JP5367877B2 - MEMS pressure sensor - Google Patents

MEMS pressure sensor Download PDF

Info

Publication number
JP5367877B2
JP5367877B2 JP2012138181A JP2012138181A JP5367877B2 JP 5367877 B2 JP5367877 B2 JP 5367877B2 JP 2012138181 A JP2012138181 A JP 2012138181A JP 2012138181 A JP2012138181 A JP 2012138181A JP 5367877 B2 JP5367877 B2 JP 5367877B2
Authority
JP
Japan
Prior art keywords
magnetization
layer
free layer
magnetization free
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012138181A
Other languages
Japanese (ja)
Other versions
JP2012176294A (en
Inventor
裕美 湯浅
英明 福澤
慶彦 藤
キディングス デヴィン
通子 原
修一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012138181A priority Critical patent/JP5367877B2/en
Publication of JP2012176294A publication Critical patent/JP2012176294A/en
Application granted granted Critical
Publication of JP5367877B2 publication Critical patent/JP5367877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の実施形態は、MEMS圧力センサに関する。
Embodiments of the present invention relate to MEMS pressure sensors .

日常生活をしながら連続的な血圧測定を負荷なく行うことが未病医療の分野で求められて
いる。これを可能にするためには、絆創膏型のような小型サイズで、十分な測定精度を有
する血圧測定の実現が必要である。
It is required in the field of non-disease medical care to perform continuous blood pressure measurement without load while performing daily life. In order to make this possible, it is necessary to realize blood pressure measurement with a small size such as an adhesive bandage type and sufficient measurement accuracy.

血圧測定としてカフ型が知られている。カフ型では、腕・指などに強い圧力を加えること
で血流を一旦止めて血圧測定を行う。このために、連続的な測定が難しい。また、強い圧
力を加える機構が必要であるために小型化することが難しい。
A cuff type is known as a blood pressure measurement. In the cuff type, blood pressure is measured by temporarily stopping the blood flow by applying a strong pressure to the arms and fingers. For this reason, continuous measurement is difficult. Further, since a mechanism for applying a strong pressure is required, it is difficult to reduce the size.

連続的な測定が可能な血圧測定としてトノメトリ方式が知られている。トノメトリ方式は
、人体にセンサを接触させて動脈内圧による皮膚の歪みを感知することで血圧測定を行う
A tonometry method is known as a blood pressure measurement capable of continuous measurement. In the tonometry method, blood pressure is measured by contacting a human body with a sensor to sense skin distortion due to intra-arterial pressure.

トノメトリ方式としてMEMS(Micro Electro Mechanical
System)圧力センサを利用したデバイスが製品化されている。この製品は、Si基
板に厚さが薄い部分を設けて、動脈内圧の変動により厚さが薄い部分を歪ませる。この歪
みによる電気抵抗の変化を用いて血圧測定を行う。
MEMS (Micro Electro Mechanical) as a tonometry method
(System) Devices utilizing pressure sensors have been commercialized. In this product, a thin portion is provided on the Si substrate, and the thin portion is distorted by fluctuations in the arterial pressure. Blood pressure is measured using the change in electrical resistance due to this strain.

特開2002−148132号公報JP 2002-148132 A

G. Pressman, P. Newgard: “A transducer for continuous external measurement of arterial blood pressure”, IEEE Trans Biomed Electro 10 73 (1963).G. Pressman, P. Newgard: “A transducer for continuous external measurement of arterial blood pressure”, IEEE Trans Biomed Electro 10 73 (1963). M. Lohndorf et al., ”Highly sensitive strain sensors based on magnetic tunneling junctions”J. Magn. Magn. Mater. 316, e223 (2007)M. Lohndorf et al., “Highly sensitive strain sensors based on magnetic tunneling junctions” J. Magn. Magn. Mater. 316, e223 (2007) D. Meyners et al., ”Characterization of magnetostrictive TMR pressure sensors by MOKE”, J. Appl. Phys. 105, 07C914 (2009)D. Meyners et al., “Characterization of magnetostrictive TMR pressure sensors by MOKE”, J. Appl. Phys. 105, 07C914 (2009)

しかしながら、トノメトリ方式では、センサが人体と広い範囲で理想的に接触していなけ
れば、歪みの感度が低下してしまう。このような場合、日常生活をしながら連続的に血圧
測定を行うことは難しい。
However, in the tonometry method, if the sensor is not ideally in contact with the human body over a wide range, the sensitivity of distortion is reduced. In such a case, it is difficult to continuously measure blood pressure during daily life.

そこで本発明は、高感度で連続的に圧力測定を行うことができるMEMS圧力センサを提供することを目的とする。
Then, an object of this invention is to provide the MEMS pressure sensor which can perform a pressure measurement continuously with high sensitivity.

本発明の一態様に係るMEMS圧力センサ支持体に支持される第1の領域と、前記第1の領域の内側であり撓むことで第1の方向に引っ張り応力が生じる第2の領域を有する基板と、前記第2の領域の一部に設けられた磁気抵抗効果素子とを備え、前記磁気抵抗効果素子は、前記基板上に設けられた第1の電極と、前記第1の電極上に設けられ、磁化が一方向に向いている磁化固着層と、前記磁化固着層上に設けられた非磁性層と、前記非磁性層上で、かつ前記磁化固着層上に対応する領域内に設けられ前記第1の方向及び前記第1の方向に垂直な第2の方向とは何れとも異なる方向を向いている可変の磁化を有する第1の磁化自由層と、前記第1の磁化自由層上に設けられた第2の電極とを備えることを特徴とする。
MEMS pressure sensor according to one embodiment of the present invention comprises a first region that is supported by the support member, the second region tensile stress in the first direction by bent there inside said first region a substrate having said a second magnetoresistance device provided in a partial region, the magnetoresistive effect element includes a first electrode provided on the substrate, the first on the electrode A magnetization pinned layer whose magnetization is directed in one direction, a nonmagnetic layer provided on the magnetization pinned layer, and a region on the nonmagnetic layer and corresponding to the magnetization pinned layer. A first magnetization free layer having a variable magnetization and oriented in a direction different from both the first direction and the second direction perpendicular to the first direction; and the first magnetization free layer And a second electrode provided on the top.

本発明の第1の実施形態に係る血圧センサを用いた図。The figure using the blood-pressure sensor which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on 1st Embodiment. 第1の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on 1st Embodiment. 第1の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on 1st Embodiment. 第1の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on 1st Embodiment. 第1の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on 1st Embodiment. 第1の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on 1st Embodiment. 最高血圧と最低血圧を説明する図。The figure explaining the maximum blood pressure and the minimum blood pressure. 磁化自由層の磁化の向きと血流方向を示す図。The figure which shows the direction of magnetization of a magnetization free layer, and a blood flow direction. MR素子の変形例を示す図。The figure which shows the modification of MR element. MR素子の変形例を示す図。The figure which shows the modification of MR element. MR素子の変形例を示す図。The figure which shows the modification of MR element. MR素子の変形例を示す図。The figure which shows the modification of MR element. MR素子の変形例を示す図。The figure which shows the modification of MR element. MR素子の変形例を示す図。The figure which shows the modification of MR element. 本発明の第2の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る血圧センサの動作原理を説明するための図。The figure for demonstrating the principle of operation of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 第2の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 2nd Embodiment. 本発明の第3の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on the 3rd Embodiment of this invention. 第3の実施形態に係る血圧センサの変形例を示す図。The figure which shows the modification of the blood pressure sensor which concerns on 3rd Embodiment. 本発明の第4の実施形態に係る血圧センサを示す図。The figure which shows the blood pressure sensor which concerns on the 4th Embodiment of this invention. MR素子の外部磁場に対する電気抵抗の測定結果を示す図。The figure which shows the measurement result of the electrical resistance with respect to the external magnetic field of MR element. MR素子の歪みに対する電気抵抗の測定結果を示す図。The figure which shows the measurement result of the electrical resistance with respect to distortion of MR element. 歪みの印加方向を説明する図。The figure explaining the application direction of distortion. 本発明の第5の実施形態に係る血圧測定システムを説明する図。The figure explaining the blood-pressure measurement system which concerns on the 5th Embodiment of this invention. 第5の実施形態に係る血圧測定システムを説明する図。The figure explaining the blood-pressure measurement system which concerns on 5th Embodiment. 第5の実施形態に係る血圧測定システムを説明する図。The figure explaining the blood-pressure measurement system which concerns on 5th Embodiment. 第5の実施形態に係る血圧測定システムを説明する図。The figure explaining the blood-pressure measurement system which concerns on 5th Embodiment. 第5の実施形態に係る血圧測定システムを説明する図。The figure explaining the blood-pressure measurement system which concerns on 5th Embodiment.

以下図面を参照して、本発明の各実施形態を説明する。同じ符号が付されているものは同
様のものを示す。なお、図面は模式的または概念的なものであり、各部分の厚みと幅との
関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、
同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合
もある。
(第1の実施形態)
Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals denote the same items. Note that the drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio coefficient of the size between the parts, and the like are not necessarily the same as actual ones. Also,
Even in the case of representing the same part, the dimensions and ratio coefficient may be represented differently depending on the drawings.
(First embodiment)

図1は、第1の実施形態に係る血圧センサ10を用いた図である。 FIG. 1 is a diagram using a blood pressure sensor 10 according to the first embodiment.

血圧センサ10は、血圧測定部位に設けられ、皮膚表面に接着するために絆創膏のような
形状の一部に設けられている。すなわち、皮膚上に接するように、血圧センサ10が配置
されている。血圧センサ10は、動脈血管が存在しているような皮膚の直下に配置される
。紙面に垂直方向が血流方向である。血流方向とは、血管が延在する方向を示す。皮膚表
面の近傍に動脈血管が存在しなければ、血圧測定が難しくなる。体表から脈動を検知でき
る部位(および体表下にある動脈)は、以下の通りである。
The blood pressure sensor 10 is provided at a blood pressure measurement site, and is provided in a part of a shape such as a bandage to adhere to the skin surface. That is, the blood pressure sensor 10 is disposed so as to contact the skin. The blood pressure sensor 10 is disposed directly under the skin where arterial blood vessels are present. The direction perpendicular to the paper surface is the direction of blood flow. The blood flow direction indicates the direction in which the blood vessel extends. If there are no arterial blood vessels near the skin surface, blood pressure measurement becomes difficult. The parts (and arteries below the body surface) where pulsation can be detected from the body surface are as follows.

内側上腕二頭筋溝(上腕動脈)、前腕外側下端で橈側手根屈筋腱と腕橈骨筋腱との間(橈
骨動脈)、前腕内側下端で尺側手根屈筋腱と浅指屈筋腱との間(尺骨動脈)、長母指伸筋
腱の尺側(第1背側中手動脈)、腋窩(腋窩動脈)、大腿三角部(大腿動脈)、下腿前面
の下部で前脛骨筋腱の外側(前脛骨動脈)、内果の後下部(後脛骨動脈)、長母指伸筋腱
の外側(足背動脈)、頚動脈三角(総頚動脈)、咬筋停止部の前(顔面動脈)、胸鎖乳突
筋停止部の後ろで僧帽筋起始部との間(後頭動脈)、外耳孔の前(浅側頭動脈)。よって
、血圧センサ10を配置する箇所は、上記の部位となる。すなわち、これらが血圧測定部
位に相当する。血圧センサ10はこれらの箇所の皮膚表面に貼り付ける。
The medial biceps sulcus (brachial artery), between the radial carpal flexor tendon and brachial peroneal tendon at the outer lower end of the forearm (radial artery), between the ulnar carpal flexor tendon and the superficial digital flexor tendon (Ulnar artery), ulnar side of the long extensor tendon (first dorsal metacarpal artery), axilla (axillary artery), femoral triangle (femoral artery), outside the front tibialis tendon at the lower front of the lower leg (Anterior tibial artery), posterior lower part of the internal capsule (posterior tibial artery), outer side of long thumb extensor tendon (foot dorsal artery), carotid artery triangle (common carotid artery), front of masseter stop (facial artery), thoracic chain Between the papillary muscle stop and the start of the trapezius muscle (occipital artery) and before the ear canal (superficial temporal artery). Therefore, the place where the blood pressure sensor 10 is arranged is the above-described part. That is, these correspond to blood pressure measurement sites. The blood pressure sensor 10 is attached to the skin surface at these locations.

図1に示すように、血管が径方向に対して拡張すると、皮膚が押し上げられ血圧として働
く。このとき、血圧が働く方向に対して垂直方向に皮膚は、引っ張り応力を受ける。それ
と同時に血圧センサ10にも引っ張り応力がある一方向(第1の方向)に働く。
As shown in FIG. 1, when the blood vessel expands in the radial direction, the skin is pushed up and works as blood pressure. At this time, the skin receives a tensile stress in a direction perpendicular to the direction in which the blood pressure works. At the same time, the blood pressure sensor 10 also works in one direction (first direction) where there is a tensile stress.

図2は、血圧センサ10を示す図である。 FIG. 2 is a diagram illustrating the blood pressure sensor 10.

血圧センサ10は、基板20上に電極30が設けられ、電極30上に磁化が一方向に向い
ている磁化固着層40が設けられている。磁化固着層40上には非磁性層50が設けられ
、非磁性層50上には磁化の向きが可変な磁化自由層60が設けられている。磁化自由層
60上には電極70が設けられている。磁化固着層40と磁化自由層60との配置が入れ
替わっても良い。磁化固着層40と磁化自由層60は強磁性体である。電極30、磁化固
着層40、非磁性層50、磁化自由層60、電極70を含む構成を磁気抵抗効果素子(以
下、MR素子と称する)15という。MR素子から、電極30、70を除いたものをMR
膜という。基板20と電極30との間にアルミ酸化物等の絶縁層を設けてもよい。
In the blood pressure sensor 10, an electrode 30 is provided on a substrate 20, and a magnetization fixed layer 40 whose magnetization is directed in one direction is provided on the electrode 30. A nonmagnetic layer 50 is provided on the magnetization pinned layer 40, and a magnetization free layer 60 having a variable magnetization direction is provided on the nonmagnetic layer 50. An electrode 70 is provided on the magnetization free layer 60. The arrangement of the magnetization pinned layer 40 and the magnetization free layer 60 may be switched. The magnetization pinned layer 40 and the magnetization free layer 60 are ferromagnetic materials. A configuration including the electrode 30, the magnetization fixed layer 40, the nonmagnetic layer 50, the magnetization free layer 60, and the electrode 70 is referred to as a magnetoresistive effect element (hereinafter referred to as an MR element) 15. MR element obtained by removing electrodes 30 and 70 from MR element
It is called a membrane. An insulating layer such as aluminum oxide may be provided between the substrate 20 and the electrode 30.

基板20には、絶縁体又は半導体等の材料を用いることができる。絶縁体の材料としては
、例えば、プラスチック材料であるポリイミド等を用いることができる。半導体の材料と
しては、例えばシリコン等を用いることができる。
A material such as an insulator or a semiconductor can be used for the substrate 20. As the material of the insulator, for example, a plastic material such as polyimide can be used. As the semiconductor material, for example, silicon can be used.

磁化固着層40は、強磁性体である。磁化固着層40の材料としては、例えばFeCo合
金、CoFeB合金、NiFe合金等を用いることができる。磁化固着層40の膜厚は、
例えば2nm〜6nmである。
The magnetization pinned layer 40 is a ferromagnetic material. As a material of the magnetization fixed layer 40, for example, an FeCo alloy, a CoFeB alloy, a NiFe alloy, or the like can be used. The thickness of the magnetization pinned layer 40 is
For example, it is 2 nm to 6 nm.

非磁性層50は、金属又は絶縁体を用いることができる。金属としては、例えば、Cu、
Au、Ag等を用いることができる。金属の場合、非磁性層50の膜厚は、例えば1nm
〜7nmである。絶縁体としては、例えば、マグネシウム酸化物(MgO等)、アルミ酸
化物(Al等)、チタン酸化物(TiO等)、亜鉛酸化物(ZnO等)を用いるこ
とができる。絶縁体の場合、非磁性層50の膜厚は、例えば0.6nm〜2.5nmであ
る。
The nonmagnetic layer 50 can use a metal or an insulator. Examples of the metal include Cu,
Au, Ag, or the like can be used. In the case of metal, the film thickness of the nonmagnetic layer 50 is, for example, 1 nm.
~ 7nm. As the insulator, for example, magnesium oxide (such as MgO), aluminum oxide (such as Al 2 O 3 ), titanium oxide (such as TiO), or zinc oxide (such as ZnO) can be used. In the case of an insulator, the film thickness of the nonmagnetic layer 50 is, for example, 0.6 nm to 2.5 nm.

磁化自由層60は、強磁性体である。磁化自由層60の材料としては、例えばFeCo合
金、NiFe合金等を用いることができる。他にも、Fe−Co−Si−B合金、λs>
100ppmを示すTb−M−Fe合金(Mは、Sm、Eu、Gd、Dy、Ho、Er)
、Tb−M1−Fe−M2合金(M1は、Sm、Eu、Gd、Dy、Ho、Er、M2は
、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta)、Fe−M3−M4−B合金
(M3は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta、M4は、Ce,Pr
,Nd,Sm,Tb,Dy,Er)、Ni、Al−Feやフェライト(Fe、(F
eCo))など)等を用いることができる。磁化自由層60の膜厚は、例えば2n
m以上である。
The magnetization free layer 60 is a ferromagnetic material. As a material of the magnetization free layer 60, for example, an FeCo alloy, a NiFe alloy, or the like can be used. In addition, Fe—Co—Si—B alloy, λs>
Tb-M-Fe alloy showing 100 ppm (M is Sm, Eu, Gd, Dy, Ho, Er)
Tb-M1-Fe-M2 alloy (M1 is Sm, Eu, Gd, Dy, Ho, Er, M2 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta), Fe-M3 -M4-B alloy (M3 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta, M4 is Ce, Pr
, Nd, Sm, Tb, Dy, Er), Ni, Al—Fe, and ferrite (Fe 3 O 4 , (F
eCo) 3 O 4 ) and the like. The film thickness of the magnetization free layer 60 is, for example, 2n
m or more.

磁化自由層60は、2層構造としてもよい。この場合、FeCo合金を積層して、次にF
e−Co−Si−B合金、λs>100ppmを示すTb−M−Fe合金(Mは、Sm、
Eu、Gd、Dy、Ho、Er)、Tb−M1−Fe−M2合金(M1は、Sm、Eu、
Gd、Dy、Ho、Er、M2は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,T
a)、Fe−M3−M4−B合金(M3は、Ti,Cr,Mn,Co,Cu,Nb,Mo
,W,Ta、M4は、Ce,Pr,Nd,Sm,Tb,Dy,Er)、Ni、Al−Fe
やフェライト(Fe、(FeCo))など)等から選択される材料を積層す
る。
The magnetization free layer 60 may have a two-layer structure. In this case, an FeCo alloy is laminated, and then F
e-Co-Si-B alloy, Tb-M-Fe alloy showing λs> 100 ppm (M is Sm,
Eu, Gd, Dy, Ho, Er), Tb-M1-Fe-M2 alloy (M1 is Sm, Eu,
Gd, Dy, Ho, Er, M2 are Ti, Cr, Mn, Co, Cu, Nb, Mo, W, T
a), Fe-M3-M4-B alloy (M3 is Ti, Cr, Mn, Co, Cu, Nb, Mo)
, W, Ta, M4 are Ce, Pr, Nd, Sm, Tb, Dy, Er), Ni, Al—Fe.
Or a material selected from ferrite (Fe 3 O 4 , (FeCo) 3 O 4 ), etc.) is laminated.

電極30、70には、例えば非磁性体であるAu、Cu、Ta、Al等を用いることがで
きる。他にも、電極30、70に軟磁性体の材料を用いることで、MR素子15に影響を
及ぼす外部からの磁気ノイズを低減することができる。軟磁性体の材料としては、例えば
パーマロイ(NiFe合金)や珪素鋼(FeSi合金)を用いることができる。MR素子
15は、電極30、70が電気的に短絡せぬようアルミ酸化物(例えばAl)やシ
リコン酸化物(例えばSiO)等の絶縁体で覆われている(図示せず)。
For the electrodes 30 and 70, for example, a non-magnetic material such as Au, Cu, Ta, or Al can be used. In addition, by using a soft magnetic material for the electrodes 30 and 70, external magnetic noise affecting the MR element 15 can be reduced. For example, permalloy (NiFe alloy) or silicon steel (FeSi alloy) can be used as the soft magnetic material. The MR element 15 is covered with an insulator such as aluminum oxide (eg, Al 2 O 3 ) or silicon oxide (eg, SiO 2 ) (not shown) so that the electrodes 30 and 70 are not electrically short-circuited. .

次に、血圧センサ10の動作原理について説明する。 Next, the operation principle of the blood pressure sensor 10 will be described.

血圧センサ10は、強磁性体が有する「逆磁歪効果」と、磁化固着層40、非磁性層50
、及び磁化自由層60の積層膜で発現する「MR効果」を応用したものである。
The blood pressure sensor 10 includes a “reverse magnetostrictive effect” of a ferromagnetic material, a magnetization pinned layer 40, and a nonmagnetic layer 50.
, And the “MR effect” that appears in the laminated film of the magnetization free layer 60.

血圧センサ10の一部を用いた「逆磁歪効果」及び「MR効果」について説明する。「M
R効果」は、磁化の向きの相対角度の変化を電極30及び電極70を用いて磁化固着層4
0、非磁性層50、磁化自由層60の積層方向に通電することで電気抵抗変化として読取
ることで発現する。すなわち、磁化自由層60の磁化の向きと引っ張り応力の方向とが異
なる方向であれば、逆磁歪効果によりMR効果を発現することができる。なお、MR効果
によって変化する電気抵抗量を「MR変化量」といい、MR変化量を電気抵抗値で除した
ものを「MR変化率」という。
The “inverse magnetostriction effect” and “MR effect” using a part of the blood pressure sensor 10 will be described. "M
The “R effect” refers to the change in the relative angle of the magnetization direction using the electrode 30 and the electrode 70 and the magnetization pinned layer 4.
0, the nonmagnetic layer 50, and the magnetization free layer 60 are expressed as a change in electrical resistance when energized in the stacking direction. That is, if the magnetization direction of the magnetization free layer 60 is different from the direction of the tensile stress, the MR effect can be exhibited by the inverse magnetostriction effect. The amount of electrical resistance that changes due to the MR effect is referred to as “MR change amount”, and the MR change amount divided by the electrical resistance value is referred to as “MR change rate”.

図3は、磁化固着層40及び磁化自由層60の磁化の方向と引っ張り応力の方向との関係
を示す図である。図3では、磁化固着層40、非磁性層50、及び磁化自由層60が示さ
れている。
FIG. 3 is a diagram illustrating the relationship between the magnetization direction of the magnetization pinned layer 40 and the magnetization free layer 60 and the direction of tensile stress. In FIG. 3, a magnetization pinned layer 40, a nonmagnetic layer 50, and a magnetization free layer 60 are shown.

図3(A)は、引っ張り応力が印加されていない状態を示す。磁化固着層40の磁化の向
きと磁化自由層60の磁化の向きは同一方向を向いている。
FIG. 3A shows a state where no tensile stress is applied. The magnetization direction of the magnetization pinned layer 40 and the magnetization direction of the magnetization free layer 60 are in the same direction.

図3(B)は、引っ張り応力が印加された状態を示す。併せて血流方向を示す。血流方向
と引っ張り応力が働く方向は直交している。引っ張り応力は磁化固着層40及び磁化自由
層60の磁化の向きに対して直交方向に印加されている。このとき、引っ張り応力が印加
された方向と同一方向になるように磁化自由層60の磁化は回転する。これを「逆磁歪効
果」という。さらに、磁化固着層40の磁化は一方向に固着されている。よって、磁化自
由層60の磁化が回転することで、磁化固着層40の磁化の向きと磁化自由層60の磁化
の向きとの相対角度が変化する。磁化固着層40の磁化の方向は一例として記載してあり
、必ずしも図と同じ方向でなくてもよい。
FIG. 3B shows a state in which a tensile stress is applied. The blood flow direction is also shown. The direction of blood flow and the direction in which tensile stress acts are orthogonal. The tensile stress is applied in a direction orthogonal to the magnetization directions of the magnetization pinned layer 40 and the magnetization free layer 60. At this time, the magnetization of the magnetization free layer 60 rotates so as to be in the same direction as the direction in which the tensile stress is applied. This is called “reverse magnetostriction effect”. Further, the magnetization of the magnetization pinned layer 40 is pinned in one direction. Therefore, the rotation of the magnetization of the magnetization free layer 60 changes the relative angle between the magnetization direction of the magnetization pinned layer 40 and the magnetization direction of the magnetization free layer 60. The magnetization direction of the magnetization pinned layer 40 is described as an example, and does not necessarily have to be the same direction as in the drawing.

逆磁歪効果は、強磁性体の磁歪定数の符号によって磁化の容易軸が変化する。大きな逆磁
歪効果を示す多くの材料は磁歪定数が正の符号を持つ。磁歪定数が正の符号である場合に
は、上述のように引っ張り応力が働く方向が磁化容易軸となる。つまり、磁化自由層60
の磁化が磁化容易軸の方向に回転することになる。
In the inverse magnetostriction effect, the easy axis of magnetization changes depending on the sign of the magnetostriction constant of the ferromagnetic material. Many materials exhibiting a large inverse magnetostriction effect have a positive sign for the magnetostriction constant. When the magnetostriction constant has a positive sign, the direction in which the tensile stress acts as described above is the easy magnetization axis. That is, the magnetization free layer 60
Will rotate in the direction of the easy axis of magnetization.

したがって、磁化自由層60の磁歪定数が正の符号の場合には、磁化自由層60の磁化の
方向を引っ張り応力が働く方向とは異なる方向に向けておく必要がある。
Therefore, when the magnetostriction constant of the magnetization free layer 60 has a positive sign, the magnetization direction of the magnetization free layer 60 needs to be directed in a direction different from the direction in which the tensile stress acts.

磁歪定数が負の符号の場合には、引っ張り応力が働く方向に垂直な方向が磁化容易軸とな
る。これを図3(C)に示す。磁歪定数が負の符号の場合には、磁化自由層60の磁化の
方向を引っ張り応力が働く方向に対して垂直な方向と異なる方向に向けておく必要がある
。磁化固着層40の磁化の方向は一例として記載してあり、必ずしも図と同じ方向でなく
てもよい。
When the magnetostriction constant has a negative sign, the direction perpendicular to the direction in which the tensile stress acts is the easy axis of magnetization. This is shown in FIG. When the magnetostriction constant has a negative sign, the magnetization direction of the magnetization free layer 60 needs to be directed in a direction different from the direction perpendicular to the direction in which the tensile stress acts. The magnetization direction of the magnetization pinned layer 40 is described as an example, and does not necessarily have to be the same direction as in the drawing.

図3(D)は、磁歪定数の符号が正と負の場合を併せて示した図である。血流方向に対し
、同一な方向又は直交する方向が磁化容易軸と一致する。
FIG. 3 (D) is a diagram showing a case where the sign of the magnetostriction constant is positive and negative. The same direction or a direction perpendicular to the direction of blood flow coincides with the easy axis of magnetization.

図3(E)は、磁化自由層60の磁化の方向と血管の血流方向とのなす角度と逆磁歪効果
に基づくエネルギーの大小を示す図である。磁化自由層60の磁化の方向と血流方向との
なす角度をθ(deg。degは「°」に相当)としている。縦軸がエネルギー、横軸が
θである。エネルギーが最小となる角度θが磁化容易軸に相当する。エネルギーが最大と
なる角度θが磁化困難軸である。磁化困難軸とは、磁化自由層60の磁化が向きにくい軸
のことをいう。
FIG. 3E is a diagram showing the magnitude of energy based on the angle formed by the magnetization direction of the magnetization free layer 60 and the blood flow direction of the blood vessel and the inverse magnetostriction effect. The angle between the magnetization direction of the magnetization free layer 60 and the blood flow direction is θ (deg. Deg is equivalent to “°”). The vertical axis is energy and the horizontal axis is θ. The angle θ at which the energy is minimum corresponds to the easy magnetization axis. The angle θ at which the energy is maximum is the hard axis. The magnetization difficult axis means an axis in which the magnetization of the magnetization free layer 60 is difficult to face.

磁化固着層40の磁化の方向と磁化自由層60の磁化の方向とがなす角度の相対変化量を
MR変化量という。
The relative change amount of the angle formed by the magnetization direction of the magnetization pinned layer 40 and the magnetization direction of the magnetization free layer 60 is referred to as an MR change amount.

MR変化量は、磁化固着層40の磁化の方向と磁化自由層60の磁化の方向とがなす角度
が大きいほど大きい。したがって、引っ張り応力が印加されていない状態で磁化自由層6
0の磁化が磁化困難軸を向くとMR変化量が最大になる。
The MR change amount increases as the angle between the magnetization direction of the magnetization pinned layer 40 and the magnetization direction of the magnetization free layer 60 increases. Therefore, the magnetization free layer 6 in a state where no tensile stress is applied.
When the magnetization of 0 is directed to the hard axis, the MR variation is maximized.

磁化自由層60の磁化は左右どちらかに回転する。左回り回転をする確率と右回り回転す
る確率は同程度と考えられる。この場合、実質的にはMR変化量は2つの値をとることに
なる。このため、磁化自由層60の磁化は、磁化困難軸から少し傾けておく。すなわち、
磁化自由層60の磁歪定数が正の符号の場合には、磁化自由層60の磁化の向きを血流方
向と平行な方向とならないようにする。磁化自由層60の磁歪定数が負の符号の場合には
、磁化自由層60の磁化の方向を血流方向に対して垂直な方向とならないようにする。
The magnetization of the magnetization free layer 60 rotates to the left or right. The probability of rotating counterclockwise and the probability of rotating clockwise are considered to be comparable. In this case, the MR change amount substantially takes two values. For this reason, the magnetization of the magnetization free layer 60 is slightly tilted from the magnetization difficult axis. That is,
When the magnetostriction constant of the magnetization free layer 60 has a positive sign, the magnetization direction of the magnetization free layer 60 is prevented from being parallel to the blood flow direction. When the magnetostriction constant of the magnetization free layer 60 has a negative sign, the magnetization direction of the magnetization free layer 60 is prevented from being perpendicular to the blood flow direction.

つまり、引っ張り応力が印加されていない状態では、磁化自由層60の磁化の方向を磁化
容易軸及び磁化困難軸と平行にならないようにする。したがって、磁化自由層60の磁歪
定数の符号によらず、血流方向に対して垂直又は平行とならないように磁化自由層60の
磁化を弱く固着しておくことが必要である。
That is, in a state where no tensile stress is applied, the magnetization direction of the magnetization free layer 60 is prevented from being parallel to the easy axis and the hard axis. Therefore, regardless of the sign of the magnetostriction constant of the magnetization free layer 60, it is necessary to weakly fix the magnetization of the magnetization free layer 60 so as not to be perpendicular or parallel to the blood flow direction.

磁化自由層60の磁歪定数が正の符号の場合には、図3(E)におけるθを10°から4
5°、135°から170°、190°から225°、315°から350°にすると、
磁化回転量を多くしMR変化量を大きくすることが出来る。磁化自由層60の磁歪定数が
負の符号の場合には、図3(E)におけるθを45°から80°、100°から135°
、225°から260°、280°から315°にすると、磁化回転量を多くしMR変化
量を大きくすることが出来る。
When the magnetostriction constant of the magnetization free layer 60 has a positive sign, θ in FIG.
5 °, 135 ° to 170 °, 190 ° to 225 °, 315 ° to 350 °,
The amount of MR rotation can be increased by increasing the amount of magnetization rotation. When the magnetostriction constant of the magnetization free layer 60 has a negative sign, θ in FIG. 3E is 45 ° to 80 °, and 100 ° to 135 °.
When the angle is changed from 225 ° to 260 °, from 280 ° to 315 °, the amount of magnetization rotation can be increased and the MR change amount can be increased.

血圧センサー10で血圧を測定する場合、血圧センサー10が血管から受ける圧力は、脈
の動きに合わせて最高血圧時と最低血圧時のそれぞれの状態によって変わる。最高血圧の
ときには、皮膚表面に対して引っ張り応力が強く働く。最低血圧のときには、皮膚表面に
対して引っ張り応力が弱く働く。この引っ張り応力の強弱が脈の周期振動に相当する。
When blood pressure is measured by the blood pressure sensor 10, the pressure received from the blood vessel by the blood pressure sensor 10 varies depending on the state of the maximum blood pressure and the minimum blood pressure in accordance with the movement of the pulse. At the highest blood pressure, tensile stress acts strongly on the skin surface. At the lowest blood pressure, the tensile stress acts weakly on the skin surface. The strength of the tensile stress corresponds to the periodic vibration of the pulse.

血圧センサ10が血圧を測定できているかどうかは、脈の周期振動に伴う血圧の高低の変
化によって判断できる。そのうえで、血圧センサ10又はそれに付属の制御部が最高血圧
と最低血圧の値を算出する。
Whether or not the blood pressure sensor 10 can measure the blood pressure can be determined by a change in the blood pressure associated with the periodic vibration of the pulse. In addition, the blood pressure sensor 10 or a control unit attached thereto calculates the values of the maximum blood pressure and the minimum blood pressure.

図4は、最高血圧時と最低血圧時を説明する図である。図4は、手首に血圧センサ10を
貼り付けた場合の例を示している。図4の(1)に示すように、動脈血管上に重なるよう
に、基板上に形成された血圧センサ10を配置する。
FIG. 4 is a diagram for explaining the maximum blood pressure and the minimum blood pressure. FIG. 4 shows an example when the blood pressure sensor 10 is attached to the wrist. As shown in (1) of FIG. 4, the blood pressure sensor 10 formed on the substrate is disposed so as to overlap the arterial blood vessel.

図4の(2)は、基板(図4ではフレキシブル基板を想定している)上にMR素子が配置
されている様子を示す。動脈血管の外径に沿うように基板が曲がっている。引っ張り応力
は、血流方向に対して略垂直方向に働く。
(2) of FIG. 4 shows a state where MR elements are arranged on a substrate (a flexible substrate is assumed in FIG. 4). The substrate is bent along the outer diameter of the arterial blood vessel. The tensile stress works in a direction substantially perpendicular to the blood flow direction.

図4の(3)は、最高血圧状態と最低血圧状態において、血流方向から基板と動脈血管を
眺めた図である。最高血圧状態では、動脈血管が最大に膨張した状態となるので基板に働
く引っ張り応力の大きさが大きくなる。最低血圧状態では、動脈血管の膨張が抑えられた
状態となるので基板に働く引っ張り応力の大きさは小さくなる。
(3) in FIG. 4 is a view of the substrate and the arterial blood vessel as viewed from the direction of blood flow in the systolic blood pressure state and the systolic blood pressure state. In the systolic blood pressure state, the arterial blood vessel is in a maximally inflated state, so that the tensile stress acting on the substrate increases. In the diastolic blood pressure state, arterial blood vessel expansion is suppressed, so that the tensile stress acting on the substrate is reduced.

図4の(4)は、最高血圧状態と最低血圧状態を検知する場合のMR素子の配置を示す図
である。磁歪定数が正の符号である場合について説明する。血圧が印加されていないとき
には、磁化自由層60の磁化は、引っ張り応力がかかる方向以外の方向に向けられている
。最高血圧が印加されると、基板は大きく歪み、磁化自由層の磁化は大きく回転する。最
低血圧が印加されると、基板は最高血圧時よりも小さく歪み、磁化自由層の磁化は、初期
状態と最高血圧状態の中間の角度を取る。
(4) of FIG. 4 is a diagram showing the arrangement of the MR elements when detecting the systolic blood pressure state and the systolic blood pressure state. A case where the magnetostriction constant is a positive sign will be described. When no blood pressure is applied, the magnetization of the magnetization free layer 60 is directed in a direction other than the direction in which the tensile stress is applied. When the maximum blood pressure is applied, the substrate is greatly distorted, and the magnetization of the magnetization free layer is greatly rotated. When the minimum blood pressure is applied, the substrate is distorted to a smaller extent than at the maximum blood pressure, and the magnetization of the magnetization free layer takes an intermediate angle between the initial state and the maximum blood pressure state.

血管が明瞭でない場合がある。一例として後頭動脈などで血圧測定を行う場合であるが、
手首の橈骨動脈などでも完全な血管を見つけるのは難しい。これに対し、血圧センサのフ
レキシブル基板が、歪異方性を有していれば、問題がない。具体的には、皮膚に引っ張り
応力が印加された場合、基板が必ず指定した方向に引っ張られるという特性を付与し、そ
の方向と磁化自由層60の磁化の向きを設定する。概念図を図5(A)に示す。これの具
体的な歪異方性の付与方法は、フレキシブル基板を長方形や楕円など、長軸と短軸を有す
る形状とすればよい。概念図を図5(B)に示す。基板の形状が楕円形状の場合は、長軸
方向が長手方向に相当する。基板の形状が長方形の場合は長辺方向が長手方向に相当する
。長手方向は血流方向と交わることが好ましい。
Blood vessels may not be clear. One example is when measuring blood pressure in the occipital artery, etc.
It is difficult to find complete blood vessels in the radial artery of the wrist. On the other hand, there is no problem if the flexible substrate of the blood pressure sensor has strain anisotropy. Specifically, when a tensile stress is applied to the skin, the substrate is always pulled in a specified direction, and the direction and the magnetization direction of the magnetization free layer 60 are set. A conceptual diagram is shown in FIG. As a specific method for imparting strain anisotropy, the flexible substrate may have a shape having a major axis and a minor axis, such as a rectangle or an ellipse. A conceptual diagram is shown in FIG. When the shape of the substrate is elliptical, the major axis direction corresponds to the longitudinal direction. When the shape of the substrate is rectangular, the long side direction corresponds to the longitudinal direction. The longitudinal direction preferably intersects with the blood flow direction.

非磁性層50が金属の場合は、GMR(Giant magnetoresistanc
e)効果が発現し、絶縁体の場合はTMR(Tunnel magnetoresist
ance)効果が発現する。本実施形態及び以下説明する第2の実施形態では、積層膜の
積層方向に対して通電するCPP(Current perpendicular to
plane)−GMR効果を用いる。通電は、電極30と電極70間で行われる。TM
R効果を用いる場合でも、同様に積層膜の積層方向に対して通電する。
In the case where the nonmagnetic layer 50 is a metal, GMR (Giant magnetoresistant)
e) An effect is exhibited, and in the case of an insulator, TMR (Tunnel magnetistist)
ance) effect is manifested. In the present embodiment and the second embodiment to be described below, a CPP (Current perpendental to) is energized in the stacking direction of the stacked films.
plane) -GMR effect is used. Energization is performed between the electrode 30 and the electrode 70. TM
Even when the R effect is used, current is applied in the same way in the stacking direction of the stacked films.

血圧を測定するには、例えば予め被測定者から血圧を測定することで蓄積されたデータと
そのときのMR変化率との相関を用いることで血圧変動を把握することができる。このこ
とについては後で説明する。
(変形例1)
In order to measure the blood pressure, for example, the blood pressure fluctuation can be grasped by using the correlation between the data accumulated by measuring the blood pressure from the subject in advance and the MR change rate at that time. This will be described later.
(Modification 1)

図6は、第1の実施形態に係るMR素子15の変形例を示す図である。電極は省略してい
る。第1の実施形態で説明したのと同様の構成についての説明は省略する。
FIG. 6 is a view showing a modification of the MR element 15 according to the first embodiment. The electrodes are omitted. A description of the same configuration as that described in the first embodiment is omitted.

図6(A)に示すMR素子15は、下地層80上に、反強磁性層90、磁化固着層40、
非磁性層50、磁化自由層60、保護層100が順に設けられている。この構造は、ボト
ム型スピンバルブ膜と呼ばれる。
The MR element 15 shown in FIG. 6A has an antiferromagnetic layer 90, a pinned magnetic layer 40, an underlayer 80,
The nonmagnetic layer 50, the magnetization free layer 60, and the protective layer 100 are provided in this order. This structure is called a bottom type spin valve film.

下地層80は、下地層80上に積層される膜の結晶配向性を高めるものである。下地層8
0の材料としては、例えば、基板との馴染み易いアモルファスのTaや、その上の層の結
晶配向性を向上させる結晶質Ru、NiFe、Cu等を用いることができる。アモルファ
スTaと、結晶質Ru、NiFe、Cu等の積層とするとぬれ性と結晶配向性を両立でき
る。下地層80の膜厚は、例えば0.5nm〜5nmである。
The underlayer 80 is for increasing the crystal orientation of the film laminated on the underlayer 80. Underlayer 8
As the material of 0, for example, amorphous Ta that is easily compatible with the substrate, crystalline Ru, NiFe, Cu, or the like that improves the crystal orientation of the layer thereon can be used. When amorphous Ta is laminated with crystalline Ru, NiFe, Cu or the like, both wettability and crystal orientation can be achieved. The film thickness of the foundation layer 80 is, for example, 0.5 nm to 5 nm.

保護層100は、MR素子15を製造する際のダメージからMR素子15を保護する。保
護膜100の材料としては、例えば、Cu、Ta、Ru等を用いることができる。保護膜
100の膜厚は、例えば1nm〜20nmである。
The protective layer 100 protects the MR element 15 from damage when the MR element 15 is manufactured. As a material of the protective film 100, for example, Cu, Ta, Ru, or the like can be used. The film thickness of the protective film 100 is, for example, 1 nm to 20 nm.

図6(B)に示すMR素子15は、下地層80上に、反強磁性層90、磁化固着層110
、反平行結合層120、磁化固着層40、非磁性層50、磁化自由層60、保護層100
が順に設けられている。この構造は、ボトム型シンセティックバルブ膜と呼ばれ、磁化固
着層40の磁化の固着力を強めることができる。
The MR element 15 shown in FIG. 6B has an antiferromagnetic layer 90 and a magnetization pinned layer 110 on an underlayer 80.
, Antiparallel coupling layer 120, magnetization pinned layer 40, nonmagnetic layer 50, magnetization free layer 60, protective layer 100
Are provided in order. This structure is called a bottom-type synthetic valve film, and can increase the magnetization fixing force of the magnetization fixed layer 40.

磁化固着層110は、反強磁性層90からの交換結合によって磁化が一方向に固着される
。磁化固着層110に用いる材料は、磁化固着層40と同様である。磁化固着層110の
膜厚は、磁化固着層40の磁気膜厚(飽和磁化Bsと膜厚tの積、Bst)と概ね同じに
なるように作製する。例えば2nm〜6nmである。
The magnetization pinned layer 110 is pinned in one direction by exchange coupling from the antiferromagnetic layer 90. The material used for the magnetization pinned layer 110 is the same as that for the magnetization pinned layer 40. The thickness of the magnetization pinned layer 110 is made to be substantially the same as the magnetic film thickness of the magnetization pinned layer 40 (the product of the saturation magnetization Bs and the film thickness t, Bst). For example, it is 2 nm to 6 nm.

反平行結合層120は、磁化固着層40の磁化と磁化固着層110の磁化とを反平行に結
合させる。よって、反強磁性層90からの交換結合エネルギーが一定でも、磁化固着層4
0の磁化の固着磁場を強めることができる。したがって、電子機器から生じる磁気ノイズ
に対する影響を低減できる。反平行結合層120の材料としては、例えばRu、Ir等を
用いることができる。反平行結合層120の膜厚は、例えば0.8nm〜1nmである。
The antiparallel coupling layer 120 couples the magnetization of the magnetization pinned layer 40 and the magnetization of the magnetization pinned layer 110 in antiparallel. Therefore, even if the exchange coupling energy from the antiferromagnetic layer 90 is constant, the magnetization pinned layer 4
The fixed magnetic field with zero magnetization can be strengthened. Therefore, the influence on the magnetic noise generated from the electronic device can be reduced. As a material of the antiparallel coupling layer 120, for example, Ru, Ir, or the like can be used. The film thickness of the antiparallel coupling layer 120 is, for example, 0.8 nm to 1 nm.

本変形例のMR素子15は、図7(A)に示すように、下地層80上に、磁化自由層60
、非磁性層50、磁化固着層40、反強磁性層90、保護層100を順に積層したトップ
型スピンバルブ膜とすることもできる。
As shown in FIG. 7A, the MR element 15 of this modification has a magnetization free layer 60 on an underlayer 80.
In addition, a top type spin valve film in which the nonmagnetic layer 50, the magnetization pinned layer 40, the antiferromagnetic layer 90, and the protective layer 100 are stacked in this order may be used.

本変形例のMR素子15は、図7(B)に示すように、下地層80上に磁化自由層60、
非磁性層50、磁化固着層40、反平行結合層120、磁化固着層110、反強磁性層9
0、保護層100を順に積層したトップ型シンセティックスピンバルブ膜とすることもで
きる。トップ型スピンバルブ膜及びトップ型シンセティックスピンバルブ膜を構成する層
は、ボトム型スピンバルブ膜及びボトム型シンセティックスピンバルブ膜と同様であるの
で説明は省略する。
As shown in FIG. 7B, the MR element 15 of the present modification has a magnetization free layer 60 on the underlayer 80,
Nonmagnetic layer 50, magnetization pinned layer 40, antiparallel coupling layer 120, magnetization pinned layer 110, antiferromagnetic layer 9
A top-type synthetic spin-valve film in which 0 and a protective layer 100 are sequentially stacked can also be used. The layers constituting the top-type spin valve film and the top-type synthetic spin-valve film are the same as the bottom-type spin-valve film and the bottom-type synthetic spin-valve film, and thus description thereof is omitted.

磁化自由層60の磁化を引っ張り応力と異なる方向に向けておく方法として、磁化固着層
40の磁化との層間結合を用いる方法がある。非磁性層50が金属の場合には3nm以下
、絶縁体の場合は1.5nm以下で、両者の磁化は平行に揃うように層間結合が働く。し
たがって、磁化固着層40の磁化を引っ張り応力と異なる方向に固着することによって、
磁化自由層60の磁化を弱いエネルギーで同じ方向に向けることが出来る。
As a method of directing the magnetization of the magnetization free layer 60 in a direction different from the tensile stress, there is a method of using interlayer coupling with the magnetization of the magnetization pinned layer 40. When the nonmagnetic layer 50 is a metal, it is 3 nm or less, and when it is an insulator, it is 1.5 nm or less. Interlayer coupling works so that the magnetizations of both are aligned in parallel. Therefore, by fixing the magnetization of the magnetization pinned layer 40 in a direction different from the tensile stress,
The magnetization of the magnetization free layer 60 can be directed in the same direction with weak energy.

また、磁化自由層60をスパッタ装置で成膜する際に、磁場を印加することによっても磁
化自由層60の磁化を一方向に向けておくことが出来る。成膜時の磁場の方向に磁化が向
きやすくなるので、引っ張り応力と異なる方向に磁場を印加しながらスパッタ法で成膜す
ることが好ましい。
(変形例2)
Further, when the magnetization free layer 60 is formed by a sputtering apparatus, the magnetization of the magnetization free layer 60 can be directed in one direction by applying a magnetic field. Since magnetization is easily directed in the direction of the magnetic field during film formation, it is preferable to form the film by sputtering while applying a magnetic field in a direction different from the tensile stress.
(Modification 2)

図8は、第1の実施形態に係るMR素子15の変形例を示す図である。電極は省略してい
る。第1の実施形態で説明したのと同様の構成についての説明は省略する。
FIG. 8 is a view showing a modification of the MR element 15 according to the first embodiment. The electrodes are omitted. A description of the same configuration as that described in the first embodiment is omitted.

図8(A)は、MR素子15の上面図であって、磁化自由層60が示されている。図8(
B)は、MR素子15の断面図であって、磁化固着層40、非磁性層50、磁化自由層6
0が示されている。
FIG. 8A is a top view of the MR element 15 showing the magnetization free layer 60. FIG.
B) is a cross-sectional view of the MR element 15, and includes a magnetization pinned layer 40, a nonmagnetic layer 50, and a magnetization free layer 6.
0 is shown.

図8(A)に示すように、MR素子15は、積層方向に対して垂直な方向(面内方向)に
おいて、長手方向を有する長手形状である。図8(A)に示すように、磁化自由層60を
上面から眺めた形状が矩形状である場合の一辺の長さをそれぞれX、Yとする。このとき
Yの方がXよりも長い。
As shown in FIG. 8A, the MR element 15 has a longitudinal shape having a longitudinal direction in a direction (in-plane direction) perpendicular to the stacking direction. As shown in FIG. 8A, the lengths of one side when the shape of the magnetization free layer 60 viewed from the top surface is rectangular are X and Y, respectively. At this time, Y is longer than X.

このように、磁化自由層60を長手方向を有する形状とすることで、形状磁気異方性によ
って磁化自由層60の磁化が長手方向に向く。これは、その方が静磁エネルギーが小さく
なるためである。
Thus, by making the magnetization free layer 60 into a shape having a longitudinal direction, the magnetization of the magnetization free layer 60 is oriented in the longitudinal direction by the shape magnetic anisotropy. This is because the magnetostatic energy is smaller in that direction.

MR素子15は、図8(C)のように、上面から眺めた形状が長軸・短軸を有する楕円形
状であってもよい。この場合も、上記したように、磁化自由層60の磁化が長軸方向(長
手方向)に対して向く。図8(D)は、MR素子15の断面図を示している。
As shown in FIG. 8C, the MR element 15 may have an elliptical shape having a major axis and a minor axis as viewed from above. Also in this case, as described above, the magnetization of the magnetization free layer 60 is oriented with respect to the major axis direction (longitudinal direction). FIG. 8D shows a cross-sectional view of the MR element 15.

このようにすることで、磁化自由層60の磁化を一方向に弱く固着することができる。よ
って、磁化自由層60の磁化の向きMR素子15に印加される引っ張り応力の向きを異な
る方向にすることができる。
In this way, the magnetization of the magnetization free layer 60 can be weakly fixed in one direction. Therefore, the direction of magnetization of the magnetization free layer 60 can be set to different directions of tensile stress applied to the MR element 15.

図8では長方形と楕円形を例示したが、長手方向を有する長手形状であれば、同様に磁化
自由層60の磁化の向きを引っ張り応力と異なる方向に向けることができる。
In FIG. 8, a rectangle and an ellipse are illustrated, but if the longitudinal shape has a longitudinal direction, the magnetization direction of the magnetization free layer 60 can be similarly directed to a direction different from the tensile stress.

次に、本変形例に係るMR素子15を用いた血圧センサ10の製造方法について説明する
Next, a method for manufacturing the blood pressure sensor 10 using the MR element 15 according to this modification will be described.

基板20は、Siやガラスからなる基板、フレキシブルなプラスチック材料からなる基板
、金属である軟磁性体からなる基板などが挙げられる。基板20に高い弾性率を持たせる
ことで撓みやすく出来、低い剛性率を持たせることで壊れにくく出来る。これにより撓み
やすい基板を得、圧力に対して歪を大きく得る。
Examples of the substrate 20 include a substrate made of Si or glass, a substrate made of a flexible plastic material, and a substrate made of a soft magnetic material that is a metal. By giving the substrate 20 a high elastic modulus, it can be easily bent, and by giving a low rigidity, it is difficult to break. As a result, a flexible substrate is obtained, and the strain is increased with respect to the pressure.

Siやガラス、金属である軟磁性体からなる基板の場合、MR素子15の配置される部分
を薄膜化することで、撓みやすくすることが出来る。Si基板の薄膜化は、後に説明する
MR素子作成の後、RIE(Reactive Ion Etching)による選択性
エッチングなどで行う。
In the case of a substrate made of a soft magnetic material such as Si, glass, or metal, the portion where the MR element 15 is disposed can be made thin to facilitate bending. The thinning of the Si substrate is performed by, for example, selective etching by RIE (Reactive Ion Etching) after creating an MR element to be described later.

フレキシブルなプラスチック材料からなる基板は、Siやガラスなどの固い基板の上にこ
れらを塗布や成膜・合成によって形成する。その上にMR素子を作成し、その後Siやガ
ラスからなる固い基板から剥離する。剥離の前に固定支持部を設けることで、フレキシブ
ルなプラスチック材料からなる基板を後の工程でハンドリングしやすくなる。また、フレ
キシブルなプラスチック材料からなる基板を撓まない厚さで作成し、後でMR素子15の
配置された部分を撓む厚さまで薄膜化することで形成しても良い。
A substrate made of a flexible plastic material is formed on a hard substrate such as Si or glass by coating, film formation, or synthesis. An MR element is formed thereon, and then peeled off from a hard substrate made of Si or glass. By providing the fixed support portion before peeling, it becomes easy to handle a substrate made of a flexible plastic material in a later step. Alternatively, a substrate made of a flexible plastic material may be formed with a thickness that does not bend, and a portion where the MR element 15 is disposed later may be thinned to a thickness that allows bending.

フレキシブルなプラスチック基板に要求される特性を、以下に説明する。一つ目は、給水
率・透湿率である。プラスチック基板は、Siやガラス基板ではほぼゼロであった給水率
・透湿率が、MR素子作成上無視できない値を持つ。無視できない一つ目の理由は、真空
装置内での放出ガスの問題である。基板は、MR素子作成中、電極、MR膜、などを成膜
する度に成膜装置の真空チャンバーに入れる。MR膜の成膜装置では、真空度が10−9
Torr台以下であるため、フレキシブルなプラスチック基板からの放出ガス量を抑制す
ることが必要となる。成膜装置に入れる前に事前焼きだしを行うこと、あるいはマルチチ
ャンバーの成膜装置の準備室にヒーターを設けで、成膜室に入れる前に焼きだしを行うこ
と、が有効である。給水率・透湿率を無視できない二つ目の理由は、基板の変形である。
基板変形量が大きいと、微細なMR素子を形成することが出来ない。そこで、給水率・透
湿率の出来るだけ小さい材料を選ぶことが重要である。
The characteristics required for a flexible plastic substrate will be described below. The first is water supply rate and moisture permeability. The plastic substrate has a water supply rate and moisture permeability that are almost zero for Si and glass substrates, and cannot be ignored for MR element production. The first reason that cannot be ignored is the problem of outgassing in the vacuum system. The substrate is placed in a vacuum chamber of a film forming apparatus each time an electrode, an MR film, or the like is formed during MR element formation. In the MR film forming apparatus, the degree of vacuum is 10 −9.
Since it is below the Torr level, it is necessary to suppress the amount of gas released from the flexible plastic substrate. It is effective to perform pre-baking before entering the film forming apparatus, or to perform baking before entering the film forming chamber by providing a heater in the preparation chamber of the multi-chamber film forming apparatus. The second reason why the water supply rate and moisture permeability cannot be ignored is the deformation of the substrate.
If the amount of substrate deformation is large, a fine MR element cannot be formed. Therefore, it is important to select a material with as low a water supply rate and moisture permeability as possible.

プラスチック基板に要求される二つ目の特性は、機械的強度である。血圧センサでは血管
の収縮・拡大に沿うように、基板が柔軟に撓む。このことから、弾性率が高いもの、たと
えば2から15000MPa、好ましくは50MPa以上が望まれる。さらに、使用時に壊れ
ない強度の指標として、引っ張り強度、破断伸び係数がある。引っ張り強度は10から数
百MPaがよい。破断伸び係数は、1%から1000%、好ましくは400MPa以下が
よい。
The second characteristic required for plastic substrates is mechanical strength. In the blood pressure sensor, the substrate flexes flexibly along the contraction / expansion of the blood vessel. For this reason, a material having a high elastic modulus, for example, 2 to 15000 MPa, preferably 50 MPa or more is desired. Furthermore, there are tensile strength and elongation at break as indices of strength that does not break during use. Tensile strength is preferably 10 to several hundred MPa. The elongation at break is 1% to 1000%, preferably 400 MPa or less.

プラスチック基板に要求される三つ目の特性は、耐熱性である。MR膜は、磁化固着層の
磁化を一方向に固着するために、磁場中熱処理が必要である。この温度に耐えうるプラス
チック材料が必要となる。この指標は、線膨張係数であり、これが小さいほど熱で基板に
掛かる応力を小さくすることが出来る。MR素子作成工程では、300℃程度の熱処理が必
要となる。300℃でも線膨張係数が十分小さい基板が必要である。
A third characteristic required for plastic substrates is heat resistance. The MR film requires heat treatment in a magnetic field in order to fix the magnetization of the magnetization pinned layer in one direction. A plastic material that can withstand this temperature is required. This index is a linear expansion coefficient, and the smaller this is, the smaller the stress applied to the substrate by heat. In the MR element production process, heat treatment at about 300 ° C. is required. A substrate having a sufficiently small linear expansion coefficient is required even at 300 ° C.

以上で述べた要求特性を鑑みると、フレキシブルなプラスチック基板として、ポリイミド
基板、パリレン基板、などが良い。
In view of the required characteristics described above, a polyimide substrate, a parylene substrate, or the like is preferable as the flexible plastic substrate.

基板20上にスパッタ法により約500nmのアルミ酸化物を積層することで絶縁層を形
成する。
An insulating layer is formed by laminating an aluminum oxide of about 500 nm on the substrate 20 by sputtering.

絶縁層上にレジストをスピンコート法で塗布し、フォトリソグラフィーによりレジストを
パターンニングし、レジストの一部を除去する。
A resist is applied onto the insulating layer by a spin coat method, and the resist is patterned by photolithography to remove a part of the resist.

RIE(Reactive Ion Etching)により、レジストが除去された部
分の絶縁層を除去することで、基板20の一部を露出させる。
A portion of the substrate 20 is exposed by removing the portion of the insulating layer from which the resist has been removed by RIE (Reactive Ion Etching).

基板20が絶縁層から露出した部分にマスクを用いてスパッタ法によりTa(5nm)/
Cu(400nm)/Ta(20nm)を積層することで電極30を形成する。なお、括
弧書きは膜厚を示す。‘/’は積層を示し、A/B/Cと記載された場合、A層上に、B
層、C層が積層されていることを示す。
A portion of the substrate 20 exposed from the insulating layer is masked with Ta (5 nm) /
The electrode 30 is formed by stacking Cu (400 nm) / Ta (20 nm). Note that the parenthesis indicates the film thickness. '/' Indicates a stack, and when A / B / C is written,
It shows that the layer and the C layer are laminated.

CMP(Chemical Mechanical Polishing)を行って絶縁
層の表面を平坦化することで、電極30の表面を絶縁層から露出させる。
The surface of the electrode 30 is exposed from the insulating layer by planarizing the surface of the insulating layer by performing CMP (Chemical Mechanical Polishing).

絶縁層から露出した電極30上にマスクを用いてスパッタ法によりMR膜を約40nm積
層する。
An MR film of about 40 nm is stacked on the electrode 30 exposed from the insulating layer by sputtering using a mask.

マスクを用いてMR膜を幅が2μmから5μmの複数の線状の溝を形成する。 A plurality of linear grooves having a width of 2 μm to 5 μm are formed in the MR film using a mask.

絶縁層、MR膜上にシリコン酸化物層をスパッタ法により約200nm積層する。 A silicon oxide layer is deposited on the insulating layer and the MR film by sputtering to a thickness of about 200 nm.

シリコン酸化物層上にレジストをスピンコート法で塗布し、MR膜の溝が形成された方向
に対して垂直方向においてMR膜の上面上のレジストを1.5μmから5μmの範囲で除
去することでMR膜の形状を規定する。
A resist is applied onto the silicon oxide layer by spin coating, and the resist on the upper surface of the MR film is removed in a range of 1.5 μm to 5 μm in a direction perpendicular to the direction in which the groove of the MR film is formed. Defines the shape of the MR film.

RIEとイオンミリングにより、レジストが除去された部分のシリコン酸化物層を除去す
ることで、MR膜の上面を露出させる。
By removing the silicon oxide layer where the resist has been removed by RIE and ion milling, the upper surface of the MR film is exposed.

磁化固着層40の磁化を一方向に向けるための磁場中熱処理は、MR素子作製後でも、M
R膜成膜直後であっても良い。反強磁性層がIrMnの場合、7kOeの磁場中において
、280℃、4時間の熱処理を行った。
The heat treatment in the magnetic field for directing the magnetization of the magnetization pinned layer 40 in one direction is performed even after the MR element is manufactured.
It may be immediately after the R film is formed. When the antiferromagnetic layer was IrMn, heat treatment was performed at 280 ° C. for 4 hours in a magnetic field of 7 kOe.

シリコン酸化物層から露出したMR膜の上面にマスクを用いてAuを約100nm積層し
て電極70を形成して血圧センサ10を製造する。その後、電極70上にAuパット等を
形成する。
(変形例3)
The blood pressure sensor 10 is manufactured by forming an electrode 70 by laminating about 100 nm of Au on the upper surface of the MR film exposed from the silicon oxide layer using a mask. Thereafter, an Au pad or the like is formed on the electrode 70.
(Modification 3)

図9は、第1の実施形態に係るMR素子15の変形例を示す図である。電極は省略してい
る。第1の実施形態で説明したのと同様の構成についての説明は省略する。
FIG. 9 is a view showing a modification of the MR element 15 according to the first embodiment. The electrodes are omitted. A description of the same configuration as that described in the first embodiment is omitted.

MR素子15の積層方向に垂直な方向において、磁化固着層40、非磁性層50、及び磁
化自由層60を挟むように硬磁性層130が設けられている。
A hard magnetic layer 130 is provided so as to sandwich the magnetization pinned layer 40, the nonmagnetic layer 50, and the magnetization free layer 60 in a direction perpendicular to the stacking direction of the MR elements 15.

硬磁性層130中の磁化は、例えば5kOe程度の磁場中で200℃以上250℃以下で
アニールすることによって磁化が一方向に向けられている。硬磁性層130からの磁場に
よって、磁化自由層60の磁化が硬磁性層130の磁場方向と同一方向を向く。硬磁性層
130は、例えばCoPt、FePt等を用いることができる。硬磁性層130の膜厚は
、例えば5nm〜20nmである。
The magnetization in the hard magnetic layer 130 is directed in one direction by annealing at 200 ° C. or more and 250 ° C. or less in a magnetic field of about 5 kOe, for example. Due to the magnetic field from the hard magnetic layer 130, the magnetization of the magnetization free layer 60 is oriented in the same direction as the magnetic field direction of the hard magnetic layer 130. For the hard magnetic layer 130, for example, CoPt, FePt, or the like can be used. The film thickness of the hard magnetic layer 130 is, for example, 5 nm to 20 nm.

次に、本変形例に係るMR素子15を用いた血圧センサ10の製造方法について説明する
Next, a method for manufacturing the blood pressure sensor 10 using the MR element 15 according to this modification will be described.

基板20上にスパッタ法により約500nmのアルミ酸化物を積層することで絶縁層を形
成する。
An insulating layer is formed by laminating an aluminum oxide of about 500 nm on the substrate 20 by sputtering.

絶縁層上にレジストをスピンコート法で塗布し、フォトリソグラフィーによりレジストを
パターンニングし、レジストの一部を除去する。
A resist is applied onto the insulating layer by a spin coat method, and the resist is patterned by photolithography to remove a part of the resist.

RIEにより、レジストが除去された部分の絶縁層を除去することで、基板20の一部を
露出させる。
A portion of the substrate 20 is exposed by removing the portion of the insulating layer from which the resist has been removed by RIE.

基板20が絶縁層から露出した部分にマスクを用いてスパッタ法によりTa(5nm)/
Cu(400nm)/Ta(20nm)を積層することで電極30を形成する。
A portion of the substrate 20 exposed from the insulating layer is masked with Ta (5 nm) /
The electrode 30 is formed by stacking Cu (400 nm) / Ta (20 nm).

CMPを行って絶縁層の表面を平坦化することで、電極30の表面を絶縁層から露出させ
る。
The surface of the electrode 30 is exposed from the insulating layer by performing CMP to flatten the surface of the insulating layer.

絶縁層から露出した電極30上にマスクを用いてスパッタ法によりMR膜を約40nm積
層する。
An MR film of about 40 nm is stacked on the electrode 30 exposed from the insulating layer by sputtering using a mask.

MR膜の側面であって絶縁層上にマスクを用いてスパッタ法により硬磁性層130を約3
0nm積層する。
About 3 of the hard magnetic layer 130 is formed on the side surface of the MR film by sputtering using a mask on the insulating layer.
Laminate 0 nm.

次に、絶縁層、MR膜、硬磁性層上にシリコン酸化物層をスパッタ法により約200nm
積層する。
Next, a silicon oxide layer is formed on the insulating layer, MR film, and hard magnetic layer by sputtering to a thickness of about 200 nm.
Laminate.

シリコン酸化物層上にレジストをスピンコート法で塗布し、MR膜の上面であってシリコ
ン酸化物層上のレジストを除去する。
A resist is applied on the silicon oxide layer by spin coating, and the resist on the silicon oxide layer on the upper surface of the MR film is removed.

RIEとイオンミリングにより、レジストが除去された部分のシリコン酸化物層を除去す
ることで、MR膜の上面を露出させる。
By removing the silicon oxide layer where the resist has been removed by RIE and ion milling, the upper surface of the MR film is exposed.

シリコン酸化物層から露出したMR膜の上面にマスクを用いてTa(5nm)/Cu(4
00nm)/Ta(5nm)を積層して電極70を形成して血圧センサ10を製造する。
その後、電極70上にAuパット等を形成する。
Using a mask on the upper surface of the MR film exposed from the silicon oxide layer, Ta (5 nm) / Cu (4
The blood pressure sensor 10 is manufactured by stacking (00 nm) / Ta (5 nm) to form the electrode 70.
Thereafter, an Au pad or the like is formed on the electrode 70.

磁化固着層40の磁化を一方向に向けるための磁場中熱処理は、MR素子作製後でも、M
R膜成膜直後であっても良い。反強磁性層がIrMnの場合、7kOeの磁場中において
、280℃、4時間の熱処理を行った。
(変形例4)
The heat treatment in the magnetic field for directing the magnetization of the magnetization pinned layer 40 in one direction is performed even after the MR element is manufactured.
It may be immediately after the R film is formed. When the antiferromagnetic layer was IrMn, heat treatment was performed at 280 ° C. for 4 hours in a magnetic field of 7 kOe.
(Modification 4)

図10は、第1の実施形態に係るMR素子15の変形例を示す図である。電極は省略して
いる。第1の実施形態で説明したのと同様の構成についての説明は省略する。
FIG. 10 is a view showing a modification of the MR element 15 according to the first embodiment. The electrodes are omitted. A description of the same configuration as that described in the first embodiment is omitted.

磁化自由層60上に反強磁性層90が設けられている。図10(A)に示すように磁化自
由層60の上面に反強磁性層90を設ける場合には、材料としてはIrMn等で、厚さが
1nm以上5nm以下の薄膜の反強磁性層90を設ける。このようにすることで、反強磁
性層90と磁化自由層60が弱く交換結合をするために、磁化自由層60の磁化が弱く固
着される。
An antiferromagnetic layer 90 is provided on the magnetization free layer 60. As shown in FIG. 10A, when the antiferromagnetic layer 90 is provided on the upper surface of the magnetization free layer 60, a thin antiferromagnetic layer 90 having a thickness of 1 nm to 5 nm is used. Provide. By doing so, since the antiferromagnetic layer 90 and the magnetization free layer 60 are weakly exchange-coupled, the magnetization of the magnetization free layer 60 is weakly fixed.

図10(B)に示すように、磁化自由層60上に2つ反強磁性層90を離間して設けても
よい。反強磁性層90の材料はたとえばIrMn等で、厚さはたとえば5nm〜7nmと
する。磁化自由層60の反強磁性層90が設けられている場所では、磁化自由層60と反
強磁性層90が強く交換結合をする。その結果、反強磁性層90が設けられている磁化自
由層60において、磁化自由層60の磁化が一方向に固着される。図10(B)の場合、
磁化自由層60の2箇所において磁化自由層60の磁化が反強磁性層90によって一方向
に固着されている。従って反強磁性層90の設けられていない磁化自由層60も、つられ
て磁化の向きが一方向に揃う。
As shown in FIG. 10B, two antiferromagnetic layers 90 may be provided apart from each other on the magnetization free layer 60. The material of the antiferromagnetic layer 90 is, for example, IrMn and the thickness is, for example, 5 nm to 7 nm. In the place where the antiferromagnetic layer 90 of the magnetization free layer 60 is provided, the magnetization free layer 60 and the antiferromagnetic layer 90 are strongly exchange coupled. As a result, in the magnetization free layer 60 provided with the antiferromagnetic layer 90, the magnetization of the magnetization free layer 60 is fixed in one direction. In the case of FIG.
The magnetization of the magnetization free layer 60 is pinned in one direction by the antiferromagnetic layer 90 at two locations of the magnetization free layer 60. Therefore, the magnetization free layer 60 in which the antiferromagnetic layer 90 is not provided is also aligned in one direction.

図11(A)や図11(B)に示すように、積層順を反強磁性層90、磁化自由層60、
非磁性層50、磁化固着層40としてもよい。
As shown in FIGS. 11A and 11B, the stacking order is the antiferromagnetic layer 90, the magnetization free layer 60,
The nonmagnetic layer 50 and the magnetization pinned layer 40 may be used.

本変形例によれば、磁化自由層60の磁化を比較的小さなエネルギーで一方向に向けてお
くことが可能となる。
(第2の実施形態)
According to this modification, the magnetization of the magnetization free layer 60 can be directed in one direction with relatively small energy.
(Second Embodiment)

図12は、第2の実施形態に係る血圧センサ190を示図である。第1の実施形態で説明
したのと同様の構成についての説明は省略する。血圧センサ190は、MR素子15を複
数用いている。
FIG. 12 is a view showing a blood pressure sensor 190 according to the second embodiment. A description of the same configuration as that described in the first embodiment is omitted. The blood pressure sensor 190 uses a plurality of MR elements 15.

配線(ビット線ともいう)35が列方向に複数並べられ、配線(ワード線ともいう)75
が行方向に複数並べられている。配線35と配線75が交わる位置において、配線35と
配線75との間にMR素子15が設けられている。複数のMR素子15を挟んでいる配線
35及び配線75は絶縁層200、210で挟まれている。絶縁層200、210は更に
基板220、230に挟まれている。
A plurality of wirings (also referred to as bit lines) 35 are arranged in the column direction, and wirings (also referred to as word lines) 75.
Are arranged in the row direction. The MR element 15 is provided between the wiring 35 and the wiring 75 at a position where the wiring 35 and the wiring 75 intersect. The wiring 35 and the wiring 75 that sandwich the plurality of MR elements 15 are sandwiched between the insulating layers 200 and 210. The insulating layers 200 and 210 are further sandwiched between the substrates 220 and 230.

配線35、75の材料は電極30、70と同様である。MR素子15には電極30、70
がなくてもよい。
The material of the wirings 35 and 75 is the same as that of the electrodes 30 and 70. The MR element 15 has electrodes 30 and 70.
There is no need.

基板220、230は基板20の材料と同様である。
The substrates 220 and 230 are the same as the material of the substrate 20.

絶縁層200、210は、例えばアルミ酸化物(例えば、Al)やシリコン酸化物
(例えば、SiO)等を用いることができる。
For the insulating layers 200 and 210, for example, aluminum oxide (for example, Al 2 O 3 ), silicon oxide (for example, SiO 2 ), or the like can be used.

基板220、230が絶縁体である場合、絶縁層200、210を用いなくても良い。絶縁層200と基板220との間又は絶縁層210と基板230との間に軟磁性体の材料からなる層(軟磁性層)を挿入してもよい。軟磁性層を絶縁層と基板との間に挿入することで、MR素子15に対する磁気ノイズを低減できる。基板220、230に軟磁性体を用いて磁気ノイズに対する影響を低減させてもよい。
When the substrates 220 and 230 are insulators, the insulating layers 200 and 210 may not be used. A layer (soft magnetic layer) made of a soft magnetic material may be inserted between the insulating layer 200 and the substrate 220 or between the insulating layer 210 and the substrate 230. By inserting the soft magnetic layer between the insulating layer and the substrate, magnetic noise with respect to the MR element 15 can be reduced. The influence on magnetic noise may be reduced by using a soft magnetic material for the substrates 220 and 230 .

次に、血圧センサ190の動作原理について説明する。 Next, the operation principle of the blood pressure sensor 190 will be described.

図13は、血圧センサ190の動作原理を説明するための図である。 FIG. 13 is a diagram for explaining the operation principle of the blood pressure sensor 190.

配線35と配線75に制御部240、250、260、270が設けられている。絶縁層
200、210、基板220、230は省略している。配線35が3本図示されており、
それぞれをBL1、BL2、BL3とする。配線75は4本図示されており、それぞれを
WL1、WL2、WL3、WL4とする。配線35、75の本数はこれに限られない。血
圧センサ190には引っ張り応力が働いているものとする。
Control units 240, 250, 260, and 270 are provided for the wiring 35 and the wiring 75. The insulating layers 200 and 210 and the substrates 220 and 230 are omitted. Three wires 35 are shown,
These are designated as BL1, BL2, and BL3, respectively. Four wirings 75 are shown, which are designated as WL1, WL2, WL3, and WL4, respectively. The number of wirings 35 and 75 is not limited to this. It is assumed that a tensile stress is applied to the blood pressure sensor 190.

制御部240、250で複数のBL1〜BL3のうちBL1を選択して通電する。BL1
に通電した状態で、制御部260、270でWL1からWL4に順に通電してBL1に沿
って設けられた複数のMR素子15のMR変化率を順に測定していく。WL4まで通電し
終わったら、BL2を選択して通電する。BL2に通電した状態で、再びWL1からWL
4に順に通電してBL2に沿って設けられた複数のMR素子15のMR変化率を順に測定
していく。このようにして、配線35と配線75との間に挟まれた全てのMR素子15の
MR変化率を測定して、制御部に接続されたCPU((Central Process
ing Unit)図示せず)でMR変化率が最も大きいMR素子15を特定する。MR
変化率が最も大きいMR素子15を特定できたら、そのMR変化率が最も大きいMR素子
15で血圧測定を行う。
The control units 240 and 250 select BL1 among the plurality of BL1 to BL3 and energize it. BL1
In the state where current is supplied, the control units 260 and 270 sequentially supply current from WL1 to WL4 and sequentially measure the MR change rates of the plurality of MR elements 15 provided along BL1. When energization is completed up to WL4, BL2 is selected and energization is performed. WL1 to WL again with BL2 energized
4 is energized in sequence, and the MR change rates of the plurality of MR elements 15 provided along BL2 are measured in sequence. Thus, the MR change rate of all the MR elements 15 sandwiched between the wiring 35 and the wiring 75 is measured, and the CPU ((Central Process) connected to the control unit is measured.
ing Unit) (not shown) specifies the MR element 15 having the largest MR change rate. MR
When the MR element 15 having the highest rate of change can be identified, blood pressure is measured using the MR element 15 having the highest rate of change in MR.

以上のような動作は例えば分単位、又は時間単位で一定の時間を空けて繰り返してもよい
。また、逐次血圧センサ190で測定したデータを血圧センサ190に接続されたデータ
ベースに蓄積等を行ってもよい。
(変形例5)
The above operation may be repeated with a certain time interval in units of minutes or hours, for example. Further, the data measured by the blood pressure sensor 190 may be accumulated in a database connected to the blood pressure sensor 190.
(Modification 5)

図14は、第2の実施形態に係る血圧センサ190の変形例を示す図である。第2の実施
形態で説明したのと同様の構成についての説明は省略する。
FIG. 14 is a diagram illustrating a modification of the blood pressure sensor 190 according to the second embodiment. A description of the same configuration as that described in the second embodiment is omitted.

血圧センサ190の基板220、230の両端面を支持体280、290で挟んでいる。
支持体280と支持体290は対向している。これらの支持体280、290が引っ張り
応力を受けて歪む基板220、230の歪みの基準点となる。すなわち、支持体280、
290が固定端として働く。このため、より定量的な血圧測定を行うことができる。基板
220又は基板230の配線35、75等が設けられている面に対して垂直方向から眺め
ると図15(A)のようになる。
Both end surfaces of the substrates 220 and 230 of the blood pressure sensor 190 are sandwiched between the supports 280 and 290.
The support 280 and the support 290 are opposed to each other. These supports 280 and 290 serve as reference points for distortion of the substrates 220 and 230 which are distorted by receiving tensile stress. That is, the support 280,
290 serves as a fixed end. For this reason, a more quantitative blood pressure measurement can be performed. When viewed from the direction perpendicular to the surface of the substrate 220 or the substrate 230 on which the wirings 35, 75, etc. are provided, it is as shown in FIG.

支持体280、290は、例えば、シリコン等の材料を用いることができる。支持体28
0、290は例えば板状の形状が好ましい。その厚さは、例えば1μm程度である。
For the supports 280 and 290, for example, a material such as silicon can be used. Support 28
For example, 0 and 290 are preferably plate-shaped. The thickness is, for example, about 1 μm.

図15(B)のように、基板220と基板230の端面を取り囲むように支持体を設けて
もよい。
As shown in FIG. 15B, a support body may be provided so as to surround the end surfaces of the substrate 220 and the substrate 230.

複数の血圧センサ190を設ける場合には、例えば、図16のように、引っ張り応力が働
く方向において、複数の支持体の間に血圧センサ190を設けてもよい。図17(A)は
図16の基板220又は基板230の配線35、75等が設けられている面に対して垂直
方向から眺めた図である。
When providing a plurality of blood pressure sensors 190, for example, as shown in FIG. 16, the blood pressure sensors 190 may be provided between the plurality of supports in the direction in which the tensile stress acts. FIG. 17A is a view as seen from the direction perpendicular to the surface of the substrate 220 or the substrate 230 of FIG.

図17(B)のように基板220と基板230の端面を取り囲むように支持体を設けても
よい。図17(C)のように2次元平面上に渡って複数の血圧センサ190を設ける場合
、基板220、230の端面を取り囲むように支持体を設けてもよい。
(変形例6)
A support may be provided so as to surround the end surfaces of the substrate 220 and the substrate 230 as shown in FIG. When a plurality of blood pressure sensors 190 are provided over a two-dimensional plane as shown in FIG. 17C, a support may be provided so as to surround the end surfaces of the substrates 220 and 230.
(Modification 6)

図18は、第2の実施形態に係る血圧センサ190の変形例を示す図である。第2の実施
形態で説明したのと同様の構成についての説明は省略する。
FIG. 18 is a diagram illustrating a modified example of the blood pressure sensor 190 according to the second embodiment. A description of the same configuration as that described in the second embodiment is omitted.

変形例5で説明した支持体280、290に加えて、支持体280、290の端面上にも
う一つ支持体300が設けられている。このように支持体300を設けることで、支持体
280、290をより強固に固定することができる。よって、より定量的な血圧測定を行
うことができる。
In addition to the supports 280 and 290 described in the fifth modification, another support 300 is provided on the end surfaces of the supports 280 and 290. By providing the support body 300 in this manner, the support bodies 280 and 290 can be more firmly fixed. Therefore, more quantitative blood pressure measurement can be performed.

複数の血圧センサ190を設ける場合には、例えば、図19のように引っ張り応力が働く
方向において、複数の支持体の間に血圧センサ190を設ける。
(変形例7)
In the case where a plurality of blood pressure sensors 190 are provided, for example, the blood pressure sensors 190 are provided between the plurality of supports in the direction in which the tensile stress acts as shown in FIG.
(Modification 7)

図20は、第2の実施形態に係る血圧センサ190の変形例を示す図である。第2の実施
形態で説明したのと同様の構成についての説明は省略する。
FIG. 20 is a diagram illustrating a modified example of the blood pressure sensor 190 according to the second embodiment. A description of the same configuration as that described in the second embodiment is omitted.

圧力センサ190を構成する基板230上に加圧機構310を設けている。予め被測定者
の血圧P1と釣り合う範囲で、加圧機構310の圧力P2を一定に保持することで、より
定量的な血圧測定を行うことができる。この場合、測定中に血圧の絶対値を得るために、
予め血圧センサの圧力と電気抵抗の相関データを蓄積しておく。具体的には、圧力を制御
する圧力発生器により圧力P1を変化させながら印加し、それに応じた電気抵抗Rを取る
。この圧力P1と電気抵抗Rの相関データを血圧センサのゲージとする。そして、実際に
血圧を測定する際は、データとして得られる電気抵抗Rから蓄積済のゲージを参照し、血
圧P1を得る。加圧機構310を用いることで、MR変化率と血圧の相関関係を測定する
ことができる。
A pressurizing mechanism 310 is provided on a substrate 230 constituting the pressure sensor 190. By maintaining the pressure P2 of the pressurizing mechanism 310 constant within a range that is balanced with the blood pressure P1 of the measurement subject in advance, more quantitative blood pressure measurement can be performed. In this case, to obtain the absolute value of blood pressure during measurement,
Correlation data between the pressure of the blood pressure sensor and the electrical resistance is accumulated in advance. Specifically, the pressure P1 is applied while being changed by a pressure generator that controls the pressure, and the electric resistance R corresponding to the pressure P1 is taken. The correlation data between the pressure P1 and the electric resistance R is used as a blood pressure sensor gauge. When actually measuring the blood pressure, the stored blood pressure is referred to from the electrical resistance R obtained as data to obtain the blood pressure P1. By using the pressurizing mechanism 310, the correlation between the MR change rate and the blood pressure can be measured.

加圧機構310は図20で示す破線に相当する。加圧機構310は、圧力を一定に保持す
ることが出来る。加圧機構は支持体で取り囲むようにして構成してもよいし、基板230
上に密閉された筐体を設けることで構成してもよい。
The pressurizing mechanism 310 corresponds to the broken line shown in FIG. The pressurizing mechanism 310 can keep the pressure constant. The pressurizing mechanism may be configured so as to be surrounded by a support, or the substrate 230.
You may comprise by providing the housing | casing sealed on top.

また、図21に示すように、加圧機構310内にバネ320を設けることで加圧機構31
0の圧力を一定にしてもよい。バネ320は、例えば直径800μmの精密マイクロバネ
を用いることができる。なお、バネ320は複数設けてもよい。
Further, as shown in FIG. 21, the pressure mechanism 31 is provided by providing a spring 320 in the pressure mechanism 310.
The zero pressure may be constant. As the spring 320, for example, a precision micro spring having a diameter of 800 μm can be used. A plurality of springs 320 may be provided.

なお、図19で説明したように血圧センサ190を複数設けてもよい。この場合、例えば
様々なバネ定数を有するバネを設けることで様々な被測定者に対応した血圧を測定するこ
とができる。
Note that a plurality of blood pressure sensors 190 may be provided as described with reference to FIG. In this case, for example, by providing springs having various spring constants, blood pressure corresponding to various subjects can be measured.

また、加圧機構310は外部から電子制御することで圧力を調整してもよい。例えば、密
閉された筐体を用いる場合は外部から空気の出し入れを電子制御する。
(第3の実施形態)
Further, the pressure mechanism 310 may adjust the pressure by electronic control from the outside. For example, in the case of using a sealed casing, electronic control is performed on the entry and exit of air from the outside.
(Third embodiment)

図22(A)は、第3の実施形態に係る血圧センサ400を示す図である。第1の実施形
態及び第2の実施形態とは、CIP(Current in plane)―GMR効果
を用いている点が異なる。すなわち、MR素子の積層膜の面内方向(積層方向に対して垂
直な方向)に通電することでMR変化率を検出する。
FIG. 22A is a diagram showing a blood pressure sensor 400 according to the third embodiment. The first embodiment and the second embodiment are different from each other in that a CIP (Current in Plane) -GMR effect is used. That is, the MR ratio is detected by energizing in the in-plane direction (direction perpendicular to the lamination direction) of the laminated film of the MR element.

血圧センサ400は、基板20上に絶縁層200が設けられ、MR膜410の積層方向に
対して垂直な方向にMR膜410を挟むように一対の電極30、70とが設けられている
。基板20が絶縁体である場合には絶縁層200は設けなくてもよい。
In the blood pressure sensor 400, the insulating layer 200 is provided on the substrate 20, and a pair of electrodes 30 and 70 are provided so as to sandwich the MR film 410 in a direction perpendicular to the stacking direction of the MR film 410. In the case where the substrate 20 is an insulator, the insulating layer 200 may not be provided.

MR膜410は、MR素子15から電極30、70を除いたものであるので、説明は省略
する。
Since the MR film 410 is obtained by removing the electrodes 30 and 70 from the MR element 15, description thereof will be omitted.

図22(B)のように、電極30、70とMR膜410との間に硬磁性層130を設けて
もよい。
(変形例8)
A hard magnetic layer 130 may be provided between the electrodes 30 and 70 and the MR film 410 as shown in FIG.
(Modification 8)

図23は、第3の実施形態に係る血圧センサ400の変形例を示す図である。図23は血
圧センサ400を用いた回路を示している。基板20等は省略している。また、第3の実
施形態と同様の構成についての説明は省略する。
FIG. 23 is a diagram illustrating a modification of the blood pressure sensor 400 according to the third embodiment. FIG. 23 shows a circuit using the blood pressure sensor 400. The substrate 20 and the like are omitted. Further, the description of the same configuration as that of the third embodiment is omitted.

図23(A)に示すように、列方向に配線35が複数設けられ、行方向に配線75が複数
設けられている。配線35と配線75とが交わっている位置において、配線35と配線7
5との間にMR膜410が設けられている。動作原理は、
図13を用いて説明したのと同様であるので説明は省略する。
As shown in FIG. 23A, a plurality of wirings 35 are provided in the column direction, and a plurality of wirings 75 are provided in the row direction. At the position where the wiring 35 and the wiring 75 intersect, the wiring 35 and the wiring 7
5 is provided with an MR film 410. The principle of operation is
Since it is the same as that described with reference to FIG.

図23(B)は、行方向から血圧センサ400の回路を眺めた図である。配線35にMR
膜410が挟まれている。
FIG. 23B is a view of the circuit of the blood pressure sensor 400 viewed from the row direction. MR for wiring 35
A membrane 410 is sandwiched.

図23(C)は、列方向から血圧センサ400の回路を眺めた図である。配線75にMR
膜410が挟まれている。
FIG. 23C is a view of the circuit of the blood pressure sensor 400 viewed from the column direction. MR for wiring 75
A membrane 410 is sandwiched.

なお、以上のような構成は、第2の実施形態とは通電方向が異なるだけであるので、変形
例5〜7で説明した形態に用いることができる。
(第4の実施形態)
In addition, since the above structures differ only in the electricity supply direction from 2nd Embodiment, it can be used for the form demonstrated in the modifications 5-7.
(Fourth embodiment)

図24は、血圧センサの第4の実施形態を示す図である。図24は血圧センサを用いて被
測定者を測定する様子を示す。図24は、血圧測定部位に血圧センサを貼り付けた場合の
、給電方法、データ蓄積方法の一例を示したものである。血圧センサには、第1、第2、
及び第3の実施形態で説明した血圧センサ10、190、400を用いることができる。
FIG. 24 is a diagram illustrating a fourth embodiment of the blood pressure sensor. FIG. 24 shows a state in which a measurement subject is measured using a blood pressure sensor. FIG. 24 shows an example of a power supply method and a data storage method when a blood pressure sensor is attached to a blood pressure measurement site. The blood pressure sensor includes first, second,
The blood pressure sensors 10, 190, and 400 described in the third embodiment can be used.

給電方法として、小型の電池を用いることもできるし、無線給電を採用することも可能で
ある。データ蓄積方法には、例えば無線送信で携帯電話やパーソナルコンピュータ、腕時
計等に蓄積する方法をとる。
(実施例)
As a power feeding method, a small battery can be used, or wireless power feeding can be employed. As a data storage method, for example, a method of storing in a mobile phone, a personal computer, a wristwatch or the like by wireless transmission is used.
(Example)

シリコン基板上に、Al(20nm)/Cu(400nm(電極に相当))/Ir
Mn(7nm)/CoFe(3.4nm)/Ru(0.8nm)/FeCo(3nm(磁
化固着層に相当))/Al(1nm(非磁性層に相当))/FeCo(4nm(磁
化自由層に相当))/Cu(400nm(電極に相当))/Ta((3nm)保護層に相
当)をスパッタ法により積層し、MR素子を作製した。MR素子をその後8μm四方の正
方形に加工した。なお、作製したMR素子はTMR素子として用いた。
On a silicon substrate, Al 2 O 3 (20 nm) / Cu (400 nm (corresponding to an electrode)) / Ir
Mn (7 nm) / CoFe (3.4 nm) / Ru (0.8 nm) / FeCo (3 nm (corresponding to a magnetization pinned layer)) / Al 2 O 3 (1 nm (corresponding to a nonmagnetic layer)) / FeCo (4 nm ( MR element was fabricated by laminating by sputtering the equivalent of magnetization free layer)) / Cu (400 nm (corresponding to electrode)) / Ta (corresponding to (3 nm) protective layer). The MR element was then processed into an 8 μm square. The produced MR element was used as a TMR element.

図25は、作製したMR素子に外部磁場を−4000Oeから4000Oeの範囲で掃引
することで、MR素子の電気抵抗を測定した結果を示す図である。縦軸はMR素子の電気
抵抗値R(Ω)を示し、横軸は磁場H(Oe)を示す。
FIG. 25 is a diagram illustrating a result of measuring the electrical resistance of the MR element by sweeping an external magnetic field in the range of −4000 Oe to 4000 Oe to the manufactured MR element. The vertical axis represents the electrical resistance value R (Ω) of the MR element, and the horizontal axis represents the magnetic field H (Oe).

図25に示すように、外部磁場を増加させると電気抵抗値が急激に増加・減少しているこ
とがわかる。電気抵抗値が最も小さい場合は、磁化自由層の磁化の向きと磁化固着層の磁
化の向きとが平行であることを示す。電気抵抗値が最も大きい場合は、磁化自由層の磁化
の向きと磁化固着層の磁化の向きとが反平行であることを示す。このときのMR変化率は
36%であり、面積抵抗は5kΩμmであり、磁化自由層の磁歪定数は56ppmであ
った。面積抵抗とは、MR素子の積層膜の積層方向に対して垂直な断面積とMR素子の積
層膜の膜面に垂直に電流を流したときに一対の電極から得られる抵抗との積を示す。MR
変化率は、電気抵抗値の変化量を電気抵抗値で割った値を示す。磁歪定数λsとは、外部
磁場を強磁性層の面内方向に印加することによって、強磁性層が面内に延びる量の大きさ
を示す。外部磁場がない状態で長さlだったものが、Δlだけ延びたとすると、磁歪定数λ
sは下式で表される。
As shown in FIG. 25, it can be seen that when the external magnetic field is increased, the electrical resistance value is rapidly increased or decreased. When the electric resistance value is the smallest, it indicates that the magnetization direction of the magnetization free layer and the magnetization direction of the magnetization pinned layer are parallel. When the electric resistance value is the largest, it indicates that the magnetization direction of the magnetization free layer and the magnetization direction of the magnetization pinned layer are antiparallel. The MR change rate at this time was 36%, the sheet resistance was 5 kΩμm 2 , and the magnetostriction constant of the magnetization free layer was 56 ppm. The area resistance is the product of the cross-sectional area perpendicular to the stacking direction of the MR element stacked film and the resistance obtained from a pair of electrodes when a current is passed perpendicularly to the film surface of the MR element stacked film. . MR
The rate of change indicates a value obtained by dividing the amount of change in the electrical resistance value by the electrical resistance value. The magnetostriction constant λs indicates the amount of the ferromagnetic layer extending in the plane by applying an external magnetic field in the in-plane direction of the ferromagnetic layer. If there is no external magnetic field and the length is l, but is extended by Δl, the magnetostriction constant λ
s is represented by the following formula.

λs=Δl/l λs = Δl / l

この現象は磁歪効果と呼ばれる。強磁性層をΔlだけ延ばすと、磁化が延ばした方向に向
く現象を逆磁歪効果と呼ぶ。上記したように血圧センサでは、歪みを印加して引っ張り応
力を与え、磁化自由層60が延びることで逆磁歪効果が得られる。なお、磁歪定数が負の
場合には、外部磁場を印加するとその方向に磁性層は圧縮される。
This phenomenon is called the magnetostrictive effect. When the ferromagnetic layer is extended by Δl, the phenomenon in which the direction of magnetization is extended is called the inverse magnetostriction effect. As described above, in the blood pressure sensor, tensile stress is applied by applying strain, and the magnetostriction effect is obtained by extending the magnetization free layer 60. When the magnetostriction constant is negative, when an external magnetic field is applied, the magnetic layer is compressed in that direction.

以上から作製したMR素子が歪みに対して良好なMR変化率を示すことがわかった。 From the above, it was found that the produced MR element showed a good MR change rate with respect to strain.

図26は、作製したMR素子に対して引っ張り応力を加え、MR素子の電気抵抗を測定し
た結果を示す図である。縦軸が電気抵抗値R(Ω)を示し、横軸がシリコン基板に印加し
た歪み(印加歪ε(千分率:‰))を示す。歪みは、図27に示すように、基板の3点を
固定して印加した。両端が固定端で、その中間点を押圧することによって歪を印加する。
このとき、歪みは下式で表される。
FIG. 26 is a diagram showing the results of measuring the electrical resistance of the MR element by applying a tensile stress to the manufactured MR element. The vertical axis represents the electric resistance value R (Ω), and the horizontal axis represents the strain applied to the silicon substrate (applied strain ε (percentage: ‰)). As shown in FIG. 27, the strain was applied by fixing three points on the substrate. Both ends are fixed ends, and strain is applied by pressing the intermediate point.
At this time, the distortion is expressed by the following equation.

ε=6hT/l ε = 6 hT / l 2

ここで、hは基板垂直方向への変位、Tは基板の厚さ、lは基板の固定端間距離である。 Here, h is the displacement in the vertical direction of the substrate, T is the thickness of the substrate, and l is the distance between the fixed ends of the substrate.

歪のない状態では、磁化自由層と磁化固着層の磁気層間結合により、磁化自由層の磁化は
磁化固着層の磁化と同じ方向を向いている。さらに、磁化固着層の磁化は、MR膜を成膜
した後、7kOeの磁場中で280℃4時間の熱処理を行うことで、決定した。磁場の方
向は、基板オリフラに対して平行とした。したがって、磁化自由層の磁化も、基板オリフ
ラ方向を向いている。これを記憶し、歪はこれに垂直な方向に印加しながら測定を行った
。ここでは外部磁場を磁化固着層40の磁化の方向と平行に、外部から磁場を6[Oe]
印加した状態で測定した。実際の血圧センサでは外部からMR素子に磁場を印加するため
に硬磁性層を側壁に配置したり、反強磁性層を磁化自由層に接触させたりする。この磁化
自由層の磁化の向きに対して直交方向に引っ張り応力が働くようにシリコン基板を撓ませ
ることでMR素子に対して引っ張り歪みを加えた。印加歪εの値を、0‰、0.35‰、
0.55‰、0.78‰、0.99‰としてMR素子の電気抵抗を測定した。
In a state without distortion, the magnetization of the magnetization free layer is oriented in the same direction as the magnetization of the magnetization fixed layer due to the magnetic interlayer coupling between the magnetization free layer and the magnetization fixed layer. Further, the magnetization of the magnetization pinned layer was determined by performing a heat treatment at 280 ° C. for 4 hours in a magnetic field of 7 kOe after forming the MR film. The direction of the magnetic field was parallel to the substrate orientation flat. Therefore, the magnetization of the magnetization free layer also faces the substrate orientation flat direction. This was memorized, and the strain was measured while being applied in a direction perpendicular thereto. Here, the external magnetic field is parallel to the magnetization direction of the magnetization pinned layer 40, and the external magnetic field is 6 [Oe].
The measurement was performed in the applied state. In an actual blood pressure sensor, in order to apply a magnetic field to the MR element from the outside, a hard magnetic layer is disposed on the side wall, or an antiferromagnetic layer is brought into contact with the magnetization free layer. A tensile strain was applied to the MR element by bending the silicon substrate so that a tensile stress acts in a direction perpendicular to the magnetization direction of the magnetization free layer. The value of applied strain ε is set to 0 ‰, 0.35 ‰,
The electrical resistance of the MR element was measured at 0.55 ‰, 0.78 ‰, and 0.99 ‰.

図26から、印加歪の変化に応じて電気抵抗値が変化していることから、作製したMR素
子が歪みに対して良好なMR変化率を示すことがわかった。また、印加歪の値が増加する
につれて電気抵抗値が減少していることがわかる。これは、初めは磁化固着層の磁化の向
きと磁化自由層の磁化の向きとが反平行であり、磁化自由層の磁化が回転することで磁化
固着層の磁化の向きに対して平行に近づいたためである。
From FIG. 26, it was found that since the electrical resistance value changed according to the change in applied strain, the manufactured MR element showed a good MR change rate with respect to the strain. It can also be seen that the electrical resistance value decreases as the applied strain value increases. This is because, initially, the magnetization direction of the magnetization fixed layer and the magnetization direction of the magnetization free layer are anti-parallel, and the magnetization of the magnetization free layer rotates to approach parallel to the magnetization direction of the magnetization fixed layer. This is because.

一般的に、歪みに対して良好な応答を示すかどうかの指標としてゲージファクターが用い
られている。ゲージファクターは、MR変化率を歪み量εで割った値で定義される。ゲー
ジファクターの値は大きければ大きいほど歪みに対して良好な感度を示すといえる。これ
は、歪み量εを固定した場合に、MR変化率が大きくなればゲージファクターの値が大き
くなることからも理解できる。
Generally, a gauge factor is used as an indicator of whether or not a good response to strain is exhibited. The gauge factor is defined by a value obtained by dividing the MR change rate by the strain amount ε. It can be said that the greater the value of the gauge factor, the better the sensitivity to strain. This can be understood from the fact that when the strain amount ε is fixed, the value of the gauge factor increases as the MR change rate increases.

作製したMR素子のゲージファクターの値は270であった。これは、Siを用いたME
MS圧力センサのゲージファクターが約140ということが知られており、それと比較す
るとはるかに大きいな値である。
The produced MR element had a gauge factor value of 270. This is ME using Si
It is known that the gauge factor of the MS pressure sensor is about 140, which is much larger than that.

他にも、シリコン基板上に、Al(20nm)/Cu(400nm(電極に相当)
)/IrMn(7nm)/CoFe(3.4nm)/Ru(0.8nm)/FeCoB(
3nm(磁化固着層に相当))/MgO(1nm(非磁性層に相当))/FeCo(1n
m(磁化自由層に相当))/FeCoB(4nm(磁化自由層に相当))/Cu(400
nm(電極に相当))/Ta((3nm)保護層に相当)としてスパッタ法により作製し
、8μm四方の正方形に加工したMR素子では、MR変化率は200%であり、ゲージフ
ァクターは1000であった。このように、MR素子を用いることでゲージファクターの
値を増加させることが可能となる。
(第5の実施形態)
In addition, on a silicon substrate, Al 2 O 3 (20 nm) / Cu (400 nm (corresponding to an electrode)
) / IrMn (7 nm) / CoFe (3.4 nm) / Ru (0.8 nm) / FeCoB (
3 nm (corresponding to a magnetization pinned layer) / MgO (1 nm (corresponding to a nonmagnetic layer)) / FeCo (1 n
m (corresponding to a magnetization free layer)) / FeCoB (4 nm (corresponding to a magnetization free layer)) / Cu (400
In an MR element produced by sputtering as nm (corresponding to an electrode) / Ta (corresponding to a (3 nm) protective layer) and processed into a square of 8 μm square, the MR change rate is 200% and the gauge factor is 1000 there were. As described above, the value of the gauge factor can be increased by using the MR element.
(Fifth embodiment)

図28は、血圧センサ500を用いた血圧測定システムを示す図である。血圧センサ50
0は、血圧センサ190、400と同様の構成である。血圧センサ500は、被測定者の
血圧測定部位に装着されている。ここでは、血圧測定部位を手首として図示している。本
実施形態に係る血圧測定システムは、血圧センサ500と電子機器510を備えているこ
とを想定している。電子機器510とは、例えばテレビ、携帯電話機、医療用のデータベ
ース、パーソナルコンピュータ等を示す。
FIG. 28 is a diagram showing a blood pressure measurement system using the blood pressure sensor 500. Blood pressure sensor 50
0 is the same configuration as the blood pressure sensors 190 and 400. The blood pressure sensor 500 is attached to the blood pressure measurement site of the measurement subject. Here, the blood pressure measurement site is shown as a wrist. It is assumed that the blood pressure measurement system according to this embodiment includes a blood pressure sensor 500 and an electronic device 510. The electronic device 510 indicates, for example, a television, a mobile phone, a medical database, a personal computer, or the like.

血圧センサ500は、内部に処理部520を備えている。 The blood pressure sensor 500 includes a processing unit 520 inside.

処理部520は、血圧センサ500を制御する第1の制御部530と、第1の制御部53
0からの情報を外部に送信する送信部540と、外部からの情報を受信して第1の制御部
520に送る第2の受信部550とを備える。
The processing unit 520 includes a first control unit 530 that controls the blood pressure sensor 500 and a first control unit 53.
A transmission unit 540 that transmits information from 0 to the outside, and a second reception unit 550 that receives information from the outside and sends the information to the first control unit 520.

なお、情報とは例えば、血圧値のデータ、電気抵抗変化率のデータ、電気抵抗値のデータ
をいう。
The information refers to, for example, blood pressure value data, electrical resistance change rate data, and electrical resistance value data.

電子機器510は、受信部560と、第2の制御部570と、計算部580と、送信部5
90と、データベース(以下、DB1という)とを備える。
The electronic device 510 includes a reception unit 560, a second control unit 570, a calculation unit 580, and a transmission unit 5.
90 and a database (hereinafter referred to as DB1).

受信部560は、送信部540から送信された情報を受信して第2の制御部570に送信
する。
The reception unit 560 receives the information transmitted from the transmission unit 540 and transmits the information to the second control unit 570.

第2の制御部570は、受信部560から受信した情報を計算部580に送信、送信部5
90に送信、又はDB1に情報をデータとして格納する。
The second control unit 570 transmits the information received from the reception unit 560 to the calculation unit 580 and transmits the information to the transmission unit 5.
The information is transmitted to 90 or stored as data in DB1.

計算部580は、第2の制御部570から送られてきた情報を計算する。計算方法は後述
する。
The calculation unit 580 calculates information transmitted from the second control unit 570. The calculation method will be described later.

なお、送信部540と受信部560間での情報のやりとり、及び送信部590と受信部5
50間での情報のやりとりは無線通信又は有線通信である。
Information exchange between the transmission unit 540 and the reception unit 560, and the transmission unit 590 and the reception unit 5
The exchange of information between 50 is wireless communication or wired communication.

図29は、血圧センサを用いて血圧測定システムの動作を説明するフローチャート図であ
る。
FIG. 29 is a flowchart for explaining the operation of the blood pressure measurement system using the blood pressure sensor.

ステップS10では第1の制御部530が、血圧センサ500に血圧測定部位における電
気抵抗変化量を測定するように指示する。このとき、血圧センサ500に設けられた全て
のMR素子における電気抵抗変化量を測定する。血圧センサ500が測定した電気抵抗変
化量はデータとして、第1の制御部530を介して送信部540により電子機器510の
受信部560に送信される。受信部560で受信した電気抵抗変化量のデータは第2の制
御部570を介して計算部580に送信される。計算部580は、電気抵抗変化量のデー
タを電気抵抗変化量絶対に変換する計算をする。
In step S10, the first control unit 530 instructs the blood pressure sensor 500 to measure the electrical resistance change amount at the blood pressure measurement site. At this time, the electrical resistance change amount in all MR elements provided in the blood pressure sensor 500 is measured. The electrical resistance change amount measured by the blood pressure sensor 500 is transmitted as data to the reception unit 560 of the electronic device 510 by the transmission unit 540 via the first control unit 530. The electrical resistance change amount data received by the reception unit 560 is transmitted to the calculation unit 580 via the second control unit 570. The calculation unit 580 performs calculation for converting the electrical resistance change amount data to the electrical resistance change amount.

図30は、血圧センサ500の電気抵抗変化量の測定方法を説明する図である。ワード線
とビット線が交差する位置に設けられた各MR素子を、ワード線とビット線で指定する。
たとえば、ワード線WL1とビット線BL1の交差する位置にあるMR素子は、MR素子
のラベルを11とし、そこで得られる電気抵抗はR11と呼ぶこととする。
FIG. 30 is a diagram for explaining a method of measuring the electrical resistance change amount of the blood pressure sensor 500. Each MR element provided at a position where the word line and the bit line intersect is designated by the word line and the bit line.
For example, an MR element at a position where the word line WL1 and the bit line BL1 cross each other has an MR element label of 11, and the electric resistance obtained there is called R11.

配置されたMR素子の個々に対し、電流を通電する。たとえば、ワード線の本数がN本、
ビット線の本数がM本ある場合、WL1に通電したままビット線の通電箇所をBL1から
BLMまで通電し、随時WL2に通電したままBL1からBLMまで通電し、WLNまで
同じことを繰り返す。さらにこれを血管収縮時と血管拡張時に同様のことを繰り返す。血
管収縮時の電気抵抗をRcoarctation、血管拡張時の電気抵抗をRdilationとし、MR素子
のラベルと合わせて、血管収縮時のMR素子11の電気抵抗をRcoarctation11、血管拡
張時の電気抵抗をRdilation11とする。次に、それぞれのMR素子における、血管収縮
時と血管拡張時の電気抵抗変化量絶対値を求める。すなわち、MR素子XYにおいて、Δ
RXY=|RcoarctationXY−RdilationXY|を演算により算出する。
A current is applied to each of the arranged MR elements. For example, the number of word lines is N,
When the number of bit lines is M, the energized portion of the bit line is energized from BL1 to BLM while energizing WL1, and energized from BL1 to BLM while energizing WL2 as necessary, and the same is repeated until WLN. Further, this is repeated at the time of vasoconstriction and vasodilation. The electrical resistance at the time of vasoconstriction is Rcoarctation, the electrical resistance at the time of vasodilation is Rdilation, and together with the label of the MR element, the electrical resistance of the MR element 11 at the time of vasoconstriction is Rcoarctation11, and the electrical resistance at the time of vasodilation is Rdilation11. . Next, the absolute value of the electrical resistance change amount at the time of vasoconstriction and vasodilation in each MR element is obtained. That is, in the MR element XY, Δ
RXY = | RcoarctationXY−RdilationXY | is calculated by calculation.

ステップS20では、計算部580がさらに、電気抵抗変化量絶対値をもとに血管の収縮
・拡大を最大限に検知できる位置に配置されたMR素子を把握する。
In step S20, the calculation unit 580 further grasps the MR element disposed at a position where the contraction / expansion of the blood vessel can be detected to the maximum based on the absolute value of the electric resistance change amount.

図31は、血管収縮時と血管拡張時の電気抵抗変化量絶対値が最大となるMR素子の選択
方法を説明する図である。すなわち、MR素子11の電気抵抗変化量ΔR11とMR素子
12の電気抵抗変化量ΔR12を比べ、値の大きい方を記録する。次いで記録した値とΔ
R13を比べ、値の大きい方を記録する。最後のMR素子MNまで比較と記録を繰り返す
ことで、血管収縮時と血管拡張時の電気抵抗変化量が最大であったMR素子を把握できる
。電気抵抗変化量が最大であったMR素子を把握できたら、第2の制御部570が、その
MR素子を選択するように送信部590を介して受信部550に送信する。受信部550
は、その指示情報を第1の制御部530に送信し、第1の制御部530が電気抵抗変化量
が最大であったMR素子を選択する。
FIG. 31 is a diagram illustrating a method of selecting an MR element that maximizes the absolute value of the electrical resistance change amount during vasoconstriction and vasodilation. That is, the electric resistance change amount ΔR11 of the MR element 11 and the electric resistance change amount ΔR12 of the MR element 12 are compared, and the larger value is recorded. The recorded value and Δ
Compare R13 and record the larger value. By repeating the comparison and recording up to the last MR element MN, it is possible to grasp the MR element that has the largest amount of electrical resistance change during vasoconstriction and vasodilation. When the MR element having the largest electric resistance change amount is grasped, the second control unit 570 transmits to the receiving unit 550 via the transmitting unit 590 so as to select the MR element. Receiver 550
Transmits the instruction information to the first control unit 530, and the first control unit 530 selects the MR element having the maximum change in electrical resistance.

ステップS30では、第1の制御部530が、ステップS20で選択したMR素子の電気
抵抗値を血圧センサ500で連続的に取得するように指示する。一定期間測定することで
、最高血圧と最低血圧と血圧波形を得る。一定期間とは、秒単位、分単位を示し、例えば
30秒、2分等である。
In step S30, the first controller 530 instructs the blood pressure sensor 500 to continuously acquire the electrical resistance value of the MR element selected in step S20. By measuring for a certain period, the maximum blood pressure, the minimum blood pressure, and the blood pressure waveform are obtained. The fixed period indicates a second unit or a minute unit, for example, 30 seconds, 2 minutes, or the like.

ステップS40では、ステップS30の測定で取得した電気抵抗値をデータとしてDB1
に格納する。
In step S40, the electric resistance value acquired by the measurement in step S30 is used as data as DB1.
To store.

ステップS50では、予め取得してある血圧と電気抵抗の相関データベースを用い、演算
により連続測定した電気抵抗値を血圧に変換する。データベース作成時は、血圧を正確に
制御できる圧力制御装置を用い、血圧センサに圧力を印加する。圧力範囲は血圧を網羅す
るように少なくとも50mmHgから300mmHgまでを含み、、精度よく測定するた
めに少なくとも1mmHg刻み、出来れば0.01mmHg刻みで取得する。このような
血圧に対応する電気抵抗値のデータを取得し、データベースとする。このデータベースは
、たとえば図32の上図のような相関グラフが得られる。図32の下図のように、血圧の
血圧測定時は、逆に電気抵抗値のデータをデータベースに対応して血圧に変換する。
In step S50, an electrical resistance value continuously measured by calculation is converted into blood pressure using a correlation database of blood pressure and electrical resistance acquired in advance. When creating the database, a pressure control device capable of accurately controlling blood pressure is used to apply pressure to the blood pressure sensor. The pressure range includes at least 50 mmHg to 300 mmHg so as to cover the blood pressure, and is obtained in increments of at least 1 mmHg and preferably in increments of 0.01 mmHg for accurate measurement. Data of electrical resistance values corresponding to such blood pressure is acquired and used as a database. In this database, for example, a correlation graph as shown in the upper diagram of FIG. 32 is obtained. As shown in the lower diagram of FIG. 32, when measuring blood pressure, blood pressure data is converted into blood pressure corresponding to the database.

10 … 血圧センサ、15 … 磁気抵抗効果素子(MR素子)、20 … 基板、3
0、70 … 電極、40 … 磁化固着層、50 … 非磁性層、60 …磁化自由層
DESCRIPTION OF SYMBOLS 10 ... Blood pressure sensor, 15 ... Magnetoresistive effect element (MR element), 20 ... Board | substrate, 3
0, 70 ... Electrode, 40 ... Magnetized pinned layer, 50 ... Nonmagnetic layer, 60 ... Magnetized free layer

Claims (19)

支持体に支持される第1の領域と、前記第1の領域の内側であり撓むことで第1の方向に引っ張り応力が生じる第2の領域を有する基板と、
前記第2の領域の一部に設けられた磁気抵抗効果素子とを備え、
前記磁気抵抗効果素子は、
前記基板上に設けられた第1の電極と、
前記第1の電極上に設けられ、磁化が一方向に向いている磁化固着層と、
前記磁化固着層上に設けられた非磁性層と、
前記非磁性層上で、かつ前記磁化固着層上に対応する領域内に設けられ前記第1の方向及び前記第1の方向に垂直な第2の方向とは何れとも異なる方向を向いている可変の磁化を有する第1の磁化自由層と、
前記第1の磁化自由層上に設けられた第2の電極とを含むMEMS圧力センサ
A substrate having a first region, said second region first direction tensile stress to flex there inside occurs in the first region is supported by the support body,
A magnetoresistive element provided in a part of the second region ,
The magnetoresistive effect element is
A first electrode provided on the substrate;
A magnetization pinned layer provided on the first electrode and having magnetization oriented in one direction;
A nonmagnetic layer provided on the magnetization pinned layer;
A variable which is provided in a region corresponding to the non-magnetic layer and on the magnetization pinned layer and faces a direction different from both the first direction and the second direction perpendicular to the first direction. A first magnetization free layer having a magnetization of
A MEMS pressure sensor including a second electrode provided on the first magnetization free layer.
支持体に支持される第1の領域と、前記第1の領域の内側であり撓むことで第1の方向に引っ張り応力が生じる第2の領域を有する基板と、
前記第2の領域の一部に設けられた磁気抵抗効果素子とを備え、
前記磁気抵抗効果素子は、
前記基板上に設けられた第1の電極と、
前記第1の電極上に設けられ前記第1の方向及び前記第1の方向に垂直な第2の方向とは何れとも異なる方向を向いている可変の磁化を有する第1の磁化自由層と、
前記第1の磁化自由層上に設けられた非磁性層と、
前記非磁性層上で、かつ前記第1の磁化自由層上に対応する領域内に設けられ磁化が一方向に向いている磁化固着層と、
前記磁化固着層上に設けられた第2の電極とを含むMEMS圧力センサ
A substrate having a first region, said second region first direction tensile stress to flex there inside occurs in the first region is supported by the support body,
A magnetoresistive element provided in a part of the second region ,
The magnetoresistive effect element is
A first electrode provided on the substrate;
A first magnetization free layer having a variable magnetization provided on the first electrode and facing a direction different from both the first direction and the second direction perpendicular to the first direction;
A nonmagnetic layer provided on the first magnetization free layer;
A magnetization pinned layer provided in a region corresponding to the nonmagnetic layer and on the first magnetization free layer, and having a magnetization oriented in one direction;
A MEMS pressure sensor including a second electrode provided on the magnetization pinned layer.
前記磁化固着層上に対応する領域内であり、かつ前記第1の磁化自由層と前記第2の電極との間に設けられ前記第1の方向及び前記第2の方向とは何れとも異なる方向を向いている可変の磁化を有する第2の磁化自由層とを更に備え、
前記第1の磁化自由層はFeCo合金を含み、前記第2の磁化自由層はFe−Co−Si−B合金、Tb−M−Fe合金(Mは,Sm,Eu,Gd,Dy,Ho,Er)、Fe−Co−B、Tb−M1−Fe−M2合金(M1は、Sm,Eu,Gd,Dy,Ho,Er、M2は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta)、Fe−M3−M4−B合金(M3は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta、M4は、Ce,Pr,Nd,Sm,Tb,Dy,Er)、Ni、Al−Fe合金、又はフェライトを含む請求項1に記載のMEMS圧力センサ
A direction that is in a region corresponding to the magnetization pinned layer and is provided between the first magnetization free layer and the second electrode, and is different from the first direction and the second direction. A second magnetization free layer having a variable magnetization facing
The first magnetization free layer includes an FeCo alloy, and the second magnetization free layer includes an Fe—Co—Si—B alloy, a Tb—M—Fe alloy (M is Sm, Eu, Gd, Dy, Ho, Er), Fe-Co-B, Tb-M1-Fe-M2 alloy (M1 is Sm, Eu, Gd, Dy, Ho, Er, M2 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta), Fe-M3-M4-B alloy (M3 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta, M4 is Ce, Pr, Nd, Sm, Tb, Dy, The MEMS pressure sensor according to claim 1, comprising Er), Ni, an Al-Fe alloy, or ferrite.
前記第1の磁化自由層上に対応する領域内であり、前記第1の磁化自由層と前記非磁性層との間に設けられ前記第1の方向及び前記第2の方向とは何れとも異なる方向を向いている可変の磁化を有する第2の磁化自由層とを更に備え、
前記第1の磁化自由層はFe−Co−Si−B合金、Tb−M−Fe合金(Mは,Sm,Eu,Gd,Dy,Ho,Er)、Fe−Co−B、Tb−M1−Fe−M2合金(M1は、Sm,Eu,Gd,Dy,Ho,Er、M2は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta)、Fe−M3−M4−B合金(M3は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta、M4は、Ce,Pr,Nd,Sm,Tb,Dy,Er)、Ni、Al−Fe合金、又はフェライトを含み、前記第2の磁化自由層はFeCo合金を含む請求項2に記載のMEMS圧力センサ
It is in a region corresponding to the first magnetization free layer, and is provided between the first magnetization free layer and the nonmagnetic layer, and is different from both the first direction and the second direction. A second magnetization free layer having a variable magnetization facing the direction,
The first magnetization free layer is composed of an Fe-Co-Si-B alloy, a Tb-M-Fe alloy (M is Sm, Eu, Gd, Dy, Ho, Er), Fe-Co-B, Tb-M1-. Fe-M2 alloy (M1 is Sm, Eu, Gd, Dy, Ho, Er, M2 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta), Fe-M3-M4-B alloy (M3 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta, M4 is Ce, Pr, Nd, Sm, Tb, Dy, Er), Ni, Al-Fe alloy, or ferrite. The MEMS pressure sensor according to claim 2, wherein the second magnetization free layer includes an FeCo alloy.
前記基板は、長手方向を有する形状である請求項1又は請求項2に記載のMEMS圧力センサThe MEMS pressure sensor according to claim 1, wherein the substrate has a shape having a longitudinal direction. 前記第1の磁化自由層は、前記磁化固着層、前記非磁性層、及び前記第1の磁化自由層の積層方向に対して垂直な方向に長手方向を有する長手形状である請求項1又は請求項2に記載のMEMS圧力センサThe first magnetization free layer has a longitudinal shape having a longitudinal direction in a direction perpendicular to a stacking direction of the magnetization pinned layer, the nonmagnetic layer, and the first magnetization free layer. Item 3. The MEMS pressure sensor according to Item 2. 前記磁化固着層、前記非磁性層、及び前記第1の磁化自由層の積層方向に対して垂直方向であって、前記磁化固着層、前記非磁性層、及び前記第1の磁化自由層を挟むように設けられた一対の硬磁性層と、
を更に備える請求項1又は請求項2に記載のMEMS圧力センサ
The magnetization pinned layer, the nonmagnetic layer, and the first magnetization free layer are perpendicular to the stacking direction and sandwich the magnetization pinned layer, the nonmagnetic layer, and the first magnetization free layer. A pair of hard magnetic layers provided as follows:
The MEMS pressure sensor according to claim 1 or 2, further comprising:
前記第1の磁化自由層と前記第2の電極との間に設けられた反強磁性層と、
を更に備える請求項1に記載のMEMS圧力センサ
An antiferromagnetic layer provided between the first magnetization free layer and the second electrode;
The MEMS pressure sensor according to claim 1, further comprising:
前記磁化固着層と前記第2の電極との間に設けられた反強磁性層と、
を更に備える請求項2に記載のMEMS圧力センサ
An antiferromagnetic layer provided between the magnetization pinned layer and the second electrode;
The MEMS pressure sensor according to claim 2, further comprising:
前記反強磁性層は、前記第1の磁化自由層上で離間して設けられている請求項8に記載のMEMS圧力センサThe MEMS pressure sensor according to claim 8, wherein the antiferromagnetic layer is provided separately on the first magnetization free layer . 前記基板がポリイミドあるいはパリレンを含む請求項1又は請求項2に記載のMEMS圧力センサThe MEMS pressure sensor according to claim 1, wherein the substrate contains polyimide or parylene. 前記基板が軟磁性体である請求項1又は請求項2に記載のMEMS圧力センサThe MEMS pressure sensor according to claim 1, wherein the substrate is a soft magnetic material. 前記第1の電極と前記基板との間に設けられた第1の絶縁膜と、
前記第1の絶縁膜と前記基板との間に設けられた第1の軟磁性層と、
前記第2の電極上に設けられた第2の絶縁膜と、
前記第2の絶縁膜上に設けられた第2の軟磁性層と、
を更に備えることを特徴とする請求項1又は請求項2に記載のMEMS圧力センサ
A first insulating film provided between the first electrode and the substrate;
A first soft magnetic layer provided between the first insulating film and the substrate;
A second insulating film provided on the second electrode;
A second soft magnetic layer provided on the second insulating film;
The MEMS pressure sensor according to claim 1, further comprising:
支持体に支持される第1の領域と、前記第1の領域の内側であり撓むことで第1の方向に引っ張り応力が生じる第2の領域を有する基板と、
前記第2の領域上であって第2の方向に複数設けられた第1の配線と、
前記第1の配線上に複数設けられた第1の電極と、前記第1の電極上に設けられ磁化が一方向に向いている磁化固着層と、前記磁化固着層上に設けられた非磁性層と、前記非磁性層上で、かつ前記磁化固着層上に対応する領域内に設けられ前記第1の方向及び前記第1の方向に垂直な第3の方向とは何れとも異なる方向を向いている可変の磁化を有する第1の磁化自由層と、前記第の磁化自由層上に設けられた第2の電極とを備えた磁気抵抗効果素子と、
前記磁気抵抗効果素子上であって、前記磁気抵抗効果素子を挟むように前記第2の方向と交差する第4の方向に複数設けられた第2の配線と、
を備えるMEMS圧力センサ
A substrate having a first region, said second region first direction tensile stress to flex there inside occurs in the first region is supported by the support body,
A plurality of first wires provided in the second direction on the second region ;
A plurality of first electrodes provided on the first wiring; a magnetization pinned layer provided on the first electrode and having a magnetization oriented in one direction; and a nonmagnetic layer provided on the magnetization pinned layer. A layer and a direction different from a first direction and a third direction perpendicular to the first direction provided in a region corresponding to the nonmagnetic layer and the magnetization pinned layer. A magnetoresistive effect element comprising: a first magnetization free layer having a variable magnetization; and a second electrode provided on the first magnetization free layer;
A plurality of second wirings provided on the magnetoresistive element in a fourth direction intersecting the second direction so as to sandwich the magnetoresistive element;
A MEMS pressure sensor comprising:
支持体に支持される第1の領域と、前記第1の領域の内側であり撓むことで第1の方向に引っ張り応力が生じる第2の領域を有する基板と、
前記第2の領域上であって第2の方向に複数設けられた第1の配線と、
前記第1の配線上に複数設けられた第1の電極と、前記第1の電極上に設けられ前記第1の方向及び前記第1の方向に垂直な第3の方向とは何れとも異なる方向を向いている可変の磁化を有する第1の磁化自由層と、前記第1の磁化自由層上に設けられた非磁性層と、前記非磁性層上で、かつ前記第1の磁化自由層上に対応する領域内に設けられ磁化が一方向に向いている磁化固着層と、前記磁化固着層上に設けられた第2の電極とを備えた磁気抵抗効果素子と、
前記磁気抵抗効果素子上であって、前記磁気抵抗効果素子を挟むように前記第2の方向と交差する第4の方向に複数設けられた第2の配線と、
を備えるMEMS圧力センサ
A substrate having a first region, said second region first direction tensile stress to flex there inside occurs in the first region is supported by the support body,
A plurality of first wires provided in the second direction on the second region ;
A plurality of first electrodes provided on the first wiring and a direction different from both the first direction and a third direction perpendicular to the first direction provided on the first electrode A first magnetization free layer having a variable magnetization facing the magnetic field, a nonmagnetic layer provided on the first magnetization free layer, the nonmagnetic layer , and the first magnetization free layer A magnetoresistive effect element including a magnetization pinned layer provided in a region corresponding to 1 and having a magnetization oriented in one direction, and a second electrode provided on the magnetization pinned layer;
A plurality of second wirings provided on the magnetoresistive element in a fourth direction intersecting the second direction so as to sandwich the magnetoresistive element;
A MEMS pressure sensor comprising:
前記磁化固着層上に対応する領域内であり、かつ前記第1の磁化自由層と前記第2の電極との間に設けられ前記第1の方向及び前記第3の方向とは何れとも異なる方向を向いている可変の磁化を有する第2の磁化自由層とを更に備え、
前記第1の磁化自由層はFeCo合金を含み、前記第2の磁化自由層はFe−Co−Si−B合金、Fe−Co−B、Tb−M−Fe合金(Mは,Sm,Eu,Gd,Dy,Ho,Er)、Tb−M1−Fe−M2合金(M1は、Sm,Eu,Gd,Dy,Ho,Er、M2は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta)、Fe−M3−M4−B合金(M3は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta、M4は、Ce,Pr,Nd,Sm,Tb,Dy,Er)、Ni、Al−Fe合金、又はフェライトを含む請求項14に記載のMEMS圧力センサ
A direction that is in a region corresponding to the magnetization pinned layer and is provided between the first magnetization free layer and the second electrode, and is different from the first direction and the third direction. A second magnetization free layer having a variable magnetization facing
The first magnetization free layer includes an FeCo alloy, and the second magnetization free layer includes an Fe—Co—Si—B alloy, an Fe—Co—B, and a Tb—M—Fe alloy (M is Sm, Eu, Gd, Dy, Ho, Er), Tb-M1-Fe-M2 alloy (M1 is Sm, Eu, Gd, Dy, Ho, Er, M2, M2, Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta), Fe-M3-M4-B alloy (M3 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta, M4 is Ce, Pr, Nd, Sm, Tb, Dy, The MEMS pressure sensor according to claim 14, comprising Er), Ni, an Al—Fe alloy, or ferrite.
前記第1の磁化自由層上に対応する領域内であり、前記第1の磁化自由層と前記非磁性層との間に設けられ前記第1の方向及び前記第3の方向とは何れとも異なる方向を向いている可変の磁化を有する第2の磁化自由層とを更に備え、
前記第1の磁化自由層はFe−Co−Si−B合金、Tb−M−Fe合金(Mは,Sm,Eu,Gd,Dy,Ho,Er)、Fe−Co−B、Tb−M1−Fe−M2合金(M1は、Sm,Eu,Gd,Dy,Ho,Er、M2は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta)、Fe−M3−M4−B合金(M3は、Ti,Cr,Mn,Co,Cu,Nb,Mo,W,Ta、M4は、Ce,Pr,Nd,Sm,Tb,Dy,Er)、Ni、Al−Fe合金、又はフェライトを含み、前記第2の磁化自由層はFeCo合金を含む請求項15に記載のMEMS圧力センサ
It is in a region corresponding to the first magnetization free layer and is provided between the first magnetization free layer and the nonmagnetic layer, and is different from both the first direction and the third direction. A second magnetization free layer having a variable magnetization facing the direction,
The first magnetization free layer is composed of an Fe-Co-Si-B alloy, a Tb-M-Fe alloy (M is Sm, Eu, Gd, Dy, Ho, Er), Fe-Co-B, Tb-M1-. Fe-M2 alloy (M1 is Sm, Eu, Gd, Dy, Ho, Er, M2 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta), Fe-M3-M4-B alloy (M3 is Ti, Cr, Mn, Co, Cu, Nb, Mo, W, Ta, M4 is Ce, Pr, Nd, Sm, Tb, Dy, Er), Ni, Al-Fe alloy, or ferrite. The MEMS pressure sensor according to claim 15, further comprising: the second magnetization free layer including an FeCo alloy.
前記基板は被測定者の血圧測定部位に装着され、かつ前記第1の磁化自由層の前記長手方向は、前記被測定者の血管の血流方向と交差する請求項6に記載のMEMS圧力センサ。The MEMS pressure sensor according to claim 6, wherein the substrate is attached to a blood pressure measurement site of the measurement subject, and the longitudinal direction of the first magnetization free layer intersects the blood flow direction of the blood vessel of the measurement subject. . 前記基板は被測定者の血圧測定部位に装着され、かつ前記第1の磁化自由層は長手方向を有する長手形状であり、前記長手方向は前記被測定者の血管の血流方向と交差する請求項14又は請求項15に記載のMEMS圧力センサ。  The substrate is attached to a blood pressure measurement site of the measurement subject, and the first magnetization free layer has a longitudinal shape having a longitudinal direction, and the longitudinal direction intersects the blood flow direction of the blood vessel of the measurement subject. Item 16. The MEMS pressure sensor according to item 14 or claim 15.
JP2012138181A 2012-06-19 2012-06-19 MEMS pressure sensor Active JP5367877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138181A JP5367877B2 (en) 2012-06-19 2012-06-19 MEMS pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138181A JP5367877B2 (en) 2012-06-19 2012-06-19 MEMS pressure sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010119568A Division JP5101659B2 (en) 2010-05-25 2010-05-25 Blood pressure sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013081644A Division JP5607204B2 (en) 2013-04-09 2013-04-09 MEMS pressure sensor system and MEMS pressure sensor

Publications (2)

Publication Number Publication Date
JP2012176294A JP2012176294A (en) 2012-09-13
JP5367877B2 true JP5367877B2 (en) 2013-12-11

Family

ID=46978557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138181A Active JP5367877B2 (en) 2012-06-19 2012-06-19 MEMS pressure sensor

Country Status (1)

Country Link
JP (1) JP5367877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215326A (en) * 2017-07-04 2017-12-07 株式会社東芝 Sensor
US10082435B2 (en) 2014-07-02 2018-09-25 Kabushiki Kaisha Toshiba Pressure sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190226B2 (en) 2013-09-20 2017-08-30 株式会社東芝 Inertial sensor
JP2015061057A (en) 2013-09-20 2015-03-30 株式会社東芝 Strain detection element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP6223761B2 (en) 2013-09-20 2017-11-01 株式会社東芝 Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP6211866B2 (en) 2013-09-20 2017-10-11 株式会社東芝 Pressure sensor, microphone, blood pressure sensor, and touch panel
JP6173855B2 (en) 2013-09-20 2017-08-02 株式会社東芝 Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP6327821B2 (en) 2013-09-20 2018-05-23 株式会社東芝 Acoustic sensor and acoustic sensor system
JP6196557B2 (en) 2014-01-20 2017-09-13 株式会社東芝 Pressure sensor, microphone, acceleration sensor, and pressure sensor manufacturing method
JP6523004B2 (en) 2015-03-24 2019-05-29 株式会社東芝 Strain sensing element and pressure sensor
JP6617686B2 (en) 2016-11-25 2019-12-11 株式会社デンソー Wireless power feeding system and power transmission / reception monitoring program

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273066A (en) * 1992-03-27 1993-10-22 Mazda Motor Corp Pressure sensor
JP4355439B2 (en) * 2000-11-09 2009-11-04 東北リコー株式会社 Micro pressure sensing element, device using this element, and health monitoring system
JP2002357489A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Stress sensor
JP3828777B2 (en) * 2001-10-22 2006-10-04 株式会社日立グローバルストレージテクノロジーズ Magnetoresistive head
JP2003218421A (en) * 2002-01-18 2003-07-31 Matsushita Electric Ind Co Ltd Magnetic detecting element, its manufacturing method, magnetic head, and magnetic reproducing device
JP2003282999A (en) * 2002-03-25 2003-10-03 Fujitsu Ltd Magnetic sensor
JP3650092B2 (en) * 2002-09-09 2005-05-18 Tdk株式会社 Exchange coupling film, spin valve film, thin film magnetic head, magnetic head device, and magnetic recording / reproducing apparatus
JP2005209301A (en) * 2004-01-23 2005-08-04 Hitachi Global Storage Technologies Netherlands Bv Magnetic head and its manufacturing method
JP2007299931A (en) * 2006-04-28 2007-11-15 Toshiba Corp Magnetoresistance effect element and magnetic memory
JP2008000199A (en) * 2006-06-20 2008-01-10 Tdk Corp Motion sensor
US7750627B2 (en) * 2006-10-24 2010-07-06 Headway Technologies, Inc. Magnetic film sensor having a magnetic film for generating a magnetostriction and a depressed insulating layer
WO2010026705A1 (en) * 2008-09-08 2010-03-11 キヤノンアネルバ株式会社 Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082435B2 (en) 2014-07-02 2018-09-25 Kabushiki Kaisha Toshiba Pressure sensor
JP2017215326A (en) * 2017-07-04 2017-12-07 株式会社東芝 Sensor

Also Published As

Publication number Publication date
JP2012176294A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5101659B2 (en) Blood pressure sensor
JP5367877B2 (en) MEMS pressure sensor
JP5607204B2 (en) MEMS pressure sensor system and MEMS pressure sensor
JP5766569B2 (en) Pulse wave velocity measuring device
JP5443421B2 (en) Magnetoresistive element, magnetic head gimbal assembly, and magnetic recording / reproducing apparatus
JP6211866B2 (en) Pressure sensor, microphone, blood pressure sensor, and touch panel
US9176014B2 (en) Pressure sensor, audio microphone, blood pressure sensor, and touch panel
JP6212000B2 (en) Pressure sensor, and microphone, blood pressure sensor, and touch panel using pressure sensor
US9651432B2 (en) Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP6074344B2 (en) Pressure sensor, microphone, blood pressure sensor, and touch panel
US9952030B2 (en) Strain sensing element and pressure sensor
US20180299338A1 (en) Strain detecting element, pressure sensor and microphone
TW201516387A (en) Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel
JP6370980B2 (en) Sensor, microphone, blood pressure sensor, and touch panel
JP6200565B2 (en) Pressure sensor, acoustic microphone, blood pressure sensor, and touch panel
JP5681749B2 (en) Strain sensor, pressure sensor, blood pressure sensor, and structural health monitor sensor
JP2018201023A (en) Sensor, microphone, blood pressure sensor, and touch panel
JP6457614B2 (en) Strain detection element, pressure sensor, microphone, blood pressure sensor, and touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R151 Written notification of patent or utility model registration

Ref document number: 5367877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151