JP5367503B2 - Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter - Google Patents

Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter Download PDF

Info

Publication number
JP5367503B2
JP5367503B2 JP2009190470A JP2009190470A JP5367503B2 JP 5367503 B2 JP5367503 B2 JP 5367503B2 JP 2009190470 A JP2009190470 A JP 2009190470A JP 2009190470 A JP2009190470 A JP 2009190470A JP 5367503 B2 JP5367503 B2 JP 5367503B2
Authority
JP
Japan
Prior art keywords
core wire
wire
heat treatment
temperature heat
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009190470A
Other languages
Japanese (ja)
Other versions
JP2011041612A (en
Inventor
富久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Intecc Co Ltd
Original Assignee
Asahi Intecc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Intecc Co Ltd filed Critical Asahi Intecc Co Ltd
Priority to JP2009190470A priority Critical patent/JP5367503B2/en
Publication of JP2011041612A publication Critical patent/JP2011041612A/en
Application granted granted Critical
Publication of JP5367503B2 publication Critical patent/JP5367503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method or the like which is a technical subject as a suitable condition for improving the tensile strength characteristics of a core wire by paying attention to the temperature and tensile strength characteristics of the core wire to which high deformation wire drawing is executed, in a medical guide wire using a stainless steel wire for the core wire. <P>SOLUTION: By using an austenitic stainless steel wire to which solid solution treatment is executed for the core wire, performing the wire drawing work of strong deformation with the total area reduction rate of 90% to 97.6%, and repeatedly using low temperature heat treatment of a suitable condition for each mechanical work of the core wire, and by taking into consideration the low temperature heat treatment after twisting work, the heat utilization of resin film formation to the core wire and the heat conductivity of the core wire, etc., the mechanical strength characteristics of the core wire are improved. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、ステンレス鋼線から成る芯線を各機械的加工した後に、一定の温度範囲の低温熱処理を加えることにより芯線の機械的強度特性を向上させた医療用ガイドワイヤとその製造方法に関する。   The present invention relates to a medical guide wire in which the mechanical strength characteristics of the core wire are improved by subjecting the core wire made of stainless steel wire to mechanical processing, followed by low-temperature heat treatment in a certain temperature range, and a manufacturing method thereof.

血管内へ挿入する医療用ガイドワイヤは細線である為、機械的強度特性を考慮して人体への安全確保を満たさなければならず、この為種々の提案がなされている。   Since a medical guide wire inserted into a blood vessel is a thin wire, it must satisfy the safety of the human body in consideration of mechanical strength characteristics, and various proposals have been made for this purpose.

特許文献1には、高珪素ステンレス鋼(Si:3.0%から5%)を用いて所定の加工度と低温熱処理条件等が記載され、芯線の引張強度特性向上を目的としている。   Patent Document 1 describes a predetermined degree of processing and low-temperature heat treatment conditions using high silicon stainless steel (Si: 3.0% to 5%), and aims to improve the tensile strength characteristics of the core wire.

特許文献2には、弾性形状記憶合金を用いて所定の加工条件等が記載され、品質向上を目的としている。   Patent Document 2 describes predetermined processing conditions using an elastic shape memory alloy and aims to improve quality.

特許文献3には、金属細線を用いて分割したゾーン毎に異なる捻回加工と異なる熱処理等が記載され、品質向上を目的としている。   Patent Document 3 describes a different twisting process and a different heat treatment for each zone divided using a thin metal wire, and aims to improve quality.

特開2003−342696号公報JP 2003-342696 A 特開2000−512691号公報JP 2000-512691 A 特開2005−14040号公報JP 2005-14040 A

従来のガイドワイヤにおいては、その芯線材料として一般的に用いられるオーステナイト系ステンレス鋼線を用いているが、医療用ガイドワイヤとしての特性を満足させる為に芯線への機械的加工を施す際、予め加工度の高い強加工の伸線加工を行い、その後芯線に機械的加工を施す際、この強加工した芯線の熱影響による引張強度特性に着目して、医療用ガイドワイヤ特有の各加工工程毎に芯線の機械的加工と低温熱処理との相関性において、芯線の引張強度特性向上効果を有する工程を累積することにより、高度の引張強度特性を有する芯線から成る医療用ガイドワイヤ、及びその製造方法に関する技術思想は存在していない。
この発明の目的は、芯線にオーステナイト系ステンレス鋼線を用いて強加工した芯線への熱影響による引張強度特性と医療用ガイドワイヤとしての特性を満たすべく、芯線に施す機械的加工との相関性において、最も好ましい芯線の引張強度特性を得て、術者が安全に操作できる医療用ガイドワイヤを提供することにある。
In the conventional guide wire, an austenitic stainless steel wire that is generally used as the core wire material is used. However, in order to satisfy the characteristics as a medical guide wire, the core wire is subjected to mechanical processing in advance. When performing high-strength, high-strength wire drawing, and then mechanically processing the core wire, pay attention to the tensile strength characteristics due to the heat effect of this strongly processed core wire. In addition, in the correlation between the mechanical processing of the core wire and the low-temperature heat treatment, by accumulating the steps having the effect of improving the tensile strength property of the core wire, the medical guide wire comprising the core wire having a high tensile strength property, and the manufacturing method thereof There is no technical idea about.
The object of the present invention is to correlate the tensile strength characteristics due to the heat effect on the core wire, which is strongly processed using an austenitic stainless steel wire as the core wire, and the mechanical processing applied to the core wire in order to satisfy the characteristics as a medical guide wire. It is an object of the present invention to provide a medical guide wire that can obtain the most preferable tensile strength characteristic of a core wire and can be safely operated by an operator.

請求項1記載の発明は、可とう性細長体から成る芯線と、芯線の先端部に芯線を貫挿したコイルスプリング体を装着し、芯線とコイルスプリング体との先端端部に接合部材を用いて先導栓を形成した医療用ガイドワイヤにおいて、芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と伸線工程後に400℃〜495℃の低温熱処理工程を設けて、伸線工程と低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、最終伸線工程までの総減面率を90%から97.6%とし、最終伸線工程までの低温熱処理による引張破断強度の増加率の合計が8%以上とし、最終伸線工程後に380℃〜495℃の低温熱処理と、芯線先端部に研削加工、又は押圧加工の機械的加工をした後に、少なくとも機械的加工部分に180℃〜420℃(後述する樹脂被膜成形時の熱利用温度範囲)の低温熱処理を加え、最終伸線工程後の各低温熱処理による引張破断強度の増加率の合計が2%以上とし、各低温熱処理による引張破断強度の増加率の合計が10%以上であることを特徴とする。
この構成により、強加工の伸線加工後の低温熱処理と引張強度特性、及び機械的加工後の低温熱処理と引張強度特性との相関性に着目して、各工程毎に引張強度特性向上効果を有する工程を累積させて、高度の引張強度特性を有する芯線から成る医療用ガイドワイヤの提供ができる。
According to the first aspect of the present invention, a core wire made of a flexible elongated body, a coil spring body having a core wire inserted through the tip end portion of the core wire, and a joining member are used at the tip end portions of the core wire and the coil spring body. In a medical guide wire having a lead plug formed therein, an austenitic stainless steel wire whose core wire is subjected to a solid solution treatment is used, and a low temperature heat treatment step of 400 ° C. to 495 ° C. is provided after the wire drawing step. The process and low temperature heat treatment process are set as one set, and after each process is repeated at least one set, the final wire drawing process is provided, and the total area reduction until the final wire drawing process is changed from 90% to 97.6%. The total increase rate of tensile fracture strength due to low-temperature heat treatment until the process is 8% or more. After the final wire drawing process, low-temperature heat treatment at 380 ° C to 495 ° C and mechanical processing such as grinding or pressing at the tip of the core wire After that, at least the mechanically processed portion is subjected to low-temperature heat treatment at 180 ° C. to 420 ° C. (heat utilization temperature range at the time of resin film molding described later), and the rate of increase in tensile fracture strength by each low-temperature heat treatment after the final wire drawing step The total is 2% or more, and the total increase rate of the tensile fracture strength by each low-temperature heat treatment is 10% or more.
With this configuration, paying attention to the correlation between low temperature heat treatment and tensile strength characteristics after wire drawing of strong processing, and low temperature heat treatment and tensile strength characteristics after mechanical processing, the effect of improving tensile strength characteristics for each process By accumulating the steps, it is possible to provide a medical guide wire composed of a core wire having a high tensile strength characteristic.

請求項2記載の発明は、請求項1 記載の発明に対して、最終伸線工程の後に芯線に所定量の捻回加工を行い、その後芯線に電気抵抗加熱による低温熱処理を行い、その後芯線先端部に機械的加工である研削加工、又は押圧加工を経た後、芯線の外周部へ樹脂被膜成形時に加熱する熱を利用して、一定温度範囲に制御した低温熱処理を施したことを特徴とする。
この構成により、強加工の芯線を用いて捻回加工と、その後の電気抵抗加熱による低温熱処理により芯線の加工度をより向上させて、そして機械的加工と一定温度範囲に制御した低温熱処理により、各機械的加工による残留応力を除去して引張強度特性を向上させ、その増加率の合計が10%以上向上させることができる。又、請求項3記載の発明は、請求項2記載の発明に対して、芯線先端部の機械的加工後に、芯線の外周部に樹脂被膜成形前に一定の温度範囲に制御した低温熱処理を施したことを特徴とし、この構成により引張破断強度の増加率の合計を11.5%以上向上させることができる。
The invention according to claim 2 is the same as the invention according to claim 1, wherein after the final wire drawing step, a predetermined amount of twisting is performed on the core wire, and then the core wire is subjected to low-temperature heat treatment by electric resistance heating, and then the tip of the core wire After undergoing a grinding process or a pressing process, which is a mechanical process, the outer peripheral part of the core wire is subjected to a low-temperature heat treatment controlled to a certain temperature range using heat heated during resin film molding. .
With this configuration, the degree of processing of the core wire is further improved by twist processing using a strong core wire and subsequent low-temperature heat treatment by electric resistance heating, and by low-temperature heat treatment controlled to a certain temperature range by mechanical processing, Residual stress due to each mechanical processing is removed to improve tensile strength characteristics, and the total increase rate can be improved by 10% or more. The invention described in claim 3 is the same as the invention described in claim 2 except that after the core wire tip is mechanically processed, the outer peripheral portion of the core wire is subjected to low-temperature heat treatment controlled to a certain temperature range before the resin film is formed. The total increase rate of the tensile breaking strength can be improved by 11.5% or more by this configuration.

請求項4記載の発明は、請求項1〜3のいずれか一つに記載の発明の芯線を用いて、芯線先端部研削加工部分の低温熱処理後に押圧加工を行ない、少なくとも押圧加工した部分に芯線先端部に装着されたコイルスプリング体外周部の樹脂被膜成形時の熱を利用して、一定の温度範囲に制御した低温熱処理を行い、押圧加工部分の引張強度特性を向上させることができる。   The invention according to claim 4 uses the core wire according to any one of claims 1 to 3 to perform a pressing process after the low-temperature heat treatment of the core wire tip grinding part, and at least the core part is subjected to the pressing process. Using the heat at the time of resin film molding on the outer periphery of the coil spring body attached to the tip, low-temperature heat treatment controlled to a certain temperature range can be performed, and the tensile strength characteristics of the pressed portion can be improved.

請求項5記載の発明は、請求項1〜4のいずれか一つに記載の発明に対して、総減面率を94%から97.6%として芯線の引張破断強度を大幅に向上させることができる。
この構成により、特に芯線に捻回加工を加えて熱処理したものと、捻回加工を加えないで熱処理したものとは引張破断強度の増加率が異なり、総減面率94%を境にして、急激な引張破断強度が増大し、高強度の引張強度特性を有する芯線から成る医療用ガイドワイヤを得ることができる。
The invention according to claim 5 significantly improves the tensile breaking strength of the core wire by setting the total area reduction rate from 94% to 97.6% as compared with the invention according to any one of claims 1 to 4. Can do.
With this configuration, the rate of increase in tensile rupture strength is different between the heat treated without twisting the core wire in particular, and the rate of increase in tensile rupture strength differs from the total area reduction rate of 94%, A medical guide wire composed of a core wire having a high tensile strength characteristic can be obtained by increasing the rapid tensile strength at break.

請求項6記載の発明は、可とう性細長体から成る芯線と、芯線の先端部に芯線を貫挿したコイルスプリング体を装着し、芯線とコイルスプリング体との先端端部に接合部材を用いて先導栓を形成した医療用ガイドワイヤにおいて、芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と伸線工程の後に400℃〜495℃で10分から180分の低温熱処理工程を設けて、伸線工程と低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、最終伸線工程までの総減面率を90%から97.6%とし、芯線の一端に捻回加工前の芯線の引張破断力の5%から30%の負荷荷重を加えた状態で、他端を100回/mから250回/mの捻回加工工程を設け、その後芯線に電気抵抗加熱による380℃〜495℃で30秒から60分の低温熱処理工程と、芯線先端部を研削加工、又は研削加工後に押圧加工する工程と、芯線の先端部に芯線を貫挿してコイルスプリング体を装着する工程と、接合部材を用いて芯線とコイルスプリング体とを部分的に接合させる工程と、接合部材を用いて芯線とコイルスプリング体の端部とを接合させた先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、強加工伸線後の各低温熱処理と、強加工の捻回加工後の電気抵抗加熱による低温熱処理により、芯線の加工度をより向上させて各強加工工程での残留応力を除去し、引張強度特性の高い芯線から成る医療用ガイドワイヤの製造方法が提供できる。
In the invention described in claim 6, a core wire made of a flexible elongated body, a coil spring body having a core wire inserted through the tip end portion of the core wire, and a joining member are used at the tip end portions of the core wire and the coil spring body. In a medical guide wire having a lead plug, a low temperature heat treatment process at 400 to 495 ° C. for 10 minutes to 180 minutes after the wire drawing process and the wire drawing process using an austenitic stainless steel wire whose core wire is solid solution treated The wire drawing step and the low-temperature heat treatment step are set as one set, and after at least one set is repeated, the final wire drawing step is provided, and the total area reduction until the final wire drawing step is 90% to 97.6. %, And with one end of the core wire subjected to a load of 5 to 30% of the tensile breaking force of the core wire before twisting, the other end is subjected to a twisting process of 100 to 250 times / m. After that, power A low temperature heat treatment step at 380 ° C. to 495 ° C. for 30 seconds to 60 minutes by resistance heating, a step of grinding the core wire tip or pressing after the grinding, and a coil spring body by inserting the core wire into the tip of the core wire , A step of partially bonding the core wire and the coil spring body using the bonding member, and a step of forming a leading plug in which the core wire and the end of the coil spring body are bonded using the bonding member It is a manufacturing method of the medical guide wire characterized by comprising.
With this configuration, the low-temperature heat treatment after wire-stretching and low-temperature heat treatment by electrical resistance heating after strong-working twisting improves the degree of processing of the core wire and removes residual stress in each strong-working process. And the manufacturing method of the medical guide wire which consists of a core wire with a high tensile strength characteristic can be provided.

請求項7記載の発明は、請求項6記載の発明に対して、強加工の捻回加工後に電気抵抗加熱による低温熱処理を行い、その後一定温度範囲(400℃〜495℃)の電気抵抗加熱以外の熱処理炉等を用いた雰囲気加熱等による低温熱処理工程を設けることにより、又請求項8記載に発明は、請求項6記載の発明に対して芯線先端部の研削加工後に、芯線の樹脂被膜成形時の熱を利用して芯線に一定温度範囲(340℃〜420℃)と時間に制御した低温熱処理工程を設けることにより、前記同様引張強度特性の高い芯線から成る医療用ガイドワイヤの製造方法である。   The invention described in claim 7 is the same as that described in claim 6 except that a low temperature heat treatment is performed by electrical resistance heating after a strong twisting process, and thereafter electrical resistance heating in a certain temperature range (400 ° C. to 495 ° C.) is performed. By providing a low-temperature heat treatment step such as atmospheric heating using a heat treatment furnace or the like, the invention according to claim 8 is a resin film molding of the core wire after grinding the tip end portion of the core wire with respect to the invention according to claim 6. In the method of manufacturing a medical guide wire composed of a core wire having high tensile strength characteristics as described above, by providing a low temperature heat treatment process controlled to a certain temperature range (340 ° C. to 420 ° C.) and time on the core wire using the heat of time is there.

請求項9記載の発明は、請求項6〜8のいずれか一つに記載の発明に対して、芯線の他端の捻回数が100回/mから200回/mの捻回加工工程をとしたことを特徴とする。 この構成により、芯線の表層部と内層部との不均質をより少なくして均質化させ、曲げ変形後の残留角度をより少なくして、直線性向上、および安定した品質の芯線から成る医療用ガイドワイヤの製造方法の提供ができる。   The invention according to claim 9 is the invention according to any one of claims 6 to 8, wherein the twisting process of the twist of the other end of the core wire is 100 times / m to 200 times / m. It is characterized by that. With this configuration, the inhomogeneity between the surface layer portion and the inner layer portion of the core wire is reduced and homogenized, the residual angle after bending deformation is reduced, the linearity is improved, and the medical wire comprising a core wire with stable quality A method for manufacturing a guide wire can be provided.

請求項10記載の発明は、請求項6〜9のいずれか一つに記載の発明に対して、接合部材を用いて芯線とコイルスプリング体とを接合させた後に、コイルスプリング体外周部の樹脂被膜成形時の熱を利用して、少なくともコイルスプリング体内の芯線に一定温度範囲(180℃〜300℃)と時間に制御した低温熱処理工程を設けることにより、前記同様引張強度特性の高い芯線から成る医療用ガイドワイヤの製造方法である。   The invention according to claim 10 is the resin according to any one of claims 6 to 9, wherein the core wire and the coil spring body are joined using the joining member, and then the resin of the outer peripheral portion of the coil spring body. By using the heat at the time of film forming, at least the core wire in the coil spring body is provided with a low temperature heat treatment process controlled at a certain temperature range (180 ° C. to 300 ° C.) and time, and thus it is composed of a core wire having high tensile strength characteristics as described above. It is a manufacturing method of a medical guide wire.

請求項11記載の発明は、請求項6〜10のいずれか一つに記載の発明に対して、芯線の伸線工程が一次伸線から最終伸線までの所定の減面率を有する複数のダイスを用いたダイス配列とすることにより、生産性が高く、安定した品質の生産が可能な高い引張強度特性を有する芯線から成る医療用ガイドワイヤの製造方法である。   The invention according to claim 11 is a plurality of the inventions according to any one of claims 6 to 10, wherein the core wire drawing step has a predetermined area reduction ratio from primary drawing to final drawing. This is a method for producing a medical guide wire composed of a core wire having high tensile strength characteristics that can be produced with high productivity and stable quality by forming a die arrangement using dies.

請求項12記載の発明は、接合部材が180℃から495℃の溶融温度をもつ共晶合金から成る請求項1〜5のいずれかの医療用ガイドワイヤで、請求項13記載の発明は、前記接合部材から成る請求項6〜11のいずれかの医療用ガイドワイヤの製造方法である。 この構成により、芯線とコイルスプリング体とを接合部材を用いて接合する際、接合時の熱による芯線の引張破断強度を低下させることなく、むしろこの接合部材の溶融熱を利用して芯線の引張破断強度特性を向上させ、芯線と中間接合部材、又は後端接合部材との接合部、及び芯線と先導栓との接合部での芯線の引張破断強度を向上させる接合を可能とすることができる。   The invention according to claim 12 is the medical guidewire according to any one of claims 1 to 5, wherein the joining member is made of a eutectic alloy having a melting temperature of 180 ° C to 495 ° C. It is a manufacturing method of the medical guide wire in any one of Claims 6-11 which consists of a joining member. With this configuration, when the core wire and the coil spring body are joined using the joining member, the tensile strength of the core wire is utilized by utilizing the heat of fusion of the joining member without decreasing the tensile breaking strength of the core wire due to heat during joining. Breaking strength characteristics can be improved, and joining that improves the tensile breaking strength of the core wire at the joint portion between the core wire and the intermediate joining member or the rear end joining member and the joint portion between the core wire and the leading plug can be made possible. .

請求項14記載の発明は、請求項1〜5、12のいずれか一つに記載の医療用ガイドワイヤと、マイクロカテーテルと、ガイディングカテーテルとの組立体において、医療用ガイドワイヤの外径が0.228mmから0.254mm(0.009インチから0.010インチ)で、医療用ガイドワイヤを内径が0.28mmから0.90mmのマイクロカテーテル内へ挿入し、かつ、内径が1.59mmから2.00mmのガイディングカテーテル内へ医療用ガイドワイヤとマイクロカテーテルが挿入されていることを特徴とする医療用ガイドワイヤとマイクロカテーテルとガイディングカテーテルとの組立体である。この構成により、細径化された組立体を得ることができる。   According to a fourteenth aspect of the present invention, in the assembly of the medical guidewire, the microcatheter and the guiding catheter according to any one of the first to fifth and twelfth aspects, the outer diameter of the medical guidewire is 0.228 mm to 0.254 mm (0.009 inch to 0.010 inch) medical guide wire inserted into a microcatheter having an inner diameter of 0.28 mm to 0.90 mm and an inner diameter of 1.59 mm A medical guide wire, a microcatheter, and a guiding catheter assembly, wherein a medical guide wire and a micro catheter are inserted into a 2.00 mm guiding catheter. With this configuration, an assembly with a reduced diameter can be obtained.

請求項15記載の発明は、請求項1〜5、12のいずれか一つに記載の医療用ガイドワイヤと、バルーンカテーテルと、ガイディングカテーテルとの組立体において、医療用ガイドワイヤの外径が0.228mmから0.254mm(0.009インチから0.010インチ)で、医療用ガイドワイヤを内径が0.28mmから0.90mmのバルーンカテーテル内へ挿入し、かつ、内径が1.59mmから2.00mmのガイディングカテーテル内へ、医療用ガイドワイヤとバルーンカテーテルが挿入されていることを特徴とする医療用ガイドワイヤとバルーンカテーテルとガイディングカテーテルとの組立体である。この構成により、細径化された組立体を得ることができる。   According to a fifteenth aspect of the present invention, in the assembly of the medical guidewire, the balloon catheter, and the guiding catheter according to any one of the first to fifth and twelfth aspects, the outer diameter of the medical guidewire is 0.228 mm to 0.254 mm (0.009 inch to 0.010 inch) medical guide wire inserted into a balloon catheter having an inner diameter of 0.28 mm to 0.90 mm and an inner diameter of 1.59 mm A medical guide wire, balloon catheter, and guiding catheter assembly, wherein a medical guide wire and a balloon catheter are inserted into a 2.00 mm guiding catheter. With this configuration, an assembly with a reduced diameter can be obtained.

医療用ガイドワイヤと芯線の正面図、及び芯線の要部拡大図である。It is the front view of a medical guide wire and a core wire, and the principal part enlarged view of a core wire. 低温熱処理と引張強度特性図である。(実施例1、2)It is a low-temperature heat treatment and tensile strength characteristic view. (Examples 1 and 2) 低温熱処理と引張強度特性図である。(実施例6、7、8)It is a low-temperature heat treatment and tensile strength characteristic view. (Examples 6, 7, and 8) 低温熱処理と引張強度特性図である。(実施例1、2、6、7、8)It is a low-temperature heat treatment and tensile strength characteristic view. (Examples 1, 2, 6, 7, 8) 低温熱処理有無の捻回回数と引張強度特性図である。It is a twist frequency and tensile strength characteristic figure with and without low-temperature heat treatment. 低温熱処理有無の捻回回数と曲げ残留角度の特性図である。It is a characteristic view of the number of twists with and without low-temperature heat treatment and the bending residual angle. 電気抵抗加熱による連続捻回製造方法の実施形態である。It is embodiment of the continuous twist manufacturing method by electrical resistance heating. 温度と引張強度特性図である。It is a temperature and tensile strength characteristic view. 総減面率と引張強度特性図である。It is a total area reduction rate and tensile strength characteristic figure. 医療用ガイドワイヤの他の実施例の正面図、側面図である。It is the front view of the other Example of a medical guide wire, and a side view.

この発明の最良の実施形態を図に示すとともに説明する。   The best embodiment of the present invention will be described with reference to the drawings.

図1は実施例の医療用ガイドワイヤ1を示し、芯線2の先端部21には、同軸的に外嵌めされたコイルスプリング体(以下コイル体)3を有し、コイル体3の先端側には金、白金、タングステン等の放射線不透過材コイル31から成り、その芯線2の先端部21には、中間前側接合部材41、中間後側接合部材42、後端接合部材43により、芯線2とコイル体3とが接合部材4を用いて部分的にそれぞれ接合され、又芯線2の先端端部に先丸形状の円柱状の先導栓5が接合部材4により形成されて芯線2とコイル体3とを接合している。   FIG. 1 shows a medical guide wire 1 according to an embodiment. A distal end portion 21 of a core wire 2 has a coil spring body (hereinafter referred to as a coil body) 3 that is coaxially fitted on the distal end side of the coil body 3. Consists of a radiopaque material coil 31 such as gold, platinum, tungsten or the like, and the core wire 2 is connected to the front end portion 21 of the core wire 2 by an intermediate front side joining member 41, an intermediate rear side joining member 42, and a rear end joining member 43. The coil body 3 is partially joined to each other by using the joining member 4, and a rounded cylindrical lead plug 5 is formed at the tip end portion of the core wire 2 by the joining member 4. And are joined.

そして芯線2は、先端部21の先端から約300mmは、概ね0.060mmから0.200mmの細径の線で、残りの手元部22は、約1200mmから約2700mmで太径の線から成っている。先端部21の細径部分は、先端側へ徐変縮径し、その断面形状は円形断面、又は矩形断面いずれの形状であってもよい。又、芯線2の手元側22の外周部にフッ素樹脂、ウレタン樹脂等の樹脂被膜6が形成され、特にコイル体3の外周部にはウレタン樹脂等、芯線2の手元側22の外周部にはフッ素樹脂(PTFE)が被膜成形されている。
そしてその外周部には、湿潤時に潤滑特性を示すポリビニルピロリドン等の親水性被膜7が形成され、芯線2の先端部21は、前記樹脂被膜等により密閉状に包被されている。
The core wire 2 is a thin wire having a diameter of approximately 0.060 mm to 0.200 mm, approximately 300 mm from the tip of the tip portion 21, and the remaining proximal portion 22 is formed of a thick wire having a diameter of approximately 1200 mm to approximately 2700 mm. Yes. The small-diameter portion of the distal end portion 21 gradually changes in diameter toward the distal end, and the cross-sectional shape thereof may be either a circular cross section or a rectangular cross section. In addition, a resin coating 6 such as a fluororesin or a urethane resin is formed on the outer peripheral portion of the core wire 2 on the proximal side 22, and particularly on the outer peripheral portion of the coil body 3 on the proximal side 22 of the core wire 2. A fluororesin (PTFE) is formed into a film.
And the outer peripheral part is formed with a hydrophilic film 7 such as polyvinyl pyrrolidone which exhibits lubricating properties when wet, and the tip part 21 of the core wire 2 is hermetically covered with the resin film or the like.

そして芯線2は、固溶化処理したオーステナイト系ステンレス鋼線を用いて、総減面率が90%から97.6%の伸線加工を行ったことを特徴とする。尚、ここでいう総減面率とは、固溶化処理した線材の線径と伸線加工により伸線工程での最終仕上がり線径との間の断面積差を減少率で表したものをいう。
そして総減面率が90%以上としたのは、80%を境にして引張破断強度が増大し、90%以上で急傾斜増大するからである。(図9)これは、90%以上という強加工の伸線加工により加工度の増大に伴い繊維状組織となり、この組織の発達によるものと考えられる。そして総減面率が97.6%以下としたのは、これを超える強い加工度では、組織内に空隙が生じはじめて脆化し、これが伸線加工の限界と考えるからである。
And the core wire 2 is characterized by performing wire drawing with a total area reduction of 90% to 97.6% using a solution-treated austenitic stainless steel wire. Here, the total area reduction ratio means a reduction ratio indicating a difference in cross-sectional area between the wire diameter of the solid solution processed wire and the final finished wire diameter in the wire drawing process. .
The reason why the total area reduction is 90% or more is that the tensile fracture strength increases at 80% and the steep slope increases at 90% or more. (FIG. 9) This is considered to be due to the development of this structure as it becomes a fibrous structure as the degree of processing increases due to the strong wire drawing of 90% or more. The reason why the total area reduction is 97.6% or less is that when the degree of processing exceeds this, voids begin to form in the structure and become brittle, which is considered the limit of wire drawing.

そして「固溶化処理したオーステナイト系ステンレス鋼線の伸線加工」としたのは、加工性のよいオーステナイト組織を得る為であり、オーステナイト系ステンレス鋼線は変態点を利用した熱処理による結晶粒の微細化ができず、冷間加工によってのみ結晶粒の微細化が可能で、伸線加工により顕著な加工硬化性を示して引張強度特性を向上させることができるからである。又オーステナイト系ステンレス鋼線を用いる理由は、マルテンサイト系ステンレス鋼線では熱処理による焼入硬化性を示して熱影響を受け易く、又フェライト系ステンレス鋼線では温度脆性(シグマ脆性、475℃脆性)の問題があるからである。   The reason why “Solution-treated austenitic stainless steel wire was drawn” was to obtain an austenitic structure with good workability, and the austenitic stainless steel wire was refined by heat treatment using transformation points. This is because the crystal grains can be refined only by cold working, and the tensile strength characteristics can be improved by exhibiting remarkable work hardenability by wire drawing. The reason for using austenitic stainless steel wire is that martensitic stainless steel wire exhibits quench hardenability by heat treatment and is easily affected by heat, and ferritic stainless steel wire is temperature brittle (sigma brittle, 475 ° C brittle) Because there is a problem.

ここで表1 は、固溶化処理したオーステナイト系ステンレス鋼線の引張破断強度68kgf/mm2 の線材(母材)の線径1.5mmを用いて一次伸線後、温度範囲が400℃〜495℃で10分から180分で熱処理炉を用いた炉内での雰囲気加熱による一次低温熱処理(本実施例では420℃、75分)を行ない、その後二次伸線(本実施例で最終伸線)を行い、総減面率を90%(実施例1)、及び94%(実施例2)として、その後前記同様温度範囲が400℃〜495℃で10分から180分で熱処理炉を用いた炉内での雰囲気加熱による二次低温熱処理(本実施例では450℃、120分)を加え、そして芯線2の先端部21を外径0.150mmまで研削加工を行ない、その後芯線2の手元部22に吹付け等によるPTFE等のフッ素樹脂の塗膜成形後の乾燥・焼成の為の雰囲気による加熱を、芯線2の温度による引張強度特性を考慮して340℃〜420℃の温度範囲で10分から180分の三次低温熱処理(本実施例では385℃、30分)を加えたものである。そしてこの表1をグラフ化したものが図2である。尚、ここでいう引張破断強度とは、芯線に引張力を加えて破断した値を芯線の断面積で除した値のことをいう。 Table 1 shows a temperature range of 400 ° C. to 495 after primary wire drawing using a wire diameter of 1.5 mm of a wire rod (base material) having a tensile breaking strength of 68 kgf / mm 2 of a solution treated austenitic stainless steel wire. First low-temperature heat treatment (at 420 ° C. for 75 minutes in this example) by atmospheric heating in a furnace using a heat treatment furnace at 10 ° C. to 180 minutes, followed by secondary wire drawing (final wire drawing in this example) In a furnace using a heat treatment furnace with a total area reduction rate of 90% (Example 1) and 94% (Example 2), and thereafter in the same temperature range from 400 ° C. to 495 ° C. for 10 minutes to 180 minutes. A secondary low-temperature heat treatment (at 450 ° C. for 120 minutes in this embodiment) is performed by heating in the atmosphere, and the tip portion 21 of the core wire 2 is ground to an outer diameter of 0.150 mm. Such as PTFE by spraying Heating in an atmosphere for drying / firing after forming a coating film of fluororesin, taking into consideration the tensile strength characteristics depending on the temperature of the core wire 2, a third low-temperature heat treatment in the temperature range of 340 ° C to 420 ° C for 10 minutes to 180 minutes (this In the examples, 385 ° C., 30 minutes) was added. FIG. 2 is a graph of Table 1. Here, the tensile breaking strength means a value obtained by dividing a value obtained by applying a tensile force to the core wire and dividing the value by the cross-sectional area of the core wire.

