JP5370503B2 - Low alloy steel - Google Patents
Low alloy steel Download PDFInfo
- Publication number
- JP5370503B2 JP5370503B2 JP2012004204A JP2012004204A JP5370503B2 JP 5370503 B2 JP5370503 B2 JP 5370503B2 JP 2012004204 A JP2012004204 A JP 2012004204A JP 2012004204 A JP2012004204 A JP 2012004204A JP 5370503 B2 JP5370503 B2 JP 5370503B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy steel
- low alloy
- mass
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、低合金鋼に関する。特に、湿潤硫化水素環境での応力腐食割れなど水素に起因した脆化に対して、溶接後熱処理後の溶接熱影響部が優れた耐性を有する低合金鋼に関する。 The present invention relates to a low alloy steel. In particular, the present invention relates to a low alloy steel in which a weld heat affected zone after heat treatment after welding has excellent resistance against embrittlement caused by hydrogen such as stress corrosion cracking in a wet hydrogen sulfide environment.
海底油田開発においては、海底に設置された油井もしくはガス井から洋上のプラットホームまでの間、または、プラットホームから陸上の精製基地までの間の原油または天然ガスの輸送には、ライザー、フローライン、トランクラインなどと呼ばれる鋼管が用いられる。一方、世界的な化石燃料の枯渇に伴い、腐食性を有する硫化水素を多く含む油田の開発が活発になっている。このような腐食性ガスを含む油田から採掘された原油または天然ガスを輸送する鋼管には、水素誘起割れ(HIC:Hydrogen Induced Cracking。以下、「HIC」と呼ぶ。)および硫化物応力腐食割れ(SSC:Sulfide Stress Cracking。以下、「SSC」と呼ぶ。)と呼ばれる腐食反応から生じる水素に起因した脆化による破壊が生じる場合がある。古くから耐HIC性および耐SSC性を改善する観点で開発された鋼が多数提案されている。 In the development of offshore oil fields, risers, flow lines, trunks are used for the transportation of crude oil or natural gas from oil or gas wells installed on the seabed to offshore platforms or from platforms to onshore refineries. A steel pipe called a line is used. On the other hand, with the global depletion of fossil fuels, the development of oil fields containing a lot of corrosive hydrogen sulfide has become active. Steel pipes transporting crude oil or natural gas mined from oil fields containing such corrosive gases have hydrogen induced cracking (HIC: hereinafter referred to as “HIC”) and sulfide stress corrosion cracking (hereinafter referred to as “HIC”). SSC: Sulfide Stress Cracking (hereinafter referred to as “SSC”) may cause fracture due to embrittlement due to hydrogen resulting from a corrosion reaction. Many steels that have been developed for a long time to improve HIC resistance and SSC resistance have been proposed.
例えば、特許文献1にはNi、CuおよびCaを実質的に含有させず、かつ製造時の熱履歴および熱処理条件を規定することにより優れた耐HIC性を具備する鋼が提案されている。また、特許文献2にはCr、NiならびにCuを必須添加とすることで耐HIC性および耐SSC性を有する鋼が提案されている。さらに、特許文献3にはC、Ti、N、VおよびO量を特定の範囲に規定することにより、耐HIC性および耐SSC性を高めた鋼が提案されている。 For example, Patent Document 1 proposes a steel that is substantially free of Ni, Cu, and Ca, and that has excellent HIC resistance by specifying the thermal history and heat treatment conditions during production. Patent Document 2 proposes a steel having HIC resistance and SSC resistance by making Cr, Ni and Cu essential additions. Further, Patent Document 3 proposes a steel having improved HIC resistance and SSC resistance by defining the amounts of C, Ti, N, V and O within specific ranges.
ところで、これらの鋼からなる鋼管を配管するなど、これらの鋼を使用して構造物を組み立てる際には一般に溶接施工が行われる。しかしながら、例えば、非特許文献1に記載されているように、硬さの増大によりSSC感受性が増大することが広く知られている。鋼が溶接による加熱を受けると、いわゆる溶接熱影響部(以下、「HAZ」と呼ぶ。)に硬化する部分が生じる。その結果、如何に鋼自体の耐HIC性および耐SSC性能を高めても溶接構造物として実用上十分な性能を得られない場合が多い。 By the way, when assembling a structure using these steels, such as piping a steel pipe made of these steels, welding is generally performed. However, as described in Non-Patent Document 1, for example, it is widely known that the SSC sensitivity increases with an increase in hardness. When steel is heated by welding, a portion that hardens in a so-called welding heat affected zone (hereinafter referred to as “HAZ”) is generated. As a result, there are many cases where practically sufficient performance as a welded structure cannot be obtained no matter how the HIC resistance and SSC resistance of the steel itself are enhanced.
そのため、近年では、特許文献4に記載されているように、CおよびMn量を低減するとともに0.5%以上のMoを含有させることにより、溶接熱影響部の硬化を抑制し、母材およびHAZの耐HIC性および耐SSC性の両立を図った高強度鋼も提案されている。 Therefore, in recent years, as described in Patent Document 4, by reducing the amount of C and Mn and containing 0.5% or more of Mo, the hardening of the weld heat affected zone is suppressed, and the base material and A high-strength steel has also been proposed in which HAZ has both HIC resistance and SSC resistance.
溶接後熱処理(以下、「PWHT」と呼ぶ。)は溶接熱影響部の硬度を低減する方法として、圧力容器などに大量に用いられるCr−Mo鋼またはマルテンサイト系ステンレス鋼において広く適用されている。例えば、特許文献5には、1インチの肉厚当たり1時間のPWHTを実施することを前提とした、0.5%以上のCrを含有する低合金鋼が提案されている。 Heat treatment after welding (hereinafter referred to as “PWHT”) is widely applied to Cr—Mo steel or martensitic stainless steel used in large quantities in pressure vessels and the like as a method for reducing the hardness of the weld heat affected zone. . For example, Patent Document 5 proposes a low alloy steel containing 0.5% or more of Cr on the premise that PWHT is performed for one hour per one inch of thickness.
特許文献4に記載の発明によれば、溶接熱影響部の硬化を抑制し、母材およびHAZの耐HIC性および耐SSC性の両立ができるとされているが、Moは高価な元素であることから、多大なコストを要することなくHAZの耐水素脆化特性を改善する手法が望まれている。 According to the invention described in Patent Document 4, it is said that the hardening of the heat affected zone of the weld is suppressed, and both the HIC resistance and the SSC resistance of the base material and the HAZ can be achieved, but Mo is an expensive element. Therefore, a technique for improving the hydrogen embrittlement resistance of HAZ without requiring a great deal of cost is desired.
特許文献5に記載されるようにPWHTは一定の効果を有しているが、ラインパイプ敷設においては洋上の船上で溶接施工されるなど効率が重視されるため、一般にPWHTが実施されないか、適用する場合には極めて短時間のPWHTの適用が望まれている。 As described in Patent Document 5, PWHT has a certain effect, but in line pipe laying, efficiency is important, such as welding on an offshore ship, so PWHT is generally not implemented or applied In that case, it is desired to apply PWHT for a very short time.
本発明は、PWHT、特に短時間のPWHTを施されたHAZが湿潤硫化水素環境下などで優れた耐水素脆化特性を有する低合金鋼を提供することを目的とする。 An object of the present invention is to provide a low alloy steel in which PWHT, particularly HAZ subjected to short-time PWHT, has excellent hydrogen embrittlement resistance in a wet hydrogen sulfide environment.
本発明者らは、PWHTが施された鋼材のHAZの耐水素脆化特性を高めるために、必要な条件を明らかにするために、まず溶接ままのHAZの水素脆化について調査を行った。その結果、HAZの水素脆化は、下記の機構により生じると考えられる。 In order to clarify the necessary conditions in order to improve the HAZ hydrogen embrittlement resistance of the steel material subjected to PWHT, the present inventors first investigated the hydrogen embrittlement of the as-welded HAZ. As a result, hydrogen embrittlement of HAZ is considered to occur by the following mechanism.
すなわち、鋼が硫化水素を含む腐食環境に曝された場合、腐食反応により水素が鋼中に侵入する。この水素は、鋼の結晶格子中を自由に移動することができる、いわゆる拡散性水素と呼ばれる。侵入した拡散性水素は、結晶格子中の欠陥の一種である転位または空孔、さらには、セメンタイトなどの炭化物と基質の界面の格子歪に集積し、鋼を脆化させる。特に、HAZは、溶接の熱履歴により高温まで加熱され、急速に冷却され、焼入れままのマルテンサイトまたはベイナイト組織となるので、調質された母材に比して、水素がトラップされる転位および空孔が高密度に存在するとともに、セメンタイトも分散する。そのため、HAZは母材に比べて水素脆化感受性が高くなると考えられる。 That is, when steel is exposed to a corrosive environment containing hydrogen sulfide, hydrogen penetrates into the steel due to the corrosion reaction. This hydrogen is called diffusible hydrogen, which can move freely in the crystal lattice of steel. The invading diffusible hydrogen accumulates in dislocations or vacancies, which are one type of defects in the crystal lattice, and lattice strain at the interface between a carbide such as cementite and the substrate, and embrittles the steel. In particular, HAZ is heated to a high temperature due to the thermal history of welding, rapidly cooled, and becomes an as-quenched martensite or bainite structure. The pores are present at high density, and the cementite is dispersed. Therefore, it is considered that HAZ is more susceptible to hydrogen embrittlement than the base material.
そして、PWHTを施した場合、転位または空孔の密度が低減し、軟化が進行する一方でセメンタイトの析出が生じる。そのため、特に短時間のPWHTで十分な軟化が生じない場合には、セメンタイトの析出とのトレードオフにより、水素脆化感受性の低減効果は大きくないと考えられる。 When PWHT is applied, the density of dislocations or vacancies is reduced, and softening proceeds while cementite precipitates. Therefore, when sufficient softening does not occur in a short time PWHT, it is considered that the effect of reducing hydrogen embrittlement susceptibility is not significant due to a trade-off with precipitation of cementite.
そこで、本発明者らは、PWHTを適用したHAZの耐水素脆化特性を高めるために、合金元素の最適化を試みた。その結果、PWHTを施したHAZの水素脆化感受性を高めるためには、Ti、VおよびNbのいずれか一種以上を含有させることが有効であることがわかった。その理由は、次の通りと考えられる。 Therefore, the present inventors tried to optimize the alloy elements in order to improve the hydrogen embrittlement resistance of HAZ to which PWHT was applied. As a result, it has been found that it is effective to contain at least one of Ti, V and Nb in order to increase the hydrogen embrittlement susceptibility of HAZ subjected to PWHT. The reason is considered as follows.
すなわち、Ti、VおよびNbは、鉄に比べて炭素との親和力が大きくPWHTの過程でMX型の微細な炭化物を形成する。MX型の炭化物は、セメンタイトに比べて母相との整合性が良好であるため、基質との界面の格子歪が小さく、かつ炭化物中の拡散性水素の吸蔵量が大きい。そのため、腐食反応により水素が侵入した場合、拡散性水素の集積サイトが分散することで顕著な水素集積とそれによる脆化起点の生成を抑制し、結果、脆化が軽減されると考えられる。 That is, Ti, V and Nb have a greater affinity for carbon than iron and form MX type fine carbides in the process of PWHT. Since the MX type carbide has better consistency with the parent phase than cementite, the lattice strain at the interface with the substrate is small, and the amount of diffusible hydrogen in the carbide is large. For this reason, when hydrogen invades due to a corrosion reaction, the accumulation sites of diffusible hydrogen are dispersed, thereby suppressing significant hydrogen accumulation and the generation of embrittlement starting points, thereby reducing the embrittlement.
そして、C量が多い場合、即ち、溶接の冷却時のHAZの焼入れ性が高く、転位または空孔の密度が高くなり、PWHT適用時のセメンタイトの析出の駆動力が大きい場合ほど、Ti、VおよびNbを適量含有させる必要があることが明らかとなった。具体的には、Ti、VおよびNbから選択される1種以上を下記の(1)式を満足する範囲で含有させることが必要であることが明らかとなった。
0.1×[C(%)]≦[Ti(%)]+[V(%)]+0.5×[Nb(%)]≦0.2 (1)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。
When the amount of C is large, that is, the hardenability of HAZ at the time of welding cooling is high, the density of dislocations or vacancies is high, and the driving force for precipitation of cementite at the time of PWHT application is large, Ti, V It became clear that it is necessary to contain a proper amount of Nb and Nb. Specifically, it has become clear that it is necessary to contain at least one selected from Ti, V and Nb within a range satisfying the following formula (1).
0.1 × [C (%)] ≦ [Ti (%)] + [V (%)] + 0.5 × [Nb (%)] ≦ 0.2 (1)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
本発明は、このような知見に基づいてなされたものであって、下記の〔1〕〜〔6〕を要旨とする。 The present invention has been made on the basis of such findings and has the following [1] to [6].
〔1〕溶接後熱処理が施される原油または天然ガスの輸送用鋼管の素材としての低合金鋼であって、質量%で、C:0.01〜0.15%、Si:3%以下、Mn:3%以下およびAl:0.08%以下を含み、Ti、VおよびNbから選択される1種以上を下記の(1)式を満足する範囲で含有し、Crおよび/またはMoを、合計で1.5%以下含み、Niおよび/またはCuを、合計で0.8%以下含み、Caおよび/またはMgを、合計で0.05%以下含み、Bを、下記の(2)式を満足する範囲で含み、残部がFeおよび不純物からなり、不純物としてのNが0.01%以下、Pが0.05%以下、Sが0.03%以下、Oが0.03%以下であり、溶接後熱処理が、500〜750℃で30〜600秒で、かつ下記の(3)式を満たす条件で行なわれるものである低合金鋼。
0.1×[C(%)]≦[Ti(%)]+[V(%)]+0.5×[Nb(%)]≦0.2 (1)
[B(%)]<0.1×[C(%)] (2)
8000≦T×{20+log(t/3600)}≦15000 (3)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味し、Tは、溶接後熱処理の処理温度(℃)であり、tは、溶接後熱処理の処理時間(秒)である。
〔2〕500〜750℃で30〜600秒の溶接後熱処理が施される原油または天然ガスの輸送用鋼管の素材としての低合金鋼であって、質量%で、C:0.01〜0.15%、Si:3%以下、Mn:3%以下およびAl:0.08%以下を含み、かつTi、VおよびNbから選択される1種以上を下記の(1)式を満足する範囲で含有し、残部がFeおよび不純物からなり、不純物としてのNが0.01%以下、Pが0.05%以下、Sが0.03%以下、Oが0.03%以下である低合金鋼。
0.1×[C(%)]≦[Ti(%)]+[V(%)]+0.5×[Nb(%)]≦0.2 (1)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。
[1] Low alloy steel as a raw material for a steel pipe for transporting crude oil or natural gas subjected to heat treatment after welding, and in mass%, C: 0.01 to 0.15%, Si: 3% or less, Mn: 3% or less and Al: includes 0.08% or less, T i, the one or more selected from V and Nb was contained in the range that satisfies the following equation (1), the Cr and / or Mo , 1.5% or less in total, Ni and / or Cu, 0.8% or less in total, Ca and / or Mg, 0.05% or less in total, and B in the following (2) In the range satisfying the formula, the balance is composed of Fe and impurities, N as an impurity is 0.01% or less, P is 0.05% or less, S is 0.03% or less, and O is 0.03% or less der is, after welding heat treatment, at 30 to 600 seconds at 500 to 750 ° C., and the following (3) Der Ru low alloy steel intended to be performed in conditions satisfying.
0.1 × [C (%)] ≦ [Ti (%)] + [V (%)] + 0.5 × [Nb (%)] ≦ 0.2 (1)
[B (%)] <0.1 × [C (%)] (2)
8000 ≦ T × {20 + log (t / 3600)} ≦ 15000 (3)
However, each element symbol in the formula means the content (% by mass) of each element , T is the processing temperature (° C.) of the heat treatment after welding, and t is the processing time (second) of the heat treatment after welding. It is.
[2] Low alloy steel as a raw material for a steel pipe for transporting crude oil or natural gas subjected to post-weld heat treatment at 500 to 750 ° C. for 30 to 600 seconds, and in mass%, C: 0.01 to 0 .15%, Si: 3% or less, Mn: 3% or less and Al: 0.08% or less, and at least one selected from Ti, V and Nb satisfies the following formula (1) A low alloy in which the balance is Fe and impurities, N as an impurity is 0.01% or less, P is 0.05% or less, S is 0.03% or less, and O is 0.03% or less. steel.
0.1 × [C (%)] ≦ [Ti (%)] + [V (%)] + 0.5 × [Nb (%)] ≦ 0.2 (1)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
〔3〕質量%で、Feの一部に代えて、Crおよび/またはMoを、合計で1.5%以下含む上記〔2〕の低合金鋼。 [ 3 ] The low alloy steel according to the above [ 2 ], which contains, in mass%, 1.5% or less of Cr and / or Mo in place of part of Fe.
〔4〕質量%で、Feの一部に代えて、Niおよび/またはCuを、合計で0.8%以下含む上記〔2〕または〔3〕の低合金鋼。 [ 4 ] The low alloy steel according to the above [ 2 ] or [ 3 ], which contains 0.8% or less of Ni and / or Cu in place of part of Fe in mass%.
〔5〕質量%で、Feの一部に代えて、Caおよび/またはMgを、合計で0.05%以下含む上記〔2〕〜〔4〕のいずれかの低合金鋼。 [ 5 ] The low alloy steel according to any one of the above [ 2 ] to [ 4 ], which contains 0.05% or less in total of Ca and / or Mg instead of a part of Fe in mass%.
〔6〕質量%で、Feの一部に代えて、Bを、下記の(2)式を満足する範囲で含む上記〔2〕〜〔5〕のいずれかの低合金鋼。
[B(%)]<0.1×[C(%)] (2)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。
[ 6 ] The low alloy steel according to any one of the above [ 2 ] to [ 5 ], which contains B in a range satisfying the following formula (2) instead of part of Fe in mass%.
[B (%)] <0.1 × [C (%)] (2)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
本発明によれば、PWHT、特に短時間のPWHTを施されたHAZにおいて、湿潤硫化水素環境下などで優れた耐水素脆化特性を有する低合金鋼を提供することができる。 According to the present invention, it is possible to provide a low alloy steel having excellent hydrogen embrittlement resistance in a wet hydrogen sulfide environment or the like in PHAT, particularly HAZ subjected to short time PWHT.
以下、本発明に係る低合金鋼の化学組成の範囲およびその限定理由を説明する。以下の説明において、含有量についての「%」は、「質量%」を意味する。 Hereinafter, the range of the chemical composition of the low alloy steel according to the present invention and the reason for the limitation will be described. In the following description, “%” for the content means “% by mass”.
C:0.01〜0.15%
Cは、鋼の焼入れ性を高めて強度を高めるのに有効な元素である。その効果を得るためには0.01%以上含有させる必要がある。しかし、その含有量が0.15%を超えると、PWHTを施した際に多量のセメンタイトを析出させ、HAZの水素脆化感受性を高める。よって、C含有量は、0.01〜0.15%とする。C含有量の下限は、0.03%とするのが好ましい。C含有量は、0.12%以下とするのが好ましい。
C: 0.01 to 0.15%
C is an element effective in increasing the hardenability of steel and increasing the strength. In order to acquire the effect, it is necessary to make it contain 0.01% or more. However, when the content exceeds 0.15%, a large amount of cementite is precipitated when PWHT is applied, and the hydrogen embrittlement susceptibility of HAZ is increased. Therefore, the C content is set to 0.01 to 0.15%. The lower limit of the C content is preferably 0.03%. The C content is preferably 0.12% or less.
Si:3%以下
Siは、脱酸に有効な元素であるが、過剰に含有させると靭性の低下を招く。このため、Si含有量は3%以下とする。Si含有量は2%以下とするのが好ましい。下限は特に定めないが、Si含有量を低減しても、脱酸効果が低下し、鋼の清浄度を劣化させ、過度な低減は製造コストの増大を招く。このため、Si含有量は、0.01%以上とするのが好ましい。
Si: 3% or less Si is an element effective for deoxidation, but if it is excessively contained, toughness is reduced. For this reason, Si content shall be 3% or less. The Si content is preferably 2% or less. Although the lower limit is not particularly defined, even if the Si content is reduced, the deoxidation effect is lowered, the cleanliness of the steel is deteriorated, and excessive reduction leads to an increase in production cost. For this reason, it is preferable that Si content shall be 0.01% or more.
Mn:3%以下
Mnは、Siと同様、脱酸に有効な元素であり、また、鋼の焼入れ性を高めて強度の向上に寄与する元素である。しかし、過剰に含有させると、HAZの著しい硬化を招き、耐水素脆化感受性を高めてしまう。このため、Mn含有量は3%以下とする。下限は特に定めないが、Mnの強度向上効果を得る場合には、0.2%以上含有するのが好ましい。より好ましい下限は、0.4%であり、好ましい上限は、2.8%である。
Mn: 3% or less Mn is an element effective for deoxidation, like Si, and is an element that contributes to improvement of strength by enhancing the hardenability of steel. However, if it is contained excessively, the HAZ is markedly cured and the hydrogen embrittlement resistance is increased. Therefore, the Mn content is 3% or less. Although the lower limit is not particularly defined, it is preferable to contain 0.2% or more in order to obtain the effect of improving the strength of Mn. A more preferred lower limit is 0.4%, and a preferred upper limit is 2.8%.
Al:0.08%以下
Alは、脱酸に有効な元素であるが、その効果は、過剰に含有させても飽和し、また、靭性の低下を招く。よって、Al含有量は、0.08%以下とする。好ましい含有量は、0.06%以下である。下限は特に定めないが、過度の低減は、脱酸効果が十分に得られず鋼の清浄度を劣化させるとともに、製造コストの増大を招く。そのため、Alは0.001%以上含有させるのが好ましい。本発明のAl含有量とは、酸可溶Al(所謂「sol.Al」)を指す。
Al: 0.08% or less Al is an element effective for deoxidation, but its effect is saturated even if it is contained excessively, and the toughness is reduced. Therefore, the Al content is set to 0.08% or less. A preferable content is 0.06% or less. Although the lower limit is not particularly defined, excessive reduction causes a deoxidation effect not sufficiently obtained and deteriorates the cleanliness of the steel, and causes an increase in manufacturing cost. Therefore, Al is preferably contained in an amount of 0.001% or more. The Al content of the present invention refers to acid-soluble Al (so-called “sol.Al”).
Ti、VおよびNbから選択される1種以上:下記の(1)式を満足する範囲
0.1×[C(%)]≦[Ti(%)]+[V(%)]+0.5×[Nb(%)]≦0.2 (1)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。
これら元素は、PWHTの過程でMX型の微細な炭化物を形成し、耐水素脆化性を高める。この効果を得るためには、「[Ti(%)]+[V(%)]+0.5×[Nb(%)]」を0.1×[C(%)]以上とする必要がある。しかし、その含有量が過剰な場合、炭化物が粗大となり、却って水素脆化感受性を高めるとともに、靭性の低下を招く。よって、「[Ti(%)]+[V(%)]+0.5×[Nb(%)]」を0.2%以下とする必要がある。好ましい上限は0.18%であり、より好ましい上限は0.15%である。
One or more selected from Ti, V and Nb: a range satisfying the following formula (1) 0.1 × [C (%)] ≦ [Ti (%)] + [V (%)] + 0.5 × [Nb (%)] ≦ 0.2 (1)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
These elements form MX type fine carbides in the process of PWHT, and improve hydrogen embrittlement resistance. In order to obtain this effect, it is necessary to set “[Ti (%)] + [V (%)] + 0.5 × [Nb (%)]” to 0.1 × [C (%)] or more. . However, when the content is excessive, the carbide becomes coarse, and on the contrary, the hydrogen embrittlement sensitivity is increased and the toughness is reduced. Therefore, “[Ti (%)] + [V (%)] + 0.5 × [Nb (%)]” needs to be 0.2% or less. A preferable upper limit is 0.18%, and a more preferable upper limit is 0.15%.
本発明に係る低合金鋼は、上記の各元素を含有し、残部はFeおよび不純物からなるものである。不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。不純物のうち、下記の元素については、その含有量を厳密に制限する必要がある。 The low alloy steel according to the present invention contains each of the above elements, with the balance being Fe and impurities. An impurity means the component mixed by raw materials and other factors, such as an ore and a scrap, when manufacturing steel materials industrially. Among impurities, the following elements need to be strictly limited in content.
N:0.01%以下
Nは、不純物として鋼中に存在するが、微細な炭窒化物を形成すると脆化を招き、固溶した場合でも靭性を低下させる。そのため、その含有量を0.01%以下に制限する必要がある。その含有量は0.008%以下とするのが好ましい。下限は特に定めないが、過度の低減は、製造コストの著しい増大を招く。そのため、N含有量の下限は、0.0001%とするのが好ましい。
N: 0.01% or less N is present in steel as an impurity, but if fine carbonitride is formed, it causes embrittlement and lowers toughness even when dissolved. Therefore, it is necessary to limit the content to 0.01% or less. The content is preferably 0.008% or less. There is no particular lower limit, but excessive reduction leads to a significant increase in manufacturing costs. Therefore, the lower limit of the N content is preferably 0.0001%.
P:0.05%以下
Pは、不純物として鋼中に存在するが、HAZにおいて粒界に偏析し、靭性の低下を招く。そのため、その含有量を0.05%以下に制限する。下限は特に定めないが、過度の低減は、製造コストの著しい増大を招く。そのため、P含有量の下限は、0.001%とするのが好ましい。
P: 0.05% or less P is present in the steel as an impurity, but segregates at grain boundaries in HAZ, leading to a decrease in toughness. Therefore, the content is limited to 0.05% or less. There is no particular lower limit, but excessive reduction leads to a significant increase in manufacturing costs. Therefore, the lower limit of the P content is preferably 0.001%.
S:0.03%以下
Sは、Pと同様に不純物として鋼中に存在するが、鋼材中で硫化物を形成し、基質との界面が水素の集積サイトとして働き、水素脆化感受性を高め、また、HAZ靭性の低下も招く。そのため、その含有量をPよりも厳しく、0.03%以下に制限する。下限は特に定めないが、過度の低減は、製造コストの著しい増大を招く。そのため、S含有量の下限は、0.0001%とするのが好ましい。
S: 0.03% or less S is present in steel as an impurity like P, but forms sulfides in the steel, and the interface with the substrate acts as a hydrogen accumulation site, increasing hydrogen embrittlement susceptibility. Also, the HAZ toughness is reduced. Therefore, the content is stricter than P and limited to 0.03% or less. There is no particular lower limit, but excessive reduction leads to a significant increase in manufacturing costs. Therefore, the lower limit of the S content is preferably 0.0001%.
O:0.03%以下
Oは、不純物として鋼中に存在するが、多量に含まれる場合には、多量の酸化物を生成し、加工性や延性を劣化させる。そのため、0.03%以下とする必要がある。望ましくは0.025%以下である。特に下限は設ける必要はないが、過度の低減は製造コストの著しい増大を招く。そのため、望ましくは0.0005%以上とする。
O: 0.03% or less O is present in the steel as an impurity, but when it is contained in a large amount, it generates a large amount of oxide, which deteriorates workability and ductility. Therefore, it is necessary to make it 0.03% or less. Desirably, it is 0.025% or less. There is no particular need to provide a lower limit, but excessive reduction leads to a significant increase in manufacturing costs. Therefore, it is desirably 0.0005% or more.
本発明に係る低合金鋼は、Feの一部に代えて、下記の各元素を含有させてもよい。 The low alloy steel according to the present invention may contain the following elements instead of a part of Fe.
Crおよび/またはMo:合計で1.5%以下
これら元素は、いずれも焼入れ性を高めて強度向上に寄与するので、含有させてもよい。しかし、その含有量が過剰な場合、炭化物として析出し、Ti等の炭化物の析出を阻害し、水素脆化感受性を高める。よって、Crおよび/またはMoを含有させる場合には、その含有量を合計で1.5%以下とする。なお、好ましい下限は0.02%,さらに好ましくは0.05%である。好ましい上限は1.2%である。
Cr and / or Mo: 1.5% or less in total These elements may increase the hardenability and contribute to improving the strength, and therefore may be contained. However, when the content is excessive, it precipitates as carbides, inhibits precipitation of carbides such as Ti, and increases hydrogen embrittlement sensitivity. Therefore, when Cr and / or Mo is contained, the content is made 1.5% or less in total. In addition, a preferable minimum is 0.02%, More preferably, it is 0.05%. A preferable upper limit is 1.2%.
Niおよび/またはCu:合計で0.8%以下
これら元素は、焼入れ性を高めて強度向上に寄与するので、含有させてもよい。しかし、過剰に含有させても、その効果が飽和するだけで、コスト増大を招く。よって、Niおよび/またはCuを含有させる場合には、その含有量を合計で0.8%以下とする。尚,添加する場合の好ましい下限は0.02%、さらに好ましくは0.05%である。より好ましい上限は0.7%である。
Ni and / or Cu: 0.8% or less in total These elements may be contained because they enhance the hardenability and contribute to improving the strength. However, even if contained excessively, the effect is saturated and the cost is increased. Therefore, when it contains Ni and / or Cu, the content shall be 0.8% or less in total. In addition, the preferable minimum in the case of adding is 0.02%, More preferably, it is 0.05%. A more preferred upper limit is 0.7%.
Caおよび/またはMg:合計で0.0005〜0.05%
これらの元素は、いずれも鋼の熱間加工性を改善するため、含有させてもよい。しかし、その含有量が過剰な場合、酸素と結合し、清浄を著しく低下させ、却って熱間加工性を劣化させるおそれがある。よって、これらの元素の1種以上を含有させる場合には、その含有量を合計で0.05%以下とする。なお、好ましい下限は0.0005%、さらに好ましくは0.001%である。好ましい上限は0.03%である。
Ca and / or Mg: 0.0005 to 0.05% in total
Any of these elements may be contained in order to improve the hot workability of the steel. However, if its content is excessive, it may combine with oxygen, significantly reducing cleanliness, and possibly degrading hot workability. Therefore, when it contains 1 or more types of these elements, the content shall be 0.05% or less in total. The preferred lower limit is 0.0005%, more preferably 0.001%. A preferable upper limit is 0.03%.
B:下記の(2)式を満足する範囲
[B(%)]<0.1×[C(%)] (2)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。
Bは、粒界に偏析し、粒界からのフェライトの析出を抑制して間接的に焼入れ性を高め、強度向上に寄与するため、含有させてもよい。しかし、過剰な含有は、PWHTの過程で、ホウ化物として析出するか、Cと置換してセメンタイト中に固溶し、基質との格子歪をより大きくし、耐水素脆化性を低下させるおそれがある。よって、Bを含有させる場合には、その含有量を(2)式を満たす範囲とするのが好ましい。なお、望ましい下限は0.0001%であり、更に望ましくは0.0005%である。
B: Range satisfying the following formula (2) [B (%)] <0.1 × [C (%)] (2)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
B segregates at the grain boundary, suppresses the precipitation of ferrite from the grain boundary, indirectly increases the hardenability, and contributes to improving the strength. However, excessive inclusion may precipitate as boride during the PWHT process, or may be substituted with C to form a solid solution in cementite, thereby increasing the lattice strain with the substrate and reducing hydrogen embrittlement resistance. There is. Therefore, when it contains B, it is preferable to make the content into the range which satisfy | fills (2) Formula. The desirable lower limit is 0.0001%, and more desirably 0.0005%.
本発明に係る低合金鋼に施されるPWHTの条件には、特に制約はないが、本発明に係る低合金鋼は、特に、下記(3)式を満たす条件のPWHTが施される場合に優れた効果を発揮する。
8000≦T×{20+log(t/3600)}≦15000 (3)
ただし、Tは、溶接後熱処理の処理温度(℃)であり、tは、溶接後熱処理の処理時間(秒)である。
「T×{20+log(t/3600)}」が8000未満の場合、本発明に係る低合金鋼からなる鋼材のHAZの耐水素脆化性を高めることができないおそれがある。一方、「T×{20+log(t/3600)}」が15000を超えるとTi等からなるMX型の微細な炭化物の粗大化が進行し、十分な耐水素脆化性を得られなくなるとともに、溶接部を含む鋼の強度低下が顕著となる。よって、本発明に係る低合金鋼に施されるPWHTは、上記(3)式を満たす条件で行なわれるものであることが好ましい。
There are no particular restrictions on the PWHT conditions applied to the low alloy steel according to the present invention, but the low alloy steel according to the present invention is particularly suitable when PWHT is applied that satisfies the following formula (3). Exhibits excellent effects.
8000 ≦ T × {20 + log (t / 3600)} ≦ 15000 (3)
However, T is the processing temperature (° C.) of the heat treatment after welding, and t is the processing time (seconds) of the heat treatment after welding.
When “T × {20 + log (t / 3600)}” is less than 8000, the hydrogen embrittlement resistance of the HAZ of the steel material made of the low alloy steel according to the present invention may not be improved. On the other hand, when “T × {20 + log (t / 3600)}” exceeds 15000, MX type fine carbides composed of Ti and the like are coarsened, and sufficient hydrogen embrittlement resistance cannot be obtained. The strength reduction of the steel including the part becomes remarkable. Therefore, it is preferable that the PWHT applied to the low alloy steel according to the present invention is performed under the condition satisfying the above expression (3).
特に、500〜750℃の温度域で、30〜600秒行うことが好ましい。これは、短時間のPWHTにより安定してMX型の微細な炭化物を形成し、耐水素脆化性を高めるとともに、実施工における長時間のPWHTによる極端なコスト増大を抑制するためである。特に、PWHT時間については、300秒以下とするのがより好ましい。 In particular, it is preferably performed in a temperature range of 500 to 750 ° C. for 30 to 600 seconds. This is to form MX fine carbides stably by short-time PWHT, to improve hydrogen embrittlement resistance, and to suppress an extreme cost increase due to long-time PWHT in the construction work. In particular, the PWHT time is more preferably 300 seconds or less.
なお、本発明の低合金鋼は、その降伏強度(YS)が552MPa以上であることが好ましい。その理由は、強度が高い低合金鋼はPWHTにより、溶接部を含む鋼の強度低下が顕著であり、短時間のPWHTによる耐水素脆化性の改善のメリットがより得られやすいためである。 The low alloy steel of the present invention preferably has a yield strength (YS) of 552 MPa or more. The reason is that low-strength steel with high strength has a remarkable decrease in strength of the steel including the welded portion due to PWHT, and the advantage of improving hydrogen embrittlement resistance by PWHT in a short time is more easily obtained.
本発明の効果を確認するべく、下記の実験を行った。即ち、表1に示す化学組成を有する肉厚12mmの低合金鋼板を、12mm角、長さ100mmに機械加工して試験材を作製した。この試験材に、高周波誘導加熱によりHAZの硬化が顕著な温度である1350℃に3秒間加熱した後、急冷する、HAZ再現溶接熱サイクルを付与した。この試験材を用いて、下記の試験を行った。 In order to confirm the effect of the present invention, the following experiment was conducted. That is, a test material was produced by machining a 12 mm thick low alloy steel plate having a chemical composition shown in Table 1 into a 12 mm square and a length of 100 mm. This test material was subjected to a HAZ reproducible welding heat cycle that was heated to 1350 ° C., a temperature at which HAZ was markedly cured by high-frequency induction heating, for 3 seconds and then rapidly cooled. The following tests were conducted using this test material.
<引張試験>
JIS Z2241に準拠し、得られた試験材から平行部径6mm、平行部長さ10mmの丸棒引張試験片を採取し、常温での引張試験を行った。
<Tensile test>
In accordance with JIS Z2241, a round bar tensile test piece having a parallel part diameter of 6 mm and a parallel part length of 10 mm was sampled from the obtained test material and subjected to a tensile test at room temperature.
<耐SSC試験>
得られた試験材から厚さ2mm、幅10mm、長さ75mmの試験片を採取し、European Federation of Corrosionが定めるEFC16に則った4点曲げ試験により、耐SSC性を評価した。試験は、採取した試験片に4点曲げにより引張試験から導出した0.2%耐力の50%に相当する応力を付加した後、1atm硫化水素ガスを飽和させた常温(24℃)の5%食塩+0.5%酢酸水溶液に336時間浸漬し、SSCの発生有無を調べた。そして、SSCが発生しなかったものを合格、SSCが発生したものを不合格とした。
<SSC resistance test>
A test piece having a thickness of 2 mm, a width of 10 mm, and a length of 75 mm was taken from the obtained test material, and the SSC resistance was evaluated by a four-point bending test in accordance with EFC16 defined by the European Federation of Corrosion. In the test, a stress corresponding to 50% of the 0.2% proof stress derived from the tensile test was applied to the collected specimen by 4-point bending, and then 5% of room temperature (24 ° C.) saturated with 1 atm hydrogen sulfide gas. It was immersed in a salt + 0.5% acetic acid aqueous solution for 336 hours and examined for the occurrence of SSC. And the thing in which SSC did not generate | occur | produce was set as the pass, and the thing in which SSC generate | occur | produced was set as the rejection.
これらの試験結果を表2に示す。 These test results are shown in Table 2.
表2に示すように、代符X1〜X12は4点曲げ試験においてSSCの発生は認められなかった。それに対し、代符Y1およびY2は、化学成分が本発明の用件を満たすものの、PWHTを実施しなかったため、MX型の炭化物が析出せず、SSCが発生した。代符Y3およびY4は鋼に含まれるMX型炭化物の構成元素であるTi、NbおよびVの添加量が少なく、Cとの所定の関係を満足しなかったため、十分な量のMX型炭化物が析出ぜず、SSCが発生した。代符Y5は逆にTi、NbおよびVの添加量が多すぎるため、MX型炭化物が粗大に析出し、SSCが発生した。代符Y6はBを添加したものの、その添加量が過剰であったため、SSCが発生した。さらに、代符Y7はCrとMoを過剰に含有したため、これらの炭化物がPWHTにより析出し、MX型炭化物が安定して生成しなかったため、SSCが発生した。 As shown in Table 2, generation of SSC was not recognized in the symbol X1 to X12 in the 4-point bending test. On the other hand, in the symbols Y1 and Y2, although chemical components satisfy the requirements of the present invention, PWHT was not performed, so MX type carbide was not precipitated and SSC was generated. Symbols Y3 and Y4 are low in the amount of addition of Ti, Nb and V, which are constituent elements of MX type carbide contained in the steel, and did not satisfy the predetermined relationship with C, so a sufficient amount of MX type carbide was precipitated. No SSC occurred. On the other hand, since the symbol Y5 has too much added amounts of Ti, Nb and V, MX type carbides were coarsely precipitated and SSC was generated. Although the symbol Y6 added B, the addition amount was excessive, so SSC occurred. Furthermore, since the symbol Y7 contained excessive amounts of Cr and Mo, these carbides were precipitated by PWHT, and MX type carbides were not stably produced, so SSC was generated.
本発明によれば、PWHT、特に短時間のPWHTを施されたHAZにおいて、湿潤硫化水素環境下などで優れた耐水素脆化特性を有する低合金鋼を提供することができる。この低合金鋼は、原油または天然ガスの輸送用鋼管の素材として最適である。
According to the present invention, it is possible to provide a low alloy steel having excellent hydrogen embrittlement resistance in a wet hydrogen sulfide environment or the like in PHAT, particularly HAZ subjected to short time PWHT. This low alloy steel is most suitable as a material for steel pipes for transporting crude oil or natural gas.
Claims (6)
質量%で、C:0.01〜0.15%、Si:3%以下、Mn:3%以下およびAl:0.08%以下を含み、Ti、VおよびNbから選択される1種以上を下記の(1)式を満足する範囲で含有し、Crおよび/またはMoを、合計で1.5%以下含み、Niおよび/またはCuを、合計で0.8%以下含み、Caおよび/またはMgを、合計で0.05%以下含み、Bを、下記の(2)式を満足する範囲で含み、残部がFeおよび不純物からなり、不純物としてのNが0.01%以下、Pが0.05%以下、Sが0.03%以下、Oが0.03%以下であり、溶接後熱処理が、500〜750℃で30〜600秒で、かつ下記の(3)式を満たす条件で行なわれるものであることを特徴とする低合金鋼。
0.1×[C(%)]≦[Ti(%)]+[V(%)]+0.5×[Nb(%)]≦0.2 (1)
[B(%)]<0.1×[C(%)] (2)
8000≦T×{20+log(t/3600)}≦15000 (3)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味し、Tは、溶接後熱処理の処理温度(℃)であり、tは、溶接後熱処理の処理時間(秒)である。 Low alloy steel as a raw material for crude or natural gas transport steel pipe that is heat treated after welding,
By mass%, C: 0.01~0.15%, Si : 3% or less, Mn: 3% or less and Al: it includes 0.08% or less, one or more selected from T i, V and Nb In a range satisfying the following formula (1), including Cr and / or Mo in total of 1.5% or less, Ni and / or Cu in total of 0.8% or less, Ca and / Alternatively, Mg is contained in a total of 0.05% or less, B is contained within a range satisfying the following formula (2), the balance is made of Fe and impurities, N as an impurity is 0.01% or less, and P is 0.05% or less, S is 0.03% or less, O is Ri der 0.03% or less, the post-weld heat treatment, in 30 to 600 seconds at 500 to 750 ° C., and satisfies the following formula (3) low alloy steel, characterized in der Rukoto that performed in the condition.
0.1 × [C (%)] ≦ [Ti (%)] + [V (%)] + 0.5 × [Nb (%)] ≦ 0.2 (1)
[B (%)] <0.1 × [C (%)] (2)
8000 ≦ T × {20 + log (t / 3600)} ≦ 15000 (3)
However, each element symbol in the formula means the content (% by mass) of each element , T is the processing temperature (° C.) of the heat treatment after welding, and t is the processing time (second) of the heat treatment after welding. It is.
質量%で、C:0.01〜0.15%、Si:3%以下、Mn:3%以下およびAl:0.08%以下を含み、かつTi、VおよびNbから選択される1種以上を下記の(1)式を満足する範囲で含有し、残部がFeおよび不純物からなり、不純物としてのNが0.01%以下、Pが0.05%以下、Sが0.03%以下、Oが0.03%以下であることを特徴とする低合金鋼。
0.1×[C(%)]≦[Ti(%)]+[V(%)]+0.5×[Nb(%)]≦0.2 (1)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。 A low alloy steel as a raw material of a steel pipe for transporting crude oil or natural gas that is subjected to a heat treatment after welding at 500 to 750 ° C. for 30 to 600 seconds ,
1% or more selected from Ti, V, and Nb, including C: 0.01 to 0.15%, Si: 3% or less, Mn: 3% or less, and Al: 0.08% or less. In the range satisfying the following formula (1), the balance is Fe and impurities, N as an impurity is 0.01% or less, P is 0.05% or less, S is 0.03% or less, Low alloy steel characterized in that O is 0.03% or less.
0.1 × [C (%)] ≦ [Ti (%)] + [V (%)] + 0.5 × [Nb (%)] ≦ 0.2 (1)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
[B(%)]<0.1×[C(%)] (2)
ただし、数式中の各元素記号は、各元素の含有量(質量%)を意味する。 The low alloy steel according to any one of claims 2 to 5 , characterized in that, in mass%, B is included in a range satisfying the following expression (2) instead of part of Fe.
[B (%)] <0.1 × [C (%)] (2)
However, each element symbol in the mathematical formula means the content (% by mass) of each element.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012004204A JP5370503B2 (en) | 2012-01-12 | 2012-01-12 | Low alloy steel |
BR112014017219A BR112014017219A8 (en) | 2012-01-12 | 2012-12-17 | low alloy steel |
CN201280066898.1A CN104040005A (en) | 2012-01-12 | 2012-12-17 | Low alloy steel |
MX2014007692A MX2014007692A (en) | 2012-01-12 | 2012-12-17 | Low alloy steel. |
US14/371,044 US20150047749A1 (en) | 2012-01-12 | 2012-12-17 | Low alloy steel |
AU2012365129A AU2012365129B2 (en) | 2012-01-12 | 2012-12-17 | Low alloy steel |
EP12864721.1A EP2803741B1 (en) | 2012-01-12 | 2012-12-17 | Method of post weld heat treatment of a low alloy steel pipe |
PCT/JP2012/082608 WO2013105396A1 (en) | 2012-01-12 | 2012-12-17 | Low alloy steel |
CA2861740A CA2861740C (en) | 2012-01-12 | 2012-12-17 | Low alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012004204A JP5370503B2 (en) | 2012-01-12 | 2012-01-12 | Low alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013142190A JP2013142190A (en) | 2013-07-22 |
JP5370503B2 true JP5370503B2 (en) | 2013-12-18 |
Family
ID=48781355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012004204A Expired - Fee Related JP5370503B2 (en) | 2012-01-12 | 2012-01-12 | Low alloy steel |
Country Status (9)
Country | Link |
---|---|
US (1) | US20150047749A1 (en) |
EP (1) | EP2803741B1 (en) |
JP (1) | JP5370503B2 (en) |
CN (1) | CN104040005A (en) |
AU (1) | AU2012365129B2 (en) |
BR (1) | BR112014017219A8 (en) |
CA (1) | CA2861740C (en) |
MX (1) | MX2014007692A (en) |
WO (1) | WO2013105396A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101778398B1 (en) * | 2015-12-17 | 2017-09-14 | 주식회사 포스코 | Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same |
CN105466129A (en) * | 2015-12-19 | 2016-04-06 | 丹阳市宸兴环保设备有限公司 | Steel plate for refrigerator rear panel |
BR102016001063B1 (en) | 2016-01-18 | 2021-06-08 | Amsted Maxion Fundição E Equipamentos Ferroviários S/A | alloy steel for railway components, and process for obtaining a steel alloy for railway components |
CN105734407B (en) * | 2016-04-28 | 2017-06-16 | 武汉钢铁股份有限公司 | Ultra-thin microalloy high strength steel and preparation method thereof |
KR101797369B1 (en) * | 2016-06-21 | 2017-12-13 | 현대제철 주식회사 | Steel for pressure vessel and method for manufacturing the same |
CA3236316A1 (en) * | 2018-10-10 | 2020-04-10 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5255746A (en) | 1975-10-30 | 1977-05-07 | Mitsubishi Heavy Ind Ltd | Build up process of high speed winder driving roll |
JPS6336639A (en) | 1986-07-31 | 1988-02-17 | Nec Corp | Data exchange system |
JPH0748621A (en) * | 1992-12-29 | 1995-02-21 | Kawasaki Steel Corp | Production of steel for pressure vessel excellent in ssc resistance and hic resistance |
DE69607702T2 (en) * | 1995-02-03 | 2000-11-23 | Nippon Steel Corp., Tokio/Tokyo | High-strength conduit steel with a low yield strength-tensile strength ratio and excellent low-temperature toughness |
JPH08309428A (en) * | 1995-05-18 | 1996-11-26 | Sumitomo Metal Ind Ltd | Production of welded steel tube |
JPH09194995A (en) * | 1996-01-09 | 1997-07-29 | Nkk Corp | Welded steel tube with high strength and high toughness and its production |
JPH09256038A (en) * | 1996-03-22 | 1997-09-30 | Nippon Steel Corp | Heat treatment before stress relieving annealing treatment for thick steel plate |
JP3319358B2 (en) * | 1997-09-08 | 2002-08-26 | 日本鋼管株式会社 | Method for producing welded steel pipe for line pipe with excellent hydrogen-induced cracking resistance, sulfide stress cracking resistance and low-temperature toughness |
JP2001121289A (en) * | 1999-10-21 | 2001-05-08 | Nkk Corp | High strength steel pipe excellent in sr resistance |
JP3714136B2 (en) | 2000-08-18 | 2005-11-09 | Jfeスチール株式会社 | Steel with excellent electron beam welding characteristics and sour resistance |
US7892368B2 (en) * | 2002-05-24 | 2011-02-22 | Nippon Steel Corporation | UOE steel pipe excellent in collapse strength and method of production thereof |
JP4305216B2 (en) * | 2004-02-24 | 2009-07-29 | Jfeスチール株式会社 | Hot-rolled steel sheet for sour-resistant high-strength ERW steel pipe with excellent weld toughness and method for producing the same |
WO2006004228A1 (en) * | 2004-07-07 | 2006-01-12 | Jfe Steel Corporation | Method for producing high tensile steel sheet |
JP2007270194A (en) * | 2006-03-30 | 2007-10-18 | Jfe Steel Kk | Method for producing high-strength steel sheet excellent in sr resistance property |
JP4878219B2 (en) | 2006-06-05 | 2012-02-15 | 株式会社神戸製鋼所 | Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding |
JP4466619B2 (en) * | 2006-07-05 | 2010-05-26 | Jfeスチール株式会社 | High tensile welded steel pipe for automobile structural members and method for manufacturing the same |
JP5266791B2 (en) * | 2007-03-30 | 2013-08-21 | Jfeスチール株式会社 | High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same |
JP5305709B2 (en) * | 2008-03-28 | 2013-10-02 | 株式会社神戸製鋼所 | High-strength steel plate with excellent stress-relieving annealing characteristics and low-temperature joint toughness |
JP2010024504A (en) | 2008-07-22 | 2010-02-04 | Sumitomo Metal Ind Ltd | Seamless steel pipe for line pipe and method for producing the same |
-
2012
- 2012-01-12 JP JP2012004204A patent/JP5370503B2/en not_active Expired - Fee Related
- 2012-12-17 CN CN201280066898.1A patent/CN104040005A/en active Pending
- 2012-12-17 EP EP12864721.1A patent/EP2803741B1/en active Active
- 2012-12-17 US US14/371,044 patent/US20150047749A1/en not_active Abandoned
- 2012-12-17 CA CA2861740A patent/CA2861740C/en active Active
- 2012-12-17 WO PCT/JP2012/082608 patent/WO2013105396A1/en active Application Filing
- 2012-12-17 MX MX2014007692A patent/MX2014007692A/en unknown
- 2012-12-17 AU AU2012365129A patent/AU2012365129B2/en active Active
- 2012-12-17 BR BR112014017219A patent/BR112014017219A8/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
CN104040005A (en) | 2014-09-10 |
CA2861740A1 (en) | 2013-07-18 |
AU2012365129B2 (en) | 2015-11-05 |
CA2861740C (en) | 2016-09-06 |
EP2803741A4 (en) | 2015-12-02 |
US20150047749A1 (en) | 2015-02-19 |
BR112014017219A8 (en) | 2017-07-04 |
WO2013105396A1 (en) | 2013-07-18 |
JP2013142190A (en) | 2013-07-22 |
BR112014017219A2 (en) | 2017-06-13 |
AU2012365129A1 (en) | 2014-07-17 |
EP2803741B1 (en) | 2019-08-07 |
EP2803741A1 (en) | 2014-11-19 |
MX2014007692A (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5370503B2 (en) | Low alloy steel | |
JP4995122B2 (en) | Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone | |
JP5369639B2 (en) | High strength steel material excellent in welding heat-affected zone toughness and HIC resistance and manufacturing method thereof | |
EA019473B1 (en) | Low alloy steel with a high yield strength and high sulphide stress cracking resistance | |
KR102401618B1 (en) | Clad steel plate and manufacturing method thereof | |
JP6241485B2 (en) | Clad steel manufacturing method | |
WO2008026594A1 (en) | Martensitic stainless steel for welded structure | |
JP5505100B2 (en) | Cr-containing steel pipe for carbon dioxide injection parts | |
JP5884202B2 (en) | Hot-rolled steel sheet for high-strength line pipe | |
JP5326339B2 (en) | Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone | |
Barbosa et al. | Recent developments on martensitic stainless steels for oil and gas production | |
CN106695166A (en) | Gas shielded welding wire for ultra-high-strength corrosion-resistant pipelines | |
JP5793562B2 (en) | High corrosion resistance martensitic stainless steel | |
JP5418702B2 (en) | Low alloy steel | |
JP7119888B2 (en) | Steel plate for UOE steel pipe and manufacturing method thereof | |
JP2009249731A (en) | Steel for high strength bolt excellent in weatherability and delayed fracture resistance characteristic | |
KR20090072115A (en) | Hot rolled steel sheet having excellent sour resistance properties in cold deformation | |
JPS61235544A (en) | High-strengh austenitic stainless steel for welding construction having superior sour resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130902 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5370503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |