JP5371660B2 - Compression refrigerator - Google Patents

Compression refrigerator Download PDF

Info

Publication number
JP5371660B2
JP5371660B2 JP2009221573A JP2009221573A JP5371660B2 JP 5371660 B2 JP5371660 B2 JP 5371660B2 JP 2009221573 A JP2009221573 A JP 2009221573A JP 2009221573 A JP2009221573 A JP 2009221573A JP 5371660 B2 JP5371660 B2 JP 5371660B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
evaporator
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009221573A
Other languages
Japanese (ja)
Other versions
JP2011069557A (en
Inventor
知行 内村
哲也 遠藤
克行 一寸木
忠司 山口
毅一 入江
修行 井上
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2009221573A priority Critical patent/JP5371660B2/en
Publication of JP2011069557A publication Critical patent/JP2011069557A/en
Application granted granted Critical
Publication of JP5371660B2 publication Critical patent/JP5371660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression type refrigerating machine which eliminates gaseous and liquid impurities from a plurality of refrigerating cycles such as a double refrigerating cycle or a plurality of compression-type refrigerating machines by one impurity elimination device for eliminating the gaseous and liquid impurities. <P>SOLUTION: In this compression type refrigerating machine including the plurality of refrigerating machines with refrigerating cycles, or the plurality of refrigerating cycles, is provided with an extraction gas moving means for extracting a refrigerant gas including the gaseous impurity from one of the refrigerating cycles and moving the same to the other refrigerating cycle, a refrigerant liquid moving means for moving the refrigerant liquid including the liquid impurity from the refrigerating cycle different from one of the refrigerating cycles, to the other refrigerating cycle of the direction opposite to the moving direction of the gas moved by the extraction gas moving means, an extraction device 33 disposed in the refrigerating cycle of the final stage for moving the gas by the extraction gas moving means, to extract the gaseous impurity, and discharge the same to outside a system, and a concentrating device 32 disposed in the refrigerating cycle of the final stage for moving the refrigerant liquid by the refrigerant liquid moving means, to extract the liquid impurity and discharge the same to outside the system. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、圧縮式冷凍機に関し、特に冷媒循環系路内に浸入した不純物を効率的に排除することのできる圧縮式冷凍機に関するものである。   The present invention relates to a compression refrigerator, and more particularly to a compression refrigerator that can efficiently eliminate impurities that have entered a refrigerant circulation path.

図1は、従来のこの種の圧縮式冷凍機の概略構成を示す図である。圧縮式冷凍機100は、蒸発器101、圧縮機102、凝縮器103、膨張弁104を備え、蒸発器101で被冷却流体である冷水(図示せず)の熱を奪って冷媒を蒸発させた冷媒蒸気を圧縮機102で圧縮し、該圧縮した冷媒蒸気を凝縮器103で冷却水により冷却凝縮させて液化すると共に、該液化した冷媒を、膨張弁104を介して膨張させて蒸発器101に戻すことで冷凍作用を持続させる冷凍サイクルを構成している。   FIG. 1 is a diagram showing a schematic configuration of a conventional compression refrigerator of this type. The compression refrigerator 100 includes an evaporator 101, a compressor 102, a condenser 103, and an expansion valve 104. The evaporator 101 takes away the heat of cold water (not shown) as a fluid to be cooled and evaporates the refrigerant. The refrigerant vapor is compressed by the compressor 102, and the compressed refrigerant vapor is cooled and condensed with cooling water by the condenser 103 to be liquefied, and the liquefied refrigerant is expanded via the expansion valve 104 to the evaporator 101. A refrigeration cycle that maintains the refrigeration action by returning it is configured.

図2は、従来のこの種の二重冷凍サイクルの圧縮式冷凍機の概略構成を示す図である。圧縮式冷凍機200は、低圧側蒸発器201、低圧側圧縮機202、低圧側凝縮器203、低圧側膨張弁204、高圧側蒸発器211、高圧側圧縮機212、高圧側凝縮器213、及び高圧側膨張弁214を備えている。   FIG. 2 is a diagram showing a schematic configuration of a conventional compression refrigerator of this type of double refrigeration cycle. The compression refrigerator 200 includes a low-pressure evaporator 201, a low-pressure compressor 202, a low-pressure condenser 203, a low-pressure expansion valve 204, a high-pressure evaporator 211, a high-pressure compressor 212, a high-pressure condenser 213, and A high-pressure side expansion valve 214 is provided.

低圧側蒸発器201で蒸発した冷媒蒸気を低圧側圧縮機202で圧縮し、該圧縮した冷媒蒸気を低圧側凝縮器203で冷却凝縮させて液化すると共に、該液化した冷媒を、低圧側膨張弁204を介して低圧側蒸発器201に戻すことで冷凍作用を持続させる低圧側冷凍サイクルを構成している。また、高圧側蒸発器211で蒸発した冷媒蒸気を高圧側圧縮機212で圧縮し、該圧縮した冷媒蒸気を高圧側凝縮器213で冷却凝縮させて液化すると共に、該液化した冷媒を、高圧側膨張弁214を介して高圧側蒸発器211に戻すことで冷凍作用を持続させる高圧側冷凍サイクルを構成している。   The refrigerant vapor evaporated by the low-pressure side evaporator 201 is compressed by the low-pressure side compressor 202, and the compressed refrigerant vapor is cooled and condensed by the low-pressure side condenser 203 to be liquefied, and the liquefied refrigerant is supplied to the low-pressure side expansion valve. A low-pressure side refrigeration cycle that maintains the refrigeration action by returning to the low-pressure side evaporator 201 via 204 is configured. Further, the refrigerant vapor evaporated by the high-pressure side evaporator 211 is compressed by the high-pressure side compressor 212, and the compressed refrigerant vapor is cooled and condensed by the high-pressure side condenser 213 to be liquefied. A high-pressure side refrigeration cycle that maintains the refrigeration action by returning to the high-pressure side evaporator 211 via the expansion valve 214 is configured.

上記のように、圧縮式冷凍機は、蒸発器で蒸発した冷媒蒸気を圧縮機で圧縮し、凝縮器で冷却凝縮させて液化すると共に、膨張弁を介して蒸発器に戻すことで冷凍作用を持続させている。ここで冷凍サイクルの冷媒循環路内に封入された冷媒中に不純物が混入すると、冷媒の蒸発や凝縮といった作用が阻害され、冷凍機の性能が低下する。   As described above, the compression refrigerator compresses the refrigerant vapor evaporated in the evaporator with the compressor, cools and condenses it with the condenser, and liquefies it, and returns it to the evaporator through the expansion valve to achieve the refrigeration action. It lasts. Here, when impurities are mixed in the refrigerant sealed in the refrigerant circulation path of the refrigeration cycle, the action of evaporation and condensation of the refrigerant is hindered, and the performance of the refrigerator is lowered.

冷媒中の不純物には、大きく分けて不凝縮性ガスと液状の不純物がある。不凝縮性ガスの不純物には空気などに含まれる窒素や酸素、液状の不純物には水分や冷凍機の潤滑油などがある。これらの不純物は、冷凍機のわずかな気密不良や、冷凍機の製作中或いは冷媒の製造プロセスなどで混入したもの、冷凍機の保持作業時に外部から浸入してしまうもの、特に潤滑油の場合、圧縮機の潤滑などのために冷凍機内を循環しているものが、冷媒循環路に漏出したものなどである。   Impurities in the refrigerant are roughly classified into non-condensable gases and liquid impurities. Non-condensable gas impurities include nitrogen and oxygen contained in air and the like, and liquid impurities include moisture and lubricating oil for refrigerators. These impurities are slight airtight defects of the refrigerator, those mixed during the manufacturing of the refrigerator or the manufacturing process of the refrigerant, those that enter from the outside during the holding operation of the refrigerator, especially in the case of lubricating oil, What is circulating in the refrigerator for lubrication of the compressor is leaked into the refrigerant circuit.

従来、冷凍機の冷媒循環路中に封入された冷媒中に混入した不凝縮性ガスは凝縮器内で、凝縮しないためにガスとして滞留しやすく、凝縮作用を阻害する。このため図1に示す圧縮式冷凍機100では抽気装置105を、図2に示す圧縮式冷凍機200では低圧側抽気装置205、高圧側抽気装置215を設け、凝縮器(凝縮器103、低圧側凝縮器203、高圧側凝縮器213)内から冷媒ガスと伴に抽気装置へと導かれ、抽気装置(抽気装置105、抽気装置205、抽気装置215)内の冷却器で冷却された冷媒は冷却液となって蒸発器(蒸発器101、低圧側蒸発器201、高圧側蒸発器211)内に戻され、冷却されても凝縮しない不凝縮性ガスのみ、一定濃度まで濃縮されたのちに機外へと排出される。このとき、活性炭などにより、排気中に含まれる冷媒ガスを更に吸着する場合もある。いずれにせよ、不凝縮性ガスの抽気には、抽気装置105、低圧側抽気装置205、高圧側抽気装置215等が必要で、コストがかかるという問題がある。   Conventionally, the non-condensable gas mixed in the refrigerant sealed in the refrigerant circulation path of the refrigerator is not condensed in the condenser and thus tends to stay as a gas, thereby inhibiting the condensing action. For this reason, the compression type refrigerator 100 shown in FIG. 1 is provided with an extraction device 105, and the compression type refrigerator 200 shown in FIG. 2 is provided with a low pressure side extraction device 205 and a high pressure side extraction device 215, and a condenser (condenser 103, low pressure side) is provided. The refrigerant 203 and the high-pressure side condenser 213) are led to the extraction device together with the refrigerant gas, and the refrigerant cooled by the cooler in the extraction device (extraction device 105, extraction device 205, extraction device 215) is cooled. Only the non-condensable gas that is returned to the evaporator (evaporator 101, low-pressure side evaporator 201, high-pressure side evaporator 211) and does not condense even when cooled is concentrated to a certain concentration and then outside the machine. Is discharged. At this time, the refrigerant gas contained in the exhaust gas may be further adsorbed by activated carbon or the like. In any case, the extraction of the non-condensable gas requires the extraction device 105, the low pressure side extraction device 205, the high pressure side extraction device 215, etc., and there is a problem that costs are increased.

一方、液状の不純物は蒸発しにくいために蒸発器内に滞留しやすく、蒸発器内に滞留した液状の不純物は冷媒の蒸発を阻害する。このため、滞留した不純物を回収する方法が種々開発されており、例えば図1に示す圧縮式冷凍機100では蒸発器101に濃縮装置106を、図2に示す圧縮式冷凍機200では低圧側蒸発器201に濃縮装置206、高圧側蒸発器211に濃縮装置216を設け、蒸発器(蒸発器101、低圧側蒸発器201、高圧側蒸発器211)内の冷媒を過熱濃縮することで不純物を取り出す方法がある。この場合、不純物の多くは潤滑油であり、回収された潤滑油を潤滑油を潤滑油タンクに戻すことも行われる。この場合も、やはり不純物の回収には濃縮装置106、濃縮装置206、濃縮装置216などの回収装置が必要で、これは冷凍機のコスト増をもたらす。   On the other hand, since liquid impurities are hard to evaporate, they are likely to stay in the evaporator, and the liquid impurities staying in the evaporator hinder the evaporation of the refrigerant. For this reason, various methods for recovering the accumulated impurities have been developed. For example, in the compression refrigerator 100 shown in FIG. 1, the concentrator 106 is provided in the evaporator 101, and in the compression refrigerator 200 shown in FIG. Concentrator 206 is provided in the vessel 201, and a concentrator 216 is provided in the high-pressure side evaporator 211, and impurities in the evaporator (evaporator 101, low-pressure side evaporator 201, high-pressure side evaporator 211) are concentrated by overheating. There is a way. In this case, most of the impurities are lubricating oil, and the recovered lubricating oil is also returned to the lubricating oil tank. In this case as well, recovery devices such as the concentrating device 106, the concentrating device 206, and the concentrating device 216 are necessary for recovering the impurities, which increases the cost of the refrigerator.

これらの不純物回収装置(抽気装置や濃縮装置)は、一般に一つの冷凍サイクルに対して1台づつ設けるので、通常の単一冷凍サイクルの圧縮式冷凍機であれば、圧縮式冷凍機1台に対して、1台づつ回収装置(抽気装置や濃縮装置)を設けることになる。更に二重冷凍サイクルの冷凍機であれば、2台づつ設ける必要があった。   These impurity recovery devices (bleeding devices and concentrating devices) are generally provided one by one for one refrigeration cycle. Therefore, in the case of a compression refrigeration unit of a normal single refrigeration cycle, one unit for the compression chiller On the other hand, a collection device (a bleeder or a concentrator) is provided one by one. Furthermore, if it was a refrigerator with a double refrigeration cycle, it was necessary to provide two units each.

本発明は上述の点に鑑みてなされたもので、ガス状及び液状の不純物を除去する一台の不純物除去装置で二重冷凍サイクルなど複数の冷凍サイクル、或いは複数台の圧縮式冷凍機からガス状及び液状の不純物を除去できる圧縮式冷凍機を提供することを目的とする。   The present invention has been made in view of the above points, and is a single impurity removing device that removes gaseous and liquid impurities and gas from a plurality of refrigeration cycles such as a double refrigeration cycle, or a plurality of compression refrigerators. It is an object of the present invention to provide a compression refrigerator that can remove solid and liquid impurities.

上記の課題を解決するために、本発明は、蒸発器、圧縮機、凝縮器、及び膨張弁を備え、蒸発器で被冷却流体から熱を奪って冷媒を蒸発させ、該蒸発した冷媒蒸気を圧縮機で圧縮し、該圧縮した冷媒蒸気を凝縮器で冷却流体で冷却して凝縮し、該凝縮した冷媒液を膨張弁を通して膨張させ蒸発器に戻す構成の冷凍サイクルを備えた複数の冷凍機、又は複数の冷凍サイクルを備えた圧縮式冷凍機において、一つの冷凍サイクルからガス状不純物を含む冷媒ガスを抽気して別の冷凍サイクルに移動させる抽気ガス移動手段と、抽気ガス移動手段でガスを移動させる最終段の冷凍サイクルにガス状不純物を抽気し系外に排出する抽気装置と、一つの冷凍サイクルとは別の冷凍サイクルから液状不純物を含む冷媒液を前記抽気ガス移動手段で移動するガスの移動方向と逆向きに別の冷凍サイクルに移動させる冷媒液移動手段と、冷媒液移動手段で冷媒液を移動させる最終段の冷凍サイクルに液状不純物を抽液し、系外に排出する液状不純物回収手段を設けたことを特徴とする。 In order to solve the above problems, the present invention includes an evaporator, a compressor, a condenser, and an expansion valve. The evaporator takes heat from the fluid to be cooled to evaporate the refrigerant, and the evaporated refrigerant vapor is removed. A plurality of refrigerators having a refrigeration cycle configured to compress by a compressor, cool the condensed refrigerant vapor with a cooling fluid by a condenser, condense, and expand the condensed refrigerant liquid through an expansion valve and return the refrigerant liquid to an evaporator Or, in a compression-type refrigerator having a plurality of refrigeration cycles, extraction gas moving means for extracting a refrigerant gas containing gaseous impurities from one refrigeration cycle and moving it to another refrigeration cycle, and gas extracted by the extraction gas moving means moves the extracted gas moving means and bleed system for discharging the gaseous impurities out of bled system in a refrigeration cycle of the final stage moving, the refrigerant liquid containing liquid impurities from another refrigeration cycle as one of the refrigeration cycle The liquid liquid moving means for moving to another refrigeration cycle in the direction opposite to the moving direction of the gas, and the liquid impurity extracted into the final refrigeration cycle for moving the refrigerant liquid by the refrigerant liquid moving means and discharged out of the system An impurity recovery means is provided .

また、本発明は、上記圧縮式冷凍機において、抽気ガス移動手段は、一つの冷凍サイクルから抽気したガス不純物を含む冷媒ガスを移動させる抽気配管を備えており、抽気配管に流れるガスの流量を制限する流量制限手段を設けたことを特徴とする。   Further, according to the present invention, in the above-described compression refrigerator, the extraction gas moving means includes an extraction pipe for moving a refrigerant gas containing gas impurities extracted from one refrigeration cycle, and the flow rate of the gas flowing through the extraction pipe is reduced. A flow rate limiting means for limiting is provided.

また、本発明は、上記圧縮式冷凍機において、冷媒液移動手段は、抽気ガス移動手段で移動されるガスの下流側冷凍サイクルの蒸発器からそれより一段上流側冷凍サイクルの蒸発器に液状不純物を含む冷媒液を移動させる冷媒移動管を備え、該冷媒移動管を通って移動する冷媒液を制御する制御手段を設けたことを特徴とする。   Further, the present invention is the above-described compression type refrigerator, wherein the refrigerant liquid moving means is a liquid impurity from the evaporator of the downstream refrigeration cycle of the gas moved by the extraction gas moving means to the evaporator of the one-stage upstream refrigeration cycle. And a control means for controlling the refrigerant liquid that moves through the refrigerant moving pipe.

また、本発明は、上記圧縮式冷凍機において、液状不純物回収手段は、冷媒液を過熱濃縮して液状不純物を抽出する濃縮装置であることを特徴とする。   Further, the present invention is characterized in that, in the compression refrigerator, the liquid impurity collecting means is a concentrating device for extracting liquid impurities by concentrating the refrigerant liquid by overheating.

また、本発明は、上記圧縮式冷凍機において、複数の冷凍サイクルは低圧側冷凍サイクルと高圧側冷凍サイクルであり、抽気ガス移動手段は、低圧側冷凍サイクルの凝縮器からガス状不純物を含む冷媒ガスを高圧側冷凍サイクルの凝縮器に移動させることを特徴とする。   Further, the present invention provides the above-described compression refrigerator, wherein the plurality of refrigeration cycles are a low-pressure refrigeration cycle and a high-pressure refrigeration cycle, and the extraction gas moving means is a refrigerant containing gaseous impurities from the condenser of the low-pressure refrigeration cycle. The gas is moved to the condenser of the high-pressure side refrigeration cycle.

また、本発明は、上記圧縮式冷凍機において、冷媒液移動手段は、高圧側冷凍サイクルの蒸発器から液状不純物を含む冷媒液を低圧側冷凍サイクルの蒸発器に移動させることを特徴とする。   Further, the present invention is characterized in that in the above-described compression type refrigerator, the refrigerant liquid moving means moves the refrigerant liquid containing liquid impurities from the evaporator of the high pressure side refrigeration cycle to the evaporator of the low pressure side refrigeration cycle.

本発明は、冷凍サイクルを複数備えた圧縮式冷凍機において、一つの冷凍サイクルからガス状不純物を含む冷媒ガスを抽気して別の冷凍サイクルに移動させる抽気ガス移動手段と、一つの冷凍サイクルとは別の冷凍サイクルから液状不純物を含む冷媒液を抽気ガス移動手段で移動するガスの移動方向と逆向きに別の冷凍サイクルに移動させる冷媒液移動手段と、抽気ガス移動手段でガスを移動させる最終段の冷凍サイクルにガス状不純物を抽気し系外に排出する抽気装置、冷媒液移動手段で冷媒液を移動させる最終段の冷凍サイクルに液状不純物を抽液し、系外に排出する濃縮装置を設けたので、一台の抽気装置と一台の濃縮装置を備えた一台の不純物除去装置を設けることで、二重冷凍サイクルなどの複数の冷凍サイクル、或いは複数台の圧縮式冷凍機から不純物を除去することが可能となり、コストの削減に寄与できる。   The present invention relates to a compression type refrigerator having a plurality of refrigeration cycles, extraction gas moving means for extracting refrigerant gas containing gaseous impurities from one refrigeration cycle and moving it to another refrigeration cycle, and one refrigeration cycle Moves a refrigerant liquid containing liquid impurities from another refrigeration cycle to another refrigeration cycle in a direction opposite to the moving direction of the gas moving by the extraction gas moving means, and moves the gas by the extraction gas moving means A bleeder that bleeds gaseous impurities to the final stage refrigeration cycle and discharges them outside the system, and a concentrator that extracts liquid impurities to the last stage refrigeration cycle that moves the refrigerant liquid by the refrigerant liquid moving means and discharges it outside the system By providing one impurity removal device with one bleeder and one concentrator, multiple refrigeration cycles such as a double refrigeration cycle, or multiple refrigeration cycles It is possible to remove impurities from the condensed chiller can contribute to cost reduction.

図1は従来の圧縮式冷凍機の概略構成例を示す図である。FIG. 1 is a diagram showing a schematic configuration example of a conventional compression refrigerator. 図2は従来の圧縮式冷凍機の概略構成例を示す図である。FIG. 2 is a diagram showing a schematic configuration example of a conventional compression refrigerator. 図3は本発明に係る圧縮式冷凍機の概略構成例を示す図である。FIG. 3 is a diagram showing a schematic configuration example of a compression refrigerator according to the present invention. 図4は本発明に係る圧縮式冷凍機の概略構成例を示す図である。FIG. 4 is a diagram showing a schematic configuration example of the compression refrigerator according to the present invention. 図5は本発明に係る圧縮式冷凍機の概略構成例を示す図である。FIG. 5 is a diagram showing a schematic configuration example of the compression refrigerator according to the present invention. 図6は本発明に係る圧縮式冷凍機の概略構成例を示す図である。FIG. 6 is a diagram showing a schematic configuration example of the compression refrigerator according to the present invention.

以下、本発明の実施の形態について、詳細に説明する。図3は本発明に係る圧縮式冷凍機の概略構成例を示す図である。本圧縮式冷凍機10−1は、2つの独立した冷凍サイクルA、Bを有する圧縮式冷凍機である。冷凍サイクルAは、蒸発器11−1、圧縮機12−1、凝縮器13−1、膨張弁14−1を備え、蒸発器11−1で蒸発した冷媒蒸気を圧縮機12−1で圧縮し、該圧縮した冷媒蒸気を凝縮器13−1で冷却凝縮させて液化すると共に、該液化した冷媒を、膨張弁14−1を介して蒸発器11−1に戻すことで冷凍サイクルを構成している。また、冷凍サイクルBは、蒸発器11−2、圧縮機12−2、凝縮器13−2、膨張弁14−2を備え、蒸発器11−2で蒸発した冷媒蒸気を圧縮機12−2で圧縮し、該圧縮した冷媒蒸気を凝縮器13−2で冷却凝縮させて液化すると共に、該液化した冷媒を、膨張弁14−2を介して蒸発器11−1に戻すことで冷凍サイクルを構成している。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 3 is a diagram showing a schematic configuration example of a compression refrigerator according to the present invention. This compression refrigerator 10-1 is a compression refrigerator having two independent refrigeration cycles A and B. The refrigeration cycle A includes an evaporator 11-1, a compressor 12-1, a condenser 13-1, and an expansion valve 14-1. The refrigerant vapor evaporated by the evaporator 11-1 is compressed by the compressor 12-1. The refrigerant vapor is cooled and condensed by the condenser 13-1 to be liquefied, and the liquefied refrigerant is returned to the evaporator 11-1 through the expansion valve 14-1, thereby constituting a refrigeration cycle. Yes. The refrigeration cycle B includes an evaporator 11-2, a compressor 12-2, a condenser 13-2, and an expansion valve 14-2. The refrigerant vapor evaporated by the evaporator 11-2 is supplied to the compressor 12-2. The compressed refrigerant vapor is cooled and condensed by the condenser 13-2 to be liquefied, and the liquefied refrigerant is returned to the evaporator 11-1 through the expansion valve 14-2 to constitute a refrigeration cycle. doing.