Figure 0005367503
Figure 0005367503

なお、以下において各表中における丸付数字は、文中においてカッコ付数字で示すものである。
表1によると、最終伸線(本実施例では二次伸線)前までの低温熱処理(本実施例では一次低温熱処理)による引張破断強度の増加率は、実施例1で12.6%、実施例2で13.3%となり、そして最終伸線後の各低温熱処理後の引張破断強度の増加率の合計(2)+(3)は、実施例1、2でそれぞれ2.8%、4.0%となって、前記伸線工程を含む各低温熱処理の張破断強度の増加率の合計(1)+(2)+(3)は、実施例1、2でそれぞれ15.4%、17.3%となる。特に機械的加工した研削部分の外径が0.150mmの芯線の引張破断強度を断面積換算すると、実施例1で研削加工前と比較して、4,522gfが4,575gfとなって約53gf増大し、又同様に実施例2では、約71gf増大する。
この研削加工した芯線2の先端部分は冠状動脈内の屈曲蛇行病変部へ侵入して操作される為、引張強度、及び繰り返し屈曲曲げ耐疲労特性が要求される部位であり、そして繰り返し耐久回数は応力の関数(S−N線図)で表わせる為、この部位の少しの増加率であっても、繰り返し耐久回数は飛躍的に増大することとなる。
In the following, the circled numbers in each table are shown in parentheses in the text.
According to Table 1, the rate of increase in tensile rupture strength by low temperature heat treatment (primary low temperature heat treatment in this example) before final wire drawing (secondary wire drawing in this example) is 12.6% in Example 1, In Example 2, it was 13.3%, and the total increase (2) + (3) in tensile fracture strength after each low-temperature heat treatment after the final wire drawing was 2.8% in Examples 1 and 2, respectively. The total increase rate (1) + (2) + (3) of the tensile breaking strength of each low-temperature heat treatment including the wire drawing step was 4.0% in Examples 1 and 2, respectively. , 17.3%. In particular, when the tensile strength at break of the core wire having a mechanically machined outer diameter of 0.150 mm is converted into a cross-sectional area, 4,522 gf is 4,575 gf in Example 1 and about 53 gf compared to before grinding. Similarly, in Example 2, it increases by about 71 gf.
Since the tip of the ground core 2 is processed by invading the bending meandering lesion in the coronary artery, the tensile strength and the repeated bending / bending fatigue resistance are required. Since it can be expressed by a function of stress (SN diagram), the number of repeated endurance increases dramatically even with a slight increase rate of this part.

そして補足すれば、一次伸線後の低温熱処理の温度範囲を400℃〜495℃で10分から180分としたのは、後述するオーステナイト系ステンレス鋼線の強加工伸線での温度による引張強度特性(図8)と強加工伸線工程での生産性、及び品質の安定を考慮した為であり、又最終伸線工程後の二次低温熱処理の温度範囲を400℃〜495℃で10分から180分としたのは、前記同様オーステナイト系ステンレス鋼線の強加工伸線での温度による引張強度特性(図8)と、熱処理炉を用いた雰囲気加熱による生産性、及び品質の安定を考慮した為であり、又研削加工後の三次低温熱処理の温度範囲を340℃〜420℃で10分から180分としたのは、芯線2の少なくとも手元部22に樹脂被膜成形するフッ素樹脂(PTFE)の乾燥・焼成の為の加熱温度によるオーステナイト系ステンレス鋼線の強加工伸線での温度による引張強度特性(図8)の向上効果と生産性、及び品質の安定を考慮した為である。尚、伸線工程と低温熱処理工程を1セットとして、5セット以上繰り返してもよいが、経済性、生産性等の観点から3セット以下が望ましい。
又一次伸線工程と二次伸線工程の各工程内での減面率は、いずれを高く設定してもよいが、一次低温熱処理前に一次伸線工程の減面率を高く設定(本実施例では87.5%から94.2%)することにより、加工誘起マルテンサイト量を多くして、熱処理による結晶粒成長を抑制し、結晶粒径を小さくすることができる。そして又、経済性、生産性等の観点から一次伸線工程での減面率を高く設定し、その後の伸線工程をそれより低く設定することが望ましい。又、加工誘起マルテンサイト生成による引張破断強度向上効果をより高める為、伸線時の芯線表面温度である加工温度は、140℃以下が望ましく、湿式伸線での冷却液の設定、又は伸線時ダイスへシャワー状に吹き付ける潤滑剤の設定、及びこれらの温度設定等によりこれを達成できる。
And supplementally, the reason why the temperature range of the low-temperature heat treatment after the primary wire drawing is from 400 ° C. to 495 ° C. from 10 minutes to 180 minutes is that the tensile strength characteristics depending on the temperature at the high-work drawing of austenitic stainless steel wire described later (FIG. 8) and the stability in the high-strength wire drawing process and the stability of the quality are taken into consideration, and the temperature range of the secondary low-temperature heat treatment after the final wire drawing process is 400 ° C to 495 ° C from 10 minutes to 180 minutes. In consideration of the tensile strength characteristics with temperature (Fig. 8) in the high-strength wire drawing of austenitic stainless steel wire, productivity by atmospheric heating using a heat treatment furnace, and quality stability, as described above. The reason why the temperature range of the third low-temperature heat treatment after grinding is 10 minutes to 180 minutes at 340 ° C. to 420 ° C. is that the fluororesin (PTFE) that forms a resin film on at least the hand portion 22 of the core wire 2 is dried. - improvement and productivity in temperature due to the tensile strength properties of the strong working drawing austenitic stainless steel wire by the heating temperature for the calcination (FIG. 8), and is because in consideration of the stability of quality. In addition, although a wire drawing process and a low-temperature heat treatment process are made into 1 set and 5 sets or more may be repeated, 3 sets or less are desirable from viewpoints of economy, productivity, etc.
In addition, the area reduction rate in each step of the primary wire drawing process and the secondary wire drawing process may be set high, but the area reduction rate in the primary wire drawing process is set high before the primary low temperature heat treatment (this (In the example, 87.5% to 94.2%) By increasing the amount of work-induced martensite, crystal grain growth due to heat treatment can be suppressed, and the crystal grain size can be reduced. Moreover, it is desirable to set the area reduction rate in the primary wire drawing process high from the viewpoints of economy and productivity, and to set the subsequent wire drawing process lower than that. In addition, in order to further enhance the effect of improving the tensile fracture strength due to the formation of work-induced martensite, the processing temperature, which is the core wire surface temperature at the time of wire drawing, is desirably 140 ° C. or less, and the setting of the cooling liquid in wet wire drawing or wire drawing This can be achieved by setting the lubricant to be sprayed on the die at the time and setting these temperatures.

次に、表2は前記実施例1、2に対して、総減面率が94.8%(実施例3)、96%(実施例4)、97.6%(実施例5)の伸線加工を行ない、そして最終伸線工程後(本実施例では二次伸線)の芯線2に一定条件による捻回加工を加え、その後捻回後の状態で通電させて電気抵抗加熱による380℃〜495℃(約1.8アンペア)の温度範囲で30秒から60分(本実施例では450℃、5分)低温熱処理を行い、そして前記同様芯線2の先端部21に研削加工等の機械的加工を行い、その後前記三次低温熱処理と同様にして温度範囲を340℃〜420℃で10分から180分の熱処理炉等を用いた雰囲気加熱による低温熱処理工程(本実施例では385℃、30分)後の引張強度特性を示したものである。上記以外の低温熱処理については、実施例1、2と同様である。尚、芯線の捻回は、後述する負荷荷重(ウエイト12)を加えた状態で捻回加工を行い、その負荷荷重は捻回加工前の芯線の引張破断力の10%から30%(本実施例では20%)であり、以後実施例6〜8、11〜13も同様である。   Next, Table 2 shows that the total area reduction is 94.8% (Example 3), 96% (Example 4), and 97.6% (Example 5) with respect to Examples 1 and 2 above. After the final wire drawing process (secondary wire drawing in this embodiment), the wire 2 is twisted under a certain condition and then energized in the state after the twist, and 380 ° C. by electric resistance heating. A low-temperature heat treatment is performed for 30 seconds to 60 minutes (450 ° C., 5 minutes in this embodiment) in a temperature range of ˜495 ° C. (about 1.8 amperes), and a machine such as a grinding process is applied to the tip 21 of the core wire 2 as described above. Then, in the same manner as the third low-temperature heat treatment, a low-temperature heat treatment step (at 385 ° C. for 30 minutes in this embodiment) is performed by atmospheric heating using a heat treatment furnace at a temperature range of 340 ° C. to 420 ° C. for 10 minutes to 180 minutes. ) Shows the later tensile strength characteristics. The low-temperature heat treatment other than the above is the same as in Examples 1 and 2. In addition, the twisting of the core wire is performed by adding a load (weight 12) described later, and the load is 10% to 30% of the tensile breaking force of the core wire before the twisting (this implementation) 20% in the example), and the same applies to Examples 6-8 and 11-13.

Figure 0005367503
Figure 0005367503

表2によると、最終伸線(本実施例では二次伸線)前までの一次低温熱処理による引張破断強度の増加率は、実施例3、4、5でそれぞれ12.5%、13.3%、12.6%となり、そして最終伸線後の各低温熱処理の引張破断強度の増加率の合計(2)+(3)は、実施例3、4、5でそれぞれ5.1%、7.9%、7.6%となって前記伸線工程を含む各低温熱処理の引張破断強度の増加率の合計(1)+(2)+(3)は、実施例3、4、5でそれぞれ17.6%、21.2%、20.2%となる。特に、捻回加工後の状態で芯線に電気抵抗加熱による低温熱処理を施すと、その引張破断強度の増加率は、前記実施例1、2よりも高い傾向を示す。(図3)   According to Table 2, the rate of increase in tensile fracture strength by the primary low-temperature heat treatment before the final wire drawing (secondary wire drawing in this example) is 12.5% and 13.3 in Examples 3, 4 and 5, respectively. %, 12.6%, and the total increase rate (2) + (3) of the tensile fracture strength of each low-temperature heat treatment after the final wire drawing was 5.1%, 7 for Examples 3, 4 and 5, respectively. The total increase rate (1) + (2) + (3) of the tensile breaking strength of each low-temperature heat treatment including the wire drawing step is 0.9% and 7.6% in Examples 3, 4, and 5. These are 17.6%, 21.2%, and 20.2%, respectively. In particular, when the core wire is subjected to low-temperature heat treatment by electric resistance heating in the state after the twisting process, the rate of increase in the tensile strength at break tends to be higher than those in Examples 1 and 2. (Figure 3)

この理由は、芯線2に用いているオーステナイト系ステンレス鋼線は、加工度の増大に伴って機械的強度は増大し、特に総減面率が90%から97.6%の伸線加工した芯線は、加工度が高く、さらに冷間状態で捻回加工を行なうことにより、熱間状態の捻回加工よりも結晶粒の微細化をより促進させて機械的強度をさらに増大させ、そして捻回加工の後、捻回時の負荷荷重を加えた状態で芯線に通電させて電気抵抗加熱による低温熱処理を行い、加工による残留応力を除去して局部的に発生している応力を平均化するほうが、引張破断強度の高い芯線2を得ることができると考えるからである。特に総減面率が94%近傍を境にして引張破断強度の急激な増加傾向がみられる。(図4)
そして又、芯線2の研削加工を容易とし、生産性を向上させることができる。この理由は、一定温度に到達した後の低温熱処理下での熱間状態で捻回加工を行なうと、加熱により結晶粒は粗大化しやすくなって芯線材料に粘さが発生しやすくなり、この為捻回加工して結晶粒を微細化させて機械的強度を増大させることが困難となる。又、捻回による発熱と通電による加熱とにより、芯線の実質的な温度制御(電流等)が困難となり、過熱状態の芯線は引張破断強度が低く、粘さを有する芯線が発生しやすくなり、そして後述する曲げ変形後の残留角度が大きくなり、さらに、その芯線の粘さからセンターレス研削機等を用いて芯線の外周研削加工時、うねり等が発生して研削加工が困難となって生産性を阻害し、常に安定した品質を得ることが至難となる。
これらの理由から、芯線に所定量の捻回加工の後に、捻回時の所定の負荷荷重を加えた状態で、芯線に通電させて低温熱処理を施したほうが引張破断強度の高い芯線を得る点で、望ましい。
The reason for this is that the austenitic stainless steel wire used for the core wire 2 has increased mechanical strength as the degree of work increases, and in particular, a core wire that has been drawn with a total area reduction of 90% to 97.6%. Has a high degree of processing, and further performs twisting in a cold state, thereby further increasing the mechanical strength by further promoting the refinement of crystal grains than in the hot state, and twisting. After processing, it is better to energize the core wire with the load applied at the time of twisting, perform low-temperature heat treatment by electric resistance heating, remove residual stress due to processing, and average locally generated stress. This is because the core wire 2 having a high tensile breaking strength can be obtained. In particular, there is a sharp increase in tensile strength at the boundary of the total area reduction rate near 94%. (Fig. 4)
In addition, grinding of the core wire 2 can be facilitated, and productivity can be improved. The reason for this is that when twisting is performed in a hot state under low-temperature heat treatment after reaching a certain temperature, the crystal grains tend to become coarse due to heating, and the core wire material tends to become viscous. It is difficult to increase the mechanical strength by twisting the crystal grains. In addition, due to heat generation by twisting and heating by energization, it becomes difficult to control the core wire substantially in temperature (current, etc.), the core wire in an overheated state has a low tensile breaking strength, and a core wire having a viscosity is easily generated. In addition, the residual angle after bending deformation, which will be described later, becomes large, and further, waviness occurs when grinding the outer periphery of the core wire using a centerless grinding machine etc. due to the viscosity of the core wire, making the grinding process difficult and producing It is extremely difficult to always obtain stable quality.
For these reasons, it is possible to obtain a core wire having higher tensile fracture strength by applying a low temperature heat treatment by energizing the core wire in a state where a predetermined load is applied at the time of twisting after a predetermined amount of twisting processing. It is desirable.

そして、補足すれば、電気抵抗加熱の低温熱処理条件として380℃〜495℃の温度範囲としたのは、後述するオーステナイト系ステンレス鋼線の強加工伸線による温度の引張強度特性(図8)と後述する捻回加工した芯線2の曲げ試験後の曲げ変形残留角度(図6)を考慮した為であり、低温加熱時間を30秒から60分以内としたのは、30秒を下回れば引張強度特性向上効果は少なく、又60分を超えれば一定値となり、若しくは、顕著な前記向上効果は得られないからである。   And, supplementally, the temperature range of 380 ° C. to 495 ° C. was set as the low temperature heat treatment condition for electric resistance heating. The tensile strength characteristics of the temperature due to the strong work drawing of the austenitic stainless steel wire described later (FIG. 8) This is because the bending deformation residual angle (FIG. 6) after the bending test of the twisted core wire 2 described later was taken into consideration. The reason for setting the low temperature heating time within 30 to 60 minutes is that the tensile strength is below 30 seconds. This is because the characteristic improvement effect is small, and if it exceeds 60 minutes, a constant value is obtained, or a significant improvement effect cannot be obtained.

次に、表3は前記実施例3、4、5に対して、一定条件による捻回加工後の状態で前記同様芯線に電気抵抗加熱による低温熱処理を行い、その後温度範囲を400℃〜495℃で10分から180分の、熱処理炉等を用いた雰囲気加熱による二次低温熱処理(本実施例では450℃、120分)を行ない、芯線2の先端部21の研削加工後は、前記実施例1〜5と同様である。そして、その表3をグラフ化したものが図3である。尚、表3のうち実施例6、7、8は前記実施例3、4、5にそれぞれ対応する。   Next, Table 3 shows that the core wires were subjected to low-temperature heat treatment by electrical resistance heating in the state after twisting processing under a certain condition for Examples 3, 4, and 5 and then the temperature range was 400 ° C to 495 ° C. After the secondary low-temperature heat treatment (at 450 ° C. for 120 minutes in this embodiment) by atmospheric heating using a heat treatment furnace or the like for 10 minutes to 180 minutes after grinding of the tip 21 of the core wire 2, the first embodiment is performed. Same as ~ 5. FIG. 3 is a graph of Table 3. In Table 3, Examples 6, 7, and 8 correspond to Examples 3, 4, and 5, respectively.

Figure 0005367503
Figure 0005367503

表3によると最終伸線(本実施例では二次伸線)前までの低温処理による引張破断強度の増加率は、前記実施例3〜5と同様であり、そして最終伸線後の各低温熱処理の引張破断強度の増加率の合計(2)+(3)+(4)は、実施例6、7、8でそれぞれ6.4%、9.16%、9.1%となって前記伸線工程を含む各低温熱処理の引張破断強度の増加率の合計(1)+(2)+(3)+(4)は、実施例6、7、8でそれぞれ18.9%、22.5%、21.7%となり、本実施例の中でいずれも高い値となる。
この理由は、芯線2の長軸方向へ強加工伸線した芯線2に負荷荷重を加えた状態で長軸傾斜方向へ冷間状態(室温)での強加工の捻回加工を加えることにより結晶粒の微細化をより促進させて機械的強度をさらに増大させ、その後その状態のまま(芯線に負荷荷重を加えた状態)芯線に通電して電気抵抗加熱による低温熱処理により、加工による残留応力を除去して、芯線2の表層部と内層部の硬度分布等の不均質性を一定限度に均質化によるもの、と考えることができ、そしてさらに後述するオーステナイト系ステンレス鋼線の強加工伸線による温度の引張破断強度特性を把握して、好適な温度と時間を加えることにより、芯線2の表層部と内層部の硬度差等の不均質を極めて少なくして、より均質化させ、そして局部的に発生した残留応力の除去によるもの、と考えることができる。尚、補足すれば、電気抵抗加熱の低温熱処理条件として温度範囲が380℃〜495℃で30秒から60分としたのは、前記実施例3、4、5と同様の理由による。
According to Table 3, the rate of increase in tensile fracture strength by the low temperature treatment before the final wire drawing (secondary wire drawing in this example) is the same as in Examples 3 to 5, and each low temperature after the final wire drawing. The total increase rate (2) + (3) + (4) of the tensile fracture strength of the heat treatment was 6.4%, 9.16%, and 9.1% in Examples 6, 7, and 8, respectively. The total increase rate (1) + (2) + (3) + (4) of the tensile fracture strength of each low-temperature heat treatment including the wire drawing step is 18.9% and 22.2 in Examples 6, 7, and 8, respectively. 5% and 21.7%, which are both high values in this embodiment.
The reason for this is that by applying a twisting process of strong working in the cold state (room temperature) in the inclined direction of the long axis in a state where a load is applied to the core wire 2 that has been strongly drawn in the long axis direction of the core wire 2, The mechanical strength is further increased by further promoting the refinement of the grains, and after that, the residual stress due to the processing is reduced by conducting low-temperature heat treatment by electric resistance heating while energizing the core wire as it is (with the load applied to the core wire) It can be considered that it is due to the homogenization of the hardness distribution and the like of the surface layer portion and the inner layer portion of the core wire 2 to a certain limit, and further due to the strong work drawing of the austenitic stainless steel wire described later By grasping the tensile rupture strength characteristics of temperature and adding a suitable temperature and time, nonuniformity such as hardness difference between the surface layer portion and the inner layer portion of the core wire 2 is extremely reduced, and it is made more uniform and localized. Residual response generated in It can be considered by the removal thing, and. In addition, for supplementary reasons, the reason why the temperature range of 380 ° C. to 495 ° C. is set to 30 seconds to 60 minutes as the low temperature heat treatment conditions for electric resistance heating is the same as in Examples 3, 4, and 5.

次に図4は、図2と図3を合成させた図である。これから捻回加工後の状態で芯線に電気抵抗加熱による低温熱処理を施したほうが、捻回加工をしないものに低温熱処理を施したものと比較して、引張破断強度の増加率が高く、又総減面率94%近傍を境にして、引張破断強度の急激な増加傾向がみられる。   Next, FIG. 4 is a diagram in which FIGS. 2 and 3 are combined. From now on, when the core wire is subjected to low-temperature heat treatment by electric resistance heating in the state after twisting, the rate of increase in tensile fracture strength is higher than that obtained by subjecting the core wire to low-temperature heat treatment. There is a sharp increase in the tensile strength at the boundary of 94% area reduction.

次に表4、5は、表1、2、3のうち最終熱処理である低温熱処理(385℃、30分)後に、芯線2の先端部21の研削加工部分を板幅0.094mm、板厚0.030mmの偏平状の矩形断面形状に押圧加工した後に、前記芯線2の先端部21にコイル体3を装着後、コイル体3の外周部にポリウレタン、ポリアミド等熱可塑性樹脂を用いて押出成形、デッピング工法、樹脂収縮チューブ等の樹脂被膜成形の際に、コイル体3の外周部又はコイル体3の外周部と手元部22に180℃〜300℃で10秒から60分の樹脂被膜成形機の加熱利用、又は樹脂収縮チューブ加熱機の加熱利用による先端部21と手元部22へ低温熱処理、例えばポリウレタンであれば、200℃、5分の低温熱処理を加えたときの引張強度特性を示したものである。尚、表4のうち実施例9、10、11は前記実施例1、2、6に、又表5のうち実施例12、13は前記実施例7、8にそれぞれ対応し、この各実施例の芯線2に押圧加工を行い、低温熱処理(200℃、5分)を加えたものである。   Next, in Tables 4 and 5, after the low-temperature heat treatment (385 ° C., 30 minutes) which is the final heat treatment in Tables 1, 2, and 3, the ground portion of the tip portion 21 of the core wire 2 has a plate width of 0.094 mm and a plate thickness. After pressing into a flat rectangular cross-sectional shape of 0.030 mm, the coil body 3 is attached to the distal end portion 21 of the core wire 2, and then the outer periphery of the coil body 3 is extruded using a thermoplastic resin such as polyurethane or polyamide. When forming a resin film such as a dipping method or a resin shrinkable tube, a resin film forming machine is formed at 180 ° C. to 300 ° C. for 10 seconds to 60 minutes on the outer peripheral portion of the coil body 3 or the outer peripheral portion and the hand portion 22 of the coil body 3. The tensile strength characteristics were shown when low temperature heat treatment was applied to the distal end portion 21 and the proximal portion 22 by heating utilization of a resin shrinkable tube heater or, for example, polyurethane, at 200 ° C. for 5 minutes. With things That. In Table 4, Examples 9, 10, and 11 correspond to Examples 1, 2, and 6, and in Table 5, Examples 12 and 13 correspond to Examples 7 and 8, respectively. The core wire 2 is pressed and subjected to low-temperature heat treatment (200 ° C., 5 minutes).

Figure 0005367503
Figure 0005367503

Figure 0005367503
Figure 0005367503

表4、5によると、芯線2の押圧加工後にコイル体3の外周部の樹脂被膜成形時の熱を利用して、一定温度範囲の低温熱処理(本実施例では200℃、5分)を施したものの引張破断強度の増加率は、実施例9、10、11でそれぞれ1.2%、1.1%、1.0%又実施例12、13では、共に0.6%増大させることができる。そして、押圧加工部位での芯線2の矩形断面積で換算すると、実施例9〜11で約6.6gf上昇し、又実施例12、13で約4.4gf上昇させることができる。このことは、芯線2と先導栓5の引張破断力が250gf近傍であること、この芯線2と先導栓5の接合部位は、狭窄病変部内で術者による手操作で繰り返し曲げ耐久性が要求され、この繰り返し曲げ耐久回数は応力の関数(S−N線図)で表わされることとを併せ考えれば、少しの増加率であっても耐久性向上に寄与することができ、そして又、本発明の実施例では、雰囲気加熱による熱処理炉を用いなくても、樹脂被膜成形、又は樹脂収縮チューブの加熱利用により必要な箇所に部分的に引張破断強度を向上させる、新たな技術思想を開示するものである。   According to Tables 4 and 5, low-temperature heat treatment (200 ° C., 5 minutes in this embodiment) in a certain temperature range is performed using the heat at the time of resin film molding of the outer peripheral portion of the coil body 3 after pressing the core wire 2. The rate of increase in tensile strength at break was 1.2%, 1.1%, 1.0% in Examples 9, 10, and 11 and 0.6% in Examples 12 and 13, respectively. it can. Then, when converted to the rectangular cross-sectional area of the core wire 2 at the pressed portion, it can be increased by about 6.6 gf in Examples 9 to 11 and can be increased by about 4.4 gf in Examples 12 and 13. This means that the tensile breaking force between the core wire 2 and the leading plug 5 is around 250 gf, and the joint portion between the core wire 2 and the leading plug 5 requires repeated bending durability by manual operation by the operator within the stenotic lesion. In consideration of the fact that the number of repeated bending durability is expressed by a function of stress (S—N diagram), even a slight increase rate can contribute to improvement in durability, and the present invention This example discloses a new technical idea that partially improves the tensile rupture strength at a required location by using a resin film molding or heating a resin shrinkable tube without using a heat treatment furnace by atmospheric heating. It is.

そしてコイル体3の外周部の樹脂被膜6の成形時の熱を利用しても引張破断強度を向上させることができるのは、芯線2の先端部21の押圧加工した矩形断面形状は前述のとおり、例えば板幅0.094mm、板厚0.030mmの矩形断面の極細線形状であり、押圧加工による局部的に集中した応力の、より平均化によるもの、と考えることができる。又芯線2の先端部21は、樹脂被膜6により密閉状態となっていて放熱しにくく、かつ、芯線先端部21は細線で、かつその先端部は偏平状の極細線であって熱影響を受けやすく(熱容量小)、かつオーステナイト系ステンレス鋼線は熱伝導率が低く、冷めにくい材料であるからである。
そして温度範囲を180℃〜300℃の温度範囲としたのは、後述するオーステナイト系ステンレス鋼線の温度による引張強度特性(図8)と、樹脂被膜成形時の合成樹脂の溶融温度、又オーステナイト系ステンレス鋼線の熱伝導性、及び樹脂被膜成形による密閉状態での保温効果を併せ考慮したからである。又、加熱時間を10秒から60分以内としたのは、10秒を下回れば引張強度向上効果は得られず、又この範囲の上限を上回れば顕著な効果は期待できず、生産性を考慮したからである。尚、この加熱時間は、樹脂被膜成形加工と成形加工後の保温効果を有する時間も含まれる。
The tensile breaking strength can be improved even if the heat at the time of molding the resin coating 6 on the outer peripheral portion of the coil body 3 is used. For example, it can be considered to be an extra fine wire shape having a rectangular cross section with a plate width of 0.094 mm and a plate thickness of 0.030 mm, and due to the more averaged stress concentrated locally by pressing. The tip 21 of the core wire 2 is hermetically sealed by the resin coating 6 so that it is difficult to dissipate heat. The tip of the core wire 21 is a thin wire and the tip is a flat extra fine wire that is affected by heat. This is because the austenitic stainless steel wire is easy (low heat capacity) and has a low thermal conductivity and is difficult to cool.
The temperature range was set to 180 ° C. to 300 ° C. because the tensile strength characteristics depending on the temperature of the austenitic stainless steel wire described later (FIG. 8), the melting temperature of the synthetic resin at the time of resin film molding, and the austenitic system This is because the heat conductivity of the stainless steel wire and the heat retaining effect in a sealed state by the resin film molding are considered together. Also, the heating time is set to within 10 to 60 minutes. If the heating time is less than 10 seconds, the effect of improving the tensile strength cannot be obtained, and if the heating time exceeds the upper limit of this range, a remarkable effect cannot be expected. Because. In addition, this heating time includes a time having a heat retention effect after the resin film forming process and the forming process.

次に、表4、5によると、芯線2の総減面率を90%から97.6%として、前記研削加工等の機械的加工後に、前記低温熱処理をすることにより芯線2の引張破断強度を260kgf/mm2 以上とし、製品の安定した品質を考慮すると250kgf/mm2 以上とすることができ、又芯線2の総減面率を96%から97.6%として、前記同様機械的加工後に、前記低温熱処理をすることにより芯線2の引張破断強度を300kgf/mm2 以上とすることができ、高い引張強度特性を示す医療用ガイドワイヤを得ることができる。尚、本発明は高強度の芯線の為、芯線先端部に押圧加工を施す場合には、ひび割れ、欠損等の発生を抑える為、引張破断強度は400kgf/mm2 以下が好ましい。 Next, according to Tables 4 and 5, the total area reduction rate of the core wire 2 was changed from 90% to 97.6%, and after the mechanical processing such as the grinding processing, the tensile breaking strength of the core wire 2 was obtained by performing the low temperature heat treatment. Is 260 kgf / mm 2 or more, considering the stable quality of the product, it can be 250 kgf / mm 2 or more, and the total area reduction of the core wire 2 is 96% to 97.6%. Later, by performing the low-temperature heat treatment, the tensile breaking strength of the core wire 2 can be increased to 300 kgf / mm 2 or more, and a medical guide wire exhibiting high tensile strength characteristics can be obtained. Since the present invention is a high-strength core wire, it is preferable that the tensile strength at break is 400 kgf / mm 2 or less in order to suppress the occurrence of cracks, defects and the like when pressing the tip of the core wire.

次に、芯線2の引張破断強度と曲げ残留角度について、以下に述べる。   Next, the tensile breaking strength and bending residual angle of the core wire 2 will be described below.

図5は、実施例6に対して、芯線2の捻回回数を変化させたときの引張破断強度(図5(イ))と、前記捻回後に低温熱処理(450℃、120分)を加えたときの引張破断強度(図5(ロ))を試料数各50個のバラツキを含めて示したものであり、又図6は、前記図5と同様に芯線2の捻回回数を変化させたときの曲げ試験後の曲げ残留角度(図6(イ))と前記捻回後に低温熱処理(450℃、120分)を加えたときの曲げ試験後の曲げ残留角度(図6(ロ))を示したものである。尚、ここでいう曲げ試験後での曲げ残留角度とは、芯線2を外径15mmの丸棒に180度曲げ、500gの負荷を20秒間保持した後、負荷を解除して芯線2の長軸方向に対する残留角度、つまり塑性変形した傾斜角度のことをいう。   FIG. 5 shows the tensile strength at break when the number of twists of the core wire 2 was changed (FIG. 5 (a)) and a low-temperature heat treatment (450 ° C., 120 minutes) after the twisting. FIG. 5 shows the tensile strength at break (FIG. 5 (b)) including the variation of 50 samples, and FIG. 6 shows the change in the number of twists of the core wire 2 as in FIG. Bending residual angle after bending test (FIG. 6 (a)) and bending residual angle after bending test when low-temperature heat treatment (450 ° C., 120 minutes) is applied after the twisting (FIG. 6 (b)) Is shown. The bending residual angle after the bending test mentioned here means that the core wire 2 is bent 180 degrees into a round bar having an outer diameter of 15 mm, a load of 500 g is held for 20 seconds, the load is released, and the long axis of the core wire 2 is released. It refers to the residual angle with respect to the direction, that is, the tilt angle that is plastically deformed.

図5、6によると引張破断強度は、捻回数が100回/mから250回/mの間ではその変動幅は比較的小さく、この範囲を逸脱すると変動幅が大きくなり、つまり安定した品質を得ることはできなくなる。又、曲げ残留角度は、捻回数が100回/mから250回/mの間で小さく、この範囲を逸脱すると変動幅が大きくなる。この理由は、100回/mを下回ると捻回数が不足して芯線2の長軸方向に不均質な部分が残留していて、又250回/m〜300回/mを超えると逆に、芯線の長軸方向に概ね45度の傾きをなす滑り線(リューダース線)が発生する過捻回状態となって局部的に過捻回による不均質部分が散在発生する、と考えられるからである。従って、本発明の捻回は、前記滑り線が発生するような過捻回を意味するものではない。
そして100回/mから200回/mの間で曲げ残留角度は最も小さくなって安定し、より好ましくは、120回/mから180回/mであり、さらに好ましくはこの捻回数の10%から30%、そして最も好ましくは、20%逆捻回させることが望ましい。
具体的には、例えば120回/m一方向へ捻回後、逆方向へ12回/mから36回/m、最も好ましくは24回/m逆方向へ捻回加工を行なう。これが望ましい理由は、一方向へ強加工捻回後の逆捻回により強加工捻回の捻り方向の応力を、逆捻回させて一時的に開放することにより低温熱処理効果を高め、より直線性の高い芯線2を得ることができる、と考えられるからである。
According to FIGS. 5 and 6, the tensile rupture strength has a relatively small fluctuation range when the number of twists is between 100 times / m and 250 times / m. You can't get it. Further, the bending residual angle is small when the number of twists is between 100 times / m and 250 times / m, and if the deviation is outside this range, the fluctuation range becomes large. The reason for this is that if the speed is less than 100 times / m, the number of twists is insufficient and a non-homogeneous portion remains in the major axis direction of the core wire 2, and conversely if it exceeds 250 times / m to 300 times / m, This is because it is considered that a slip line (Rudder's line) with an inclination of approximately 45 degrees in the major axis direction of the core wire is generated, resulting in an over-twisted state, and inhomogeneous portions due to the over-twist are locally scattered. is there. Therefore, the twisting of the present invention does not mean an overtwisting in which the slip line is generated.
The residual bending angle becomes the smallest and stable between 100 times / m and 200 times / m, more preferably from 120 times / m to 180 times / m, and even more preferably from 10% of the number of twists. It is desirable to reverse twist 30%, and most preferably 20%.
Specifically, for example, after twisting in one direction 120 times / m, twisting is performed in the reverse direction 12 times / m to 36 times / m, most preferably 24 times / m in the reverse direction. The reason why this is desirable is to increase the low-temperature heat treatment effect by reverse-twisting and temporarily releasing the stress in the twist direction of strong work twist by reverse twist after strong work twist in one direction, and more linearity This is because it is considered that a high core wire 2 can be obtained.

そして図7は、芯線2に捻回加工と電気抵抗加熱を行なう装置図である。芯線2が巻かれたボビン13から送りローラー14Aを介して保温ケース16内へ芯線2を通過させて、芯線2を回転チャック9と芯線2の長軸方向へ移動可能な固定チャック10で固定し、電流発生器8より通電可能状態にしてウエイト12を負荷した状態で移動可能な固定チャック10で芯線2を固定したまま回転チャック9にて芯線2を所定量一方向、又は逆方向へ捻回させる。具体的には、芯線2の外径が0.340mmでチャック間9、10の固定スパン間(図示L)が4000mmのとき、ウエイト12を芯線2に負荷した状態で400回から800回一方向へ捻回加工を行なう。最も好ましくは、逆方向へ前記捻回数の20%、つまり80回から160回逆方向へ捻回を加える。
そしてその捻回後の状態のまま芯線2に電気抵抗加熱を行なった後、芯線2を回転チャック9と固定チャック10からの固定を開放して、そして送りローラー14A、14Bにて芯線2を図示左側へ送り出し、切断刃15にて切断し、以後これを繰り返して連続的に直線性の優れた芯線2を得ることができる。
FIG. 7 is an apparatus diagram for performing twisting processing and electric resistance heating on the core wire 2. The core wire 2 is passed from the bobbin 13 around which the core wire 2 is wound into the heat retaining case 16 through the feed roller 14A, and the core wire 2 is fixed by the rotary chuck 9 and the fixed chuck 10 that can move in the long axis direction of the core wire 2. The core wire 2 is twisted in a predetermined amount in one direction or in the reverse direction by the rotary chuck 9 while the core wire 2 is fixed by the fixed chuck 10 which can be energized by the current generator 8 and loaded with the weight 12. Let Specifically, when the outer diameter of the core wire 2 is 0.340 mm and the fixed span between the chucks 9 and 10 (L in the drawing) is 4000 mm, the weight 12 is loaded on the core wire 2 in one direction from 400 to 800 times. Perform twisting. Most preferably, 20% of the number of twists is applied in the reverse direction, that is, 80 to 160 times in the reverse direction.
Then, after heating the core wire 2 in the state after the twisting, the core wire 2 is unfixed from the rotary chuck 9 and the fixed chuck 10, and the core wire 2 is illustrated by the feed rollers 14A and 14B. The core wire 2 having excellent linearity can be continuously obtained by feeding it to the left side and cutting it with the cutting blade 15 and then repeating this.

つまりこの工程は、ボビン13に巻かれた芯線2を送りローラー14A、14Bを介して電気抵抗加熱による保温ケース16内へ送り出す(図示左側)工程と、送り出した後芯線2を回転チャック9と固定チャック10で固定する工程と、ウエイト12を連結させた固定チャック10のストッパー17を解除して固定チャック10を長軸方向へ移動可能状態として芯線2に負荷荷重(ウエイト12)を加える工程と、固定チャック9により所定方向へ所定量芯線を捻回加工する工程と、一定温度に保つ保温ケース16内の芯線2に電流発生器8により電流を加えて通電する工程と、その後にストッパー17を作動させて固定チャック10の芯線2の固定を解除することによるウエイト12側への移動( 図示右側) を阻止する工程と、回転チャック9と固定チャック10の芯線2の固定を解除する工程と、送りローラー14A、14Bで芯線2を送り出す(図示左側)工程と、芯線2を所定量送り出した後、切断刃15にて芯線2を切断する工程から成り、捻回して電気抵抗加熱による低温熱処理した芯線2を連続して生産できる工程である。又、芯線2を予め、所定長に切断後各チャックで固定して、前記同様捻回加工を行い、その後電気抵抗加熱による低温熱処理を行なってもよい。   That is, in this process, the core wire 2 wound around the bobbin 13 is sent out into the heat retaining case 16 by electric resistance heating through the feed rollers 14A and 14B (the left side in the figure), and the core wire 2 after feeding is fixed to the rotary chuck 9 A step of fixing with the chuck 10, a step of releasing the stopper 17 of the fixed chuck 10 to which the weight 12 is connected and making the fixed chuck 10 movable in the long axis direction and applying a load (weight 12) to the core wire 2; A step of twisting a predetermined amount of core wire in a predetermined direction by the fixed chuck 9, a step of applying current to the core wire 2 in the heat retaining case 16 kept at a constant temperature by applying a current by the current generator 8, and then operating the stopper 17 A step of preventing the movement of the fixed chuck 10 to the weight 12 side by releasing the fixation of the core wire 2 (the right side in the figure), and a rotation chuck A step of releasing the fixing of the core wire 2 of the clamp 9 and the fixing chuck 10, a step of feeding the core wire 2 by the feed rollers 14 </ b> A and 14 </ b> B (the left side in the figure), a predetermined amount of the core wire 2, and a cutting blade 15 It is a process that can continuously produce the core wire 2 that is twisted and subjected to low-temperature heat treatment by electric resistance heating. Alternatively, the core wire 2 may be preliminarily cut to a predetermined length and then fixed with each chuck, and then twisted as described above, and then subjected to low-temperature heat treatment by electric resistance heating.

そして、電気抵抗加熱による低温熱処理温度は、380℃〜495℃で加熱加工時間は30秒から60分(本実施例では450℃、5分)である。又ウエイト12は、最終伸線工程後の捻回加工前における芯線2の引張破断強度による芯線の引張破断力の5%から30%が望ましく、より好ましくは10%から25%で最も好ましくは20%である。
具体的には、実施例8のとき、線径が0.228mmで最終伸線工程(二次伸線)後の捻回加工前の引張破断強度が302kgf/mm2 であることから芯線の引張破断力は12.32kgf(π×0.228 ×302÷4)となり、このときウエイト12は2.46kgf(12.32×0.2)が最も望ましい。
そしてこの5%から30%の範囲を逸脱すると、ウエイト12が軽いときにはうねりが発生したり、又重いときには捻回中に断線が発生したりして直線性の優れた芯線2を得ることができず、又生産性を高めることはできない。つまり、芯線2の捻回加工前の引張破断強度による引張破断力に応じてウエイト12の重さを変化させることが重要である。尚、ここでいう引張破断力とは、芯線に引張力を加えて破断するときの最大荷重のことをいう。
以上述べたように、電気抵抗加熱と捻回加工条件は、電気抵抗加熱による低温熱処理条件として、380℃〜495℃で30秒から60分、そして捻回数は100回/mから250回/mで、好ましくは100回/mから200回/mで、より好ましくは120回/mから180回/mであり、さらに好ましくは、逆方向へ前記捻回数の10%から30%、そしてウエイト12は捻回加工前の引張破断強度による芯線の引張破断力の5%から30%が望ましく、最も好ましくは20%である。そして、この全ての条件を満たすことにより医療用ガイドワイヤとして要求される引張強度特性、直線性、回転伝達性等の品質を満足させることができる。
And the low-temperature heat processing temperature by electrical resistance heating is 380 degreeC-495 degreeC, and heat processing time is 30 seconds to 60 minutes (this example 450 degreeC, 5 minutes). The weight 12 is preferably 5% to 30%, more preferably 10% to 25%, and most preferably 20% of the tensile breaking strength of the core wire due to the tensile breaking strength of the core wire 2 before the twisting after the final wire drawing step. %.
Specifically, in Example 8, since the wire diameter was 0.228 mm and the tensile strength before twisting after the final wire drawing step (secondary wire drawing) was 302 kgf / mm 2 , the core wire was pulled. The breaking force is 12.32 kgf (π × 0.228 × 302 ÷ 4), and the weight 12 is most preferably 2.46 kgf (12.32 × 0.2).
And if it deviates from the range of 5% to 30%, undulation occurs when the weight 12 is light, and breakage occurs during twisting when the weight 12 is heavy, so that the core wire 2 having excellent linearity can be obtained. In addition, productivity cannot be increased. That is, it is important to change the weight of the weight 12 in accordance with the tensile breaking force due to the tensile breaking strength before twisting of the core wire 2. Here, the tensile breaking force means the maximum load when the core wire is broken by applying a tensile force.
As described above, the electrical resistance heating and twisting conditions are low-temperature heat treatment conditions by electrical resistance heating at 380 ° C. to 495 ° C. for 30 seconds to 60 minutes, and the number of twists is 100 times / m to 250 times / m. And preferably 100 times / m to 200 times / m, more preferably 120 times / m to 180 times / m, and still more preferably 10% to 30% of the number of twists in the reverse direction, and weight 12 Is preferably 5% to 30%, most preferably 20% of the tensile breaking strength of the core wire by the tensile breaking strength before twisting. And satisfy | filling all these conditions can satisfy quality, such as a tensile strength characteristic, linearity, and rotation transmission property which are requested | required as a medical guide wire.

次に、図8は実施例3、又は6の最終伸線工程後における芯線2に低温熱処理を加えた温度と引張強度特性を示した図で、線径1.5mmの固溶化処理したオーステナイト系ステンレス鋼線(SUS304)を総減面率94.8%伸線加工した外径0.340mmの芯線2を外周研削加工して外径0.150mmとしたときの熱影響下(各温度30分加熱)での引張強度特性を示したものである。
これによると、180℃の熱影響により引張破断強度が上昇し始め、概ね450℃近傍で最高の引張破断強度を示し、495℃まで引張強度特性向上効果が顕著にみられ、そして500℃から520℃を超えると常温時(20℃)よりも急激に引張破断強度が低下する。
この引張破断強度が急激に低下する理由は、前述のように、この固溶化処理したオーステナイト系ステンレス鋼線は、500℃から850℃に加熱されると、カーボンの析出、クロムの移動の為のエネルギーを必要とし、鋭敏化現象を生じて、特にカーボンが0.08%以下の通常のSUS304のオーステナイト系ステンレス鋼線では、700℃4分から5分程度で、この鋭敏化現象が現れ、引張破断強度が極端に低下する。
Next, FIG. 8 is a view showing the temperature and tensile strength characteristics of the core wire 2 subjected to low-temperature heat treatment after the final wire drawing step of Example 3 or 6, and the austenite system having a wire diameter of 1.5 mm and subjected to solid solution treatment. Under the influence of heat when an outer diameter of 0.140 mm is obtained by grinding the core wire 2 having an outer diameter of 0.340 mm obtained by drawing a stainless steel wire (SUS304) with a total area reduction ratio of 94.8% (each temperature for 30 minutes) This shows the tensile strength characteristics during heating.
According to this, the tensile strength at break begins to increase due to the heat effect at 180 ° C., shows the highest tensile strength at about 450 ° C., and the effect of improving the tensile strength property is noticeable up to 495 ° C., and from 500 ° C. to 520 ° C. If it exceeds ℃, the tensile rupture strength decreases more rapidly than at normal temperature (20 ℃).
The reason why the tensile strength at break is drastically lowered is that, as described above, when the solution-treated austenitic stainless steel wire is heated from 500 ° C. to 850 ° C., it causes carbon precipitation and chromium migration. Energy is required and a sensitization phenomenon occurs. In particular, in a normal SUS304 austenitic stainless steel wire having a carbon content of 0.08% or less, this sensitization phenomenon appears at 700 ° C. for 4 to 5 minutes, and tensile fracture occurs. The strength is extremely reduced.

このことは熱影響を受け易い芯線2の先端部21の細線においては著しく顕著に現れる。例えば、図1(ハ)に示した芯線2の先端部21の円形断面形状23は、外径は線径0.060mmから0.150mm程度であり、これは外径が概ね0.340mmの伸線加工したオーステナイト系ステンレス鋼線を、芯なし研削機等により、前述した寸法まで外周研削加工を行う。
そしてこのときの引張破断強度が(図8)、例えば、常温で250kgf/mm2 の時、180℃の加熱により引張破断強度は266kgf/mm2 となって、約6.4%上昇し、450℃に至っては引張破断強度が290kgf/mm2 に向上して、約16%上昇して、芯線の先端部21の芯線2の外径が0.060mmのときの引張破断力の断面積換算では706gfが819gfとなって約113gf引張強度が上昇する。その後495℃においても引張破断強度は260kgf/mm2 となって常温時よりも約4%上昇している。
そして、500℃から520℃を超えると鋭敏化現象等により引張破断強度が低下し、600℃に至っての引張破断強度は210kgf/mm2 となって、前記同様この部位の断面積で引張破断力を換算すると約819gfが約593gfとなって大幅に引張強度が低下し、極めて低い引張力で先端部21の芯線2が破断することとなる。尚、図8の前記引張破断強度の常温での250kgf/mm2 の値は、伸線工程での総減面率の大小等により変動する値であり、又このときの温度と引張破断強度特性は前記と同様な傾向を示す。
This appears remarkably in the thin line at the tip 21 of the core wire 2 that is easily affected by heat. For example, the circular cross-sectional shape 23 of the distal end portion 21 of the core wire 2 shown in FIG. 1 (c) has an outer diameter of about 0.060 mm to 0.150 mm, and this is an extension having an outer diameter of about 0.340 mm. The austenitic stainless steel wire that has been subjected to wire processing is subjected to outer peripheral grinding to the above-described dimensions using a coreless grinding machine or the like.
And the tensile breaking strength at this time (FIG. 8), for example, when it is 250 kgf / mm 2 at room temperature, the tensile breaking strength becomes 266 kgf / mm 2 by heating at 180 ° C., and increases by about 6.4%. In the case of ℃, the tensile breaking strength is improved to 290 kgf / mm 2 , increased by about 16%, and in terms of the sectional area of the tensile breaking force when the outer diameter of the core wire 2 at the tip end portion 21 of the core wire is 0.060 mm 706 gf becomes 819 gf, and the tensile strength of about 113 gf increases. Thereafter, even at 495 ° C., the tensile strength at break is 260 kgf / mm 2 , which is about 4% higher than that at room temperature.
When the temperature exceeds 500 ° C. to 520 ° C., the tensile breaking strength decreases due to a sensitization phenomenon or the like, and the tensile breaking strength up to 600 ° C. becomes 210 kgf / mm 2. In other words, about 819 gf becomes about 593 gf, and the tensile strength is significantly lowered, and the core wire 2 of the distal end portion 21 is broken by an extremely low tensile force. The value of 250 kgf / mm 2 at room temperature for the tensile breaking strength in FIG. 8 varies depending on the total area reduction ratio in the wire drawing process, and the temperature and tensile breaking strength characteristics at this time. Shows the same tendency as described above.

そして又、特に、接合部材4を用いる場合には、この熱影響による芯線2の引張強度特性等を考慮した接合部材4である共晶合金を用いないと、強加工による伸線加工で加工硬化させて引張強度特性を増大させた芯線2であるにも拘らず、芯線2とコイル体3との接合時の接合部材の溶融熱によって引張強度低下を招来させることとなり、そして術者の操作中に曲げ疲労により先導栓5と芯線2との接合部が破断して先導栓5が離脱する危険を生じさせる。   In particular, when the joining member 4 is used, if the eutectic alloy, which is the joining member 4 considering the tensile strength characteristics of the core wire 2 due to the thermal effect, is not used, the work hardening is performed by wire drawing by strong working. In spite of the core wire 2 having increased tensile strength characteristics, the tensile strength is reduced due to the heat of fusion of the joining member when the core wire 2 and the coil body 3 are joined. Further, the joint between the leading plug 5 and the core wire 2 is broken due to bending fatigue, and the leading plug 5 may be detached.

このような引張強度特性を有する為、芯線2の低温熱処理温度範囲は180℃から495℃が望ましく、前記表1、2、3における最終伸線後の低温熱処理温度450℃は好適条件であり、又機械的加工後の、特にフッ素樹脂(PTFE)被膜成形熱を利用した385℃の低温熱処理においてもその効果は顕著であり、そして前記表4、5に見られるように芯線2に押圧加工後のコイル体3の外周部に樹脂被膜成形熱を利用した200℃の低温熱処理においても、引張破断強度を向上させることができる。(図8)
このように本発明は、強加工伸線して総減面率の高いオーステナイト系ステンレス鋼線の温度による引張強度特性に着目して伸線加工後に好適な低温熱処理を行い、そして一定温度範囲に制御した状態での樹脂被膜成形時の熱を利用し、さらに保温性、熱伝導性、構造、材質とを併せ考慮して芯線2の引張強度特性を大幅に向上できる、新たな技術思想を提供するものである。
Since it has such tensile strength characteristics, the low temperature heat treatment temperature range of the core wire 2 is desirably 180 ° C. to 495 ° C., and the low temperature heat treatment temperature 450 ° C. after the final wire drawing in Tables 1, 2, and 3 is a preferable condition. In addition, the effect is remarkable even in the low-temperature heat treatment at 385 ° C. using the heat of forming a fluororesin (PTFE) film after mechanical processing, and after pressing the core wire 2 as shown in Tables 4 and 5 above. The tensile strength at break can be improved even in a low-temperature heat treatment at 200 ° C. using resin film forming heat on the outer periphery of the coil body 3. (Fig. 8)
As described above, the present invention focuses on the tensile strength characteristics depending on the temperature of the austenitic stainless steel wire with high work drawing and a high total area reduction rate, and performs a suitable low temperature heat treatment after the drawing, and within a certain temperature range. Providing a new technical concept that can significantly improve the tensile strength characteristics of the core wire 2 by taking into account heat retention, thermal conductivity, structure, and materials, using heat during resin film molding in a controlled state To do.

そして次に、前述したような引張強度特性を有する為の芯線の伸線加工方法について実施例6を用いて、以下説明する。   Next, a core wire drawing method for having the tensile strength characteristics as described above will be described below with reference to Example 6.

前述したように、固溶化処理したオーステナイト系ステンレス鋼線を用いて図8に示すような高強度の引張強度特性を有する芯線2を得る為には、単純に総減面率94.8%の伸線加工のみによって得られるものではない。例えば実施例3、6では、線径1.5mmの固溶化処理したオーステナイト系ステンレス鋼線を、各ダイスの減面率が4%から20%複数のダイス(10〜20個)を用いて連続伸線加工により線径0.5mmまで一次伸線加工(減面率88.9%)を行い、その後低温熱処理(420℃、75分)を行い、さらに一次伸線加工と同様一定の減面率を有する複数のダイス(5〜8個)を用いて連続伸線加工により線径0.340mmまで二次伸線加工(減面率53.8%)を行い、総減面率94.8%とすることにより所望の引張強度特性を有する芯線2、及びその先端部21を得ることができる。このとき、一次伸線加工の減面率は、二次伸線加工の減面率よりも高い減面率とするほうが結晶粒径を小さくさせ、又経済性、生産性向上等の観点からより望ましい。
補足すれば、ダイス材質は本実施例のような高強度材料の伸線の場合には、合金ダイスよりも耐磨耗性に優れるダイヤモンドダイスが望ましい。
As described above, in order to obtain a core wire 2 having a high strength tensile strength characteristic as shown in FIG. 8 using a solution-treated austenitic stainless steel wire, the total area reduction rate is simply 94.8%. It is not obtained only by wire drawing. For example, in Examples 3 and 6, a solidified austenitic stainless steel wire having a wire diameter of 1.5 mm was continuously used by using a plurality of dies (10 to 20 pieces) each having a surface area reduction rate of 4% to 20%. Performs primary wire drawing to a wire diameter of 0.5 mm by wire drawing (area reduction rate: 88.9%), followed by low-temperature heat treatment (420 ° C., 75 minutes), and constant surface reduction as with primary wire drawing. Secondary drawing (53.8% area reduction) is performed by continuous drawing using a plurality of dies (5 to 8) having a rate to a wire diameter of 0.340 mm, and the total area reduction rate is 94.8. %, The core wire 2 having a desired tensile strength characteristic and the tip portion 21 thereof can be obtained. At this time, the area reduction rate of the primary wire drawing is smaller than the area reduction rate of the secondary wire drawing, so that the crystal grain size is reduced, and from the viewpoint of economy, productivity improvement, etc. desirable.
In addition, in the case of drawing a high-strength material as in the present embodiment, a diamond die that is more excellent in wear resistance than an alloy die is desirable.

そして、最終伸線工程において、減面率が4%から20%複数のダイス(5個〜8個)を用いて、かつ複数のダイス(5個〜8個)のうち最終ダイスの減面率を4%から13%として最終伸線工程内で最も小さい減面率を有するダイス配列とすることにより、最終伸線工程での断線を防ぐことができ、生産性が高く、又安定した品質の芯線を得ることができる。又、本実施例のオーステナイト系ステンレス鋼線の化学成分は、重量%でC:0.15%以下、Si:1%以下、Mn:2%以下、Ni:6%〜16%、Cr:16%〜20%、P:0.045%以下、S:0.030%以下、Mo:3%以下、残部鉄及び不可避的不純物から成る。このように高珪素ステンレス鋼(Si:3.0%〜5.0%)を用いなくても前記工程を用いることにより、高強度のオーステナイト系ステンレス鋼線の芯線2を得ることができる。代表的にはSUS304、SUS316材である。   In the final wire drawing step, the area reduction rate is 4% to 20%. Using the plurality of dies (5 to 8), the area reduction ratio of the final die out of the plurality of dies (5 to 8). By making the die arrangement having the smallest surface area reduction ratio in the final wire drawing process from 4% to 13%, disconnection in the final wire drawing process can be prevented, productivity is high, and stable quality is achieved. A core wire can be obtained. Further, the chemical components of the austenitic stainless steel wire of this example are C: 0.15% or less, Si: 1% or less, Mn: 2% or less, Ni: 6% to 16%, Cr: 16 by weight%. %: 20%, P: 0.045% or less, S: 0.030% or less, Mo: 3% or less, balance iron and inevitable impurities. Thus, even if it does not use high silicon stainless steel (Si: 3.0%-5.0%), the core wire 2 of a high-strength austenitic stainless steel wire can be obtained by using the said process. Typically, SUS304 and SUS316 material.

そして次に、固溶化処理したオーステナイト系ステンレス鋼線を伸線加工して低温熱処理を加えたときの引張強度特性が図8に示す特性を有することから低温熱処理効果を高める別に方法について、以下説明する。   Next, another method for enhancing the low-temperature heat treatment effect will be described below because the tensile strength characteristics when the solution-treated austenitic stainless steel wire is drawn and subjected to low-temperature heat treatment are shown in FIG. To do.

図8に示すように、低温熱処理温度が180℃から495℃で引張破断強度の向上効果が得られることから、芯線2とコイル体3とを部分的に接合する接合部材41、42、43又は先導栓5が、180℃から495℃の溶融温度を持つ共晶合金を用いることによっても引張破断強度を向上させることができる。具体的には、接合部材41、42は幅約0.3mmから1.5mm程度で外径が0.228mmから0.340mm程度のドーナツ状の略円板形状であり、又後端接合部材43は、前記放射線透過コイル材32と線径0.200mmから0.340mm程度の芯線2との接合で、その接合形状は、幅約0.3mmから3mm程度で外径が0.228mm程から0.340mm程度の円板状、又は手元側が先細りの略円錐形状である。尚、ここでいう接合部材4を用いて部分的に接合するとは、前記例で各接合部材41〜43及び先導栓5の接合形態のことをいう。   As shown in FIG. 8, since the low temperature heat treatment temperature is 180 ° C. to 495 ° C. and the effect of improving the tensile breaking strength is obtained, the joining members 41, 42, 43 that partially join the core wire 2 and the coil body 3 or The tensile strength at break can also be improved by using a eutectic alloy having a melting temperature of 180 to 495 ° C. for the leading plug 5. Specifically, the joining members 41 and 42 are donut-shaped substantially disk shapes having a width of about 0.3 mm to 1.5 mm and an outer diameter of about 0.228 mm to 0.340 mm, and the rear end joining member 43. Is a joint between the radiation transmitting coil member 32 and the core wire 2 having a wire diameter of about 0.200 mm to 0.340 mm. The joint shape is about 0.3 mm to 3 mm in width and the outer diameter is about 0.228 mm to 0. A disc shape of about 340 mm, or a substantially conical shape with a tapered side. In addition, to join partially using the joining member 4 here means the joining form of each joining member 41-43 and the leading plug 5 in the said example.

そしてここでいう接合部材4に用いる共晶合金とは、合金の成分比を変更することにより得られる最低融点(溶融温度)を有する特殊な合金のことをいい、具体的には、金又は銀を含む合金材で金錫系合金材として金80重量%、残部が錫で溶融温度が280℃、又銀錫系合金として銀3.5重量%、残部が錫で溶融温度が221℃、そして、金88重量%、残部がゲルマニウムで溶融温度が356℃、又銀と錫とインジウムから成り溶融温度が450℃から472℃の共晶合金であり、その代表例を表6に示す。   And the eutectic alloy used for the joining member 4 here means a special alloy having the lowest melting point (melting temperature) obtained by changing the component ratio of the alloy, specifically, gold or silver. 80% by weight as a gold-tin alloy material with a balance of tin and a melting temperature of 280 ° C., and 3.5% by weight of silver as a silver-tin alloy, with a balance of tin and a melting temperature of 221 ° C., and An eutectic alloy consisting of 88% by weight of gold, the balance being germanium and a melting temperature of 356 ° C., consisting of silver, tin and indium and having a melting temperature of 450 ° C. to 472 ° C. is shown in Table 6.

Figure 0005367503
Figure 0005367503

そして、例えば、図10に示すように先導栓5の先端から50mm(図示A寸法)に位置する中間接合部材411と中間接合部材412、413との各間隔を10mm(図示B寸法)として前記同様の中間接合部材を10個配置して中間接合部材間の全長を90mmとすることにより、部分的に接合する接合部材を用いても芯線2の長尺位置(図示90mm)にわたって低温熱処理を施すことができ、芯線2の引張強度特性を高めることができる。
この方法によれば、全体加熱する雰囲気加熱による熱処理炉を用いなくても、部分的に一定の狭い範囲であっても必要部位の芯線2の引張強度を向上させることができる。そしてさらに、この構造体では、等間隔の中間接合部材411、412、413の配置とすることにより、狭窄病変長の計測が可能となる効果を併せもつことができる。尚、中間接合部材の位置、及びその範囲を前記寸法としたのは、この範囲であれば、一般的に冠状動脈に多く見られる狭窄病変位置に該当するからである。
そして補足すれば、先導栓5に共晶合金である接合部材4を用いることにより、先導栓5と芯線2の接合部での芯線2の引張破断強度を向上させることができ、その結果狭窄病変内で前記接合部での耐屈曲疲労特性を向上させることができる。尚、補足すれば、この接合工程は先端部21の機械的加工の研削工程の後の低温熱処理(385℃、30分)後に、先端部21の外周部にコイル体3を装着し、その後接合部材4を用いて接合部材41〜43、411、412、413の接合、及び先導栓5を接合する。その後コイル体3の外周部に樹脂被膜を施す工程となる。
For example, as shown in FIG. 10, each interval between the intermediate joining member 411 and the intermediate joining members 412 and 413 located 50 mm (A dimension in the figure) from the tip of the leading plug 5 is set to 10 mm (B dimension in the figure). By arranging 10 intermediate joining members and setting the total length between the intermediate joining members to 90 mm, low-temperature heat treatment is performed over a long position (90 mm in the figure) of the core wire 2 even when a joining member that is partially joined is used. The tensile strength characteristic of the core wire 2 can be improved.
According to this method, it is possible to improve the tensile strength of the core wire 2 at a necessary portion even without using a heat treatment furnace that uses atmospheric heating for overall heating, even within a certain narrow range. Furthermore, in this structure, by arranging the intermediate joint members 411, 412, and 413 at equal intervals, it is possible to have an effect that the length of the stenotic lesion can be measured. The reason why the position and the range of the intermediate joint member are the above dimensions is that this range corresponds to a stenotic lesion position generally observed in the coronary artery.
If it supplements, by using the joining member 4 which is a eutectic alloy for the leading plug 5, the tensile fracture strength of the core wire 2 in the junction part of the leading plug 5 and the core wire 2 can be improved, As a result, a stenosis lesion The bending fatigue resistance characteristics at the joint can be improved. In addition, in addition, in this joining process, the coil body 3 is attached to the outer peripheral portion of the tip 21 after the low-temperature heat treatment (385 ° C., 30 minutes) after the grinding process of the mechanical processing of the tip 21, and then joined. Using the member 4, the joining members 41 to 43, 411, 412, 413 and the leading plug 5 are joined. Thereafter, a step of applying a resin coating to the outer peripheral portion of the coil body 3 is performed.

次に、本発明の芯線2をもつ医療用ガイドワイヤを用いることにより、芯線2の引張強度特性向上作用を利用して、芯線2を細径化することが可能となる。例えば、医療用ガイドワイヤ1の手元部22の外径が0.355mmから0.254mm(0.014インチから0.010インチ)へ、さらに樹脂被膜6の成形熱、コイル体3内の樹脂被膜密閉状態での成形余熱を利用して、先端部21の芯線2の引張強度特性を向上させることができ、その結果、芯線2の外径が0.228mm(0.009インチ)へ細径化できる。
そして、医療用ガイドワイヤをマイクロカテーテル内へ挿入し、かつ、ガイディングカテーテル内へ前記ガイドワイヤとマイクロカテーテルとを挿入する。かかる場合において、医療用ガイドワイヤ1の細径化に追従してガイディングカテーテルは7F〜8Fから5F〜6F(内径2.3mm〜2.7mmから内径1.59mm〜2.00mm)となり、この中に挿入するマイクロカテーテル(内径0.28mmから0.90mm)とともに細径化することができる。これにより低侵襲化の要請に応えることができ、又患者負担軽減に寄与することができる。尚補足すれば、前記マイクロカテーテルは、医療用ガイドワイヤとともに狭窄病変端まで導入して、医療用ガイドワイヤの前方へ押す力の反力を、前記マイクロカテーテルで支えることにより、医療用ガイドワイヤの前方への推進力を発揮させることができる。又、前記マイクロカテーテルは、多層樹脂管体、多層樹脂管体内に金属線の編組を介在させた構造の他、先端部に略円錐状の金属製チップが固着されて、複数の金属細線を多条コイル体に成形した螺旋状管体から成り、狭窄病変内の穿孔可能とした前記螺旋状管体も含まれる。
Next, by using the medical guide wire having the core wire 2 of the present invention, the core wire 2 can be reduced in diameter by utilizing the effect of improving the tensile strength characteristics of the core wire 2. For example, the outer diameter of the proximal portion 22 of the medical guide wire 1 is changed from 0.355 mm to 0.254 mm (0.014 inch to 0.010 inch), the molding heat of the resin coating 6, and the resin coating in the coil body 3 The tensile strength characteristics of the core wire 2 at the tip 21 can be improved by utilizing the residual heat in the sealed state, and as a result, the outer diameter of the core wire 2 is reduced to 0.228 mm (0.009 inch). it can.
Then, a medical guide wire is inserted into the microcatheter, and the guide wire and the microcatheter are inserted into the guiding catheter. In such a case, the guiding catheter is changed from 7F to 8F to 5F to 6F (inner diameter 2.3 mm to 2.7 mm to inner diameter 1.59 mm to 2.00 mm) following the thinning of the medical guide wire 1. The diameter can be reduced with a microcatheter (inner diameter 0.28 mm to 0.90 mm) inserted therein. Thereby, the request | requirement of minimally invasiveness can be met and it can contribute to a patient burden reduction. If supplemented, the microcatheter is introduced to the end of the stenotic lesion together with the medical guidewire, and the reaction force of the force pushing the front of the medical guidewire is supported by the microcatheter, whereby the medical guidewire The forward driving force can be demonstrated. The microcatheter has a multi-layer resin tube and a structure in which a braid of metal wires is interposed in the multi-layer resin tube, and a substantially conical metal tip is fixed to the distal end portion so that a plurality of thin metal wires are arranged. The spiral tube body that is formed of a spiral tube body formed into a strip coil body and that can be perforated in a stenotic lesion is also included.

そして次に、前記同様本発明の芯線2をもつ医療用ガイドワイヤを用いることにより、例えば、医療用ガイドワイヤ1の手元部22の外径が0.355mmから0.254mm(0.0014インチから0.010インチ)へ、さらに0.228mm(0.009インチ)へ細径化でき、そして、医療用ガイドワイヤをバルーンカテーテル内へ挿入し、かつ、ガイディングカテーテル内へ前記ガイドワイヤとバルーンカテーテルとを挿入する。かかる場合において、医療用ガイドワイヤ1の細径化に追従してガイディングカテーテルは7F〜8Fから5F〜6F(内径2.3mm〜2.7mmから内径1.59mm〜2.00mm)となり、この中へ挿入するバルーンカテーテル(内径0.28mmから0.90mm)とともに細径化することができる。これにより低侵襲化の要請に応えることができ、又患者負担軽減に寄与することができる。尚補足すれば、前記ガイディングカテーテル内へ医療用ガイドワイヤとバルーンカテーテルとを一組として二組挿入してキッシング手技を容易に行なうことができる。ここでいうキッシング手技とは、ガイディングカテーテル内へ二組の医療用ガイドワイヤとバルーンカテーテルとを挿入して分岐病変部にて、バルーンカテーテルのバルーン部を同時拡張させ、分岐病変部の分岐箇所の狭窄病変部を同時拡張させる手技のことをいう。   And next, by using the medical guide wire having the core wire 2 of the present invention as described above, for example, the outer diameter of the proximal portion 22 of the medical guide wire 1 is 0.355 mm to 0.254 mm (from 0.0014 inch). 0.010 inch) and further 0.228 mm (0.009 inch) diameter, and a medical guide wire is inserted into the balloon catheter and the guide wire and balloon catheter are inserted into the guiding catheter. And insert. In such a case, the guiding catheter is changed from 7F to 8F to 5F to 6F (inner diameter 2.3 mm to 2.7 mm to inner diameter 1.59 mm to 2.00 mm) following the thinning of the medical guide wire 1. The diameter can be reduced with a balloon catheter (inner diameter 0.28 mm to 0.90 mm) inserted therein. Thereby, the request | requirement of minimally invasiveness can be met and it can contribute to a patient burden reduction. If supplemented, a kissing procedure can be easily performed by inserting two sets of medical guidewires and balloon catheters into the guiding catheter. The kissing technique here refers to the branching site of the bifurcated lesion by inserting two pairs of medical guide wires and a balloon catheter into the guiding catheter and simultaneously expanding the balloon catheter balloon at the bifurcated lesion. This refers to a procedure that simultaneously expands the stenotic lesion.

[発明の効果]
以上説明のとおり、本発明の医療用ガイドワイヤ、及びその製造方法は伸線限界に近い強加工の伸線加工を行なったオーステナイト系ステンレス鋼線の温度による引張強度特性に着目して、好適な伸線加工と一定温度範囲の低温熱処理を繰り返しながら、そして医療用ガイドワイヤとしての直線性、回転伝達性を得る為の捻回加工と低温熱処理を行い、さらに機械的加工後に一定温度範囲の低温熱処理を加えることにより、医療用ガイドワイヤとしての特有の各加工工程毎に芯線の引張強度向上効果を累積することにより、高度の引張強度特性を有する医療用ガイドワイヤとその製造方法を提供するものである。
[Effect of the invention]
As described above, the medical guide wire of the present invention and the manufacturing method thereof are suitable by paying attention to the temperature-dependent tensile strength characteristics of the austenitic stainless steel wire that has been subjected to strong wire drawing close to the wire drawing limit. Repeats wire drawing and low temperature heat treatment in a certain temperature range, and performs twisting and low temperature heat treatment to obtain linearity and rotation transmission as a medical guide wire. A medical guide wire having a high tensile strength characteristic and a method for manufacturing the same are provided by accumulating the effect of improving the tensile strength of the core wire for each processing step peculiar as a medical guide wire by applying heat treatment. It is.

そしてさらに、芯線2の先端部21の機械的加工後の手元部22の比較的高温での外周部樹脂被膜成形の乾燥・焼成加熱の利用、及び芯線2の先端部21の研削加工後、及び押圧加工後のコイル体3の外周部に樹脂被膜成形温度による加熱と、強加工芯線の温度による引張強度特性との相関性に着目して、一定温度範囲に制御した低温熱処理を加えることにより芯線2を全体的に、又は部分的であっても引張強度特性等向上させる新たな技術思想を提供するものである。
これにより医療用ガイドワイヤの先端部が極細線でありながら機械的強度特性を、より向上させ、又品質安定を図ることができる。以上の諸効果がある。
And further, after the mechanical processing of the distal end portion 21 of the core wire 2, use of drying / firing heating of the outer peripheral resin film molding at a relatively high temperature, and after the grinding processing of the distal end portion 21 of the core wire 2, and Focusing on the correlation between heating at the outer periphery of the coil body 3 after pressing and the tensile strength characteristics due to the temperature of the hard-working core wire, by applying low-temperature heat treatment controlled to a certain temperature range, the core wire The present invention provides a new technical idea for improving the tensile strength characteristics, etc., even if 2 is wholly or partially.
As a result, the mechanical strength characteristics can be further improved and the quality can be stabilized while the distal end portion of the medical guide wire is an extra fine wire. There are the above various effects.

1 ガイドワイヤ(医療用ガイドワイヤ) 5 先導栓
2 芯線 6 樹脂被膜
21 先端部(芯線) 7 親水性被膜
3 コイルスプリング体(コイル体) 8 電流発生器
31 放射線不透過材コイル 9 回転チャック
32 放射線透過材コイル 10 固定チャック
4 接合部材 11 移動ローラー
41 中間前側接合部材 12 ウエイト
42 中間後側接合部材 13 ボビン
43 後端接合部材 14A 送りローラー
14B 送りローラー
15 切断刃
DESCRIPTION OF SYMBOLS 1 Guide wire (medical guide wire) 5 Lead plug 2 Core wire 6 Resin coating 21 Tip part (core wire) 7 Hydrophilic coating 3 Coil spring body (coil body) 8 Current generator 31 Radiopaque material coil 9 Rotary chuck 32 Radiation Transmission material coil 10 Fixed chuck 4 Joining member 11 Moving roller 41 Intermediate front joining member 12 Weight 42 Middle rear joining member 13 Bobbin 43 Rear end joining member 14A Feeding roller
14B feed roller
15 Cutting blade

Claims (15)

可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に接合部材を用いて先導栓を形成した医療用ガイドワイヤにおいて、
前記芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と前記伸線工程後に400℃〜495℃の低温熱処理工程を設けて、
前記伸線工程と前記低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から97.6%とし、
前記最終伸線工程までの低温熱処理による引張破断強度の増加率の合計が8%以上とし、
前記最終伸線工後に380℃〜495℃の低温熱処理と、
前記芯線先端部に研削加工、又は押圧加工の機械的加工をした後に、少なくとも前記機械的加工部分に180℃〜420℃の低温熱処理を加え、
前記最終伸線工程後の各低温熱処理による引張破断強度の増加率の合計が2%以上とし、
前記各低温熱処理による引張破断強度の増加率の合計が10%以上であることを特徴とする医療用ガイドワイヤ。
A core wire made of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug using a joining member at the distal end ends of the core wire and the coil spring body In the formed medical guidewire,
Using the austenitic stainless steel wire in which the core wire is subjected to a solution treatment, a low-temperature heat treatment step of 400 ° C. to 495 ° C. is provided after the wire drawing step and the wire drawing step,
The wire drawing step and the low temperature heat treatment step are set as one set, and after each step is repeated at least one set, a final wire drawing step is provided.
The total area reduction until the final wire drawing step is 90% to 97.6%,
The total increase rate of tensile fracture strength by low-temperature heat treatment until the final wire drawing step is 8% or more,
Low-temperature heat treatment at 380 ° C. to 495 ° C. after the final wire drawing,
After subjecting the core wire tip to grinding or pressing, mechanical processing is applied to at least the mechanically processed portion at a low temperature of 180 ° C. to 420 ° C.,
The total increase rate of tensile fracture strength by each low-temperature heat treatment after the final wire drawing step is 2% or more,
A medical guide wire, wherein the total increase rate of tensile breaking strength by each of the low-temperature heat treatments is 10% or more.
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に接合部材を用いて先導栓を形成して、少なくとも前記芯線手元部の外周部に樹脂被膜を形成した医療用ガイドワイヤにおいて、
前記芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と前記伸線工程後に400℃〜495℃の低温熱処理工程を設けて、
前記伸線工程と前記低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から97.6%とし、
前記最終伸線工程までの低温熱処理による引張破断強度の増加率の合計が8%以上とし、
前記最終伸線工程後に、芯線に所定量の捻回加工を行ない、その後前記芯線に電気抵抗加熱による380℃〜495℃の低温熱処理加工を行い、
その後前記芯線先端部に研削加工、又は押圧加工の機械的加工をした後に、前記芯線外周部に樹脂被膜成形の熱を利用して340℃〜420℃の低温熱処理を行い、
前記最終伸線工程後の各低温熱処理による引張破断強度の増加率の合計が2%以上とし、
前記各低温熱処理による引張破断強度の増加率の合計が10%以上であることを特徴とする医療用ガイドワイヤ。
A core wire made of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug using a joining member at the distal end ends of the core wire and the coil spring body In a medical guide wire formed and formed with a resin coating on at least the outer peripheral portion of the core wire proximal portion,
Using the austenitic stainless steel wire in which the core wire is subjected to a solution treatment, a low-temperature heat treatment step of 400 ° C. to 495 ° C. is provided after the wire drawing step and the wire drawing step,
The wire drawing step and the low temperature heat treatment step are set as one set, and after each step is repeated at least one set, a final wire drawing step is provided.
The total area reduction until the final wire drawing step is 90% to 97.6%,
The total increase rate of tensile fracture strength by low-temperature heat treatment until the final wire drawing step is 8% or more,
After the final wire drawing step, a predetermined amount of twisting is performed on the core wire, and then the core wire is subjected to low temperature heat treatment at 380 ° C. to 495 ° C. by electric resistance heating,
Then, after grinding or pressing mechanical processing on the core wire tip, using the heat of resin film forming on the outer periphery of the core wire, low temperature heat treatment of 340 ° C ~ 420 ° C,
The total increase rate of tensile fracture strength by each low-temperature heat treatment after the final wire drawing step is 2% or more,
A medical guide wire, wherein the total increase rate of tensile breaking strength by each of the low-temperature heat treatments is 10% or more.
請求項2記載の医療用ガイドワイヤにおいて、
前記芯線先端部の機械的加工後、前記芯線の外周部の樹脂被膜成形前に400℃〜495℃の低温熱処理工程を設けて、
引張破断強度を前記芯線の機械的加工後の引張破断強度に対して増大させ、
前記各低温熱処理による引張破断強度の増加率の合計が11.5%以上であることを特徴とする医療用ガイドワイヤ。
The medical guidewire according to claim 2,
After mechanical processing of the tip of the core wire, a low temperature heat treatment step of 400 ° C. to 495 ° C. is provided before resin film molding of the outer peripheral portion of the core wire,
Increasing the tensile breaking strength relative to the tensile breaking strength after mechanical processing of the core wire,
A medical guide wire characterized in that the total increase rate of tensile breaking strength by each of the low-temperature heat treatments is 11.5% or more.
請求項1〜3のいずれか一つに記載の芯線を用いて、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に接合部材を用いて先導栓を形成し、少なくとも前記コイルスプリング体の外周部に樹脂被膜を形成した医療用ガイドワイヤにおいて、
前記芯線先端部の研削加工した部分の低温熱処理後に、押圧加工を行い、
少なくとも押圧加工した部分に前記先端部コイルスプリング体外周部の樹脂被膜成形熱を利用して180℃〜300℃の低温熱処理を行い、
少なくとも前記芯線先端部の研削加工部分、又は押圧加工部分の引張破断強度を、前記樹脂被膜成形の低温熱処理前の引張破断強度に対して増大させたことを特徴とする医療ガイドワイヤ。
Using the core wire according to any one of claims 1 to 3, a coil spring body that is inserted through the core wire is attached to a tip end portion of the core wire, and a tip end portion of the core wire and the coil spring body is attached. In a medical guide wire in which a leading plug is formed using a joining member, and a resin film is formed at least on the outer periphery of the coil spring body,
After the low-temperature heat treatment of the ground portion of the core wire tip, press processing is performed,
Perform a low-temperature heat treatment at 180 ° C. to 300 ° C. using the resin film forming heat of the outer periphery of the tip coil spring body on at least the pressed portion,
A medical guide wire characterized in that at least the tensile breaking strength of a grounded portion or a pressed portion of the core wire tip is increased with respect to the tensile breaking strength before low-temperature heat treatment of the resin film molding.
請求項1〜4のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記芯線の最終伸線加工までの総減面率を94%から97.6%としたことを特徴とする医療用ガイドワイヤ。
The medical guidewire according to any one of claims 1 to 4,
A medical guide wire characterized in that the total area reduction ratio until the final wire drawing of the core wire is 94% to 97.6%.
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に接合部材を用いて先導栓を形成した医療用ガイドワイヤにおいて、
前記芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と前記伸線工程後に400℃〜495℃で10分から180分の低温熱処理工程を設けて、
前記伸線工程と前記低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から97.6%とし、
前記芯線の一端に捻回加工前の芯線の引張破断力の5%から30%の負荷荷重を加えた状態で、他端を100回/mから250回/mの捻回加工工程を設け、
その後前記芯線に電気抵抗加熱による380℃〜495℃で30秒から60分の低温熱処理工程と、
前記芯線先端部を研削加工、又は研削加工後に押圧加工する工程と、
前記芯線の先端部に前記芯線を貫挿してコイルスプリング体を装着する工程と、
前記接合部材を用いて前記芯線と前記コイルスプリング体とを部分的に接合させる工程と、
前記接合部材を用いて前記芯線と前記コイルスプリング体の端部とを接合させた先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法。
A core wire made of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug using a joining member at the distal end ends of the core wire and the coil spring body In the formed medical guidewire,
Using the austenitic stainless steel wire in which the core wire is subjected to a solution treatment, a low-temperature heat treatment step is performed at 400 to 495 ° C. for 10 minutes to 180 minutes after the wire drawing step and the wire drawing step,
The wire drawing step and the low temperature heat treatment step are set as one set, and after each step is repeated at least one set, a final wire drawing step is provided.
The total area reduction until the final wire drawing step is 90% to 97.6%,
In the state where a load of 5% to 30% of the tensile breaking force of the core wire before twisting is applied to one end of the core wire, the other end is provided with a twisting process of 100 times / m to 250 times / m,
Then, a low-temperature heat treatment step for 30 seconds to 60 minutes at 380 ° C. to 495 ° C. by electric resistance heating on the core wire,
Grinding the core wire tip, or pressing after grinding, and
Attaching the coil spring body by inserting the core wire through the tip of the core wire;
A step of partially bonding the core wire and the coil spring body using the bonding member;
A method for producing a medical guide wire, comprising: forming a leading plug in which the core wire and an end of the coil spring body are joined using the joining member.
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に接合部材を用いて先導栓を形成した医療用ガイドワイヤにおいて、
前記芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、
伸線工程と前記伸線工程後に400℃〜495℃で10分から180分の低温熱処理工程を設けて
前記伸線工程と前記低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から97.6%とし、
前記芯線の一端に捻回加工前の芯線の引張破断力の5%から30%の負荷荷重を加えた状態で、他端を100回/mから250回/mの捻回加工工程を設け、
その後前記芯線に電気抵抗加熱による380℃〜495℃で30秒から60分の低温熱処理工程と、
その後400℃〜495℃で10分から180分の低温熱処理工程を設けて、
その後前記芯線先端部を研削加工、又は研削加工後に押圧加工する工程と、
前記芯線の先端部に前記芯線を貫挿してコイルスプリング体を装着する工程と、
前記接合部材を用いて前記芯線と前記コイルスプリング体とを部分的に接合させる工程と、
前記接合部材を用いて前記芯線と前記コイルスプリング体の端部とを接合させた先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法。
A core wire made of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug using a joining member at the distal end ends of the core wire and the coil spring body In the formed medical guidewire,
Using the austenitic stainless steel wire in which the core wire is subjected to solution treatment,
After the wire drawing step and the wire drawing step, a low temperature heat treatment step is performed at 400 ° C. to 495 ° C. for 10 minutes to 180 minutes, and the wire drawing step and the low temperature heat treatment step are set as one set and at least one set is repeated after each step is completed. Provide a wire drawing process
The total area reduction until the final wire drawing step is 90% to 97.6%,
In the state where a load of 5% to 30% of the tensile breaking force of the core wire before twisting is applied to one end of the core wire, the other end is provided with a twisting process of 100 times / m to 250 times / m,
Then, a low-temperature heat treatment step for 30 seconds to 60 minutes at 380 ° C. to 495 ° C. by electric resistance heating on the core wire,
After that, a low temperature heat treatment step is performed at 400 to 495 ° C. for 10 to 180 minutes,
Then, the step of pressing the core wire tip after grinding or grinding,
Attaching the coil spring body by inserting the core wire through the tip of the core wire;
A step of partially bonding the core wire and the coil spring body using the bonding member;
A method for producing a medical guide wire, comprising: forming a leading plug in which the core wire and an end of the coil spring body are joined using the joining member.
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体との先端端部に接合部材を用いて先導栓を形成して、少なくとも前記芯線手元部の外周部に樹脂被膜を形成した医療用ガイドワイヤにおいて、
前記芯線が固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と前記伸線工程後に400℃〜495℃で10分から180分の低温熱処理工程を設けて、
前記伸線工程と前記低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から97.6%とし、
前記芯線の一端に捻回加工前の芯線の引張破断力の5%から30%の負荷荷重を加えた状態で、他端を100回/mから250回/mの捻回加工工程を設け、
その後前記芯線に電気抵抗加熱による380℃〜495℃で30秒から60分の低温熱処理工程と、
前記芯線先端部を研削加工、又は研削加工後に押圧加工する工程と、
前記芯線の少なくとも手元部に樹脂被膜を成形する工程と、
その後少なくとも前記芯線先端部を研削加工、又は研削加工後の押圧加工部分に340℃〜420℃で10分から180分の低温熱処理工程を設け、
前記芯線を貫挿してコイルスプリング体を装着する工程と、
前記接合部材を用いて前記芯線と前記コイルスプリング体とを部分的に接合させる工程と、
前記接合部材を用いて前記芯線と前記コイルスプリング体の端部とを接合させた先導栓を形成する工程から成ることを特徴とする医療用ガイドワイヤの製造方法。
A core wire made of a flexible elongated body, a coil spring body having the core wire inserted through the distal end portion of the core wire, and a leading plug using a joining member at the distal end ends of the core wire and the coil spring body In a medical guide wire formed and formed with a resin coating on at least the outer peripheral portion of the core wire proximal portion,
Using the austenitic stainless steel wire in which the core wire is subjected to a solution treatment, a low-temperature heat treatment step is performed at 400 to 495 ° C. for 10 minutes to 180 minutes after the wire drawing step and the wire drawing step,
The wire drawing step and the low temperature heat treatment step are set as one set, and after each step is repeated at least one set, a final wire drawing step is provided.
The total area reduction until the final wire drawing step is 90% to 97.6%,
In the state where a load of 5% to 30% of the tensile breaking force of the core wire before twisting is applied to one end of the core wire, the other end is provided with a twisting process of 100 times / m to 250 times / m,
Then, a low-temperature heat treatment step for 30 seconds to 60 minutes at 380 ° C. to 495 ° C. by electric resistance heating on the core wire,
Grinding the core wire tip, or pressing after grinding, and
Forming a resin film on at least the proximal portion of the core wire;
Then, at least the core wire tip is ground, or a low temperature heat treatment step is performed at 340 ° C. to 420 ° C. for 10 minutes to 180 minutes on the pressed portion after grinding,
Inserting the coil spring body through the core wire; and
A step of partially bonding the core wire and the coil spring body using the bonding member;
A method for producing a medical guide wire, comprising: forming a leading plug in which the core wire and an end of the coil spring body are joined using the joining member.
請求項6〜8のいずれか一つに記載の医療用ガイドワイヤの製造方法において、
前記芯線の他端の捻回数が100回/mから200回/mの捻回加工工程としたことを特徴とする医療用ガイドワイヤの製造方法。
In the manufacturing method of the medical guidewire as described in any one of Claims 6-8,
A medical guide wire manufacturing method, characterized in that the twisting process of the other end of the core wire is performed at a twisting process of 100 times / m to 200 times / m.
請求項6〜9のいずれか一つに記載の医療用ガイドワイヤの製造方法において、
前記接合部材を用いて前記芯線と前記コイルスプリング体とを接合させた後に、
前記コイルスプリング体外周部に樹脂被膜を成形し、その樹脂被膜成形時の熱を利用して、少なくとも前記コイルスプリング体内の前記芯線先端部に180℃〜300℃で10分から60分の低温熱処理工程を設けたことを特徴とする医療用ガイドワイヤの製造方法。
In the manufacturing method of the medical guidewire as described in any one of Claims 6-9,
After joining the core wire and the coil spring body using the joining member,
A resin coating is formed on the outer peripheral portion of the coil spring body, and a low-temperature heat treatment step is performed at 180 ° C. to 300 ° C. for 10 minutes to 60 minutes at least at the tip end portion of the core wire in the coil spring body by utilizing heat at the time of molding the resin coating. A method for manufacturing a medical guide wire, comprising:
請求項6〜10のいずれか一つに記載の医療用ガイドワイヤの製造方法において、
前記芯線の伸線工程が、一次伸線から最終伸線前の各伸線工程における減面率が4%から20%の複数のダイスを用いて連続伸線し、
最終伸線工程において減面率が4%から20%の複数のダイスを用いて連続伸線し、かつ、最終ダイスは減面率が4%から13%で、最終伸線工程内で最も減面率を小とするダイスの配列とした伸線工程の芯線から成ることを特徴とする医療用ガイドワイヤの製造方法。
In the manufacturing method of the medical guidewire as described in any one of Claims 6-10,
The wire drawing step of the core wire is continuously drawn using a plurality of dies having a surface reduction rate of 4% to 20% in each drawing step from the primary drawing to the final drawing,
In the final drawing process, continuous drawing is performed using a plurality of dies with a reduction in area of 4% to 20%, and the final die has a reduction in area of 4% to 13%, which is the most reduced in the final drawing process. A method of manufacturing a medical guide wire, characterized by comprising a core wire in a wire drawing process in which dies having a small surface area are arranged.
前記接合部材が180℃から495℃の溶融温度をもつ共晶合金から成ることを特徴とする請求項1〜5のいずれか一つに記載の医療用ガイドワイヤ。   The medical guide wire according to any one of claims 1 to 5, wherein the joining member is made of a eutectic alloy having a melting temperature of 180 ° C to 495 ° C. 前記接合部材が180℃から495℃の溶融温度をもつ共晶合金から成ることを特徴とする請求項6〜11のいずれか一つに記載の医療用ガイドワイヤの製造方法。   The method of manufacturing a medical guide wire according to any one of claims 6 to 11, wherein the joining member is made of a eutectic alloy having a melting temperature of 180 ° C to 495 ° C. 請求項1〜5、12のいずれか一つに記載の医療用ガイドワイヤと、マイクロカテーテルと、ガイディングカテーテルとの組立体において、
前記医療用ガイドワイヤの外径が0.228mmから0.254mm(0.009インチから0.010インチ)で、前記医療用ガイドワイヤを内径が0.28mmから0.90mmのマイクロカテーテル内へ挿入し、かつ、内径が1.59mmから2.00mmの前記ガイディングカテーテル内へ前記医療用ガイドワイヤと前記マイクロカテーテルが挿入されていることを特徴とする医療用ガイドワイヤとマイクロカテーテルとガイディングカテーテルとの組立体。
In the assembly of the medical guidewire according to any one of claims 1 to 5 and 12, a microcatheter, and a guiding catheter,
The medical guide wire is inserted into a microcatheter having an outer diameter of 0.228 mm to 0.254 mm (0.009 inch to 0.010 inch) and an inner diameter of 0.28 mm to 0.90 mm. The medical guide wire, the microcatheter, and the guiding catheter are inserted into the guiding catheter having an inner diameter of 1.59 mm to 2.00 mm. And assembly.
請求項1〜5、12のいずれか一つに記載の医療用ガイドワイヤと、バルーンカテーテルと、ガイディングカテーテルとの組立体において、
前記医療用ガイドワイヤの外径が0.228mmから0.254mm(0.009インチから0.010インチ)で、前記医療用ガイドワイヤを内径が0.28mmから0.90mmの前記バルーンカテーテル内へ挿入し、かつ、内径が1.59mmから2.00mmの前記ガイディングカテーテル内へ、前記医療用ガイドワイヤと前記バルーンカテーテルが挿入されていることを特徴とする医療用ガイドワイヤとバルーンカテーテルとガイディングカテーテルとの組立体。
In the assembly of the medical guidewire according to any one of claims 1 to 5 and 12, a balloon catheter, and a guiding catheter,
The medical guide wire has an outer diameter of 0.228 mm to 0.254 mm (0.009 inch to 0.010 inch) and the medical guide wire is inserted into the balloon catheter having an inner diameter of 0.28 mm to 0.90 mm. The medical guide wire, the balloon catheter, and the guide are inserted into the guiding catheter having an inner diameter of 1.59 mm to 2.00 mm. Assembly with ding catheter.
JP2009190470A 2009-08-19 2009-08-19 Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter Active JP5367503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190470A JP5367503B2 (en) 2009-08-19 2009-08-19 Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190470A JP5367503B2 (en) 2009-08-19 2009-08-19 Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter

Publications (2)

Publication Number Publication Date
JP2011041612A JP2011041612A (en) 2011-03-03
JP5367503B2 true JP5367503B2 (en) 2013-12-11

Family

ID=43829506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190470A Active JP5367503B2 (en) 2009-08-19 2009-08-19 Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter

Country Status (1)

Country Link
JP (1) JP5367503B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614773B2 (en) * 2011-02-15 2014-10-29 朝日インテック株式会社 Balloon catheter
JP2013116252A (en) * 2011-12-05 2013-06-13 Japan Lifeline Co Ltd Medical guide wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159333A (en) * 2001-11-27 2003-06-03 Tokusen Kogyo Co Ltd Core material for guide wire for medical treatment and guide wire for medical treatment
JP5099978B2 (en) * 2005-04-07 2012-12-19 大同特殊鋼株式会社 High-strength thin wire and manufacturing method thereof
JP2007330288A (en) * 2006-06-12 2007-12-27 Nachi Fujikoshi Corp Core material or guide wire composed of core material and its manufacturing method
JP4977445B2 (en) * 2006-11-01 2012-07-18 トクセン工業株式会社 Guide wire and manufacturing method thereof
JP5386088B2 (en) * 2008-01-25 2014-01-15 金井 宏彰 Guide wire core, method for manufacturing the core, and medical guide wire using the core

Also Published As

Publication number Publication date
JP2011041612A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4913198B2 (en) Medical guide wire, method for manufacturing medical guide wire, assembly of medical guide wire, microcatheter and guiding catheter, and assembly of medical guide wire, balloon catheter and guiding catheter
JP4913180B2 (en) Medical guide wire, method for manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter
JP5500924B2 (en) Medical guide wire and manufacturing method thereof
US8721564B2 (en) Guide wire with core having welded wire segments
EP2402051B1 (en) Medical guide wire
JP5101283B2 (en) Apparatus and method for joining a stainless steel guidewire section to a nitinol section without a hypotube
JP5295104B2 (en) Guidewire and stent
JP2000512691A (en) Improved linear elastic member
JP2005014040A (en) Method of making metallic thin wire and medical tool into which metallic thin wire is incorporated
JP5367503B2 (en) Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter
US20150094690A1 (en) Guidewire with varying properties
JP5497604B2 (en) Manufacturing method of medical guide wire
JP5481359B2 (en) Medical guidewire
JP5437778B2 (en) Medical treatment tool
JP4913249B2 (en) Medical guide wire and manufacturing method thereof
JP5437772B2 (en) Medical treatment tool
JP5367518B2 (en) Medical endoscope, method for manufacturing medical endoscope, assembly of medical endoscope and treatment instrument for medical endoscope, and medical endoscope and medical endoscope image processing system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5367503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250