JP5374823B2 - Oil well cement composition and method for producing the same - Google Patents

Oil well cement composition and method for producing the same Download PDF

Info

Publication number
JP5374823B2
JP5374823B2 JP2007055553A JP2007055553A JP5374823B2 JP 5374823 B2 JP5374823 B2 JP 5374823B2 JP 2007055553 A JP2007055553 A JP 2007055553A JP 2007055553 A JP2007055553 A JP 2007055553A JP 5374823 B2 JP5374823 B2 JP 5374823B2
Authority
JP
Japan
Prior art keywords
mass
amount
cement
cement composition
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007055553A
Other languages
Japanese (ja)
Other versions
JP2008214536A (en
Inventor
仁 殿河内
貴康 伊藤
祐夫 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007055553A priority Critical patent/JP5374823B2/en
Publication of JP2008214536A publication Critical patent/JP2008214536A/en
Application granted granted Critical
Publication of JP5374823B2 publication Critical patent/JP5374823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/243Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、油田およびガス田等の坑井掘削に使用可能な、流動性および強度発現性に優れた油井セメント組成物およびその製造方法に関する。   The present invention relates to an oil well cement composition excellent in fluidity and strength that can be used for well drilling in oil fields and gas fields, and a method for producing the same.

油田やガス田等の坑井掘削において、坑井内に挿入したケーシングパイプの補強、腐食防止、地下水などの坑井内への流入防止等を目的としてセメントが使用される。この用途に使用されるセメントは、高温・高圧下で使用されるため、スラリー流動性、強度発現性について一般構造用セメントよりも高度な品質が要求される。   In the drilling of wells such as oil fields and gas fields, cement is used for the purpose of reinforcing casing pipes inserted into the wells, preventing corrosion, preventing the inflow of underground water into the wells, and the like. Since the cement used in this application is used under high temperature and high pressure, higher quality is required for slurry fluidity and strength development than general structural cement.

一般に、油井やガス井の掘削では、ロータリー掘削方法が採用され、ビットによる掘削−セメンチング作業が繰り返される。この場合、セメンチング条件は、油井が深くなるにつれて温度が上昇し、泥水あるいはセメントスラリー柱圧によって圧力も上昇する。そのため、油田やガス田等の坑井掘削において使用されるセメントは、高温・高圧下での施工性および強度発現性が要求される。   Generally, in the drilling of oil wells and gas wells, a rotary drilling method is adopted, and drilling-cementing work by a bit is repeated. In this case, as the cementing condition, the temperature increases as the oil well becomes deeper, and the pressure also increases due to muddy water or cement slurry column pressure. Therefore, cement used in well drilling such as oil fields and gas fields is required to have workability and strength development under high temperature and high pressure.

American Petroleum Institute(以下、「API」という)では、油田の坑井掘削時に使用するセメント組成物として、要求性能によってA〜Hの8クラスと、普通タイプ(O)、中程度耐硫酸塩タイプ(MSR)および高程度耐硫酸塩タイプ(HSR)の3グレードとが規定されている。   The American Petroleum Institute (hereinafter referred to as “API”) uses eight classes A to H as a cement composition used when drilling wells in oil fields, depending on the required performance, ordinary type (O), medium sulfate resistant type ( MSR) and three grades of high sulfate resistance type (HSR).

これらの中で、クラスG(高耐硫酸塩タイプ(HSR))は油井掘削用として最も一般的に使用されているセメント組成物であり、CS量が48〜65質量%、CA量が3質量%以下、2CA+CAFが24質量%以下、全アルカリ量が0.75質量%以下、MgO量が6.0質量%以下、SO量が3.0質量%以下、強熱減量が3.0質量%以下、不溶残分が0.75質量%以下と規定されている。 Among these, class G (high sulfate-resistant type (HSR)) is the most commonly used cement composition for oil well drilling, the amount of C 3 S is 48 to 65% by mass, C 3 A the amount is 3 mass% or less, 2C 3 A + C 4 AF 24 wt% or less, the total alkali content of 0.75 wt% or less, the amount of MgO is 6.0 wt% or less, SO 3 content of 3.0 wt% or less, The ignition loss is defined as 3.0% by mass or less, and the insoluble residue is defined as 0.75% by mass or less.

しかしながら、上記のAPI規格を満足していても、掘削深度や坑井形状(大きさ等)によっては、流動性や圧縮強さの更なる向上が必要となる場合がある。   However, even if the API standard is satisfied, depending on the excavation depth and well shape (size, etc.), further improvement in fluidity and compressive strength may be required.

Specification for Cements and Materials for Well Cementing API Specification 10A Twenty-third Edition, April 2002Specification for Cements and Materials for Well Cementing API Specification 10A Twenty-third Edition, April 2002

本発明の目的は、油田およびガス田等の坑井掘削に使用する油井セメント組成物において、高温あるいは高温・高圧下において、高い流動性および強度発現性を発揮する油井セメント組成物およびその製造方法を提供することにある。   An object of the present invention is to provide an oil well cement composition that exhibits high fluidity and strength development under high temperature or high temperature / high pressure in an oil well cement composition used for well drilling in oil fields and gas fields, and a method for producing the same. Is to provide.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、セメント組成物のCS量が55〜65質量%およびCA量が2質量%以下の油井セメント組成物において、ブレーン比表面積が2700〜3700cm/g、45μm篩残分が15質量%以上、遊離カルシウム量が0.2〜0.6質量%、石膏中の半水石膏割合が20〜80質量%とすることによって、流動性および強度発現性を向上することができることを知見し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention, in an oil well cement composition having a C 3 S amount of 55 to 65% by mass and a C 3 A amount of 2% by mass or less of the cement composition, The Blaine specific surface area is 2700-3700 cm 2 / g, 45 μm sieve residue is 15% by mass or more, the amount of free calcium is 0.2-0.6% by mass, and the ratio of hemihydrate gypsum in gypsum is 20-80% by mass. As a result, it has been found that fluidity and strength development can be improved, and the present invention has been completed.

