JP5375160B2 - Roller bearing cage for automobile - Google Patents

Roller bearing cage for automobile Download PDF

Info

Publication number
JP5375160B2
JP5375160B2 JP2009033536A JP2009033536A JP5375160B2 JP 5375160 B2 JP5375160 B2 JP 5375160B2 JP 2009033536 A JP2009033536 A JP 2009033536A JP 2009033536 A JP2009033536 A JP 2009033536A JP 5375160 B2 JP5375160 B2 JP 5375160B2
Authority
JP
Japan
Prior art keywords
metal oxide
cage
solution
water
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009033536A
Other languages
Japanese (ja)
Other versions
JP2010190272A (en
Inventor
宏教 水城
康浩 石森
加奈子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009033536A priority Critical patent/JP5375160B2/en
Publication of JP2010190272A publication Critical patent/JP2010190272A/en
Application granted granted Critical
Publication of JP5375160B2 publication Critical patent/JP5375160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • F16C33/565Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/60Oil repelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/66Water repelling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、自動車専用の転がり軸受に用いられる保持器であって、その表面に撥水撥油膜が形成された自動車専用転がり軸受用保持器に関する。
The present invention relates to a retainer for use in an automobile dedicated rolling bearing, to pure car rolling bearing retainer water repellent oil repellent film formed on its surface.

従来、例えば自動車のトランスミッション等に用いられる転がり軸受には、金属製のものに比べて軽量で、機械的特性に優れた樹脂製の保持器が多用されている。このような樹脂製保持器は、高温の潤滑油(ギヤオイル)中で使用されるため、かかる使用環境下における耐油性を向上させる各種の技術的方策が施されている。その一例として特許文献1では、樹脂製保持器の母材として用いられるポリアミド樹脂に、炭化水素系ポリマーを分散させる技術的方策が示されている。これによれば、高温の潤滑油環境下での使用に際し、炭化水素系ポリマーがポリアミド樹脂よりも先に劣化(酸化)することで、保持器内部への潤滑油の浸入(浸透)を防止するようになっている。   2. Description of the Related Art Conventionally, resin rolling cages that are lighter than metal ones and have excellent mechanical characteristics are frequently used for rolling bearings used in, for example, automobile transmissions. Since such a resin cage is used in high-temperature lubricating oil (gear oil), various technical measures for improving the oil resistance in such a use environment are applied. As an example, Patent Document 1 discloses a technical measure for dispersing a hydrocarbon polymer in a polyamide resin used as a base material of a resin cage. According to this, when used in a high temperature lubricating oil environment, the hydrocarbon-based polymer deteriorates (oxidizes) before the polyamide resin, thereby preventing the lubricating oil from entering (penetrating) into the cage. It is like that.

しかしながら、ポリアミド樹脂に分散された炭化水素系ポリマーは、上記したように早期に劣化(酸化)され易く、その耐油性も低いため、高温の潤滑油環境下に晒されている樹脂製保持器の表面が早期に劣化し易いといった問題がある。そして、樹脂製保持器の表面が劣化した場合、その劣化の程度によっては、当該劣化した部分から例えばクラックが発生し、その結果、保持器の強度を長期に亘って一定に維持することができなくなってしまう虞がある。そうなると、このような保持器を用いた転がり軸受の性能(例えば、回転性能、潤滑性能など)を長期に亘って一定に維持することができなくなってしまう。   However, since the hydrocarbon polymer dispersed in the polyamide resin is easily deteriorated (oxidized) at an early stage as described above and its oil resistance is low, the resin cage exposed to a high-temperature lubricating oil environment. There is a problem that the surface tends to deteriorate early. When the surface of the resin cage is deteriorated, depending on the degree of the deterioration, for example, a crack is generated from the deteriorated portion, and as a result, the strength of the cage can be kept constant over a long period of time. There is a risk of disappearing. If it becomes so, it will become impossible to maintain the performance (for example, rotation performance, lubrication performance, etc.) of a rolling bearing using such a cage over a long period of time.

特開平7−190069号公報Japanese Patent Laid-Open No. 7-190069

本発明は、このような問題を解決するためになされており、その目的は、高温環境下での早期の劣化を防止し、長期に亘って一定の強度を維持することが可能な耐油性に優れた自動車専用転がり軸受用保持器を提供することにある。
The present invention has been made in order to solve such problems, and its purpose is to prevent oil from being deteriorated early in a high temperature environment, and to be oil resistant to maintain a constant strength over a long period of time. The object is to provide an excellent rolling bearing cage for automobiles .

このような目的を達成するために、本発明は、軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転すると共に、潤滑油環境下で使用される自動車専用転がり軸受用保持器であって、当該保持器は、全体が合成樹脂材料で形成された保持器本体と、保持器本体の表面の全面に形成された撥水撥油膜とを備え、前記撥水撥油膜は、保持器本体の表面の全面に金属酸化物層を形成し、この金属酸化物層の表面の全面に撥水撥油層を形成して構成されており、金属酸化物層には、平均一次粒径が1nm以上200nm以下の金属酸化物微粒子が含まれていると共に、金属酸化物層を形成するアルコキシ金属塩の金属種と、当該金属酸化物層を形成する金属酸化物微粒子の金属種と、撥水撥油処理を形成するフッ素含有有機化合物に含まれる金属種とは全てシリコンであり、保持器本体の表面の平均表面粗さ(Ra)が0.001μm以上4μm以下である。
本発明において、前記保持器本体は、アジピン酸とヘキサメチレンジアミンを重縮合させて作られるポリアミド系樹脂、又は、アジピン酸とジアミノブタンを重縮合させて作られるポリアミド系樹脂で形成されている。
本発明において、前記保持器本体は、アジピン酸とジアミノブタンを重縮合させて作られるポリアミド系樹脂で形成されている。
In order to achieve such an object, the present invention revolves along the inside of the bearing together with the plurality of rolling elements while holding the plurality of rolling elements rotatably inside the bearing , and is used in a lubricating oil environment. A rolling bearing retainer for automobiles , which includes a cage body that is entirely formed of a synthetic resin material, and a water and oil repellent film that is formed on the entire surface of the cage body. The water / oil repellent film is formed by forming a metal oxide layer on the entire surface of the cage body, and forming a water / oil repellent layer on the entire surface of the metal oxide layer. The layer contains metal oxide fine particles having an average primary particle size of 1 nm or more and 200 nm or less, a metal species of an alkoxy metal salt that forms the metal oxide layer, and a metal oxide that forms the metal oxide layer. Metal species and water and oil repellent treatment All the metal species contained in the fluorine-containing organic compound to form the silicon, the average surface roughness of the surface of the holder body (Ra) is 4μm or less than 0.001 [mu] m.
In the present invention, the cage body is made of a polyamide resin made by polycondensation of adipic acid and hexamethylenediamine, or a polyamide resin made by polycondensation of adipic acid and diaminobutane.
In the present invention, the retainer body is formed of a polyamide resin made by polycondensation of adipic acid and diaminobutane.

