued for 5 minutes at each speed. At this time as well, the heater 13 was in an OFF state, and the average value of the bearing temperature was approximately in the range of 30 to 40 ° C. Thereafter, by operating the heater, it was heated and 50,70,90,110 ° C., was tested stepwise acceleration Likewise from 20min -1 to 300 min -1 at each temperature.
The obtained test results were arranged with the calculated value of the oil film parameter on the horizontal axis and the insulation time ratio on the vertical axis. Here, the calculated value of the oil film parameter is the calculated value of the oil film thickness obtained from the Dowson-Higginson formula (Non-Patent Document 1, p. 44), and the measured value of the combined surface roughness of the components of the rolling bearing ( It was calculated by dividing by 0.05 μm).
First, the relationship between the calculated value of the oil film thickness and the insulation time ratio in the case of Comparative Example 1 is shown in FIG. The bearing temperature is different from 30, 50, 70, 90, and 110 ° C, but all the data exists on the same line, and the measured value of the insulation time ratio can be used as the substitute characteristic value of the oil film parameter that is the calculated value. .
Here, as described above, the relationship between the oil film parameter (Λ) and the lubrication state of the rolling bearing is approximately that the surface damage of the rolling bearing is likely to occur when Λ <1.5. If the insulation time ratio is 1% or less, the surface damage of the rolling bearing is likely to occur.