また、この油井セメント組成物を安定的に製造するためには、開回路式チューブボールミルを使用し、セメント組成物に対して散水量を0〜3質量%の範囲で制御して添加することにより、ミル出口セメント温度を70〜120℃に調整して粉砕することがより効果的であることを知見し、本発明の製造方法を完成するに至った。   Moreover, in order to stably produce this oil well cement composition, an open circuit type tube ball mill is used, and the amount of water spray is controlled within a range of 0 to 3% by mass and added to the cement composition. The inventors found that it is more effective to adjust the mill exit cement temperature to 70 to 120 ° C. and pulverize, and have completed the production method of the present invention.

なお、粉砕助剤を使用せずに粉砕すると、45μm篩残分をより効率良く増加でき、更に好ましい品質のセメント組成物を得ることができる。   In addition, when it grind | pulverizes without using a grinding aid, a 45 micrometer sieve residue can be increased more efficiently and the cement composition of a more preferable quality can be obtained.

本発明によれば、油田やガス田等の坑井掘削において、坑井内に挿入したケーシングパイプの補強、腐食防止、地下水などの坑井内への流入防止等を目的として本発明の油井セメント組成物を使用した場合に、より高深度(高温・高圧下)の坑井においても施工性および強度発現性を向上させることが可能であり、遅硬剤を添加した場合にも施工可能時間の制御を容易にすることができるという効果を奏する。   According to the present invention, in the drilling of wells such as oil fields and gas fields, the oil well cement composition of the present invention is intended to reinforce casing pipes inserted into the wells, prevent corrosion, prevent inflow of underground water into the wells, etc. Can be used to improve workability and strength development even in wells at higher depths (high temperature and pressure), and even when retarding hardeners are added, the workable time can be controlled. There is an effect that it can be made easy.

以下、本発明に係る油井セメント組成物の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the oil well cement composition according to the present invention will be described in detail.

本発明の油井セメント組成物は、CS量が55〜65質量%およびCA量が2質量%以下のセメント組成物において、ブレーン比表面積が2700〜3700cm/g、45μm篩残分が15質量%以上、遊離カルシウム量が0.2〜0.6質量%、SO 量が1.8〜2.4質量%であり、石膏中の半水石膏割合が20〜80質量%であるセメント組成物である。本発明のセメント組成物の基本鉱物組成は、強度発現性に優れるCS量をAPI規格の範囲内で高めにし、一方、強度発現性に効果が認められるもののシックニングタイムや混和剤との相性の点からCA量をAPI規格の範囲内で低めにしている。 The oil well cement composition of the present invention is a cement composition having a C 3 S amount of 55 to 65% by mass and a C 3 A amount of 2% by mass or less, and has a Blaine specific surface area of 2700 to 3700 cm 2 / g and a 45 μm sieve residue. There 15 mass% or more, free calcium amount is 0.2 to 0.6 mass%, a SO 3 amount 1.8 to 2.4 mass%, with hemihydrate gypsum ratio in the gypsum 20 to 80 wt% A cement composition. The basic mineral composition of the cement composition of the present invention increases the amount of C 3 S excellent in strength development within the range of the API standard. From the point of compatibility, the amount of C 3 A is lowered within the API standard.

S量が55〜65質量%、CA量が2質量%以下であると、強度発現性が良好であるので十分なコンクリート圧縮強さが得られるとともに、シックニングタイムの点でも優れる。また、ブレーン比表面積が3700cm/g以下であるとスラリーの粘性が高くなり施工が困難になるという問題を回避でき、2700cm/g以上であると強度発現性の低下が生じることがない。また45μm篩残分が15質量%以上であると十分な流動性と強度を得ることができる。また、遊離カルシウム量が0.2〜0.6質量%、石膏中の半水石膏割合が20〜80質量%であると、いずれも流動性の低下を生じさせることがないので良好に施工することができる。 When the amount of C 3 S is 55 to 65% by mass and the amount of C 3 A is 2% by mass or less, strength development is good, so that a sufficient concrete compressive strength can be obtained and the thickening time is also excellent. . Further, when the specific surface area of the brane is 3700 cm 2 / g or less, the problem that the viscosity of the slurry becomes high and the construction becomes difficult can be avoided, and when it is 2700 cm 2 / g or more, the strength development does not decrease. Moreover, sufficient fluidity | liquidity and intensity | strength can be acquired as a 45 micrometer sieve residue is 15 mass% or more. In addition, when the amount of free calcium is 0.2 to 0.6% by mass, and the ratio of hemihydrate gypsum in the gypsum is 20 to 80% by mass, any of them does not cause a decrease in fluidity. be able to.

本発明の油井セメント組成物は、より好ましくは、CS量が60〜65質量%、CA量が1質量%以下、ブレーン比表面積が3000〜3700cm/g、45μm篩残分が15〜30質量%、遊離カルシウム量が0.25〜0.6質量%、石膏中の半水石膏割合が40〜80質量%である。45μm篩残分は、さらに好ましくは15〜26質量%である。 More preferably, the oil well cement composition of the present invention has a C 3 S amount of 60 to 65% by mass, a C 3 A amount of 1% by mass or less, a Blaine specific surface area of 3000 to 3700 cm 2 / g, and a 45 μm sieve residue. 15-30 mass%, the amount of free calcium is 0.25-0.6 mass%, and the ratio of hemihydrate gypsum in gypsum is 40-80 mass%. The 45 μm sieve residue is more preferably 15 to 26% by mass.

本発明の油井セメント組成物は、また、SO量が1.8〜2.4質量%である。SO量がこの範囲にあると、凝結および強度が適正な値を示す。 Oil well cement compositions of the present invention, also, SO 3 weight Ru 1.8 to 2.4% by mass. When the amount of SO 3 is in this range, condensation and strength show appropriate values.

さらに、本発明の油井セメント組成物を製造するには、セメントクリンカーと石膏とを、開回路式チューブボールミルを用いて、散水量を0〜3質量%の範囲で変化させてミル出口セメント温度を70〜120℃、より好ましくは90〜115℃に制御しながら粉砕することが好ましい。   Furthermore, in order to produce the oil well cement composition of the present invention, the cement clinker and gypsum are changed by using an open circuit type tube ball mill, and the amount of water spray is changed in the range of 0 to 3% by mass, so that the mill outlet cement temperature is increased. It is preferable to grind while controlling at 70 to 120 ° C, more preferably 90 to 115 ° C.

さらに好ましくは、粉砕助剤を使用せずに粉砕すると、より効率良く45μm篩残分を増加させることができる。   More preferably, when the pulverization is performed without using the pulverization aid, the 45 μm sieve residue can be increased more efficiently.

なお、本発明の油井セメント組成物は、硅石粉やフライアッシュ等のシリカ粉末、リグニンスルホン酸塩やオキシカルボン酸塩等を含む遅硬剤、塩化カルシウムや塩化ナトリウム等を含む速硬剤、ベントナイトや珪藻土等の低比重化材、バライトやヘマタイト等の高比重化材を混合あるいは添加して使用しても良い。   The oil well cement composition of the present invention includes silica powder such as meteorite powder and fly ash, slow hardener containing lignin sulfonate and oxycarboxylate, fast hardener containing calcium chloride and sodium chloride, bentonite Alternatively, a low specific gravity material such as diatomaceous earth or a high specific gravity material such as barite or hematite may be mixed or added.

本発明の油井セメント組成物は、以下のようにして製造することができる。   The oil well cement composition of the present invention can be produced as follows.

まず、セメントクリンカーは、石灰石、粘土源原料(粘土、石炭灰、建設発生土、下水汚泥、高炉スラグ等)、鉄源原料(銅からみ、鉄精鉱等)および硅石等の各原料中の成分割合に応じてその使用比率を制御し、次いで、ボーグ式算定の鉱物組成を調整することにより製造することができる。   First, cement clinker is a component in raw materials such as limestone, clay source materials (clay, coal ash, construction generated soil, sewage sludge, blast furnace slag, etc.), iron source materials (copper tangled, iron concentrate, etc.) and meteorites. It can be manufactured by controlling its use ratio according to the ratio and then adjusting the mineral composition of the Borg calculation.

また、セメント組成物は、上記のように製造したセメントクリンカーと石膏とを粉砕装置に投入し、石膏添加量を制御することでセメント組成物中のSO量を調整する。 In addition, the cement composition is adjusted by adjusting the amount of SO 3 in the cement composition by introducing the cement clinker and gypsum produced as described above into a pulverizer and controlling the amount of gypsum added.

セメント組成物のブレーン比表面積は、投入するセメントクリンカーおよび石膏の合量(挽入量)を制御して調整する。例えば、ブレーン比表面積を高める(粒度を細かくする)には挽入量を減少し、ブレーン比表面積を減少させる(粒度を大きくする)には挽入量を増加して調整する。   The Blaine specific surface area of the cement composition is adjusted by controlling the total amount of cement clinker and gypsum to be charged (grinding amount). For example, to increase the Blaine specific surface area (to make the particle size finer), the grinding amount is decreased, and to reduce the Blaine specific surface area (to increase the particle size), the grinding amount is increased and adjusted.

45μm篩残分を増加させるには、粉砕助剤を使用せずに粉砕することに加え、出口温度制御が容易な開回路式チューブボールミルを使用するか、若しくは風量制御が可能な閉回路式チューブボールミルを使用し、セパレーターの回転数や循環率等を制御することにより、粒度分布を調整して行う。   In order to increase the 45 μm sieve residue, in addition to crushing without using a grinding aid, use an open circuit tube ball mill that can easily control the outlet temperature, or a closed circuit tube that allows air flow control. Using a ball mill, the particle size distribution is adjusted by controlling the rotation speed, circulation rate, etc. of the separator.

なお、粉砕装置としては、(1)粉砕時の滞留時間が短くエアレーション(微風化)を起こし難い、(2)ミル出口セメント温度が上昇し難い、(3)粉砕物の粒度分布が広いといった特徴を持つものを使用することが好ましい。例えば、開回路式チューブボールミルの使用が好ましいが、閉回路式チューブボールミルでも、セパレータの性能やミルの大きさを制御することで同様の性能を得ることが可能である。   The pulverizer is characterized in that (1) the residence time during pulverization is short and aeration (slight weathering) hardly occurs, (2) the mill exit cement temperature hardly rises, and (3) the particle size distribution of the pulverized product is wide. It is preferable to use one having For example, the use of an open circuit type tube ball mill is preferable, but a closed circuit type tube ball mill can obtain the same performance by controlling the performance of the separator and the size of the mill.

さらに、セメント組成物の石膏中の半水石膏割合は、ミル内に持ち込む水分量(クリンカー散水量)を調整してミル出口セメント温度を70〜120℃、より好ましくは90〜115℃とすることで制御可能である。なお、クリンカー散水量は3質量%以下であることが好ましく、1.2質量%以下であることがより好ましい。更に、ミル粉砕後すぐに気流冷却等の冷却設備にて、セメント温度を60℃以下にしてサイロに貯蔵することが最も好ましい。   Furthermore, the ratio of the hemihydrate gypsum in the gypsum of the cement composition is adjusted to the amount of water (clinker watering amount) brought into the mill so that the cement temperature at the mill outlet is 70 to 120 ° C, more preferably 90 to 115 ° C. It can be controlled with. In addition, it is preferable that the amount of clinker watering is 3 mass% or less, and it is more preferable that it is 1.2 mass% or less. Furthermore, it is most preferable that the cement temperature be 60 ° C. or lower and stored in a silo immediately after milling using a cooling facility such as airflow cooling.

以下、実施例により本発明の構成および効果を説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although an example explains composition and an effect of the present invention, the present invention is not limited to these examples.

(1)セメントの試製
セメント組成物は、実機NSPキルンを用いて焼成したセメントクリンカーと石膏とを、実機粉砕装置(開回路式チューブボールミルまたは閉回路式チューブボールミル)を用いて粉砕して、表1−1、1−2に記す21種類のセメントを試製した。なお、石膏はタイ産天然石膏を使用した。
(1) Trial manufacture of cement The cement composition was prepared by crushing cement clinker and gypsum fired using an actual machine NSP kiln using an actual machine crusher (open circuit tube ball mill or closed circuit tube ball mill). The 21 types of cement described in 1-1 and 1-2 were trial manufactured. The gypsum used was Thai natural gypsum.

粉砕装置の概略は図1および図2のとおりである。
図1に示す開回路式チューブボールミルはセパレータが付属されず、投入されたクリンカーおよび石膏が全てそのまま製造品として系外に排出される。一方、図2に示す閉回路式チューブボールミルにはセパレータが付属し、セパレータによって分級された粗粒部分は再度ミルに戻され、細粒部分のみが製品として排出される。閉回路式では、粗粒部分がミル内に戻され粉砕装置内を循環することにより、セメント組成物のミル内滞留時間は開回路式に比べて長くなる。
The outline of the crusher is as shown in FIGS.
The open circuit type tube ball mill shown in FIG. 1 is not attached with a separator, and all the clinker and gypsum introduced are discharged out of the system as manufactured products. On the other hand, the closed circuit type tube ball mill shown in FIG. 2 is provided with a separator, and the coarse particle portion classified by the separator is returned to the mill again, and only the fine particle portion is discharged as a product. In the closed circuit system, the coarse grain portion is returned to the mill and circulated in the pulverizer, so that the residence time of the cement composition in the mill becomes longer than that in the open circuit system.

実施例1〜10は、実機NSPキルンを用いて焼成したセメントクリンカーを用いて、ブレーン比表面積を2700〜3700cm/g、45μm篩残分を15質量%以上、遊離カルシウム(以下「f.CaO」という)量を0.2〜0.6質量%、石膏中の半水石膏割合を20〜80質量%となるように粉砕したセメントである。なお、これらの実施例は、開回路式チューブボールミルを使用して、各特性値は主に以下に示すようにして調整した。すなわち、ブレーン比表面積および45μm篩残分は挽入量で、f.CaOは散水量、NSPキルンの燃焼ガスの焼点温度およびクリンカーのキルン内滞留時間で、半水石膏割合はミル出口温度で制御した。なお、サイロ貯蔵するときには、ミル粉砕後すぐに気流冷却機を通して、セメント温度を60℃以下とし、サイロ内での二水石膏の脱水を極力抑えるようにした。 In Examples 1 to 10, a cement clinker calcined using an actual NSP kiln was used, the Blaine specific surface area was 2700 to 3700 cm 2 / g, the 45 μm sieve residue was 15% by mass or more, free calcium (hereinafter “f.CaO”). ”) Is a cement pulverized so that the amount is 0.2 to 0.6% by mass and the proportion of hemihydrate gypsum in the gypsum is 20 to 80% by mass. In these examples, an open circuit type tube ball mill was used, and each characteristic value was adjusted mainly as shown below. That is, the Blaine specific surface area and the 45 μm sieve residue are the amount of grinding, f. For CaO, the amount of water sprayed, the burning temperature of the combustion gas of the NSP kiln, and the residence time of the clinker in the kiln, and the ratio of hemihydrate gypsum were controlled by the mill outlet temperature. In addition, when storing in a silo, the cement temperature was set to 60 ° C. or less immediately after milling to reduce the dehydration of dihydrate gypsum in the silo as much as possible.

比較例1〜4は、開回路式チューブボールミルを使用したが実施例1〜10と比べて、各特性値の制御条件の何れかが実施例とは異なるものである。その結果、比較例1、2は、f.CaO量を0.66質量%に増加、または半水石膏割合を92質量%に増加したセメントであり、比較例3および4はf.CaO量を0.64〜0.68質量%に増加し、半水石膏割合を85〜100質量%に増加したセメントである。   Although Comparative Examples 1-4 used the open circuit type tube ball mill, compared with Examples 1-10, either of the control conditions of each characteristic value differs from an Example. As a result, Comparative Examples 1 and 2 show f. A cement in which the amount of CaO was increased to 0.66% by mass, or the proportion of hemihydrate gypsum was increased to 92% by mass, and Comparative Examples 3 and 4 were f. This is a cement in which the CaO amount is increased to 0.64 to 0.68% by mass and the hemihydrate gypsum ratio is increased to 85 to 100% by mass.

比較例5〜8は、挽入後のセメントを分級し再粉砕する閉回路式チューブボールミルを使用した結果、45μm篩残分が6.9〜10.1質量%に低減したセメントである。   Comparative Examples 5 to 8 are cements in which the 45 μm sieve residue is reduced to 6.9 to 10.1% by mass as a result of using a closed circuit tube ball mill that classifies and regrinds cement after grinding.

比較例9および10は、閉回路式チューブボールミルを使用して、ミル出口温度を高温として半水石膏割合を90〜100質量%に増加させたセメントである。   Comparative Examples 9 and 10 are cements using a closed-circuit tube ball mill and the hemihydrate gypsum ratio being increased to 90 to 100% by mass at a high mill exit temperature.

比較例11は、閉回路式チューブボールミルを使用して、f.CaO量を0.69質量%に増加し、45μm篩残分を14.7質量%に低減したセメントである。   Comparative Example 11 uses a closed circuit tube ball mill and f. This is a cement in which the CaO amount is increased to 0.69% by mass, and the 45 μm sieve residue is reduced to 14.7% by mass.

Figure 0005374823
Figure 0005374823

Figure 0005374823
Figure 0005374823

(2)セメントのキャラクタリゼーション
<2-1> 鉱物組成および少量成分含有量
セメントの鉱物組成は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」に準拠して定量したCaO、SiO、Al、FeおよびSO量を用いて下記の式により算出した。
(2) Characterization of cement
<2-1> Mineral Composition and Minor Component Content The mineral composition of the cement was determined according to JIS R 5202: 1999 “Chemical analysis method of Portland cement”, CaO, SiO 2 , Al 2 O 3 , Fe 2 O. 3 and the amount of SO 3 were calculated by the following formula.

S量(質量%)=(4.07×CaO)−(7.60×SiO)−(6.72×Al)−(1.43×Fe)−2.85×SO
S量(質量%)=(2.87×SiO)−(0.754×CS)
A量(質量%)=(2.65×Al)−(1.69×Fe
AF量(質量%)=3.04×Fe
C 3 S amount (% by mass) = (4.07 × CaO) − (7.60 × SiO 2 ) − (6.72 × Al 2 O 3 ) − (1.43 × Fe 2 O 3 ) -2. 85 x SO 3
C 2 S amount (% by mass) = (2.87 × SiO 2 ) − (0.754 × C 3 S)
C 3 A amount (% by mass) = (2.65 × Al 2 O 3 ) − (1.69 × Fe 2 O 3 )
C 4 AF amount (mass%) = 3.04 × Fe 2 O 3

また、セメントのMgO、SO、NaOおよびKO量は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」に準拠して定量した。また、全アルカリ量(RO)は下記の式によりNaO換算量として算出した。 The amount of MgO, SO 3 , Na 2 O and K 2 O in the cement was determined in accordance with JIS R 5202: 1999 “Chemical analysis method for Portland cement”. The total amount of alkali (R 2 O) was calculated as the terms of Na 2 O amount from the following equation.

O=NaO+0.658×KR 2 O = Na 2 O + 0.658 × K 2 O

<2-2> 遊離カルシウム量(f.CaO量)
ポルトランドセメント中のf.CaO量は、JCAS I−01:1981「遊離カルシウムの分析方法」に準じて定量した。
<2-2> Free calcium content (f.CaO content)
F. In Portland cement. The amount of CaO was quantified according to JCAS I-01: 1981 “Analytical method of free calcium”.

<2-3> 石膏中の二水および半水石膏割合
半水石膏割合は、以下の方法より求めた。
まず、半水石膏量および二水石膏量を、示差熱重量分析(TG−DTA)によって定量した。具体的には、示差熱熱重量分析装置TG−DTA6200(セイコーインスツルメンツ(株)製)を用いて、直径20μmの孔を有する容量30μLのセル(アルミ製)に、試料を約30mg入れ、昇温速度5℃/minで室温から300℃まで昇温した。図3に示すように、まず、重量減少曲線(図3のTG)を微分した曲線(図1のDTG)から、DTGピークAの立ち上がり温度(約125℃)、半水石膏の脱水に伴うDTGピークBの立ち上がり温度(約155℃)、ピークBの終局点(約195℃)を求めた。次に、二水石膏の脱水に伴う125〜155℃附近の減量(a質量%)と、半水石膏の脱水に伴う155〜195℃附近の減量(b質量%)を求め、式(1)および式(2)を用いて、セメントの石膏中の二水石膏量(質量%)および半水石膏量(質量%)を算出した。これらより、半水石膏の割合(質量%)は式(3)を用いて算出した。なお、リファレンスとして、アルミ板を用いた。
<2-3> Ratio of dihydrate and half-water gypsum in gypsum The percentage of half-water gypsum was determined by the following method.
First, the amount of hemihydrate gypsum and the amount of dihydrate gypsum were quantified by differential thermogravimetric analysis (TG-DTA). Specifically, using a differential thermothermal gravimetric analyzer TG-DTA6200 (manufactured by Seiko Instruments Inc.), about 30 mg of the sample is put into a cell (made of aluminum) having a hole of 20 μm in diameter and having a capacity of 30 μL. The temperature was raised from room temperature to 300 ° C. at a rate of 5 ° C./min. As shown in FIG. 3, first, from the curve (DTG in FIG. 1) obtained by differentiating the weight loss curve (TG in FIG. 3), the DTG peak A rising temperature (about 125 ° C.), DTG accompanying dehydration of hemihydrate gypsum The rise temperature of peak B (about 155 ° C.) and the end point of peak B (about 195 ° C.) were determined. Next, the weight loss around 125 to 155 ° C. due to dehydration of dihydrate gypsum (a mass%) and the weight loss near 155 to 195 ° C. due to dehydration of hemihydrate gypsum (b mass%) are obtained, and the formula (1) And the amount of dihydrate gypsum (mass%) and the amount of hemihydrate gypsum (mass%) in the gypsum of the cement were calculated using the equation (2). From these, the ratio (mass%) of hemihydrate gypsum was computed using Formula (3). An aluminum plate was used as a reference.

二水石膏量(質量%)=減量a(質量%)×172(二水石膏の分子量)÷(1.5×18(HOの分子量)) (1)
半水石膏量(質量%)=(減量b(質量%)−減量a(質量%)÷3)×145(半水石膏の分子量)÷(0.5×18(HOの分子量)) (2)
半水石膏割合(質量%)=半水石膏量÷(半水石膏量+二水石膏量)×100 (3)
Dihydrate gypsum amount (mass%) = weight loss a (mass%) × 172 (molecular weight of dihydrate gypsum) ÷ (1.5 × 18 (molecular weight of H 2 O)) (1)
Hemihydrate gypsum amount (mass%) = (weight loss b (mass%) − weight loss a (mass%) ÷ 3) × 145 (molecular weight of hemihydrate gypsum) ÷ (0.5 × 18 (molecular weight of H 2 O)) (2)
Hemihydrate gypsum ratio (mass%) = hemihydrate gypsum amount ÷ (semihydrate gypsum amount + dihydrate gypsum amount) x 100 (3)

<2-4> ブレーン比表面積および45μm篩残分
ポルトランドセメントのブレーン比表面積および45μm篩残分は、JIS R 5201:1997「セメントの物理試験方法」に準じて測定した。
<2-4> Blaine specific surface area and 45 μm sieve residue The Blaine specific surface area and 45 μm sieve residue of Portland cement were measured according to JIS R 5201: 1997 “Cement physical test method”.

(3)セメントの物性評価
<3-1> スラリー調製
セメントスラリーの調製はAPI Spec. 10A:2002(クラスG(タイプHSR)の試験方法)に準拠した。水セメント比を44質量%となるように、水道水(27℃)とセメントとを混合し、API Spec. 10Aに適合するミキサーに投入し、回転翼の回転数4000rpmにて15秒間、次いで12000rpmにて35秒間混練し、供試スラリーとした。
(3) Evaluation of physical properties of cement
<3-1> Slurry Preparation Cement slurry was prepared using API Spec. 10A: Compliant with 2002 (Class G (Type HSR) test method). Tap water (27 ° C.) and cement were mixed so that the water-cement ratio was 44% by mass, and API Spec. The slurry was put into a mixer suitable for 10A and kneaded for 15 seconds at a rotational speed of 4000 rpm of the rotor blades, and then 35 seconds at 12000 rpm to obtain a test slurry.

<3-2> 遊離水、圧縮強さ、コンシステンシー、初期粘度およびシックニングタイム試験
遊離水、圧縮強さ、初期粘度およびシックニングタイム、コンシステンシー試験は、セメントスラリーの調製と同様にAPI Spec. 10A:2002クラスG(タイプHSR)の試験方法)に準拠した。
<3-2> Free Water, Compressive Strength, Consistency, Initial Viscosity and Thickening Time Test Free water, compressive strength, initial viscosity and thickening time, and consistency test are the same as API Spec. . 10A: 2002 class G (type HSR) test method).

遊離水は、<3-1>で調製したスラリーをAPI規格記載のハリバートン・コンシストメーターに入れ、27℃で20分間攪拌した後、スラリー760gを500mlの三角フラスコに入れ、表面水(浮き水)をスポイドで採取し、重量を測定した。なお、遊離水は質量%にて表示した。   For free water, the slurry prepared in <3-1> was placed in a Halliburton Consistometer described in API standard, stirred at 27 ° C. for 20 minutes, and then 760 g of slurry was placed in a 500 ml Erlenmeyer flask and surface water (floating) Water) was collected with a spoid and weighed. Free water was expressed in mass%.

コンシステンシーは、<3-1>で調製したスラリーをAPI規格記載のハリバートン・コンシストメーターに入れ、攪拌時のコンシストメータの読み(BC)を0、5、20分後に測定した。   Consistency was measured by placing the slurry prepared in <3-1> into a Halliburton Consistometer described in the API standard, and reading the consistency meter (BC) during stirring after 0, 5, and 20 minutes.

シックニングタイムは、<3-1>で調製したスラリーをAPI規定の高温高圧シックニングタイムテスターに入れ、温度・圧力の履歴は前記規格に記載のスケジュール5として、スラリーのコンシステンシーを測定し、100BCとなる時間をシックニングタイムとした。また、本試験において最初の15〜30分間におけるコンシステンシーの最大値を初期粘度とした。   Thickening time is to put the slurry prepared in <3-1> into API high temperature and high pressure thickening time tester, temperature and pressure history is schedule 5 as described in the above standard, measure slurry consistency, The time for 100 BC was taken as the thickening time. In this test, the initial maximum viscosity of the consistency in the first 15 to 30 minutes was defined as the initial viscosity.

<3-3> 流動性(V−Gメータ)
流動性(V−Gメータ)の試験は、API RP 10B:12th Edition(1997)のDetermination of Rheological Propertiesに従って行った。<3-1>で調製したスラリーをハリバートン・コンシストメーターに入れ、27℃で20分間攪拌したのち、V−Gメータ(共軸円筒回転粘度計)を用いて600、300、200、100rpmにおけるメータの読みを記録した。
<3-3> Fluidity (VG meter)
The fluidity (VG meter) test was performed according to Determination of Rheological Properties of API RP 10B: 12th Edition (1997). The slurry prepared in <3-1> is placed in a Halliburton Consistometer, stirred at 27 ° C. for 20 minutes, and then 600, 300, 200, 100 rpm using a VG meter (coaxial cylindrical rotational viscometer). Recorded meter reading at

(4)評価結果
セメントの物性評価結果を表2に示す。
(4) Evaluation results Table 2 shows the physical property evaluation results of the cement.

遊離水は坑井掘削の際に流し込むセメントスラリーにおいて材料の分離性を評価するものであり、これが多いことは材料分離し易いことを示し、施工への悪影響が懸念される。遊離水は、経験的に、4.3%以下であれば施工上問題なく使用できることを確認している。   Free water is used to evaluate the separability of materials in cement slurry poured during well drilling. A large amount of this indicates that the material is easily separated, and there is a concern about adverse effects on construction. It has been empirically confirmed that free water can be used without problems if it is 4.3% or less.

初期粘度、コンシステンシーおよび流動性(V−Gメータ)は、スラリーの流動性を表す指標であり、いずれも値が大きいと流動性が悪く、セメンチングの際に施工に悪影響が生じる。経験的に、これらの指標が表2に併記する目標値を満足すれば施工上問題なく使用できることを確認している。   The initial viscosity, consistency, and fluidity (VG meter) are indicators that represent the fluidity of the slurry. If any of the values is large, the fluidity is poor, and the construction is adversely affected during cementing. Empirically, it has been confirmed that if these indicators satisfy the target values listed in Table 2, they can be used without problems in construction.

シックニングタイムは、高温高圧下の坑井内におけるセメントスラリーの凝結時間に関するものである。セメンチング作業の面から、スラリー粘性(コンシステンシー)が100BCを超えると作業が出来なくなることから、作業時間を考慮してシックニングタイムは90〜120分が好ましいとされる。表1のセメントは、このシックニングタイムが90〜120分となるようにブレーン比表面積を変化して調整したものである。   Thickening time relates to the setting time of cement slurry in a well under high temperature and pressure. From the viewpoint of cementing work, if the slurry viscosity (consistency) exceeds 100 BC, the work cannot be performed. Therefore, the thickening time is preferably 90 to 120 minutes in consideration of the work time. The cements in Table 1 were prepared by changing the specific surface area of the brane so that the thickening time was 90 to 120 minutes.

圧縮強さは、掘削作業の面で硬化待ち時間8時間の間に、次の掘削作業を続けるのに十分な強さを示さなくてはならない。API規格では38℃で2.1N/mm以上、60℃で10.3N/mm以上と規定されるが、実際にはこれよりも高い圧縮強さを有することが望まれ、表2に示す目標値を満足することが重要である。 The compressive strength must be strong enough to continue the next excavation operation within 8 hours of hardening waiting in terms of excavation operation. In 38 ° C. in API standard 2.1 N / mm 2 or more, but is defined as at 60 ℃ 10.3N / mm 2 or more, actually desirable to have high compressive strength than this, in Table 2 It is important to satisfy the target value shown.

表2の中には、各物性について目標値を満足するものに○、満足しないものに×を併記した。   In Table 2, “○” is shown for those satisfying the target values for each physical property, and “X” is shown for those not satisfying.

表2からわかるように、実施例1〜10はいずれの物性においても非常に良好であり、流動性および強度発現性に優れることがわかる。これは、ブレーン比表面積が適当な範囲(2700〜3700cm/g)にあり、45μm篩残分が15質量%以上含まれることからわかるように粒度分布が広く充填性が高まることで流動性および強度発現性が向上し、f.CaO量が0.2〜0.6質量%および半水石膏割合が20〜80質量%であるため、こわばり現象も生じず流動性が向上しているからである。 As can be seen from Table 2, Examples 1 to 10 are very good in any physical properties, and are excellent in fluidity and strength development. This is because the specific surface area of Blaine is in an appropriate range (2700-3700 cm 2 / g), and the residue of 45 μm sieve is contained by 15% by mass or more. Strength development improves, f. This is because the CaO amount is 0.2 to 0.6% by mass and the hemihydrate gypsum ratio is 20 to 80% by mass, so that the stiffness phenomenon does not occur and the fluidity is improved.

一方、比較例1〜4は、表2の流動性(V−Gメータ)をみて分かるように、半水石膏割合が80%を超え、f.CaO量が0.6質量%を超えるため、こわばりが生じて流動性が低下する。特に、半水石膏割合が100質量%で且つf.CaO量が0.68質量%と多い比較例4は初期粘度でも目標値を上回り、流動性が悪いことがわかる。   On the other hand, in Comparative Examples 1 to 4, as can be seen from the fluidity (VG meter) in Table 2, the ratio of hemihydrate gypsum exceeds 80%, f. Since the amount of CaO exceeds 0.6% by mass, stiffness occurs and fluidity decreases. In particular, the proportion of hemihydrate gypsum is 100% by mass and f. It can be seen that Comparative Example 4 having a large CaO content of 0.68% by mass exceeds the target value even at the initial viscosity and has poor fluidity.

また、比較例5〜11はいずれも45μm篩残分が少なく、十分な充填性が得られないため、特に38℃の圧縮強さが低い。また比較例10のように、半水石膏割合が80質量%を超え、f.CaO量が0.6質量%を超えるものは流動性(V−Gメータ)でも劣る傾向がある。   Moreover, since the comparative examples 5-11 have few 45 micrometer sieve residue, and sufficient filling property is not acquired, especially 38 degreeC compressive strength is low. Further, as in Comparative Example 10, the ratio of hemihydrate gypsum exceeds 80% by mass, f. When the CaO amount exceeds 0.6 mass%, the fluidity (VG meter) tends to be inferior.

また、製造方法は、表2の結果をみてもわかるように、開回路式チューブボールミルを使用した場合の方が、本発明のセメント組成物を製造し易い。理由は、開回路式であるために、粒度が連続したものとなり粒度分布が広がること、セメントのミル内滞留時間が短くミル出口セメント温度が上がりにくいため半水石膏割合が低くなること、エアレーション(微風化)を受け難く強度発現性に優れることが挙げられる。   Further, as can be seen from the results in Table 2, the production method is easier to produce the cement composition of the present invention when using an open circuit type tube ball mill. The reason is that because of the open circuit type, the particle size is continuous and the particle size distribution is widened, the residence time in the mill of the cement is short, and the mill outlet cement temperature is difficult to rise, so the ratio of hemihydrate gypsum is low, aeration ( It is difficult to receive fine weathering) and has excellent strength development.

なお、本発明のセメント組成物は、API Spec. 10A:2002に規定されるクラスHとしても使用可能である。   In addition, the cement composition of this invention is API Spec. 10A: Can be used as a class H defined in 2002.

Figure 0005374823
Figure 0005374823

開回路式チューブボールミルの概略図である。It is the schematic of an open circuit type tube ball mill. 閉回路式チューブボールミルの概略図である。It is the schematic of a closed circuit type tube ball mill. 示差熱重量分析(TG−DTA)を用い、セメント組成物中の半水石膏量を測定した例を示す図である。It is a figure which shows the example which measured the amount of hemihydrate gypsum in a cement composition using differential thermogravimetric analysis (TG-DTA).

Claims (2)

S量が55〜65質量%およびCA量が2質量%以下の油井セメント組成物において、ブレーン比表面積が2700〜3700cm/g、45μm篩残分が15.0質量%以上、遊離カルシウム量が0.2〜0.6質量%、SO 量が1.8〜2.4質量%であり、石膏中の半水石膏割合が20〜80質量%であることを特徴とする油井セメント組成物。 In an oil well cement composition having a C 3 S amount of 55 to 65% by mass and a C 3 A amount of 2% by mass or less, the Blaine specific surface area is 2700 to 3700 cm 2 / g, and the 45 μm sieve residue is 15.0% by mass or more, The amount of free calcium is 0.2 to 0.6% by mass, the amount of SO 3 is 1.8 to 2.4% by mass, and the proportion of hemihydrate gypsum in the gypsum is 20 to 80% by mass. Oil well cement composition. 石灰石、硅石、粘土源原料及び鉄源原料を使用し、原料中の成分割合に応じて、前記原料の使用比率を制御し、ボーグ式算定の鉱物組成をC S量が55〜65質量%およびC A量が2質量%以下になるように調整した、セメントクリンカーと石膏とを含有するセメント組成物を、開回路式チューブボールミルを使用して、セメント組成物に対して水を3質量%以下の範囲で散水して、又は散水せずに、開回路式チューブボールミルのミル出口セメント温度を70〜120℃に制御して粉砕する、請求項1記載の油井セメント組成物の製造方法。 Limestone, Keiseki, using clay source material and iron source material, depending on the component ratio in the raw material, and controls the use ratio of the raw material, the mineral composition of Borg formula Calculation C 3 S content is 55 to 65 mass % And a C 3 A amount adjusted to 2% by mass or less, a cement composition containing cement clinker and gypsum was added with water to the cement composition using an open circuit tube ball mill. and watering mass% or less, or without water spray and ground to control the mill outlet cement temperature of open circuit type tube ball mill 70 to 120 ° C., prepared according to claim 1 Symbol placement of oil well cement composition Method.
JP2007055553A 2007-03-06 2007-03-06 Oil well cement composition and method for producing the same Active JP5374823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055553A JP5374823B2 (en) 2007-03-06 2007-03-06 Oil well cement composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055553A JP5374823B2 (en) 2007-03-06 2007-03-06 Oil well cement composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008214536A JP2008214536A (en) 2008-09-18
JP5374823B2 true JP5374823B2 (en) 2013-12-25

Family

ID=39834965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055553A Active JP5374823B2 (en) 2007-03-06 2007-03-06 Oil well cement composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5374823B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050843A (en) 2008-08-22 2010-03-04 Sony Corp Communication apparatus, communication system, communication method and program
JP5336300B2 (en) * 2009-08-21 2013-11-06 株式会社大林組 High toughness and high strength mortar composition
JP5768092B2 (en) * 2013-07-09 2015-08-26 株式会社大林組 High toughness and high strength mortar composition
CN107721221A (en) * 2016-08-12 2018-02-23 中国石油天然气集团公司 A kind of high temperature resistant phosphate cement and its application
JP6831712B2 (en) * 2017-02-15 2021-02-17 太平洋セメント株式会社 Portland cement manufacturing method and mixed cement manufacturing method
CN110862245B (en) * 2018-08-28 2021-11-30 中国石油天然气股份有限公司 Well cementation cement for high-temperature deep well and preparation method and application thereof
CN113121128B (en) * 2021-06-04 2023-03-17 嘉华特种水泥股份有限公司 High-strength toughened cementing material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265962A (en) * 1985-09-17 1987-03-25 電気化学工業株式会社 High strength cement composition
JP3574536B2 (en) * 1996-07-19 2004-10-06 株式会社テルナイト Low specific gravity geothermal well cement slurry for high temperature
JP3318305B2 (en) * 1998-12-25 2002-08-26 住友金属鉱山株式会社 Portland cement for ALC production and method for producing ALC
JP3058627B1 (en) * 1998-12-25 2000-07-04 住友金属鉱山株式会社 Portland cement for ALC production and method for producing ALC
JP4375912B2 (en) * 2001-03-07 2009-12-02 宇部興産株式会社 Method for producing lightweight cellular concrete and method for improving foam stability
JP4786220B2 (en) * 2005-04-28 2011-10-05 住友大阪セメント株式会社 Wood cement board and manufacturing method thereof
JP4786219B2 (en) * 2005-04-28 2011-10-05 住友大阪セメント株式会社 High iron oxide type cement composition

Also Published As

Publication number Publication date
JP2008214536A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5374823B2 (en) Oil well cement composition and method for producing the same
CN105255463B (en) Elastoplasticity microdilatancy cementing slurry and preparation method thereof
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP5310193B2 (en) Method for producing cement composition
US8857620B2 (en) Cementitious composition and apparatus and method for manufacturing the same
JP6021753B2 (en) Mixed cement
JP2011132045A (en) Method for reducing heat of hydration of cement composition
JP5029768B1 (en) Cement composition and method for producing the same
CN105314938B (en) A kind of low drying shrinkage anti-crack concrete
JP5626420B2 (en) Cement composition
WO2017085565A2 (en) Portland cement free activation of ground granulated blast furnace slag
CN107915449A (en) A kind of dry-mixed masonry mortar and preparation method thereof
JP2012246190A (en) Method for producing cement composition
CN112521089A (en) Full-hole slag high-performance concrete and preparation method thereof
CN100408503C (en) Binding material of construction motar and producing method thereof
JP5581562B2 (en) Oil well cement composition and oil well cement slurry
WO2017106921A1 (en) A process for producing cementitious material
JP5863253B2 (en) High toughness and high strength mortar composition
WO2014097938A1 (en) Cement and blended cement
JP6316576B2 (en) Cement composition
WO2015170685A1 (en) Cementing composition, cementing method and well drilling method
JP2011184231A (en) Cement composition and method for producing the same
JP4567211B2 (en) Expandable material and cement composition
JP7315496B2 (en) Method for producing blast furnace cement
JP6683025B2 (en) Cement composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5374823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250