本発明によれば、高温環境下での早期の劣化を防止し、長期に亘って一定の強度を維持することが可能な耐油性に優れた自動車専用転がり軸受用保持器を実現することができる。
According to the present invention, it is possible to realize an automotive rolling bearing retainer with excellent oil resistance capable of preventing early deterioration under a high temperature environment and maintaining a constant strength over a long period of time. .

(a)は、本発明の一実施の形態に係る転がり軸受用保持器の仕様を一部拡大して示す断面図、(b)は、同図(a)に示された保持器の外観構成を示す斜視図、(c)は、保持器本体の表面に撥水撥油膜が形成された状態を示す断面図。(a) is sectional drawing which expands partially the specification of the cage for rolling bearings which concerns on one embodiment of this invention, (b) is an external appearance structure of the cage shown to the figure (a) FIG. 4C is a cross-sectional view showing a state in which a water / oil repellent film is formed on the surface of the cage body.

以下、本発明の一実施の形態に係る転がり軸受用保持器について、添付図面を参照して説明する。
なお、転がり軸受には、例えば鉄道車両や自動車、或いは、各種の産業用及び工業用の装置に設けられた回転軸を支持するものがあるが、ここでは一例として、自動車のトランスミッションに適用されて、高温の潤滑油(ギヤオイル)中で使用される転がり軸受を想定する。この場合、転がり軸受としては、ラジアル軸受やスラスト軸受を適用することができるが、ここでは一例として、互いに相対回転可能にラジアル方向に対向配置された内輪4及び外輪6とを備えたラジアル軸受(図1(a))を想定する。
Hereinafter, a rolling bearing retainer according to an embodiment of the present invention will be described with reference to the accompanying drawings.
In addition, there are rolling bearings that support a rotating shaft provided in, for example, railway vehicles and automobiles, or various industrial and industrial devices, but here, as an example, they are applied to automobile transmissions. Assume a rolling bearing used in high-temperature lubricating oil (gear oil). In this case, although a radial bearing or a thrust bearing can be applied as the rolling bearing, here, as an example, a radial bearing including an inner ring 4 and an outer ring 6 disposed so as to face each other in a radial direction so as to be relatively rotatable with each other ( FIG. 1 (a)) is assumed.

図1(a)には、本実施の形態に係る転がり軸受用保持器2(以下、保持器2という)の仕様が示されており、当該保持器2は、上記した転がり軸受の軸受内部において、内外輪4,6間に組み込まれた複数の転動体8を回転自在に保持しながら、これら複数の転動体8と共に軸受内部に沿って公転するように構成されている。ここで、転動体8としては、例えばころ、玉を適用することが可能であるが、ここでは一例として、ころを想定する。また、ころの種類としては、例えば円筒ころ、針状ころ、円すいころ、球面ころなどを適用することができる。この場合、保持器2の種類としては、例えばかご形保持器、波形保持器、冠形保持器、もみぬき形保持器、合せ保持器などを適用することができるが、ここでは一例として、かご形保持器を想定する。   FIG. 1 (a) shows the specifications of a rolling bearing cage 2 (hereinafter referred to as cage 2) according to the present embodiment, and the cage 2 is located inside the bearing of the rolling bearing described above. The plurality of rolling elements 8 incorporated between the inner and outer rings 4 and 6 are rotatably held along with the plurality of rolling elements 8 along the inside of the bearing. Here, as the rolling element 8, for example, a roller or a ball can be applied, but here, a roller is assumed as an example. Moreover, as a kind of roller, a cylindrical roller, a needle roller, a tapered roller, a spherical roller etc. are applicable, for example. In this case, examples of the cage 2 include a cage cage, a corrugated cage, a crown cage, a rice bran cage, and a mating cage. Here, as an example, a cage Assume a shape cage.

なお、転動体(ころ)8は、周方向に連続した転動面8m(内輪4外周に形成された軌道面4sと、この軌道面4sに対向して外輪6内周に形成された軌道面6sとに沿って摺接しながら転がる周面)と、その両側に形成された円形の側面8sとで構成されていると共に、転動面8mと側面8sとの間には、周方向に沿って連続した環状の面取り部8rが形成されている。この場合、各面取り部8rには、所定の面取りが施されており、これにより、当該転動体(ころ)8が内外輪4,6間を転動する際において、例えば内外輪4,6の軌道面4s,6sとの磨耗や摩損などを低減させることができる。なお、各面取り部8rの面取り寸法は、例えば内外輪4,6の軌道面4s,6sや転動体(ころ)8の形状や大きさ或いは材質などに応じて任意に設定されるため、ここでは特に数値限定はしない。   The rolling element (roller) 8 includes a rolling surface 8m (a raceway surface 4s formed on the outer periphery of the inner ring 4 and a raceway surface formed on the inner periphery of the outer ring 6 so as to face the raceway surface 4s. 6s) and a circular side surface 8s formed on both sides thereof, and between the rolling surface 8m and the side surface 8s along the circumferential direction. A continuous annular chamfer 8r is formed. In this case, each chamfered portion 8r is subjected to predetermined chamfering, so that when the rolling element (roller) 8 rolls between the inner and outer rings 4, 6, for example, the inner and outer rings 4, 6 It is possible to reduce wear and wear on the raceway surfaces 4s and 6s. The chamfer dimension of each chamfered portion 8r is arbitrarily set according to the shape, size or material of the raceway surfaces 4s, 6s of the inner and outer rings 4, 6 and the rolling elements (rollers) 8, for example. There is no particular numerical limitation.

図1(b)には、保持器(かご形保持器)2の構成が示されており、当該保持器2は、上記した転がり軸受の軸受内部に沿って周方向に連続し、互いに対向配置された円環部10,12と、円環部10,12相互間に亘って延在し、当該円環部10,12に沿って周方向に所定間隔(例えば、等間隔)で配列された複数の柱部14と、円環部10,12と複数の柱部14とによって区画され、複数の転動体(ころ)8(図1(a))を1つずつ回転自在に保持する複数のポケット16とを備えている。同図では一例として、互いに径の異なる円環部10,12が互いに同中心に所定間隔で対向配置されており、複数の柱部14は、その両端側が各円環部10,12に接合されている。   FIG. 1B shows the structure of a cage (cage-type cage) 2, which is continuous in the circumferential direction along the inside of the bearing of the rolling bearing described above and arranged opposite to each other. The annular portions 10 and 12 and the annular portions 10 and 12 extend between each other, and are arranged along the annular portions 10 and 12 at a predetermined interval (for example, at equal intervals) in the circumferential direction. A plurality of column parts 14, a plurality of ring parts 10 and 12, and a plurality of column parts 14, and a plurality of rolling elements (rollers) 8 (FIG. 1 (a)) are rotatably held one by one. Pocket 16. In the figure, as an example, the annular portions 10 and 12 having different diameters are arranged opposite to each other at a predetermined interval at the same center, and the plurality of column portions 14 are joined to the annular portions 10 and 12 at both ends. ing.

なお、円環部10,12と複数の柱部14とは、保持器成形時に一体的に成形しても良いし、或いは、複数の柱部14を別体で成形し、その両端側を円環部10,12に後付けしても良い。この場合、後付けする方法としては、各柱部14の両端側を円環部10,12に対して例えば接着、溶着、嵌合するなどの各種の方法を適用することができるため、ここでは特に限定しない。   The annular portions 10 and 12 and the plurality of column portions 14 may be integrally formed at the time of forming the cage, or the plurality of column portions 14 may be formed separately, and both ends thereof may be circular. The ring portions 10 and 12 may be retrofitted. In this case, as a method of retrofitting, various methods such as bonding, welding, and fitting, for example, the both end sides of each column portion 14 to the annular portions 10 and 12 can be applied. Not limited.

また、上記した円環部10,12と複数の柱部14を含めた保持器2の材料としては、例えば市販されている一般的な合成樹脂材料を適用することができるが、これ以外に、例えばポリアミド系合成繊維や、ポリアミド系合成繊維を母材として繊維強化した合成樹脂材料を適用することができる。なお、ポリアミド系合成繊維としては、例えばアジピン酸とヘキサメチレンジアミンを重縮合させて作られるポリアミド系樹脂(PA66)や、当該PA66よりも耐熱性、耐摩耗性、耐衝撃性、耐油性に優れた、アジピン酸とジアミノブタンを重縮合させて作られるポリアミド系樹脂(PA46)などを適用することができる。   In addition, as a material of the cage 2 including the above-described annular portions 10 and 12 and the plurality of column portions 14, for example, a commercially available general synthetic resin material can be applied. For example, a polyamide-based synthetic fiber or a synthetic resin material reinforced with a polyamide-based synthetic fiber as a base material can be used. As the polyamide-based synthetic fiber, for example, a polyamide-based resin (PA66) produced by polycondensation of adipic acid and hexamethylenediamine, and heat resistance, wear resistance, impact resistance, and oil resistance are superior to the PA66. In addition, a polyamide resin (PA46) produced by polycondensation of adipic acid and diaminobutane can be applied.

図1(c)に示すように、本実施の形態の転がり軸受用保持器2は、上記したような合成樹脂材料によって保持器本体2aを形成し、その保持器本体2aの表面に撥水撥油膜2bを形成して構成されている。ここで、撥水撥油膜2bは、保持器本体2aの表面に金属酸化物層を形成し、この金属酸化物層の表面に撥水撥油層を形成して構成されている。この場合、保持器本体2aの表面に撥水撥油膜2bを形成する方法としては、下記の成膜方法を適用すればよい。   As shown in FIG. 1 (c), the rolling bearing retainer 2 of the present embodiment forms a retainer body 2a from the synthetic resin material as described above, and the surface of the retainer body 2a is water repellent and repellent. An oil film 2b is formed. Here, the water / oil repellent film 2b is formed by forming a metal oxide layer on the surface of the cage body 2a and forming a water / oil repellent layer on the surface of the metal oxide layer. In this case, as a method of forming the water / oil repellent film 2b on the surface of the cage body 2a, the following film forming method may be applied.

かかる成膜方法では、水と少なくとも1種のアルコキシ金属塩とを必須成分とする第1の溶液と、pH11〜13のアルカリ性溶液である第2の溶液と、フッ素含有有機化合物を含む溶液である第3の溶液と、pH9〜14のアルカリ性溶液である第4の溶液とを用意する。そして、これら4つの溶液に対して、上記したような合成樹脂材料によって形成された保持器本体2aを順に接触させる。なお、pHとは、水素イオン指数又は水素イオン濃度指数を意味し、物質の酸性やアルカリ性の度合いを示す数値である。   In such a film forming method, a first solution containing water and at least one alkoxy metal salt as essential components, a second solution which is an alkaline solution having a pH of 11 to 13, and a solution containing a fluorine-containing organic compound. A third solution and a fourth solution that is an alkaline solution having a pH of 9 to 14 are prepared. Then, the retainer body 2a formed of the synthetic resin material as described above is sequentially brought into contact with these four solutions. In addition, pH means a hydrogen ion index or a hydrogen ion concentration index, and is a numerical value indicating the degree of acidity or alkalinity of a substance.

即ち、保持器本体2aを第1の溶液に接触させた後、第2の溶液に接触させることにより、当該保持器本体2aの表面に金属酸化物層を形成する(第1の工程)。続いて、表面に金属酸化物層が形成された保持器本体2aを第3の溶液に接触させた後、第4の溶液に接触させることにより、金属酸化物層の表面に撥水撥油層を形成する(第2の工程)。   That is, after bringing the cage body 2a into contact with the first solution, the metal oxide layer is formed on the surface of the cage body 2a by bringing the cage body 2a into contact with the second solution (first step). Subsequently, after the cage body 2a having the metal oxide layer formed on the surface is brought into contact with the third solution, the water- and oil-repellent layer is formed on the surface of the metal oxide layer by bringing the cage body 2a into contact with the fourth solution. Form (second step).

これにより、保持器本体2aの表面が撥水撥油膜2bによって被覆された保持器2(図1(c))を実現することができる。この場合、撥水撥油膜2bは、その耐熱性や耐油性に優れた特性を有しているため、上記した保持器2が高温の潤滑油(ギヤオイル)中に晒されるような環境で使用された場合でも、当該耐熱性や耐油性を一定に維持し続けることができ、早期に劣化することは無い。このため、当該潤滑油が保持器本体2aに接触するのを確実に且つ長期に亘って防止することができる。この結果、高温潤滑油中の使用環境下での早期の劣化を防止し、長期に亘って一定の強度を維持することが可能な耐油性に優れた保持器2を実現することができる。よって、かかる保持器2を用いた転がり軸受によれば、その性能(例えば、回転性能、潤滑性能など)を長期に亘って一定に維持することができる。   Thereby, the cage | basket 2 (FIG.1 (c)) by which the surface of the cage | basket body 2a was coat | covered with the water / oil repellent film | membrane 2b is realizable. In this case, since the water / oil repellent film 2b has excellent heat resistance and oil resistance, it is used in an environment where the cage 2 is exposed to high-temperature lubricating oil (gear oil). Even in this case, the heat resistance and oil resistance can be kept constant, and there is no early deterioration. For this reason, it can prevent reliably that the said lubricating oil contacts the holder main body 2a over a long period of time. As a result, it is possible to realize the cage 2 excellent in oil resistance capable of preventing early deterioration in the use environment in the high-temperature lubricating oil and maintaining a constant strength over a long period of time. Therefore, according to the rolling bearing using the cage 2, its performance (for example, rotational performance, lubrication performance, etc.) can be kept constant over a long period of time.

ここで、上記した4つの第1〜第4の溶液について、その具体的な内容について補足説明する。
上記した第1の溶液は、アルコキシ金属塩として、金属種がシリコン、チタン、若しくは、アルミニウムで、アルキル部分の炭素数が1〜6の低級アルキルであるテトラ(若しくは、トリ)アルキルアルコキシ金属塩、又は、テトラ(若しくは、トリ)ハロゲンアルコキシ金属塩を含有することが好ましい。
ハロゲンアルコキシ金属塩の場合は、ハロゲンとして塩素が好ましく、アルキル部分がメチル、エチル、プロピル、ブチル基であることが好ましく、アルコキシ金属塩の金属種としては、シリコン、チタン、アルミニウムが好ましい。
Here, the specific contents of the four first to fourth solutions described above will be supplementarily described.
The above-mentioned first solution is an alkoxy metal salt that is a tetra (or tri) alkylalkoxy metal salt in which the metal species is silicon, titanium, or aluminum and the alkyl part is lower alkyl having 1 to 6 carbon atoms, Or it is preferable to contain the tetra (or tri) halogen alkoxy metal salt.
In the case of a halogen alkoxy metal salt, chlorine is preferred as the halogen, the alkyl moiety is preferably a methyl, ethyl, propyl, or butyl group, and the metal species of the alkoxy metal salt are preferably silicon, titanium, or aluminum.

上記した第1及び第3の溶液は、炭素数1〜6の低級アルコールを更に含むことが好ましい。これにより、低級アルキル若しくはハロゲンを有するアルコキシ金属塩の溶解度を高め、より安定した溶液とすることが可能である。炭素数1〜6の低級アルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、ヘキサノール、シクロヘキサノール等が好適に使用することができる。より好ましくは、エタノールを用いればよい。   The first and third solutions described above preferably further contain a lower alcohol having 1 to 6 carbon atoms. Thereby, the solubility of the alkoxy metal salt having lower alkyl or halogen can be increased, and a more stable solution can be obtained. As the lower alcohol having 1 to 6 carbon atoms, methanol, ethanol, 1-propanol, 2-propanol, butanol, hexanol, cyclohexanol and the like can be preferably used. More preferably, ethanol may be used.

この場合、上記した第1及び第3の溶液のpHは、6以下であることが好ましい。このようにpHを6以下とすることで、アルコキシ金属塩の加水分解反応が促進され、被成膜部材表面(例えば、保持器本体2aの表面)に金属酸化物層が形成され易くなる。なお、好ましくはpH1〜6、より好ましくはpH1〜5、最も好ましくはpH2〜4とする。また、第1の溶液のpHの調整は、塩酸、硝酸、硫酸等の無機酸を用いて行うことが好ましい。特に、塩酸を用いることが好ましい。また、各種のpH緩衝液を用いてpHの安定化を図ることも好ましい。   In this case, the pH of the first and third solutions described above is preferably 6 or less. Thus, by making pH into 6 or less, the hydrolysis reaction of an alkoxy metal salt is accelerated | stimulated, and it becomes easy to form a metal oxide layer on the to-be-film-formed member surface (for example, surface of the holder main body 2a). The pH is preferably 1 to 6, more preferably 1 to 5, and most preferably 2 to 4. Moreover, it is preferable to adjust pH of a 1st solution using inorganic acids, such as hydrochloric acid, nitric acid, and a sulfuric acid. In particular, it is preferable to use hydrochloric acid. It is also preferable to stabilize the pH using various pH buffer solutions.

また、上記した第1の溶液は、平均粒径が1nm以上200nm以下である金属酸化物微粒子を0.1以上5.0重量%以下の割合で含有することが好ましい。金属酸化物の金属種としては、シリコン、チタン、アルミニウムが使用できる。即ち、上記した第1の溶液は、平均粒径が1nm以上200nm以下であるシリカ、チタニア、又は、アルミナからなる微粒子を0.1以上5.0重量%以下の割合で含有することが好ましい。   The first solution preferably contains metal oxide fine particles having an average particle size of 1 nm or more and 200 nm or less in a proportion of 0.1 or more and 5.0% by weight or less. Silicon, titanium, and aluminum can be used as the metal species of the metal oxide. That is, the first solution preferably contains fine particles made of silica, titania, or alumina having an average particle diameter of 1 nm to 200 nm in a proportion of 0.1 to 5.0% by weight.

また、金属酸化物微粒子を成す金属酸化物の金属種と、アルコキシ金属塩の金属種とは同じであることが特に好ましい。金属酸化物微粒子を上記した第1の溶液に添加しておくと、アルコキシ金属塩の酸化物が被成膜部材表面(例えば、保持器本体2aの表面)に生成すると共に、その被成膜部材表面に金属酸化物粒子が結合することで、金属酸化物層が密になる。また、形成された金属酸化物層の表面に微粒子に起因する凹凸が形成されて、表面積率が増大する。金属酸化物層の表面積率が増大すると、その上の層である撥水撥油層の表面積率も増大し、密な撥水撥油層が形成されることになるため、撥水撥油膜の撥水撥油性能が向上すると共に、撥水撥油膜が被成膜部材表面に対して強固に結合される。   Further, it is particularly preferable that the metal species of the metal oxide forming the metal oxide fine particles and the metal species of the alkoxy metal salt are the same. When the metal oxide fine particles are added to the first solution, an oxide of an alkoxy metal salt is generated on the surface of the film-forming member (for example, the surface of the cage body 2a), and the film-forming member. The metal oxide particles are bonded to the surface, so that the metal oxide layer becomes dense. Further, irregularities due to the fine particles are formed on the surface of the formed metal oxide layer, and the surface area ratio is increased. When the surface area ratio of the metal oxide layer increases, the surface area ratio of the water and oil repellent layer, which is the upper layer, also increases and a dense water and oil repellent layer is formed. The oil repellency is improved and the water / oil repellency film is firmly bonded to the surface of the film forming member.

ここで、金属酸化物微粒子の平均一次粒径は、好ましくは2nm以上100nm以下、より好ましくは2nm以上80nm以下、さらに好ましくは10nm以上50nm以下である。また、平均一次粒径が異なる金属酸化物微粒子を混合して使用することも可能である。平均一次粒径が1nm未満では、表面積率の増大効果が少なく、200nmを超えると、被成膜部材表面から脱落し易くなる。   Here, the average primary particle size of the metal oxide fine particles is preferably 2 nm to 100 nm, more preferably 2 nm to 80 nm, and still more preferably 10 nm to 50 nm. Moreover, it is also possible to mix and use metal oxide fine particles having different average primary particle sizes. When the average primary particle size is less than 1 nm, the effect of increasing the surface area ratio is small, and when it exceeds 200 nm, the film tends to fall off from the surface of the film forming member.