図4から、油膜パラメータ=1.5に相当する絶縁時間割合=1%となるときの軸受の回転速度を読みとると、
軸受温度が30℃の場合50min-1
50℃で90min-1
70℃で160min-1
90℃で240min-1
110℃で360min-1(推定値)となる。
比較例1の場合の、軸受温度とグリースの基油の動粘度の関係は、
30℃が167.5mm2/s、
50℃が112.1mm2/s、
70℃が74.3mm2/s、
90℃が52.0mm2/s、
110℃が38.1mm2/sである。
比較例1において、基油の動粘度と絶縁時間割合=1%となるときの軸受の回転速度との関係を図5に示す。
図5において、プロットを結ぶ線の下側の領域では、転がり軸受の潤滑状態が悪いことになる。従って、グリースの基油の動粘度がほとんど公表されている40℃において、転がり軸受の潤滑状態を良好に保つために必要な基油の動粘度を数値で表すと、比較例においては、転がり軸受の潤滑状態を良好に保つために必要な基油の動粘度は、
(1)回転速度が100min-1の場合に,100mm2/s以上、
(2)回転速度が20min-1の場合に340mm2/s以上、
(3)回転速度が10min-1の場合には580mm2/s以上と、高いことになる。
更に、軸受温度が40℃よりも高くなる場合には、温度に伴なう動粘度の低下を考慮すると、40℃の基油の動粘度がより高いグリースを選定する必要がある。
従来例1の場合で、軸受温度が40℃および110℃において、絶縁時間割合=1%を得るために必要な回転速度を表1に記載したが、それらは、65min-1および368min-1となる。つまり、従来例1の場合の潤滑状態は、
(1)軸受温度が40℃のときは、回転速度が65min-1以下になると悪くなり、
(2)軸受温度が110℃のときは、回転速度が368min-1以下になると悪くなる。
それから、比較例2は、フォンブリンGRM60(販売元:ソルベイ・セレクシス(株))、比較例3は、クライトックスLVP(販売元:デュポン(株))、を内輪2と外輪3との間に封入したものであるが、表1に示したように、実施例1の場合と同様に絶縁時間割合の増加が認められなかった。
従来例2の場合、基油の動粘度が高いことにより、軸受温度が40℃のときは、回転速度が23min-1以上の場合で良好な潤滑状態が得られるが、軸受トルクが大きいという問題がある。そして、軸受温度が110℃に上がると、回転速度が156min-1以上にならないと良好な潤滑状態が得られない。
従来例3の場合、基油の動粘度が更に高いことにより、軸受温度が40℃のときは、回転速度が8min-1のときまで良好な潤滑状態が得られるが、軸受トルクが極めて大きいという問題がある。そして、基油の動粘度が温度上昇に伴って大きく変化する傾向を持つことから軸受温度が110℃に上がると、回転速度が330min-1以上にならないと良好な潤滑状態が得られない。
From FIG. 4, when the rotation speed of the bearing when the insulation time ratio corresponding to the oil film parameter = 1.5 = 1% is read,
50 min -1 when the bearing temperature is 30 ° C
90 min -1 at 50 ° C,
160 min −1 at 70 ° C.,
240 min −1 at 90 ° C.,
It becomes 360 min −1 (estimated value) at 110 ° C.
In the case of Comparative Example 1, the relationship between the bearing temperature and the kinematic viscosity of the grease base oil is
30 ° C. is 167.5 mm 2 / s,
50 ° C. is 112.1 mm 2 / s,
70 ° C. is 74.3 mm 2 / s,
90 ° C. is 52.0 mm 2 / s,
110 ° C. is 38.1 mm 2 / s.
In Comparative Example 1, the relationship between the kinematic viscosity of the base oil and the rotational speed of the bearing when the insulation time ratio = 1% is shown in FIG.
In FIG. 5, in the area below the line connecting the plots, the rolling bearing is poorly lubricated. Accordingly, when the kinematic viscosity of the base oil necessary for maintaining the lubrication state of the rolling bearing at 40 ° C., at which the kinematic viscosity of the base oil of the grease is almost publicized, is expressed numerically, in the comparative example, the rolling bearing The kinematic viscosity of the base oil necessary to keep the lubricating state of
(1) When the rotation speed is 100 min −1 , 100 mm 2 / s or more,
(2) 340 mm 2 / s or more when the rotational speed is 20 min −1 ,
(3) When the rotational speed is 10 min −1 , it is as high as 580 mm 2 / s or higher.
Furthermore, when the bearing temperature is higher than 40 ° C., it is necessary to select a grease having a higher kinematic viscosity of the base oil at 40 ° C. in consideration of a decrease in kinematic viscosity with temperature.
In the case of the conventional example 1, when the bearing temperatures are 40 ° C. and 110 ° C., the rotation speeds required to obtain the insulation time ratio = 1% are shown in Table 1, which are 65 min −1 and 368 min −1 . Become. That is, the lubrication state in the case of Conventional Example 1 is
(1) When the bearing temperature is 40 ° C., it becomes worse when the rotational speed is 65 min −1 or less,
(2) When the bearing temperature is 110 ° C., it becomes worse when the rotational speed is 368 min −1 or less.
Then, Comparative Example 2 is Fomblin GRM60 (distributor: Solvay Celexis Co., Ltd.), and Comparative Example 3 is Krytox LVP (distributor: DuPont Co., Ltd.) between the inner ring 2 and the outer ring 3. Although it was sealed, as shown in Table 1, as in the case of Example 1, an increase in the insulation time ratio was not recognized.
In the case of Conventional Example 2, due to the high kinematic viscosity of the base oil, when the bearing temperature is 40 ° C., a good lubrication state can be obtained when the rotational speed is 23 min −1 or more, but the bearing torque is large. There is. When the bearing temperature rises to 110 ° C., a good lubrication state cannot be obtained unless the rotational speed is 156 min −1 or higher.
In the case of Conventional Example 3, the kinematic viscosity of the base oil is higher, so that when the bearing temperature is 40 ° C., a good lubrication state can be obtained until the rotational speed is 8 min −1 , but the bearing torque is extremely large. There's a problem. Since the kinematic viscosity of the base oil tends to change greatly as the temperature rises, when the bearing temperature rises to 110 ° C., a good lubricating state cannot be obtained unless the rotational speed is 330 min −1 or higher.

次に、実施例1の場合における、油膜厚さの計算値と絶縁時間割合の関係を図6に示す。
すべての温度(33、50、70、90、110℃)において、回転速度が20min-1においても、絶縁時間割合は1より大きくなっており、転がり軸受の内部の潤滑状態は良好なことが分かる。
軸受温度が40℃で回転速度が20min-1の場合に、良好な潤滑状態を確保するために必要な基油の動粘度は、比較例1のグリースにおいては340mm2/s以上であったが、実施例1では、40℃で200mm2/s、110℃においては25.0mm2/sと小さな基油の動粘度にて、良好な潤滑状態を確保していることが分かる。
図6(実施例1)と図4(比較例1)から、油膜パラメータの計算値が1、つまり、油膜厚さの計算値が0.05μmの場合の絶縁時間割合を読みとって、軸受温度との関係として図7に示した。
図7において、比較例1の場合、絶縁時間割合は軸受温度が増加しても変化しないが、実施例1の場合、軸受温度の上昇に伴って絶縁時間割合は増加し、50℃で約40%、70℃以上でほぼ100%に達した。実施例1では、特に軸受温度が50になると軸受の潤滑状態は良好になり、温度が高い条件ほど基油の動粘度を小さく選定できることになる。
つまり、実施例1においては、基油から形成される油膜の他に、グリースが絶縁性膜を形成することによって、絶縁時間割合が増加するものと推測される。
なお、図7の変化は、軸受温度の上下に対して可逆的であり、試験後の軸受の観察結果から、軸受部材の表面に損傷を与えるものではない。
実施例1の場合で、軸受温度が40℃および110℃において絶縁時間割合=1%を得るために必要な回転速度を表1に記載したが、それらは、共に20min-1未満であった。今回は、20min-1の試験を行わなかったので、正確な数値はつかめていない。
つまり、比較例1の場合、軸受温度が40℃のときは、少なくとも回転速度が20min-1以上の場合まで良好な潤滑状態が得られており、更に驚くべきことは、基油の動粘度を高めることなく、軸受温度が110℃のときでも、少なくとも回転速度が20min-1以上の場合まで良好な潤滑状態が得られている。
〔その他の実施例〕
Next, the relationship between the calculated value of the oil film thickness and the insulation time ratio in the case of Example 1 is shown in FIG.
At all temperatures (33, 50, 70, 90, 110 ° C.), even at a rotational speed of 20 min −1 , the insulation time ratio is greater than 1, indicating that the lubrication state inside the rolling bearing is good. .
When the bearing temperature is 40 ° C. and the rotational speed is 20 min −1 , the kinematic viscosity of the base oil necessary to ensure a good lubrication state was 340 mm 2 / s or more in the grease of Comparative Example 1. in example 1, at a kinematic viscosity of smaller base oil and 25.0 mm 2 / s in 200mm 2 / s, 110 ℃ at 40 ° C., it can be seen that to ensure a good lubrication.
From FIG. 6 (Example 1) and FIG. 4 (Comparative Example 1), the insulation time ratio when the calculated value of the oil film parameter is 1, that is, the calculated value of the oil film thickness is 0.05 μm, is read. This relationship is shown in FIG.
In FIG. 7, in the case of Comparative Example 1, the insulation time ratio does not change even when the bearing temperature increases, but in the case of Example 1, the insulation time ratio increases as the bearing temperature increases, and is about 40 at 50 ° C. %, Reached almost 100% at 70 ° C. or higher. In Example 1, especially when the bearing temperature becomes 50, the lubrication state of the bearing becomes better, and the higher the temperature, the smaller the kinematic viscosity of the base oil can be selected.
That is, in Example 1, in addition to the oil film formed from the base oil, it is presumed that the grease forms an insulating film, thereby increasing the insulation time ratio.
Note that the change in FIG. 7 is reversible with respect to the rise and fall of the bearing temperature, and does not damage the surface of the bearing member from the observation result of the bearing after the test.
In the case of Example 1, the rotational speeds required to obtain the insulation time ratio = 1% at the bearing temperatures of 40 ° C. and 110 ° C. are shown in Table 1, both of which were less than 20 min −1 . This time, since the test of 20 min -1 was not performed, an accurate numerical value was not grasped.
That is, in the case of Comparative Example 1, when the bearing temperature is 40 ° C., a good lubricating state is obtained at least until the rotational speed is 20 min −1 or more, and more surprisingly, the kinematic viscosity of the base oil is increased. Without increasing, even when the bearing temperature is 110 ° C., a good lubrication state is obtained at least until the rotational speed is 20 min −1 or more.
[Other Examples]

実施例2は、デムナムL200(販売元:ダイキン工業(株))、実施例3は、デムナムL65(販売元:ダイキン工業(株))、を内輪2と外輪3との間に封入したものである。
表1に示したように、実施例1の場合と同様に絶縁時間割合の増加が認めら、軸受温度が40℃および110℃において、少なくとも回転速度が20min-1以上の場合まで良好な潤滑状態が得られている。
Example 2 is a demnum L200 (seller: Daikin Industries, Ltd.) and Example 3 is a demnum L65 (seller: Daikin Industries, Ltd.) sealed between the inner ring 2 and the outer ring 3. is there.
As shown in Table 1, as in the case of Example 1, an increase in the insulation time ratio was observed, and a satisfactory lubrication state was obtained until the bearing temperature was 40 ° C. and 110 ° C. and at least the rotation speed was 20 min −1 or more. Is obtained.

このように、軸受のピッチ円直径(Dm(mm))と回転速度(N(min-1))の積:DmNが25,000以下の低速度で運転される機械装置の転がり軸受において、ダイキン工業(株)が製造販売する潤滑用グリース(商品名:デムナムL200、デムナムL100、デムナムL65、デムナムLR200、デムナムLP200、デムナムLS200)、光洋精工(株)が販売する潤滑用グリース(商品名:KDLグリース)、を封入するという手順をとり、必要に応じて、軸受温度を50℃以上とするという手順をとるので、基油の動粘度が高いグリースを用いずとも、グリースが絶縁性膜を形成して絶縁時間割合が増加するので、真空用機械装置の転がり軸受において良好な潤滑状態を確保することができる。 In this way, in the rolling bearing of a mechanical device that is operated at a low speed with the product of the pitch circle diameter (Dm (mm)) and the rotational speed (N (min −1 )) of the bearing: DmN of 25,000 or less, Lubricating grease manufactured and sold by Kogyo Co., Ltd. (trade names: Demnam L200, Demnam L100, Demnam L65, Demnam LR200, Demnam LP200, Demnum LS200), Lubricating grease sold by Koyo Seiko Co., Ltd. Grease), and if necessary, the bearing temperature is set to 50 ° C or higher, so that grease forms an insulating film without using grease with a high kinematic viscosity of the base oil. As a result, the insulating time ratio increases, so that a good lubricating state can be ensured in the rolling bearing of the vacuum mechanical device.

今回の実施例は、用途を回転形の転がり軸受に限定するものではないので、直動型の転がり軸受に適用してもよい。また、機械装置の使用環境も真空に限定するものでなく、大気環境用の機械装置にも適用できる。
なお、ダイキン化学工業(株)のデムナムグリースの名前が記載された先願(請求項には名前の記載なし)として、次の2つが検索されましたが、今回の従来技術としては該当しないと考えます。
(1)「特開2003−13974(転動装置)」デムナムL65、3000min−1,(軸受形式不明),(DmN不明)、試験温度:100℃、雰囲気圧力:10−4Pa。
潤滑性と防錆性を付与するために、特殊な軸受部材に防錆油を塗布する。
(2)「特開2000−65075(転がり軸受)」デムナムL200,1000min-1、軸受型番608,DmN=15,000mm・min-1、試験温度:常温、雰囲気圧力:大気圧。
発塵性の改善のために、軸受のシールド板に磁性流体シールを構成する。
In this embodiment, the application is not limited to a rotary type rolling bearing, and may be applied to a direct acting type rolling bearing. Further, the use environment of the mechanical device is not limited to a vacuum, but can be applied to a mechanical device for an atmospheric environment.
In addition, the following two were searched as a prior application (the name is not written in the claim) in which the name of demnum grease of Daikin Chemical Industries, Ltd. was written, but it is not applicable as this prior art I think.
(1) “JP 2003-13974 (rolling device)” demnum L65, 3000 min-1, (bearing type unknown), (DmN unknown), test temperature: 100 ° C., atmospheric pressure: 10 −4 Pa.
In order to impart lubricity and rust prevention, rust prevention oil is applied to a special bearing member.
(2) “JP 2000-65075 (rolling bearing)” demnum L200, 1000 min −1 , bearing model number 608, DmN = 15,000 mm · min −1 , test temperature: normal temperature, atmospheric pressure: atmospheric pressure.
In order to improve dust generation, a magnetic fluid seal is formed on the shield plate of the bearing.

深溝玉軸受の一部分を示す断面図である。It is sectional drawing which shows a part of deep groove ball bearing. 転がり軸受の潤滑状態を調べるために使用した潤滑特性試験機の概略構造図である。FIG. 3 is a schematic structural diagram of a lubrication characteristic tester used for examining a lubrication state of a rolling bearing. 転がり軸受の絶縁時間割合を測定した電気回路の概略図である。It is the schematic of the electric circuit which measured the insulation time ratio of the rolling bearing. 第1の従来例における油膜パラメータと絶縁時間割合の相関図である。It is a correlation diagram of the oil film parameter and insulation time ratio in the first conventional example. 第1の従来例における基油の動粘度と絶縁時間割合の相関図である。It is a correlation diagram of the kinematic viscosity of the base oil and the insulation time ratio in the first conventional example. 第1の実施例における油膜パラメータと絶縁時間割合の相関図である。It is a correlation diagram of the oil film parameter and the insulation time ratio in the first embodiment. 第1の実施例および第1の従来例における軸受温度と絶縁時間割合の相関図である。It is a correlation diagram of the bearing temperature and the insulation time ratio in the first embodiment and the first conventional example.

符号の説明Explanation of symbols

1 深溝玉軸受
2 内輪
3 外輪
4 球状転動体
5 保持器
10 潤滑特性試験機
11 試験軸受
12 コイルばね
13 ヒータ
14 絶縁フランジ
15 真空チャンバ
16 真空ポンプ
17 モータ
18 トルクメータ
19 磁性流体シール
20 電流導入端子
21 熱電対
22 電圧測定用リード線
23 電圧測定用ブラシ
31 電源
32 シリーズ抵抗
33 アンプ
34 積分回路
35 電圧計
DESCRIPTION OF SYMBOLS 1 Deep groove ball bearing 2 Inner ring 3 Outer ring 4 Spherical rolling element 5 Cage 10 Lubrication characteristic tester 11 Test bearing 12 Coil spring 13 Heater 14 Insulating flange 15 Vacuum chamber 16 Vacuum pump 17 Motor 18 Torque meter 19 Magnetic fluid seal 20 Current introduction terminal 21 Thermocouple 22 Voltage Measurement Lead Wire 23 Voltage Measurement Brush 31 Power Supply 32 Series Resistance 33 Amplifier 34 Integration Circuit 35 Voltmeter

Claims (3)

軸受のピッチ円直径(Dm(mm))と回転速度(N(min-1))の積:DmNが25,000以下の低速度で運転される真空用機械装置の転がり軸受において、基油が形成する油膜の他に、絶縁性膜が形成し軸受の内輪と外輪の間における絶縁時間割合が増加する特性を有する潤滑用フッ素グリースを封入したことを特徴とする転がり軸受。 Product of bearing pitch circle diameter (Dm (mm)) and rotational speed (N (min -1 )): In a rolling bearing of a vacuum machine operated at a low speed of DmN of 25,000 or less, the base oil is A rolling bearing characterized in that, in addition to an oil film to be formed, an insulating film is formed and a lubricating fluorine grease having a characteristic of increasing an insulation time ratio between an inner ring and an outer ring of the bearing is enclosed. 前記潤滑用フッ素グリースとして、直鎖状パーフルオロポリエーテル油とPTFE(ポリテトラフルオロエチレン樹脂)を混合したグリースを封入したことを特徴とする請求項1記載の転がり軸受。   2. The rolling bearing according to claim 1, wherein a grease mixed with linear perfluoropolyether oil and PTFE (polytetrafluoroethylene resin) is enclosed as the lubricating fluorine grease. 請求項1又は2記載の転がり軸受の使用時において、軸受温度を50℃以上として運転することを特徴とする転がり軸受の使用方法。   A method for using a rolling bearing, wherein the rolling bearing is operated at a bearing temperature of 50 ° C or higher when the rolling bearing according to claim 1 or 2 is used.
JP2004144882A 2004-05-14 2004-05-14 Rolling bearing and use method thereof Pending JP2005325929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144882A JP2005325929A (en) 2004-05-14 2004-05-14 Rolling bearing and use method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144882A JP2005325929A (en) 2004-05-14 2004-05-14 Rolling bearing and use method thereof

Publications (1)

Publication Number Publication Date
JP2005325929A true JP2005325929A (en) 2005-11-24

Family

ID=35472440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144882A Pending JP2005325929A (en) 2004-05-14 2004-05-14 Rolling bearing and use method thereof

Country Status (1)

Country Link
JP (1) JP2005325929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088846A (en) * 2006-09-29 2008-04-17 Denso Corp Scroll type compressor
JP2009150434A (en) * 2007-12-19 2009-07-09 Ntn Corp Retainer for rolling bearing and method for designing same
JP2012159126A (en) * 2011-01-31 2012-08-23 Panasonic Corp Lubrication state determining device and component mounting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251455A (en) * 1987-04-06 1988-10-18 Dow Corning Kk Perfluoro polyether compound composition
JP2002250353A (en) * 2000-12-18 2002-09-06 Nsk Ltd Rolling bearing
JP2003343579A (en) * 2002-05-24 2003-12-03 Nsk Ltd Rolling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251455A (en) * 1987-04-06 1988-10-18 Dow Corning Kk Perfluoro polyether compound composition
JP2002250353A (en) * 2000-12-18 2002-09-06 Nsk Ltd Rolling bearing
JP2003343579A (en) * 2002-05-24 2003-12-03 Nsk Ltd Rolling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088846A (en) * 2006-09-29 2008-04-17 Denso Corp Scroll type compressor
JP2009150434A (en) * 2007-12-19 2009-07-09 Ntn Corp Retainer for rolling bearing and method for designing same
JP2012159126A (en) * 2011-01-31 2012-08-23 Panasonic Corp Lubrication state determining device and component mounting device

Similar Documents

Publication Publication Date Title
Wilson The relative thickness of grease and oil films in rolling bearings
JP7484410B2 (en) Method for diagnosing rolling devices
US9995344B2 (en) Capacitance measurement in a bearing
Wittek et al. Capacitance of bearings for electric motors at variable mechanical loads
Joshi Electrical Characterisations of Bearings
JP2005325929A (en) Rolling bearing and use method thereof
WO2020149233A1 (en) Method for diagnosing rolling device
Maru et al. Anti-friction bearing temperature rise for NEMA frame motors
Sikorski et al. Internal friction of ball bearings at very low temperatures
Zuercher et al. Early failure detection for bearings in electrical environments
CN212462955U (en) Bearing and axle sleeve assembly structure are right to latent oily motor of high temperature
JP2004218789A (en) Sealed rolling bearing
US20050169561A1 (en) Fluid bearing device
JP2018003028A (en) Grease composition for rolling shaft bearing and rolling shaft bearing, and machine tool main shaft device
JP2008025685A (en) Rolling bearing
JP2009197894A (en) Rolling bearing and motor
Furtmann et al. Capacitances and Lubricant Film Thicknesses of Oil Lubricated Bearings
JP6855974B2 (en) Rolling bearings and their manufacturing methods
JP7472176B2 (en) Grease composition and rolling bearing
Hampson et al. Towards the effective solid lubrication of ball bearings operating at high temperature
JPH11344036A (en) Rolling bearing
Noguchi et al. Effect of oil film parameter on vibration acceleration and electrical pitting of small ball bearing
JP2012163164A (en) Rolling bearing for motor
WO2024101322A1 (en) Condition measuring method, condition measuring device, and program
JP4038341B2 (en) Solid lubricated rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Effective date: 20070411

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20090515

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090723

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A02