一方の冷凍サイクルAの凝縮器13−1から冷媒ガスを抽出する抽気配管Lを、他方の冷凍サイクルBの蒸発器11−2へとオリフィス31を介して接続している。冷凍サイクルAの凝縮器13−1の不凝縮性の不純物は、抽出された冷媒ガス(冷媒蒸気)と共に、冷凍サイクルBの蒸発器11−2へと移動する。冷凍サイクルBでは、不凝縮性の不純物は冷媒と共に循環し、最終的には冷凍サイクルBの凝縮器13−2に蓄積する。蓄積した不凝縮性の不純物は、冷凍サイクルBに設けられた抽気装置33により系外へと排出される。なお、抽気装置33の機能は、図1、図2に示す抽気装置105、205、215と同じである。   An extraction pipe L for extracting refrigerant gas from the condenser 13-1 of one refrigeration cycle A is connected to the evaporator 11-2 of the other refrigeration cycle B via an orifice 31. The non-condensable impurities in the condenser 13-1 of the refrigeration cycle A move to the evaporator 11-2 of the refrigeration cycle B together with the extracted refrigerant gas (refrigerant vapor). In the refrigeration cycle B, non-condensable impurities circulate together with the refrigerant, and finally accumulate in the condenser 13-2 of the refrigeration cycle B. The accumulated non-condensable impurities are discharged out of the system by the extraction device 33 provided in the refrigeration cycle B. The function of the bleeder 33 is the same as that of the bleeders 105, 205, and 215 shown in FIGS.

上記移動する冷媒により、冷凍サイクルBでは徐々に冷媒量が増加する。この冷媒の増加量は蒸発器11−2内の冷媒液面レベルや凝縮器13−2内の冷媒液面レベルを監視することにより検出できる。ここでは蒸発器11−2の側面にオーバーフロー堰22を設けることにより、蒸発器11−2内の冷媒液面レベルが上昇すると、該オーバーフロー堰22を越えて溢れた冷媒液が電動弁24を通って蒸発器11−1に送られ、冷凍サイクルAへと戻される。ここで、冷媒の移動に必要な駆動力は、設計上、冷凍サイクルBの圧力を冷凍サイクルAよりも高くなるようにして確保するか、冷媒配管中の冷媒の運動エネルギー(いわゆるベンチュリ機構などによる)を用いると良い。また、必要に応じて、エゼクタやポンプ等を用いても良い。このとき、冷凍サイクルB内の液状の不純物は、冷媒液と共に冷凍サイクルAへと移動する。冷凍サイクルAの蒸発器11−1には、不純物の濃縮装置32が設けられており、蒸発器11−1の冷媒液面レベルが上昇し、蒸発器11−1の側面に設けたフロー堰21を越えると、溢れた冷媒液が濃縮装置32に移動し、これにより不純物は回収される。なお、濃縮装置32の機能は図1、図2に示す濃縮装置106、206、216と同じである。   The refrigerant amount gradually increases in the refrigeration cycle B due to the moving refrigerant. The amount of increase in the refrigerant can be detected by monitoring the refrigerant liquid level in the evaporator 11-2 and the refrigerant liquid level in the condenser 13-2. Here, by providing the overflow weir 22 on the side surface of the evaporator 11-2, when the refrigerant liquid level in the evaporator 11-2 rises, the refrigerant liquid overflowing the overflow weir 22 passes through the motor-operated valve 24. Is sent to the evaporator 11-1 and returned to the refrigeration cycle A. Here, the driving force necessary for the movement of the refrigerant is ensured by design such that the pressure of the refrigeration cycle B is higher than that of the refrigeration cycle A, or the kinetic energy of the refrigerant in the refrigerant pipe (so-called venturi mechanism or the like) ). Moreover, you may use an ejector, a pump, etc. as needed. At this time, the liquid impurities in the refrigeration cycle B move to the refrigeration cycle A together with the refrigerant liquid. The evaporator 11-1 of the refrigeration cycle A is provided with an impurity concentrating device 32, the refrigerant liquid level of the evaporator 11-1 is increased, and the flow weir 21 provided on the side surface of the evaporator 11-1. When the value exceeds, the overflowing refrigerant liquid moves to the concentrating device 32, whereby the impurities are recovered. The function of the concentrator 32 is the same as that of the concentrators 106, 206, and 216 shown in FIGS.

上記例では、 一方の冷凍サイクルAの凝縮器13−1からの抽気配管Lを冷凍サイクルBの蒸発器11−2へ接続し、凝縮器13−1から抽出された不純物ガスを含む冷媒ガスが蒸発器11−2に移動するようにしたが、不純物ガスを含む冷媒ガスの移動先は蒸発器11−2に限定されるものではなく、冷凍サイクルAの凝縮器13−1より略低圧であることが見込まれる冷凍サイクルBの箇所であればよい。また、この抽気配管にはオリフィスなどの流量制限手段を設けるとよい。その上で、最終端となる冷凍サイクルBの凝縮器13−2には抽気装置を設ける。このようにすることにより、1台の抽気装置33と1台の濃縮装置32により、2つの独立した冷凍サイクルA、Bから同時に不純物を回収することができる。   In the above example, the extraction pipe L from the condenser 13-1 of one refrigeration cycle A is connected to the evaporator 11-2 of the refrigeration cycle B, and the refrigerant gas containing the impurity gas extracted from the condenser 13-1 Although it moved to the evaporator 11-2, the moving destination of the refrigerant gas containing the impurity gas is not limited to the evaporator 11-2 and is substantially lower than the condenser 13-1 of the refrigeration cycle A. What is necessary is just the location of the refrigerating cycle B where it is expected. Further, it is preferable to provide a flow restricting means such as an orifice in the extraction pipe. In addition, a bleeder is provided in the condenser 13-2 of the refrigeration cycle B that is the final end. By doing in this way, impurities can be simultaneously recovered from two independent refrigeration cycles A and B by one extraction device 33 and one concentration device 32.

図4は本発明に係る圧縮式冷凍機の概略構成例を示す図である。本圧縮式冷凍機10−2は低圧側冷凍サイクルと高圧側冷凍サイクルを備えた二重サイクルの圧縮式冷凍機である。圧縮式冷凍機10−2は低圧側蒸発器41、低圧側圧縮機42、低圧側凝縮器43、低圧側膨張弁44、高圧側蒸発器51、高圧側圧縮機52、高圧側凝縮器53、高圧側膨張弁54を備えている。   FIG. 4 is a diagram showing a schematic configuration example of the compression refrigerator according to the present invention. This compression refrigerator 10-2 is a double-cycle compression refrigerator having a low-pressure refrigeration cycle and a high-pressure refrigeration cycle. The compression refrigerator 10-2 includes a low pressure side evaporator 41, a low pressure side compressor 42, a low pressure side condenser 43, a low pressure side expansion valve 44, a high pressure side evaporator 51, a high pressure side compressor 52, a high pressure side condenser 53, A high-pressure side expansion valve 54 is provided.

低圧側蒸発器41で蒸発した冷媒蒸気を低圧側圧縮機42で圧縮し、該圧縮した冷媒蒸気を低圧側凝縮器43で冷却凝縮させて液化すると共に、該液化した冷媒を、低圧側膨張弁44を介して低圧側蒸発器41に戻すことで低圧側冷凍サイクルを構成している。また、高圧側蒸発器51で蒸発した冷媒蒸気を高圧側圧縮機52で圧縮し、該圧縮した冷媒蒸気を高圧側凝縮器53で冷却凝縮させて液化すると共に、該液化した冷媒を、高圧側膨張弁54を介して高圧側蒸発器51に戻すことで高圧側冷凍サイクルを構成している。低圧側冷凍サイクルの低圧側蒸発器41には濃縮装置62を設け、高圧側冷凍サイクルの高圧凝縮器53には、抽気装置63を設けている。   The refrigerant vapor evaporated by the low-pressure side evaporator 41 is compressed by the low-pressure side compressor 42, and the compressed refrigerant vapor is cooled and condensed by the low-pressure side condenser 43 to be liquefied, and the liquefied refrigerant is supplied to the low-pressure side expansion valve. The low pressure side refrigeration cycle is configured by returning to the low pressure side evaporator 41 via 44. The refrigerant vapor evaporated by the high pressure side evaporator 51 is compressed by the high pressure side compressor 52, and the compressed refrigerant vapor is cooled and condensed by the high pressure side condenser 53 to be liquefied, and the liquefied refrigerant is The high pressure side refrigeration cycle is configured by returning to the high pressure side evaporator 51 via the expansion valve 54. A concentrator 62 is provided in the low-pressure evaporator 41 of the low-pressure refrigeration cycle, and a bleeder 63 is provided in the high-pressure condenser 53 of the high-pressure refrigeration cycle.

低圧側冷凍サイクルの凝縮器43から冷媒ガスを抽出する抽気配管Lを、高圧側冷凍サイクルの高圧側蒸発器51へとオリフィス61を介して接続している。低圧側冷凍サイクルの凝縮器43の不凝縮性の不純物は、抽出された冷媒ガス(冷媒蒸気)と共に、高圧側冷凍サイクルの高圧側蒸発器51へと移動する。高圧側冷凍サイクルでは、不凝縮性の不純物は冷媒と共に循環し、最終的には高圧側冷凍サイクルの高圧側凝縮器53に蓄積する。蓄積した不凝縮性の不純物は、高圧側冷凍サイクルに設けられた抽気装置63により系外へと排出される。   An extraction pipe L for extracting refrigerant gas from the condenser 43 of the low-pressure side refrigeration cycle is connected to the high-pressure side evaporator 51 of the high-pressure side refrigeration cycle via an orifice 61. Non-condensable impurities in the condenser 43 of the low-pressure side refrigeration cycle move to the high-pressure side evaporator 51 of the high-pressure side refrigeration cycle together with the extracted refrigerant gas (refrigerant vapor). In the high-pressure side refrigeration cycle, non-condensable impurities circulate together with the refrigerant, and finally accumulate in the high-pressure side condenser 53 of the high-pressure side refrigeration cycle. The accumulated non-condensable impurities are discharged out of the system by the extraction device 63 provided in the high-pressure side refrigeration cycle.

上記移動する冷媒により、高圧側冷凍サイクルでは徐々に冷媒量が増加する。冷媒の増加量は高圧側蒸発器51内の冷媒液面レベルや高圧側凝縮器53内の冷媒液面レベルを監視することにより検出できる。ここでは低圧側蒸発器41の冷媒液面レベルを液面検出器45で監視し、この冷媒液面レベルが規定以下に低下したところで自動弁64を開き、高圧側蒸発器51から冷媒液を低圧側蒸発器41に移動させる。ここで、冷媒の移動に必要な駆動力は、設計上、高圧側冷凍サイクルの圧力を低圧側冷凍サイクルよりも高くなるようにして確保するか、冷媒配管中の冷媒の運動エネルギー(いわゆるベンチュリ機構などによる)を用いると良い。また、必要に応じて、エゼクタやポンプ等を用いても良い。   Due to the moving refrigerant, the amount of refrigerant gradually increases in the high-pressure side refrigeration cycle. The increased amount of the refrigerant can be detected by monitoring the refrigerant liquid level in the high pressure side evaporator 51 and the refrigerant liquid level in the high pressure side condenser 53. Here, the liquid level of the low-pressure evaporator 41 is monitored by the liquid level detector 45, and when the refrigerant liquid level falls below a specified level, the automatic valve 64 is opened to reduce the refrigerant liquid from the high-pressure evaporator 51 to low pressure. Move to side evaporator 41. Here, the driving force necessary for the movement of the refrigerant is ensured by design such that the pressure of the high-pressure side refrigeration cycle is higher than that of the low-pressure side refrigeration cycle, or the kinetic energy of the refrigerant in the refrigerant pipe (so-called venturi mechanism) Etc.). Moreover, you may use an ejector, a pump, etc. as needed.

上記のように、高圧側蒸発器51から冷媒液を低圧側蒸発器41に移動させることにより、高圧側冷凍サイクル内の液状の不純物は、冷媒液と共に低圧側冷凍サイクルへと移動する。低圧側蒸発器41の冷媒液面レベルが上昇し、低圧側蒸発器41の側面に設けたオーバーフロー堰46を越えると、溢れた冷媒液が濃縮装置62に移動し、これにより不純物は回収される。このように、二重サイクルの圧縮式冷凍機10−2に1台の抽気装置63と1台の濃縮装置62とからなる一台の不純物除去装置を設けることにより、低圧側冷凍サイクル及び高圧側冷凍サイクルから同時に不純物を回収することができる。   As described above, by moving the refrigerant liquid from the high pressure side evaporator 51 to the low pressure side evaporator 41, the liquid impurities in the high pressure side refrigeration cycle move to the low pressure side refrigeration cycle together with the refrigerant liquid. When the refrigerant liquid level of the low-pressure side evaporator 41 rises and exceeds the overflow weir 46 provided on the side surface of the low-pressure side evaporator 41, the overflowing refrigerant liquid moves to the concentrator 62, whereby the impurities are recovered. . In this way, by providing one impurity removal device comprising one extraction device 63 and one concentration device 62 in the double cycle compression refrigerator 10-2, the low pressure side refrigeration cycle and the high pressure side are provided. Impurities can be recovered simultaneously from the refrigeration cycle.

図5は本発明に係る圧縮式冷凍機の概略構成例を示す図である。本圧縮式冷凍機10−3は、3つの独立した冷凍サイクルA、B、Cを有する圧縮式冷凍機である。本圧縮式冷凍機10−3は、図3に示す圧縮式冷凍機10−2に冷凍サイクルCを追加した構成である。そして冷凍サイクルCの凝縮器13−3に抽気装置33を接続している。冷凍サイクルCは蒸発器11−3、圧縮機12−3、凝縮器13−3、膨張弁14−3を備え、蒸発器11−3で蒸発した冷媒蒸気を圧縮機12−3で圧縮し、該圧縮した冷媒蒸気を凝縮器13−3で冷却凝縮させて液化すると共に、該液化した冷媒を、膨張弁14−3を介して蒸発器11−3に戻すことで冷凍サイクルを構成している。   FIG. 5 is a diagram showing a schematic configuration example of the compression refrigerator according to the present invention. This compression refrigerator 10-3 is a compression refrigerator having three independent refrigeration cycles A, B, and C. This compression type refrigerator 10-3 is the structure which added the refrigerating cycle C to the compression type refrigerator 10-2 shown in FIG. The extraction device 33 is connected to the condenser 13-3 of the refrigeration cycle C. The refrigeration cycle C includes an evaporator 11-3, a compressor 12-3, a condenser 13-3, and an expansion valve 14-3. The refrigerant vapor evaporated in the evaporator 11-3 is compressed by the compressor 12-3. The compressed refrigerant vapor is cooled and condensed by the condenser 13-3 to be liquefied, and the liquefied refrigerant is returned to the evaporator 11-3 through the expansion valve 14-3 to constitute a refrigeration cycle. .

冷凍サイクルBの凝縮器13−2から冷媒ガスを抽出する抽気配管Lを、冷凍サイクルCの蒸発器11−3へとオリフィス31を介して接続している。冷凍サイクルBの凝縮器13−2の不凝縮性の不純物は、抽出された冷媒ガス(冷媒蒸気)と共に、冷凍サイクルCの蒸発器11−3へと移動する。冷凍サイクルCでは、不凝縮性の不純物は冷媒と共に循環し、最終的には冷凍サイクルCの凝縮器13−3に蓄積する。蓄積した不凝縮性の不純物は、冷凍サイクルCに設けられた抽気装置33により系外へと排出される。   An extraction pipe L for extracting refrigerant gas from the condenser 13-2 of the refrigeration cycle B is connected to the evaporator 11-3 of the refrigeration cycle C via the orifice 31. The non-condensable impurities in the condenser 13-2 of the refrigeration cycle B move to the evaporator 11-3 of the refrigeration cycle C together with the extracted refrigerant gas (refrigerant vapor). In the refrigeration cycle C, non-condensable impurities circulate together with the refrigerant, and finally accumulate in the condenser 13-3 of the refrigeration cycle C. The accumulated non-condensable impurities are discharged out of the system by the extraction device 33 provided in the refrigeration cycle C.

一方、移動する冷媒により、冷凍サイクルCでは徐々に冷媒量が増加する。この冷媒の増加量は蒸発器11−3内の冷媒液面レベルや凝縮器13−3内の冷媒液面レベルを監視することにより検出できる。ここでは蒸発器11−3の側面にオーバーフロー堰23を設けることにより、蒸発器11−3内の冷媒液面レベルが上昇すると、該オーバーフロー堰23を越えて溢れた冷媒液が弁25を通って蒸発器11−2に送られ、冷凍サイクルBへと戻される。また、上記冷凍サイクルCから冷凍サイクルBへ移動する冷媒により、冷凍サイクルBでは徐々に冷媒量が増加する。この冷媒の増加量は蒸発器11−2内の冷媒液面レベルや凝縮器13−2内の冷媒液面レベルを監視することにより検出できる。ここでは蒸発器11−2の側面にオーバーフロー堰22を設けることにより、蒸発器11−2内の冷媒液面レベルが上昇すると、該オーバーフロー堰22を越えて溢れた冷媒液が弁24を通って蒸発器11−1に送られ、冷凍サイクルAへと戻される。   On the other hand, the refrigerant quantity gradually increases in the refrigeration cycle C due to the moving refrigerant. The amount of increase in the refrigerant can be detected by monitoring the refrigerant liquid level in the evaporator 11-3 and the refrigerant liquid level in the condenser 13-3. Here, by providing the overflow weir 23 on the side surface of the evaporator 11-3, when the refrigerant liquid level in the evaporator 11-3 rises, the refrigerant liquid overflowing beyond the overflow weir 23 passes through the valve 25. It is sent to the evaporator 11-2 and returned to the refrigeration cycle B. Further, the refrigerant amount gradually increases in the refrigeration cycle B due to the refrigerant moving from the refrigeration cycle C to the refrigeration cycle B. The amount of increase in the refrigerant can be detected by monitoring the refrigerant liquid level in the evaporator 11-2 and the refrigerant liquid level in the condenser 13-2. Here, by providing the overflow weir 22 on the side surface of the evaporator 11-2, when the refrigerant liquid level in the evaporator 11-2 rises, the refrigerant liquid that overflows beyond the overflow weir 22 passes through the valve 24. It is sent to the evaporator 11-1 and returned to the refrigeration cycle A.

冷凍サイクルAの蒸発器11−1には、不純物の濃縮装置32が設けられており、蒸発器11−1の冷媒液面レベルが上昇し、蒸発器11−1の側面に設けたオーバーフロー堰21を越えると、溢れた冷媒液が濃縮装置32に移動し、これにより不純物は回収される。このようにすることにより、1台の抽気装置33と1台の濃縮装置32によりなる一台の不純物除去装置を設けることにより、3つの独立した冷凍サイクルA、B、Cから同時に不純物を回収することができる。なお、ここでは、3つの独立した冷凍サイクルA、B、Cを例に示したが、それ以上の独立した冷凍サイクルであっても、1台の抽気装置と1台の濃縮装置により、各冷凍サイクルから同時に不純物を回収することができる。   The evaporator 11-1 of the refrigeration cycle A is provided with an impurity concentrating device 32, the refrigerant liquid level of the evaporator 11-1 is increased, and the overflow weir 21 provided on the side surface of the evaporator 11-1. When the value exceeds, the overflowing refrigerant liquid moves to the concentrating device 32, whereby the impurities are recovered. In this way, by providing one impurity removal device comprising one extraction device 33 and one concentration device 32, impurities are simultaneously recovered from three independent refrigeration cycles A, B, and C. be able to. In this example, three independent refrigeration cycles A, B, and C are shown as an example. However, even in the case of more independent refrigeration cycles, each refrigeration cycle can be achieved by one bleeder and one concentrator. Impurities can be recovered simultaneously from the cycle.

図6は本発明に係る圧縮式冷凍機の概略構成例を示す図である。本圧縮式冷凍機10−4は、図5に示す圧縮式冷凍機10−3と同様、3つの独立した冷凍サイクルA、B、Cを有する圧縮式冷凍機である。本圧縮式冷凍機10−4が、圧縮式冷凍機10−3と異なる点は、冷凍サイクルAの凝縮器13−1から冷媒ガスを抽出する抽気配管Lを、冷凍サイクルCの蒸発器11−3へとオリフィス31を介して接続している。冷凍サイクルCの凝縮器13−3に蓄積する不凝縮性の不純物を除去するための抽気装置33を除去し、更に冷凍サイクルAの凝縮器13−1と冷凍サイクルBの蒸発器11−2を接続する抽気配管Lと、冷凍サイクルBの凝縮器13−2と冷凍サイクルCの蒸発器11−3を接続する抽気配管Lを除去している。そして不純物を回収するための濃縮装置32を冷凍サイクルAの蒸発器11−1に設けている点は、圧縮式冷凍機10−3と同じである。   FIG. 6 is a diagram showing a schematic configuration example of the compression refrigerator according to the present invention. The compression refrigerator 10-4 is a compression refrigerator having three independent refrigeration cycles A, B, and C, similar to the compression refrigerator 10-3 shown in FIG. This compression refrigerator 10-4 differs from the compression refrigerator 10-3 in that the extraction pipe L for extracting refrigerant gas from the condenser 13-1 in the refrigeration cycle A is connected to the evaporator 11- in the refrigeration cycle C. 3 through an orifice 31. The bleeder 33 for removing non-condensable impurities accumulated in the condenser 13-3 of the refrigeration cycle C is removed, and the condenser 13-1 of the refrigeration cycle A and the evaporator 11-2 of the refrigeration cycle B are further replaced. The extraction piping L to be connected, the extraction piping L connecting the condenser 13-2 of the refrigeration cycle B and the evaporator 11-3 of the refrigeration cycle C are removed. And the point which has provided the concentration apparatus 32 for collect | recovering impurities in the evaporator 11-1 of the refrigerating cycle A is the same as the compression refrigerator 10-3.

圧縮式冷凍機10−4のように、不凝縮性の不純物を除去するための抽気装置を設けず、液状の不純物を回収するための濃縮装置32を冷凍サイクルAの蒸発器11−1にのみ設けた場合であっても、冷媒液として移動した冷媒に相当する冷媒量を冷媒液の移動とは逆向きに移動させることが必要である。この場合は、特に不凝縮性の不純物が蓄積しやすい凝縮器からの冷媒蒸気を移動させる必要は無く、各冷凍サイクルの冷媒量の減少を補償する方向であれば、どこから冷媒を抽出し、どこへ移動させてもよい。ここでは、最も簡便な方法として、冷凍サイクルAの凝縮器13−1と冷凍サイクルCの蒸発器11−3をオリフィス31を介して抽気配管Lで接続し、冷媒蒸気を凝縮器13−1から蒸発器11−3へ定常的に移動させることとし、更に図5に示す圧縮式冷凍機10−3と同様に、冷凍サイクルA、B、Cの蒸発器11−1、11−2、11−3にそれぞれオーバーフロー堰21、22、23を設け、該オーバーフロー堰21、22、23を越える蒸発器11−1、11−2、11−3の冷媒液を電動弁24、25を通って蒸発器11−1、11−2、11−3に移動させるようにしている。   Unlike the compression refrigerator 10-4, an extraction device for removing non-condensable impurities is not provided, and a concentrating device 32 for recovering liquid impurities is provided only in the evaporator 11-1 of the refrigeration cycle A. Even if it is provided, it is necessary to move the refrigerant amount corresponding to the refrigerant moved as the refrigerant liquid in the direction opposite to the movement of the refrigerant liquid. In this case, it is not particularly necessary to move the refrigerant vapor from the condenser where non-condensable impurities are likely to accumulate.If the direction is to compensate for the decrease in the refrigerant amount in each refrigeration cycle, the refrigerant is extracted from where and where You may move to. Here, as the simplest method, the condenser 13-1 of the refrigeration cycle A and the evaporator 11-3 of the refrigeration cycle C are connected by the extraction pipe L through the orifice 31, and the refrigerant vapor is supplied from the condenser 13-1. The evaporator 11-3 is steadily moved, and similarly to the compression refrigerator 10-3 shown in FIG. 5, the evaporators 11-1, 11-2, 11- of the refrigeration cycles A, B, C are used. 3 are provided with overflow weirs 21, 22, 23, respectively, and the refrigerant liquid of the evaporators 11-1, 11-2, 11-3 exceeding the overflow weirs 21, 22, 23 passes through the motor-operated valves 24, 25. It is made to move to 11-1, 11-2, 11-3.

圧縮式冷凍機10−4を上記構成とすることにより、結果的に冷凍サイクルCの蒸発器11−3の冷媒量が増加する。そして蒸発器11−3のオーバーフロー堰23を越えた冷媒により、冷凍サイクルBの蒸発器11−2の冷媒量が増加し、更に冷凍サイクルBの蒸発器11−2のオーバーフロー堰22を越えた冷媒により冷凍サイクルAの蒸発器11−1の冷媒が増加するように、順に冷媒中の不純物は冷凍サイクルAの蒸発器11−1に蓄積される。冷凍サイクルAの蒸発器11−1には、不純物を回収するための濃縮装置32が設けられており、蒸発器11−1の冷媒液面レベルが上昇し、蒸発器11−1の側面に設けたオーバーフロー堰21を越えると、溢れた冷媒液が濃縮装置32に移動し、これにより不純物は回収される。   By setting the compression refrigerator 10-4 to the above configuration, the amount of refrigerant in the evaporator 11-3 of the refrigeration cycle C increases as a result. The refrigerant exceeding the overflow weir 23 of the evaporator 11-3 increases the amount of refrigerant in the evaporator 11-2 of the refrigeration cycle B, and further exceeds the overflow weir 22 of the evaporator 11-2 of the refrigeration cycle B. Thus, impurities in the refrigerant are sequentially accumulated in the evaporator 11-1 of the refrigeration cycle A so that the refrigerant in the evaporator 11-1 of the refrigeration cycle A increases. The evaporator 11-1 of the refrigeration cycle A is provided with a concentrating device 32 for collecting impurities, and the refrigerant liquid level of the evaporator 11-1 is increased and provided on the side surface of the evaporator 11-1. When the overflow weir 21 is exceeded, the overflowing refrigerant liquid moves to the concentrating device 32, whereby the impurities are recovered.

なお、上記実施形態では、独立した冷凍サイクルを複数備えた圧縮式冷凍機及び二重サイクル圧縮式冷凍機を説明したが、本発明に係る圧縮式冷凍機は、1個の冷凍サイクルを備えた複数の冷凍機からなる圧縮式冷凍機であってもよい。   In the above embodiment, the compression type refrigerator and the double cycle compression type refrigerator having a plurality of independent refrigeration cycles have been described. However, the compression refrigerator according to the present invention has one refrigeration cycle. It may be a compression type refrigerator composed of a plurality of refrigerators.

以上、本発明の実施形態例を説明したが、本発明は上記実施形態例に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記実施形態例では、不凝縮性ガスを除去するための抽気装置と潤滑油等の液状不純物を除去するための濃縮装置(液状不純物回収手段)の両方、又は濃縮装置のみを備えた圧縮式冷凍機を示したが、抽気装置のみを備えた圧縮式冷凍機であってもよい。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Can be modified. For example, in the above embodiment, the compression apparatus includes both the extraction device for removing noncondensable gas and the concentration device (liquid impurity recovery means) for removing liquid impurities such as lubricating oil, or only the concentration device. Although the type refrigerator is shown, it may be a compression refrigerator having only an extraction device.

本発明は、一つの冷凍サイクルからガス状不純物を含む冷媒ガスを抽気して別の冷凍サイクルに移動させる抽気ガス移動手段と、一つの冷凍サイクルとは別の冷凍サイクルから液状不純物を含む冷媒液を抽気ガス移動手段で移動するガスの移動方向と逆向きに別の冷凍サイクルに移動させる冷媒液移動手段と、抽気ガス移動手段でガスを移動させる最終段の冷凍サイクルにガス状不純物を抽気し系外に排出する抽気装置、冷媒液移動手段で冷媒液を移動させる最終段の冷凍サイクルに液状不純物を抽液し、系外に排出する濃縮装置を設けたので、一台の抽気装置と一台の濃縮装置を設けることで、複数の冷凍サイクルから不純物を除去できる圧縮式冷凍機を安価に提供することに利用することができる。   The present invention relates to an extraction gas moving means for extracting a refrigerant gas containing gaseous impurities from one refrigeration cycle and moving it to another refrigeration cycle, and a refrigerant liquid containing liquid impurities from another refrigeration cycle. The gaseous liquid is extracted into the refrigerant liquid moving means for moving the gas to the other refrigeration cycle in the direction opposite to the moving direction of the gas moved by the extraction gas moving means, and the final stage refrigeration cycle for moving the gas by the extraction gas moving means. An extraction device for discharging outside the system and a concentrating device for extracting liquid impurities and discharging them outside the system are provided in the final stage refrigeration cycle in which the refrigerant liquid is moved by the refrigerant liquid moving means. By providing a stand concentration device, it can be used to provide a compression refrigerator that can remove impurities from a plurality of refrigeration cycles at low cost.

10−1〜3 圧縮式冷凍機
11−1〜3 蒸発器
12−1〜3 圧縮機
13−1〜3 凝縮器
14−1〜3 膨張弁
21〜23 オーバーフロー堰
24 電動弁
31 オリフィス
32 濃縮装置
33 抽気装置
41 低圧側蒸発器
42 低圧側圧縮機
43 低圧側凝縮器
44 低圧側膨張弁
46 オーバーフロー堰
51 高圧側蒸発器
52 高圧側圧縮機
53 高圧側凝縮器
54 高圧側膨張弁
61 オリフィス
62 濃縮装置
63 抽気装置
64 自動弁
10-1 to 3 Compression refrigerator 11-1 to 3 Evaporator 12-1 to 3 Compressor 13-1 to 3 Condenser 14-1 to 3 Expansion valve 21 to 23 Overflow weir 24 Motor operated valve 31 Orifice 32 Concentrator 33 Extraction device 41 Low pressure side evaporator 42 Low pressure side compressor 43 Low pressure side condenser 44 Low pressure side expansion valve 46 Overflow weir 51 High pressure side evaporator 52 High pressure side compressor 53 High pressure side condenser 54 High pressure side expansion valve 61 Orifice 62 Concentration Device 63 Bleed device 64 Automatic valve

Claims (6)

蒸発器、圧縮機、凝縮器、及び膨張弁を備え、前記蒸発器で被冷却流体から熱を奪って冷媒を蒸発させ、該蒸発した冷媒蒸気を前記圧縮機で圧縮し、該圧縮した冷媒蒸気を前記凝縮器で冷却流体で冷却して凝縮し、該凝縮した冷媒液を前記膨張弁を通して膨張させ前記蒸発器に戻す構成の冷凍サイクルを備えた複数の冷凍機、又は複数の前記冷凍サイクルを備えた圧縮式冷凍機において、
一つの前記冷凍サイクルからガス状不純物を含む冷媒ガスを抽気して別の前記冷凍サイクルに移動させる抽気ガス移動手段と、
前記抽気ガス移動手段でガスを移動させる最終段の冷凍サイクルに前記ガス状不純物を抽気し系外に排出する抽気装置と、
前記一つの冷凍サイクルとは別の冷凍サイクルから液状不純物を含む冷媒液を前記抽気ガス移動手段で移動するガスの移動方向と逆向きに別の前記冷凍サイクルに移動させる冷媒液移動手段と、
前記冷媒液移動手段で冷媒液を移動させる最終段の冷凍サイクルに前記液状不純物を抽液し、系外に排出する液状不純物回収手段を設けたことを特徴とする圧縮式冷凍機。
An evaporator, a compressor, a condenser, and an expansion valve are provided, heat is taken from the fluid to be cooled by the evaporator to evaporate the refrigerant, the evaporated refrigerant vapor is compressed by the compressor, and the compressed refrigerant vapor A plurality of refrigerators having a refrigeration cycle configured to cool the refrigerant with a cooling fluid in the condenser and expand the condensed refrigerant liquid through the expansion valve and return the refrigerant liquid to the evaporator, or a plurality of the refrigeration cycles. In the compression refrigerator provided,
Extraction gas moving means for extracting a refrigerant gas containing gaseous impurities from one refrigeration cycle and moving the refrigerant gas to another refrigeration cycle;
A bleeder that bleeds the gaseous impurities to the refrigeration cycle of the final stage in which gas is moved by the bleed gas moving means, and discharges it out of the system ;
A refrigerant liquid moving means for moving a refrigerant liquid containing liquid impurities from another refrigeration cycle to the other refrigeration cycle in a direction opposite to the moving direction of the gas moving by the extraction gas moving means;
A compression type refrigerator having a liquid impurity recovery means for extracting the liquid impurities and discharging them out of the system in a final refrigeration cycle in which the refrigerant liquid is moved by the refrigerant liquid moving means .
請求項1に記載の圧縮式冷凍機において、
前記抽気ガス移動手段は、前記一つの冷凍サイクルから抽気したガス不純物を含む冷媒ガスを移動させる抽気配管を備えており、前記抽気配管に流れるガスの流量を制限する流量制限手段を設けたことを特徴とする圧縮式冷凍機。
In the compression refrigerator according to claim 1 ,
The extraction gas moving means includes an extraction pipe for moving a refrigerant gas containing gas impurities extracted from the one refrigeration cycle, and provided with a flow rate limiting means for limiting the flow rate of the gas flowing through the extraction pipe. A featured compression refrigerator.
請求項1又は2に記載の圧縮式冷凍機において、
前記冷媒液移動手段は、前記抽気ガス移動手段で移動されるガスの下流側冷凍サイクルの蒸発器からそれより一段上流側冷凍サイクルの蒸発器に前記液状不純物を含む冷媒液を移動させる冷媒移動管を備え、該冷媒移動管を通って移動する冷媒液を制御する制御手段を設けたことを特徴とする圧縮式冷凍機。
The compression refrigerator according to claim 1 or 2 ,
The refrigerant liquid moving means moves the refrigerant liquid containing the liquid impurities from the evaporator of the downstream refrigeration cycle of the gas moved by the extraction gas moving means to the evaporator of the one-stage upstream refrigeration cycle. And a control means for controlling the refrigerant liquid that moves through the refrigerant moving pipe.
請求項1乃至3のいずれか1項に記載の圧縮式冷凍機において、
前記液状不純物回収手段は、前記冷媒液を過熱濃縮して液状不純物を抽出する濃縮装置であることを特徴とする圧縮式冷凍機。
The compression type refrigerator according to any one of claims 1 to 3 ,
The compression type refrigerator is characterized in that the liquid impurity collecting means is a concentrating device for extracting the liquid impurities by superheating and concentrating the refrigerant liquid.
請求項1乃至4のいずれか1項に記載の圧縮式冷凍機において、
前記複数の冷凍サイクルは低圧側冷凍サイクルと高圧側冷凍サイクルであり、
前記抽気ガス移動手段は、前記低圧側冷凍サイクルの凝縮器からガス状不純物を含む冷媒ガスを前記高圧側冷凍サイクルの凝縮器に移動させることを特徴とする圧縮式冷凍機。
The compression type refrigerator according to any one of claims 1 to 4 ,
The plurality of refrigeration cycles are a low pressure side refrigeration cycle and a high pressure side refrigeration cycle,
The extraction gas moving means moves the refrigerant gas containing gaseous impurities from the condenser of the low-pressure side refrigeration cycle to the condenser of the high-pressure side refrigeration cycle.
請求項5に記載の圧縮式冷凍機において、
前記冷媒液移動手段は、前記高圧側冷凍サイクルの蒸発器から液状不純物を含む冷媒液を前記低圧側冷凍サイクルの蒸発器に移動させることを特徴とする圧縮式冷凍機。
The compression refrigerator according to claim 5 ,
The refrigerant liquid moving means moves the refrigerant liquid containing liquid impurities from the evaporator of the high-pressure side refrigeration cycle to the evaporator of the low-pressure side refrigeration cycle.
JP2009221573A 2009-09-25 2009-09-25 Compression refrigerator Active JP5371660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221573A JP5371660B2 (en) 2009-09-25 2009-09-25 Compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221573A JP5371660B2 (en) 2009-09-25 2009-09-25 Compression refrigerator

Publications (2)

Publication Number Publication Date
JP2011069557A JP2011069557A (en) 2011-04-07
JP5371660B2 true JP5371660B2 (en) 2013-12-18

Family

ID=44014988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221573A Active JP5371660B2 (en) 2009-09-25 2009-09-25 Compression refrigerator

Country Status (1)

Country Link
JP (1) JP5371660B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096678B2 (en) * 2006-01-10 2012-12-12 株式会社荏原製作所 Refrigeration equipment
JP2008014598A (en) * 2006-07-07 2008-01-24 Ebara Corp Bleeder for compression type refrigerating machine

Also Published As

Publication number Publication date
JP2011069557A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US11635239B2 (en) Refrigeration system with purge and acid filter
DK2718641T3 (en) COOLING SYSTEM AND PROCEDURES FOR COOLING
RU2659679C2 (en) Refrigerating circuit with heat regeneration module
US20160010907A1 (en) Refrigeration System with Full Oil Recovery
CN107560019A (en) Dehumidifier
JP6116684B2 (en) Refrigeration equipment
KR20060066132A (en) Freezing apparatus installation method and freezing apparatus
JP2011038742A (en) Compression refrigerating machine and method of operating the same
WO2018134790A1 (en) Gas discharge device, refrigeration and air conditioning system, and method for discharging non-condensable gas
EP3248663B1 (en) Liquid solid separating device
CN211575629U (en) Refrigerant non-condensing gas removing device and water chilling unit adopting low-pressure refrigerant
JP2008096027A (en) Bleeding device for compression type refrigerating machine
JP5371660B2 (en) Compression refrigerator
JP2004181373A (en) Air dryer
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP2011075208A (en) Bleed air recovery device, method for operating the bleed air recovery device, and turbo refrigerator including the bleed air recovery device
JP2011202860A (en) Refrigerating device and oil amount management method of the same
CN104266400B (en) Ultralow temperature automatic cascade formula refrigeration system and refrigerating method
KR101579117B1 (en) System with functions of heat pump operation and defroster
JP6971340B2 (en) Absorption chiller
CN213335063U (en) Refrigerating system and non-condensable gas separation device thereof
JPH0688659A (en) Method and device for gas-extracting operation for freezer
JPS61153345A (en) Turbo-refrigerator
JPH02298763A (en) Refrigerator
KR100662526B1 (en) Chiller with air or water cooling type condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250