また、金属酸化物微粒子の溶液中の含有率は、0.1以上3質量%以下とすることが好ましく、0.2質量%以上〜2.5質量%以下がさらに好ましい。金属酸化物微粒子の溶液中の含有率が0.1質量%未満では、金属酸化物層を密にする効果が少なく、5質量%を超えると、被成膜部材表面に金属酸化物の微粒子が重なった状態で堆積することになり、これに伴って微粒子が脱落することで撥水撥油膜に欠陥が生じ易くなる。   The content of the metal oxide fine particles in the solution is preferably 0.1 or more and 3% by mass or less, and more preferably 0.2% by mass or more and 2.5% by mass or less. When the content of the metal oxide fine particles in the solution is less than 0.1% by mass, the effect of densifying the metal oxide layer is small. Deposition tends to occur in the water- and oil-repellent film due to the fine particles falling off along with the accumulation.

なお、金属酸化物微粒子の形状は、特に限定はなく、球形、矩形、扁平形、繊維状、ウイスカー状のもの等を使用できる。例えば、繊維状のものであれば、繊維の長さを1nm以上200nm以下とすることができる。また、異なる形状のものを混合して使用してもよい。また、平均一次粒径が1nm以上200nm以下であれば、多孔質のもの等を使用することも可能である。   The shape of the metal oxide fine particles is not particularly limited, and a spherical shape, a rectangular shape, a flat shape, a fiber shape, a whisker shape, or the like can be used. For example, if it is a fibrous thing, the length of a fiber can be 1 nm or more and 200 nm or less. Moreover, you may mix and use the thing of a different shape. Moreover, if an average primary particle diameter is 1 nm or more and 200 nm or less, a porous thing etc. can also be used.

また、金属酸化物の微粒子の表面は、各種の疎水化処理、親水化処理が施してあってもよいが、好ましくは、親水性表面であること、若しくは、化学的な表面処理がなされていないことが望ましい。
上記した第1の溶液の組成の一例を具体的に述べると、アルコキシ金属塩が1質量%以上10質量%以下、水が1質量%以上20質量%以下、アルコールが30質量%以上95質量%以下、金属酸化物の微粒子が0.1質量%以上5質量%以下であって、塩酸によりpHが6以下に調整されているものである。
Further, the surface of the metal oxide fine particles may be subjected to various hydrophobizing treatments and hydrophilizing treatments, but is preferably a hydrophilic surface or not subjected to chemical surface treatment. It is desirable.
An example of the composition of the first solution described above is specifically described. The alkoxy metal salt is 1% by mass to 10% by mass, the water is 1% by mass to 20% by mass, and the alcohol is 30% by mass to 95% by mass. Hereinafter, the metal oxide fine particles are 0.1 mass% or more and 5 mass% or less, and the pH is adjusted to 6 or less with hydrochloric acid.

この組成の第1の溶液は、特に、金属酸化物微粒子を含有させた場合には、塩酸以外の成分を予め混合し、金属酸化物微粒子が均一になるよう数十分〜数時間攪拌した後、最後に塩酸を用いてpH調整を行うことが好ましい。使用する水、塩酸とも純度の高いものが好ましい。   The first solution of this composition, in particular, when metal oxide fine particles are contained, is mixed in advance with components other than hydrochloric acid and stirred for several tens of minutes to several hours so that the metal oxide fine particles are uniform. Finally, it is preferable to adjust the pH using hydrochloric acid. Highly pure water and hydrochloric acid are preferred.

上記した第2及び第4の溶液は、アルカリ金属塩(水酸化ナトリウム、水酸化カリウム等)の水溶液であることが好ましく、特に、水酸化ナトリウム水溶液であることが好ましい。また、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属の炭酸塩等も使用できる。また、各種のpH緩衝剤を併用してもよい。また、必要に応じ、炭素数1〜6の低級アルキルアルコールと水との混合溶媒で作成してもよい。水及びこれらの成分は、純度が高いことが望ましい。   The second and fourth solutions described above are preferably aqueous solutions of alkali metal salts (sodium hydroxide, potassium hydroxide, etc.), and particularly preferably aqueous sodium hydroxide solutions. Further, alkali metal carbonates such as sodium carbonate, potassium carbonate and sodium hydrogen carbonate can also be used. Various pH buffering agents may be used in combination. Moreover, you may make with the mixed solvent of C1-C6 lower alkyl alcohol and water as needed. It is desirable that water and these components have high purity.

この場合、上記した第2及び第4の溶液のpHは、pH11以上pH13以下であることが好ましい。pHが11未満では、金属酸化物層の被成膜部材表面への結合、撥水撥油層の金属酸化物層への結合強度効果が少なく、pHが13以上であると、逆に結合を弱めてしまう虞がある。   In this case, the pH of the second and fourth solutions is preferably pH 11 or more and pH 13 or less. When the pH is less than 11, the bonding effect of the metal oxide layer to the film-formed member surface and the bonding strength effect of the water / oil repellent layer to the metal oxide layer are small, and when the pH is 13 or more, the bonding is weakened. There is a risk that.

上記した第3の溶液に含まれるフッ素含有有機化合物は、フッ素系界面活性剤、フッ素系カップリング剤、及び、フッ素系ポリマーのいずれか、若しくは、これらの混合物であることが好ましい。
また、上記した第3の溶液に含まれるフッ素含有有機化合物は、シリコン、チタン、又は、アルミニウムを含有するフッ素系カップリング剤であることが好ましい。更に、上記した第1の溶液で使用する金属酸化物の金属種、或いは、上記した第1の溶液で使用するアルコキシ金属塩の金属種と同じ金属種を有するものであることが好ましい。
The fluorine-containing organic compound contained in the third solution is preferably any one of a fluorine-based surfactant, a fluorine-based coupling agent, and a fluorine-based polymer, or a mixture thereof.
The fluorine-containing organic compound contained in the third solution is preferably a fluorine-based coupling agent containing silicon, titanium, or aluminum. Furthermore, it is preferable that the metal species of the metal oxide used in the first solution described above or the same metal species as the metal species of the alkoxy metal salt used in the first solution described above.

具体的には、1H,1H,2H,2H,−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H,−パーフルオロデシルトリメトキシシラン、1H,1H,2H,2H,−パーフルオロデシルトリクロロシラン−3−ヘプタフルオロイソプロポキシプロピルトリクロロシラン、1H,1H,2H,2H,−パーフルオロドデシルトリエトキシシラン、3−トリフルオロアセトキシプロピルトリメトキシシラン等が使用できる。   Specifically, 1H, 1H, 2H, 2H, -perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H, -perfluorodecyltrimethoxysilane, 1H, 1H, 2H, 2H, -perfluorodecyltri Chlorosilane-3-heptafluoroisopropoxypropyltrichlorosilane, 1H, 1H, 2H, 2H, -perfluorododecyltriethoxysilane, 3-trifluoroacetoxypropyltrimethoxysilane and the like can be used.

また、本実施の形態の転がり軸受用保持器2において、被成膜部材表面(例えば、保持器本体2aの表面)に撥水撥油膜2bを形成する方法には、当該被成膜部材(保持器本体2a)を、シリコン、チタン、又はアルミニウムを含有するフッ素系カップリング剤と、水と、炭素数1〜6の低級アルコールとを含有し、pHが6以下である液体に接触させる工程と、この工程の後に、アルカリ金属塩を含有し、pHが11〜13である溶液に接触させる工程とが含まれる。   In the rolling bearing cage 2 of the present embodiment, the method for forming the water / oil repellent film 2b on the surface of the film forming member (for example, the surface of the cage body 2a) includes the film forming member (holding). A step of bringing the vessel body 2a) into contact with a liquid containing a fluorine-based coupling agent containing silicon, titanium, or aluminum, water, and a lower alcohol having 1 to 6 carbon atoms and having a pH of 6 or less; After this step, a step of contacting with a solution containing an alkali metal salt and having a pH of 11 to 13 is included.

なお、かかる成膜方法が適用可能な被成膜部材としては、樹脂を含む固体であれば特に制限はないが、被成膜部材表面が酸化物系の物質で覆われていることが好ましい。具体的には、無機系物質(金属含む)である。無機系材料の中でも、ガラス、セラミックスが好ましい。ガラスは、主成分がシリカであり、セラミックス、金属は、微視的に見れば最表面層酸化物層である。この中でも、ガラス、金属であることが好ましい。金属の中では、鉄系の金属が好ましい。中でも、軸受鋼、ステンレス鋼等の鉄鋼であることが好ましい。特に、不動態化処理を施されたステンレス鋼であることが好ましい。   Note that a film formation member to which such a film formation method can be applied is not particularly limited as long as it is a solid containing a resin, but the surface of the film formation member is preferably covered with an oxide-based material. Specifically, it is an inorganic substance (including metal). Among inorganic materials, glass and ceramics are preferable. Glass is mainly composed of silica, and ceramics and metals are outermost oxide layers when viewed microscopically. Among these, glass and metal are preferable. Among metals, iron-based metals are preferable. Among these, steel such as bearing steel and stainless steel is preferable. In particular, the stainless steel is preferably subjected to a passivation treatment.

また、上記した成膜方法では、平均表面粗さ(Ra)が0.001μm以上4μm以下である被成膜部材表面に対して上記した第1の工程を行うことが好ましい。また、表面積率が1.1以上の被成膜部材表面に対して上記した第1の工程を行うことが好ましい。これにより、平均表面粗さ(Ra)が0.001μm未満の場合、及び、表面積率が1.1未満の場合と比較して、形成された撥水撥油膜の撥水撥油性能を向上させることができる。また、上記した第1の溶液に金属の微粒子を含有させた場合は、上記したような表面性状の効果との相乗作用により、撥水撥油性能のより一層の向上が期待できる。なお、平均表面粗さ(Ra)が4μmRaを超えると、各種用途の部材としての適用範囲が限られる。   In the film forming method described above, it is preferable to perform the first step described above on the surface of the film forming member having an average surface roughness (Ra) of 0.001 μm or more and 4 μm or less. Moreover, it is preferable to perform the first step described above on the surface of the film forming member having a surface area ratio of 1.1 or more. Thereby, the water / oil repellent performance of the formed water / oil repellent film is improved as compared with the case where the average surface roughness (Ra) is less than 0.001 μm and the surface area ratio is less than 1.1. be able to. In addition, when metal fine particles are contained in the first solution, a further improvement in water and oil repellency can be expected due to a synergistic effect with the surface property effect as described above. In addition, if average surface roughness (Ra) exceeds 4 micrometers Ra, the application range as a member of various uses will be restricted.

通常は、被成膜部材表面を上記した範囲とするために、機械加工、化学的加工、光学的加工等の各種加工方法を行うが、機械加工としては、研削、切削、プレス、バレル、ショットブラスト等が挙げられる。化学的加工としては、電解研磨、化学研磨、各種めっき、各種表面化処理などが挙げられる。光学的加工としては、フェムト秒レーザー等を使用することが可能である。また、これら加工を組み合わせてもよい。
また、表面積率は、幾何学的に求められる表面積と、表面の粗さ、うねりも含めて測定した表面積の比であり、いわゆる鏡面に近くなるほど1に近づき、表面に無数の微小な凹凸等がある場合は1を超える。なお、表面積率は、被成膜部材表面を走査型プローブ顕微鏡(SPM)や、SPMの一種である原子間力顕微鏡(AFM)で測定することにより求めることが可能である。
Normally, various processing methods such as machining, chemical processing, and optical processing are performed in order to make the surface of the film-forming member within the above-mentioned range. As the mechanical processing, grinding, cutting, pressing, barrel, shot, etc. Examples include blasting. Examples of the chemical processing include electrolytic polishing, chemical polishing, various platings, various surface treatments, and the like. As optical processing, a femtosecond laser or the like can be used. Moreover, you may combine these processes.
The surface area ratio is a ratio of the surface area determined geometrically to the surface area measured including surface roughness and waviness. The surface area ratio approaches 1 as it approaches a so-called mirror surface, and the surface has innumerable minute irregularities. In some cases, it exceeds 1. The surface area ratio can be obtained by measuring the surface of the film forming member with a scanning probe microscope (SPM) or an atomic force microscope (AFM) which is a kind of SPM.

また、上記した成膜方法において、第1の工程で被成膜部材(保持器本体2a)を第1の溶液に接触させるが、その前に予め被成膜部材を洗浄すること等により、被成膜部材表面に付着している異物を除去しておくことが好ましい。
この場合、被成膜部材を第1の溶液に接触させる方法としては、浸漬法、スプレー法、スピンコート法等の一般的な手法が使用できる。浸漬法においては、被成膜部材表面の粗さの奥まで第1の溶液が行き渡るように、超音波を使用したり、溶液中で被成膜部材を動かしたり、或いは、大気圧よりも減圧する等の方法を併用することができる。また、特に第1の溶液に金属の微粒子が含まれている場合は、微粒子が溶液中に均一に分散するように、第1の溶液を攪拌しながら被成膜部材を浸漬することが好ましい。
In the film forming method described above, the film forming member (cage body 2a) is brought into contact with the first solution in the first step. It is preferable to remove foreign substances adhering to the surface of the film forming member.
In this case, as a method for bringing the film formation member into contact with the first solution, a general method such as a dipping method, a spray method, or a spin coating method can be used. In the immersion method, ultrasonic waves are used to move the first solution to the depth of the surface of the film-forming member, the film-forming member is moved in the solution, or the pressure is reduced below atmospheric pressure. It is possible to use a method such as In particular, when metal fine particles are contained in the first solution, it is preferable to immerse the film forming member while stirring the first solution so that the fine particles are uniformly dispersed in the solution.

第1の溶液と被成膜部材とを接触させている時間については、被成膜部材の形状、表面積等により適宜調整できる。また、第1の溶液と被成膜部材とを接触させる際の、第1の溶液の温度は、0℃以上100℃以下であって、接触処理中の変化が少ないことが好ましい。0℃を下回ると、第1の溶液の粘度が高くなり、被成膜部材表面の粗さの奥まで第1の溶液が行き渡り難くなる。100℃を超えると、第1の溶液の成分の蒸発が多くなり、成分比率が変化する虞がある。
なお、被成膜部材表面の一部に撥水撥油膜を形成する場合には、成膜しない部分に予めマスクをしてから上記した成膜方法を実施すればよい。その場合のマスクとしては、各種のレジストが使用できる。
The time for which the first solution and the film forming member are in contact with each other can be appropriately adjusted depending on the shape, surface area, and the like of the film forming member. In addition, it is preferable that the temperature of the first solution at the time of bringing the first solution into contact with the deposition target member is 0 ° C. or more and 100 ° C. or less, and the change during the contact process is small. When the temperature is lower than 0 ° C., the viscosity of the first solution is increased, and the first solution is difficult to reach the depth of the roughness of the film-formed member surface. When it exceeds 100 ° C., the evaporation of the components of the first solution increases, and the component ratio may change.
In the case where a water / oil repellent film is formed on a part of the surface of the film forming member, the above-described film forming method may be carried out after previously masking the part not to be formed. In this case, various resists can be used as the mask.

また、上記した成膜方法において、被成膜部材を第1の溶液に所定方法で所定時間接触させた後、速やかに、被成膜部材を第2の溶液に接触させることが好ましい。ここで、被成膜部材を第2の溶液に接触させる前に、被成膜部材表面に付着した液を取り除く工程を設けてもよい。付着した液を取り除く方法としては、遠心力を用いて液切りする方法、清浄エアーや不活性ガスを使用して液切りする方法等が使用できる。なお、被成膜部材表面に固形物を直接接触させる清拭等の方法は好ましくない。   In the film forming method described above, it is preferable that the film forming member is immediately brought into contact with the second solution after the film forming member is brought into contact with the first solution for a predetermined time. Here, a step of removing the liquid adhering to the surface of the film forming member may be provided before the film forming member is brought into contact with the second solution. As a method for removing the adhered liquid, a method of draining using centrifugal force, a method of draining using clean air or inert gas, and the like can be used. In addition, a method such as wiping in which a solid material is brought into direct contact with the surface of the film forming member is not preferable.

また、被成膜部材を第2の溶液に接触させる方法、温度、時間等の接触条件は、上記した第1の溶液との接触の場合と同様である。
ここで、第2の溶液と接触させた後の被成膜部材を、速やかに、上記した第2の工程の最初の工程である第3の溶液と接触させてもよいが、第2の溶液との接触後に乾燥工程を設けることが好ましい。第2の溶液との接触により、被成膜部材表面に強固な金属酸化物層が形成されているため、一旦乾燥させることで、被成膜部材表面に金属酸化物層をより一層強固に固着させることができる。ただし、乾燥する前に、被成膜部材表面に付着した第2の溶液を取り除くことが好ましい。なお、付着した液を取り除く方法としては、アルコール等による洗浄、或いは、遠心力を用いて液切りする方法、清浄エアーや不活性ガスを使用して液切りする方法等が使用できる。また、これらの方法で、付着した液を取り除いた後、乾燥させるため、加熱することも可能である。好ましくは、50〜100℃程度の温度で数分から数時間保持する。
Further, the method for bringing the film-forming member into contact with the second solution, and the contact conditions such as temperature and time are the same as in the case of contact with the first solution.
Here, the film-forming member after being brought into contact with the second solution may be brought into contact with the third solution, which is the first step of the second step described above, quickly. It is preferable to provide a drying step after contact with. A strong metal oxide layer is formed on the surface of the film forming member by contact with the second solution, so that the metal oxide layer is more firmly fixed to the surface of the film forming member by drying once. Can be made. However, it is preferable to remove the second solution adhering to the film formation member surface before drying. In addition, as a method of removing the adhering liquid, cleaning with alcohol or the like, a method of draining using centrifugal force, a method of draining using clean air or inert gas, and the like can be used. Moreover, in order to dry after removing the adhering liquid by these methods, it is also possible to heat. Preferably, it is maintained at a temperature of about 50 to 100 ° C. for several minutes to several hours.

なお、被成膜部材は、上記した第2の溶液と接触させた後に、上記した第3の溶液と接触させる。この場合、第3の溶液との接触方法、温度、時間等の接触条件は、上記した第1の溶液との接触の場合と同様である。
また、被成膜部材は、上記した第3の溶液と接触させた後に、上記した第4の溶液と接触させる。この場合、第2の工程における第3の溶液及び第4の溶液との接触方法と、第3の溶液との接触から第4の溶液との接触への移行方法、温度、時間等の条件は、上記した第1の溶液との接触から上記した第2の溶液との接触への移行方法及び条件と同様である。
In addition, after making a film-forming member contact with the above-mentioned 2nd solution, it is made to contact with the above-mentioned 3rd solution. In this case, the contact method such as the contact method with the third solution, the temperature, and the time are the same as those in the contact with the first solution.
Moreover, after making a film-forming member contact with the above-mentioned 3rd solution, it is made to contact with the above-mentioned 4th solution. In this case, the contact method with the third solution and the fourth solution in the second step, the transition method from the contact with the third solution to the contact with the fourth solution, conditions such as temperature, time, etc. The transition method and the conditions from the contact with the first solution to the contact with the second solution are the same.

そして、被成膜部材を上記した第4の溶液と接触させることで、保持器本体2a上において金属酸化物層の表面に撥水撥油層が強固に形成された撥水撥油膜2bを有する保持器2(図1(c))を実現することができる。この後、液切り若しくは洗浄工程と、乾燥工程を行うことが好ましい。なお、これらの工程の具体的な方法、温度、時間等の条件は、第2の溶液との接触から第3の溶液との接触への移行方法及び条件と同様である。   Then, by holding the film forming member in contact with the above-described fourth solution, the holding member having the water / oil repellent film 2b in which the water / oil repellent layer is firmly formed on the surface of the metal oxide layer on the cage body 2a. A device 2 (FIG. 1 (c)) can be realized. Thereafter, it is preferable to perform a liquid draining or washing step and a drying step. The specific method, temperature, time, and other conditions for these steps are the same as the method and conditions for transition from contact with the second solution to contact with the third solution.

2 転がり軸受用保持器
2a 保持器本体
2b 撥水撥油膜
4 内輪
6 外輪
8 転動体
2 Roller bearing cage 2a Cage body 2b Water and oil repellent film 4 Inner ring 6 Outer ring 8 Rolling element

Claims (3)

軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転すると共に、潤滑油環境下で使用される自動車専用転がり軸受用保持器であって、
当該保持器は、全体が合成樹脂材料で形成された保持器本体と、保持器本体の表面の全面に形成された撥水撥油膜とを備え、
前記撥水撥油膜は、保持器本体の表面の全面に金属酸化物層を形成し、この金属酸化物層の表面の全面に撥水撥油層を形成して構成されており、
金属酸化物層には、平均一次粒径が1nm以上200nm以下の金属酸化物微粒子が含まれていると共に、
金属酸化物層を形成するアルコキシ金属塩の金属種と、当該金属酸化物層を形成する金属酸化物微粒子の金属種と、撥水撥油処理を形成するフッ素含有有機化合物に含まれる金属種とは全てシリコンであり、
保持器本体の表面の平均表面粗さ(Ra)が0.001μm以上4μm以下であることを特徴とする自動車専用転がり軸受用保持器。
A rolling bearing retainer for exclusive use in an automobile used in a lubricating oil environment while revolving along the inside of the bearing together with the plurality of rolling elements while holding a plurality of rolling elements in the bearing.
The cage includes a cage body formed entirely of a synthetic resin material, and a water / oil repellent film formed on the entire surface of the cage body,
The water / oil repellent film is formed by forming a metal oxide layer on the entire surface of the cage body, and forming a water / oil repellent layer on the entire surface of the metal oxide layer,
The metal oxide layer contains metal oxide fine particles having an average primary particle size of 1 nm to 200 nm,
Metal species of alkoxy metal salt forming metal oxide layer, metal species of fine metal oxide particles forming metal oxide layer, metal species contained in fluorine-containing organic compound forming water / oil repellent treatment, Is all silicon,
A cage for rolling bearings for automobiles , characterized in that the average surface roughness (Ra) of the surface of the cage body is 0.001 μm or more and 4 μm or less.
前記保持器本体は、アジピン酸とヘキサメチレンジアミンを重縮合させて作られるポリアミド系樹脂、又は、アジピン酸とジアミノブタンを重縮合させて作られるポリアミド系樹脂で形成されていることを特徴とする請求項1に記載の自動車専用転がり軸受用保持器。 The cage body is formed of a polyamide resin made by polycondensation of adipic acid and hexamethylenediamine, or a polyamide resin made by polycondensation of adipic acid and diaminobutane. The rolling bearing retainer for automobiles according to claim 1. 前記保持器本体は、アジピン酸とジアミノブタンを重縮合させて作られるポリアミド系樹脂で形成されていることを特徴とする請求項2に記載の自動車専用転がり軸受用保持器。  3. The rolling bearing cage for automobiles according to claim 2, wherein the cage body is made of a polyamide resin made by polycondensation of adipic acid and diaminobutane.
JP2009033536A 2009-02-17 2009-02-17 Roller bearing cage for automobile Expired - Fee Related JP5375160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033536A JP5375160B2 (en) 2009-02-17 2009-02-17 Roller bearing cage for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033536A JP5375160B2 (en) 2009-02-17 2009-02-17 Roller bearing cage for automobile

Publications (2)

Publication Number Publication Date
JP2010190272A JP2010190272A (en) 2010-09-02
JP5375160B2 true JP5375160B2 (en) 2013-12-25

Family

ID=42816534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033536A Expired - Fee Related JP5375160B2 (en) 2009-02-17 2009-02-17 Roller bearing cage for automobile

Country Status (1)

Country Link
JP (1) JP5375160B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549997B2 (en) 2010-08-27 2014-07-16 株式会社リコー Toner for developing electrostatic image, developer, container containing developer, process cartridge, image forming apparatus, and image forming method
DE102011088232A1 (en) * 2011-12-12 2013-06-13 Aktiebolaget Skf Bearing cage and bearing cage segment
JP2014126075A (en) * 2012-12-25 2014-07-07 Seiko Instruments Inc Antifriction bearing device, hard disk drive device, and manufacturing method of antifriction bearing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547489B2 (en) * 1993-08-10 2004-07-28 光洋精工株式会社 Cage for rolling bearing
JPH10323979A (en) * 1997-03-27 1998-12-08 Seiko Epson Corp Manufacture of ink jet head, and ink jet printer
TWI454568B (en) * 2007-02-26 2014-10-01 Ntn Toyo Bearing Co Ltd High-speed bearings with lubricating oil and high-speed rolling bearings

Also Published As

Publication number Publication date
JP2010190272A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5604793B2 (en) Method for forming water / oil repellent film
KR960002716B1 (en) Low friction-resistant mechanical part
WO2011105077A1 (en) Roller bearing and process for producing same
JP2008045573A (en) Rolling sliding member and its manufacturing method as well as rolling device
JP5375160B2 (en) Roller bearing cage for automobile
WO2007102452A1 (en) Rolling bearing and method for manufacturing the same
JP2010196801A (en) Retainer for ball bearing
JP2008223942A (en) Rolling bearing
JPH102336A (en) Retainer for bearing and manufacture therefor
JP2008256197A (en) Rolling bearing and its manufacturing method
JP5177031B2 (en) Method for forming water / oil repellent film
JP2010180971A (en) Rolling bearing and manufacturing method
JPH10131970A (en) Rolling bearing and its manufacture
JP2009024202A (en) Rolling device
JP2004239443A (en) Rolling bearing
JP4513775B2 (en) Rolling device for rolling mill roll neck
KR102183146B1 (en) Method for manufacturing organic/inorganic hybrid ceramic coating agent for forming coating layer having excellent abrasion resistance and electrical insulation
JP2012167809A (en) Rolling bearing
JP5459538B2 (en) Tapered roller bearing
JP2008019965A (en) Planetary gear device and rolling bearing
JP5375269B2 (en) Rolling bearing, wheel support bearing unit
JP2007100759A (en) Roller bearing
US20190169731A1 (en) Method for enhancing wear resistance properties of a mechanical component
JP2019157978A (en) Rolling device, rolling bearing and manufacturing method thereof
JP2008111461A (en) Roll bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees