JP5366434B2 - Fullerene derivative and organic photoelectric conversion device using the same - Google Patents

Fullerene derivative and organic photoelectric conversion device using the same Download PDF

Info

Publication number
JP5366434B2
JP5366434B2 JP2008128099A JP2008128099A JP5366434B2 JP 5366434 B2 JP5366434 B2 JP 5366434B2 JP 2008128099 A JP2008128099 A JP 2008128099A JP 2008128099 A JP2008128099 A JP 2008128099A JP 5366434 B2 JP5366434 B2 JP 5366434B2
Authority
JP
Japan
Prior art keywords
group
formula
represented
substituent
fullerene derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008128099A
Other languages
Japanese (ja)
Other versions
JP2009137932A (en
Inventor
敏幸 伊藤
保則 上谷
藤原  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Sumitomo Chemical Co Ltd
Original Assignee
Tottori University
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University, Sumitomo Chemical Co Ltd filed Critical Tottori University
Priority to JP2008128099A priority Critical patent/JP5366434B2/en
Priority to PCT/JP2008/070168 priority patent/WO2009063785A1/en
Publication of JP2009137932A publication Critical patent/JP2009137932A/en
Application granted granted Critical
Publication of JP5366434B2 publication Critical patent/JP5366434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Indole Compounds (AREA)

Description

本発明は、フラーレン誘導体およびそれを用いた有機光電変換素子に関する。   The present invention relates to a fullerene derivative and an organic photoelectric conversion element using the fullerene derivative.

フラーレン誘導体は、電荷(電子、ホール)輸送性を有する有機半導体材料であるので、有機光電変換素子(有機太陽電池、光センサー等)等への適用が期待されている。有機半導体材料としてのフラーレン誘導体としては、炭素数70以上のフラーレンの誘導体が着目されており、C70フラーレンの[6,6]フェニル−酪酸メチルエステル誘導体(以下、[70]PCBMということがある。)が知られている。(非特許文献1)
Angew.Chem.Int.Ed.2003,42,3371−3375頁
Since fullerene derivatives are organic semiconductor materials having charge (electron, hole) transport properties, application to organic photoelectric conversion elements (organic solar cells, optical sensors, etc.) is expected. As a fullerene derivative as an organic semiconductor material, a fullerene derivative having 70 or more carbon atoms has attracted attention, and may be referred to as a [6,6] phenyl-butyric acid methyl ester derivative of C70 fullerene (hereinafter referred to as [70] PCBM). )It has been known. (Non-Patent Document 1)
Angew. Chem. Int. Ed. 2003, 42, 3371-3375

しかし、[70]−PCBMを有機光電変換素子に用いた場合は、光電変換効率が必ずしも十分でないという問題点がある。   However, when [70] -PCBM is used for the organic photoelectric conversion element, there is a problem that the photoelectric conversion efficiency is not always sufficient.

そこで、本発明は、有機光電変換素子に用いた場合に、優れた光電変換効率を付与しうる炭素数70以上のフラーレンの誘導体を提供することを目的とする。   Therefore, an object of the present invention is to provide a fullerene derivative having 70 or more carbon atoms that can provide excellent photoelectric conversion efficiency when used in an organic photoelectric conversion element.

本発明は第一に、式(1)で表されるフラーレン誘導体を提供する。

Figure 0005366434
(1)
[式(1)中、A環は炭素数70以上のフラーレン骨格を表す。R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基または下記式(2)で示される基を表す。]
Figure 0005366434
(2)
[式(2)中、mは1〜6の整数を、nは1〜4の整数を、pは0〜5の整数を表す。Xは、メチル基または置換基を有していてもよいアリール基を表す。mが複数個ある場合、複数のmは同一でも異なっていてもよい。] The present invention first provides a fullerene derivative represented by the formula (1).
Figure 0005366434
(1)
[In Formula (1), the A ring represents a fullerene skeleton having 70 or more carbon atoms. R 1 , R 2 and R 3 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aryl group which may have a substituent, an arylalkyl group which may have a substituent, or a substituent. Represents a monovalent heterocyclic group which may have a group represented by the following formula (2). ]
Figure 0005366434
(2)
[In Formula (2), m represents an integer of 1 to 6, n represents an integer of 1 to 4, and p represents an integer of 0 to 5. X represents a methyl group or an aryl group which may have a substituent. When there are a plurality of m, the plurality of m may be the same or different. ]

本発明は第二に、炭素数70以上のフラーレンと式(3)で表されるグリシン誘導体および式(4)で表されるアルデヒド化合物を反応させる前記フラーレン誘導体の製造方法を提供する。

Figure 0005366434
(3) (4)
(式(3)中のR1およびR3、(4)中のR2は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基または式(2)で示される基を表す。) Secondly, the present invention provides a method for producing the fullerene derivative comprising reacting a fullerene having 70 or more carbon atoms with a glycine derivative represented by the formula (3) and an aldehyde compound represented by the formula (4).
Figure 0005366434
(3) (4)
(R 1 and R 3 in formula (3), R 2 in (4) each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group which may have a substituent, or a substituent. Represents a monovalent heterocyclic group which may have or a group represented by the formula (2).)

本発明は第三に、前記反応で得られた反応生成物を、芳香族炭化水素および酢酸エステルを展開溶媒として用いるシリカゲルカラムクロマトグラフィーで精製する式(1)で表されるフラーレン誘導体の精製方法を提供する。   Thirdly, the present invention provides a method for purifying a fullerene derivative represented by the formula (1), wherein the reaction product obtained by the above reaction is purified by silica gel column chromatography using an aromatic hydrocarbon and an acetate as a developing solvent. I will provide a.

本発明は第四に、式(1)で表されるフラーレン誘導体と電子供与性化合物とを含む組成物を提供する。   Fourthly, the present invention provides a composition comprising a fullerene derivative represented by the formula (1) and an electron donating compound.

本発明は第五に、式(1)で表されるフラーレン誘導体を含む層を有する有機光電変換素子を提供する。   Fifthly, the present invention provides an organic photoelectric conversion device having a layer containing a fullerene derivative represented by the formula (1).

本発明の炭素数70以上のフラーレンの誘導体を用いれば、優れた光電変換効率を示す有機光電変換素子を製造することができるので、本発明は工業的に極めて有用である。   Since the organic photoelectric conversion element which shows the outstanding photoelectric conversion efficiency can be manufactured if the C70 or more fullerene derivative of this invention is used, this invention is very useful industrially.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<フラーレン誘導体>
本発明のフラーレン誘導体は、炭素数70以上のフラーレン骨格を有し、前記式(1)で表される。式(1)中、R1、R2およびR3は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基または下記式(2)で示される基を表す。前記アルキル基は、炭素数が通常1〜20であり、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、s−ブチル基、3−メチルブチル基、n−ペンチル基、n−ヘキシル基、2−エチルヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ラウリル基等が挙げられる。前記アルキル基中の水素原子はハロゲン原子で置換されていてもよく、モノハロメチル基、ジハロメチル基、トリハロメチル基、ペンタハロエチル基等があげられる。ハロゲン原子の中では、フッ素原子で置換されていることが好ましい。フッ素原子で水素原子が置換されたアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。
<Fullerene derivative>
The fullerene derivative of the present invention has a fullerene skeleton having 70 or more carbon atoms and is represented by the formula (1). In formula (1), R 1 , R 2 and R 3 each independently have a hydrogen atom, a halogen atom, an alkyl group, an aryl group which may have a substituent, or a substituent. An arylalkyl group, a monovalent heterocyclic group which may have a substituent, or a group represented by the following formula (2) is represented. The alkyl group usually has 1 to 20 carbon atoms, may be linear or branched, and may be a cycloalkyl group. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, s-butyl group, 3-methylbutyl group, n -Pentyl group, n-hexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-lauryl group and the like. The hydrogen atom in the alkyl group may be substituted with a halogen atom, and examples thereof include a monohalomethyl group, a dihalomethyl group, a trihalomethyl group, and a pentahaloethyl group. Of the halogen atoms, it is preferably substituted with a fluorine atom. Examples of the alkyl group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.

前記アリール基は、炭素数が通常6〜60であり、置換基を有していてもよい。アリール基が有している置換基としては、炭素数1〜20の直鎖状、分岐状のアルキル基又は炭素数1〜20のシクロアルキル基、炭素数1〜20の直鎖状、分岐状のアルキル基又は炭素数1〜20のシクロアルキル基をその構造中に含むアルコキシ基、式(2)で示される基があげられる。アリール基の具体例としては、フェニル基、C1〜C12アルコキシフェニル基(C1〜C12は、炭素数1〜12であることを示す。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基等が挙げられ、炭素数6〜20のアリール基が好ましく、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基がより好ましい。前記アリール基中の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子の中では、フッ素原子で置換されていることが好ましい。 The aryl group usually has 6 to 60 carbon atoms and may have a substituent. Examples of the substituent that the aryl group has include a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 1 to 20 carbon atoms, a linear or branched chain having 1 to 20 carbon atoms. Or an alkoxy group containing a C 1-20 cycloalkyl group in the structure thereof, or a group represented by the formula (2). Specific examples of the aryl group include a phenyl group, a C 1 to C 12 alkoxyphenyl group (C 1 to C 12 represents 1 to 12 carbon atoms, and the same applies to the following), C 1 to C. 12 alkylphenyl group, 1-naphthyl, 2-naphthyl and the like, preferably an aryl group having 6 to 20 carbon atoms, C 1 -C 12 alkoxyphenyl group, more preferably C 1 -C 12 alkylphenyl group . A hydrogen atom in the aryl group may be substituted with a halogen atom. Of the halogen atoms, it is preferably substituted with a fluorine atom.

前述のC1〜C20アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、n−プロピルオキシ基、i−プロピルオキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、シクロヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、3,7−ジメチルオクチルオキシ基、n−ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子の中では、フッ素原子で置換されていることが好ましい。フッ素原子で水素原子が置換されたアルコキシ基としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。 The aforementioned C 1 -C 20 alkoxy group may be linear or branched, and may be a cycloalkyloxy group. Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, and n-pentyloxy. Group, n-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, n -Lauryloxy group etc. are mentioned. A hydrogen atom in the alkoxy group may be substituted with a halogen atom. Of the halogen atoms, it is preferably substituted with a fluorine atom. Examples of the alkoxy group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyl group, and a perfluorooctyl group.

前記アリールアルキル基は、炭素数が通常7〜60であり、置換基を有していてもよい。アリールアルキル基が有している置換基としては、炭素数1〜20の直鎖状、分岐状のアルキル基又は炭素数1〜20のシクロアルキル基、炭素数1〜20の直鎖状、分岐状のアルキル基又は炭素数1〜20のシクロアルキル基をその構造中に含むアルコキシ基、式(2)で示される基があげられる。アリールアルキル基の具体例としては、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基等が挙げられる。 The arylalkyl group usually has 7 to 60 carbon atoms and may have a substituent. As a substituent which the arylalkyl group has, a C1-C20 linear or branched alkyl group or a C1-C20 cycloalkyl group, a C1-C20 linear, branched And a group represented by the formula (2) include an alkoxy group having a C 1-20 cycloalkyl group in its structure. Specific examples of the aryl alkyl group, a phenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkoxyphenyl -C 1 -C 12 alkyl group, C 1 -C 12 alkylphenyl -C 1 -C 12 alkyl group 1-naphthyl-C 1 -C 12 alkyl group, 2-naphthyl-C 1 -C 12 alkyl group and the like.

前記1価の複素環基は、複素環化合物から水素原子1個を除いた残りの原子団をいう。1価の複素環基の炭素数は通常4〜60程度、好ましくは4〜20である。なお、前記の1価の複素環基の炭素数には、置換基の炭素数は含まれない。前記複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、燐、硼素、珪素等のヘテロ原子を環内に含むものをいう。1価の複素環基としては、芳香族の複素環基が好ましい。1価の複素環基の具体例としては、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられ、チエニル基、C1〜C12アルキルチエニル基、ピリジル基、C1〜C12アルキルピリジル基が好ましい。 The monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound. The carbon number of the monovalent heterocyclic group is usually about 4 to 60, preferably 4 to 20. The carbon number of the monovalent heterocyclic group does not include the carbon number of the substituent. The heterocyclic compound is an organic compound having a cyclic structure in which the elements constituting the ring include not only carbon atoms but also hetero atoms such as oxygen, sulfur, nitrogen, phosphorus, boron, silicon, etc. Say. As the monovalent heterocyclic group, an aromatic heterocyclic group is preferable. Specific examples of the monovalent heterocyclic group, a thienyl group, C 1 -C 12 alkyl thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, C 1 -C 12 alkyl pyridyl group, piperidyl group, quinolyl group, isoquinolyl group etc., and a thienyl group, C 1 -C 12 alkyl thienyl group, a pyridyl group, a C 1 -C 12 alkyl pyridyl group are preferable.

前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。有機光電変換素子に用いた場合の変換効率の観点からは、フッ素原子が好ましい。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. From the viewpoint of conversion efficiency when used in an organic photoelectric conversion element, a fluorine atom is preferable.

前記式(2)で示される基において、mは1〜6の整数を、nは1〜4の整数を、pは0〜5の整数を表す。mが複数個ある場合、複数のmは同一でも異なっていてもよい。有機光電変換素子に用いた場合の変換効率の観点からは、mは2であることが好ましく、nは2であることが好ましく、pは0であることが好ましい。また、Xは、メチル基または置換基を有していてもよいアリール基を表す。置換基を有していてもよいアリール基の具体例としては、前記R1で説明した基と同じ基があげられる。 In the group represented by the formula (2), m represents an integer of 1 to 6, n represents an integer of 1 to 4, and p represents an integer of 0 to 5. When there are a plurality of m, the plurality of m may be the same or different. From the viewpoint of conversion efficiency when used in an organic photoelectric conversion element, m is preferably 2, n is preferably 2, and p is preferably 0. X represents a methyl group or an aryl group which may have a substituent. Specific examples of the aryl group which may have a substituent include the same groups as those described for R 1 .

式(1)式で表されるフラーレン誘導体としては、具体的には下記式のような化合物が例示される。   Specific examples of the fullerene derivative represented by the formula (1) include compounds represented by the following formula.

Figure 0005366434
Figure 0005366434

Figure 0005366434
Figure 0005366434

Figure 0005366434
(式中、A環は前述と同じ意味を表す。)
Figure 0005366434
(In the formula, ring A has the same meaning as described above.)

式(1)中のR1は、有機光電変換素子に用いた場合の光電変換効率の観点からは、式(2)で示される基であることあることが好ましい。 R 1 in formula (1) is preferably a group represented by formula (2) from the viewpoint of photoelectric conversion efficiency when used in an organic photoelectric conversion element.

式(1)中のR2およびR3は、有機光電変換素子に用いた場合の光電変換効率の観点からは、R2が置換基を有していてもよいアリール基であり、R3が水素原子であることあることが好ましい。 R 2 and R 3 in Formula (1) are aryl groups that R 2 may have a substituent from the viewpoint of photoelectric conversion efficiency when used in an organic photoelectric conversion element, and R 3 is It is preferably a hydrogen atom.

式(1)中のA環は炭素数70以上のフラーレン骨格を表す。フラーレンの骨格(炭素クラスター)の炭素数は、好ましくは960以下、より好ましくは240以下、更に好ましくは96以下である。特に炭素数70のフラーレンが、合成の行いやすさの観点からは好ましい。   A ring in Formula (1) represents a fullerene skeleton having 70 or more carbon atoms. The carbon number of the fullerene skeleton (carbon cluster) is preferably 960 or less, more preferably 240 or less, and still more preferably 96 or less. In particular, a fullerene having 70 carbon atoms is preferable from the viewpoint of easy synthesis.

<フラーレン誘導体の製造方法>
本発明のフラーレン誘導体は、炭素数70以上のフラーレン、前記式(3)で表されるグリシン誘導体および前記式(4)で表されるアルデヒド化合物を反応させて製造することができる。具体的には、グリシン誘導体とアルデヒド化合物との反応によりイミンが生成し、該イミンの脱炭酸によりイミニウムカチオンを生成し、該イミニウムカチオンと炭素数70以上のフラーレンとの1,3-双極子環化付加反応(Prato反応、Accounts of Chemical Research Vol.31 1998 519-526ページ)によりフラーレン誘導体を生成する。
<Method for producing fullerene derivative>
The fullerene derivative of the present invention can be produced by reacting a fullerene having 70 or more carbon atoms, a glycine derivative represented by the formula (3) and an aldehyde compound represented by the formula (4). Specifically, an imine is generated by the reaction of a glycine derivative and an aldehyde compound, an iminium cation is generated by decarboxylation of the imine, and a 1,3-dipolar of the iminium cation and a fullerene having 70 or more carbon atoms A fullerene derivative is produced by a cycloaddition reaction (Prato reaction, Accounts of Chemical Research Vol.31 1998, pages 519-526).

式(3)で表されるグリシン誘導体としては、N−メチルグリシン、N−オクチルグリシン、N−フェニルグリシン、N−メトキシメチルグリシン、N−(2−(2−メトキシエトキシ)エチル)グリシンなどが例示される。反応に用いるグリシン誘導体の量は、炭素数70以上のフラーレン1モルに対して、通常0.1〜10モルであり、好ましくは0.5〜3モルの範囲である。   Examples of the glycine derivative represented by the formula (3) include N-methylglycine, N-octylglycine, N-phenylglycine, N-methoxymethylglycine, N- (2- (2-methoxyethoxy) ethyl) glycine and the like. Illustrated. The amount of the glycine derivative used in the reaction is usually 0.1 to 10 moles, preferably 0.5 to 3 moles per mole of fullerene having 70 or more carbon atoms.

式(4)で表されるアルデヒド化合物としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、ナフチルアルデヒドなどが例示される。反応に用いるアルデヒド化合物の量は、炭素数70以上のフラーレン1モルに対して、通常0.1〜10モルであり、好ましくは0.5〜4モルの範囲である。   Examples of the aldehyde compound represented by the formula (4) include formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, naphthylaldehyde and the like. The amount of the aldehyde compound used in the reaction is usually 0.1 to 10 moles, preferably 0.5 to 4 moles per mole of fullerene having 70 or more carbon atoms.

上記反応は、溶媒中で行なわれる。溶媒としては、トルエン、キシレン、ヘキサン、オクタン、クロルベンゼン等の反応に対して不活性な溶媒が用いられる。溶媒量は、炭素数70以上のフラーレン1重量部に対して、通常1〜10000重量部である。   The above reaction is carried out in a solvent. As the solvent, a solvent inert to the reaction such as toluene, xylene, hexane, octane, chlorobenzene and the like is used. The amount of the solvent is usually 1 to 10,000 parts by weight with respect to 1 part by weight of fullerene having 70 or more carbon atoms.

反応に際しては、炭素数70以上のフラーレン誘導体、グリシン誘導体およびアルデヒド化合物を溶媒中で混合し加熱反応させればよく、反応温度は、通常50〜350℃の範囲で行なわれる。反応時間は、通常、30分間から50時間行なわれる。加熱反応後、反応物を室温まで放冷し、溶媒をロータリーエバポレーターで減圧留去することで、反応混合物が得られる。   In the reaction, a fullerene derivative having 70 or more carbon atoms, a glycine derivative and an aldehyde compound may be mixed in a solvent and reacted by heating, and the reaction temperature is usually in the range of 50 to 350 ° C. The reaction time is usually 30 minutes to 50 hours. After the heating reaction, the reaction product is allowed to cool to room temperature, and the solvent is distilled off under reduced pressure using a rotary evaporator to obtain a reaction mixture.

前記反応混合物には、通常、本発明のフラーレン誘導体、反応の副生物および未反応の原料等を含む。該反応混合物をシリカゲルカラムクロマトグラフィー法により分離精製し、フラーレン誘導体を得ることができる。
高純度のフラーレン誘導体を得るためには、二硫化炭素と酢酸エステルをシリカゲルカラムクロマトグラフィーの展開溶媒として用いること、または、芳香族炭化水素と酢酸エステルをシリカゲルカラムクロマトグラフィーの展開溶媒として用いることが好ましく、芳香族炭化水素と酢酸エステルをシリカゲルカラムクロマトグラフィーの展開溶媒として用いることがより好ましい。また、シリカゲルカラムクロマトグラフィーの中では、シリカゲルフラッシュカラムクロマトグラフィーを用いることが好ましい。
The reaction mixture usually contains the fullerene derivative of the present invention, reaction by-products and unreacted raw materials. The reaction mixture can be separated and purified by silica gel column chromatography to obtain a fullerene derivative.
To obtain a high-purity fullerene derivative, carbon disulfide and acetate should be used as developing solvents for silica gel column chromatography, or aromatic hydrocarbons and acetate should be used as developing solvents for silica gel column chromatography. Aromatic hydrocarbons and acetates are more preferably used as developing solvents for silica gel column chromatography. In silica gel column chromatography, silica gel flash column chromatography is preferably used.

ここで得られるフラーレン誘導体としては、N−メチルフレロピロリジン、N−エチルフレロピロリジン、N−メトキシエトキシエチルフレロピロリジン、N−メトキシエトキシエチルフレロピロリジン、N-エチル−2−(1-フェニル)フレロピロリジン、N−メトキシエトキシエチル−2−(1−ナフチル)フレロピロリジンなどのビリミジン化合物から誘導される基と炭素数70以上のフラーレンが結合したフラーレン誘導体があげられる。 As the fullerene derivative obtained here, N-methylfulleropyrrolidine, N-ethylfulleropyrrolidine, N-methoxyethoxyethylfulleropyrrolidine, N-methoxyethoxyethylfulleropyrrolidine, N-ethyl-2- (1- And a fullerene derivative in which a group derived from a birimidine compound such as phenyl) fulleropyrrolidine and N-methoxyethoxyethyl-2- (1-naphthyl) fulleropyrrolidine and a fullerene having 70 or more carbon atoms are bonded.

<有機光電変換素子>
本発明のフラーレン誘導体を用いる有機光電変換素子は、少なくとも一方が透明又は半透明である一対の電極と、該電極間に本発明のフラーレン誘導体を含む層を有する。本発明のフラーレン誘導体は、電子受容性化合物として用いることも電子供与性化合物として用いることもできるが、電子受容性化合物として用いることが好ましい。本発明のフラーレン誘導体を電子受容性化合物として用いる場合、本発明のフラーレン誘導体のみを用いて有機光電変換素子に含まれる層を形成してもよく、本発明のフラーレン誘導体と電子供与性化合物とを含む組成物を用いて有機光電変換素子に含まれる層を形成してもよい。前記電子供与性化合物としては、高分子化合物が好ましい。
<Organic photoelectric conversion element>
The organic photoelectric conversion element using the fullerene derivative of the present invention has a pair of electrodes, at least one of which is transparent or translucent, and a layer containing the fullerene derivative of the present invention between the electrodes. The fullerene derivative of the present invention can be used as an electron accepting compound or an electron donating compound, but is preferably used as an electron accepting compound. When the fullerene derivative of the present invention is used as an electron-accepting compound, the layer included in the organic photoelectric conversion element may be formed using only the fullerene derivative of the present invention, and the fullerene derivative of the present invention and the electron-donating compound are combined. You may form the layer contained in an organic photoelectric conversion element using the composition containing. The electron donating compound is preferably a polymer compound.

次に、有機光電変換素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーが電子受容性化合物及び/又は電子供与性化合物で吸収され、電子とホールの結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。   Next, the operation mechanism of the organic photoelectric conversion element will be described. Light energy incident from a transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface. Electric charges (electrons and holes) that can move are generated. The generated charges can be taken out as electric energy (current) by moving to the electrodes.

本発明のフラーレン誘導体を用いる有機光電変換素子の具体的としては、
1.少なくとも一方が透明又は半透明である一対の電極と、該電極間に設けられ電子受容性化合物として本発明のフラーレン誘導体を含有する第一の有機層と、該第一の有機層に隣接して設けられた電子供与性化合物を含有する第二の有機層とを有する有機光電変換素子であることを特徴とするもの、
2.少なくとも一方が透明又は半透明である一対の電極と、該電極間に設けられ電子受容性化合物として本発明のフラーレン誘導体及び電子供与性化合物を含有する有機層を少なくとも一層有する有機光電変換素子であることを特徴とするもの、
のいずれかが好ましい。
As a specific example of the organic photoelectric conversion element using the fullerene derivative of the present invention,
1. A pair of electrodes, at least one of which is transparent or translucent, a first organic layer provided between the electrodes and containing the fullerene derivative of the present invention as an electron-accepting compound, and adjacent to the first organic layer An organic photoelectric conversion element having a second organic layer containing an electron donating compound provided;
2. An organic photoelectric conversion device having a pair of electrodes, at least one of which is transparent or translucent, and at least one organic layer provided between the electrodes and containing the fullerene derivative of the present invention and an electron-donating compound as an electron-accepting compound Characterized by that,
Either of these is preferable.

このような観点から、本発明の有機光電変換素子としては、ヘテロ接合界面を多く含むという観点からは、前記2.が好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の有機層との間に付加的な層を設けてもよい。付加的な層としては、例えば、ホール又は電子を輸送する電荷輸送層が挙げられる。   From such a viewpoint, the organic photoelectric conversion element of the present invention has the above-described 2. Is preferred. In the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the organic layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons.

また、前記2.の有機光電変換素子では、本発明のフラーレン誘導体及び電子供与性化合物を含有する有機層におけるフラーレン誘導体の割合が、電子供与性化合物100重量部に対して、10〜1000重量部であることが好ましく、50〜500重量部であることがより好ましい。   In addition, 2. In the organic photoelectric conversion element, the ratio of the fullerene derivative in the organic layer containing the fullerene derivative and the electron donating compound of the present invention is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the electron donating compound. 50 to 500 parts by weight is more preferable.

本発明のフラーレン誘導体を含む有機層は、該フラーレン誘導体を含む有機薄膜を含むことが好ましい。該有機薄膜の厚さは、通常、1nm〜100μmであり、好ましくは2nm〜1000nmであり、より好ましくは5nm〜500nmであり、さらに好ましくは20nm〜200nmである。   The organic layer containing the fullerene derivative of the present invention preferably includes an organic thin film containing the fullerene derivative. The thickness of the organic thin film is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.

前記電子供与性化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン、ルブレン等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。塗布性の観点からは、高分子化合物が好ましい。   The electron donating compound may be a low molecular compound or a high molecular compound. Examples of the low molecular weight compound include phthalocyanine, metal phthalocyanine, porphyrin, metal porphyrin, oligothiophene, tetracene, pentacene, and rubrene. Examples of the polymer compound include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and Examples thereof include polythienylene vinylene and derivatives thereof, polyfluorene and derivatives thereof, and the like. From the viewpoint of applicability, a polymer compound is preferable.

有機光電変換素子の変換効率の観点からは、有機光電変換素子に用いる電子供与性化合物は、下記式(5)で表される繰り返し単位および下記式(6)で表される繰り返し単位からなる群から選ばれる繰り返し単位を有する高分子化合物であることが好ましく、下記式(5)で表される繰り返し単位を有する高分子化合物であることがより好ましい。

Figure 0005366434

(5) (6)
[式(5)および(6)中、R4、R5、R6、R7、R8、R9、R10、R11、R12およびR13は、それぞれ独立に、水素原子、アルキル基、アルコキシ基またはアリール基を表す。] From the viewpoint of the conversion efficiency of the organic photoelectric conversion element, the electron-donating compound used for the organic photoelectric conversion element is composed of a repeating unit represented by the following formula (5) and a repeating unit represented by the following formula (6). It is preferable that it is a high molecular compound which has a repeating unit chosen from, and it is more preferable that it is a high molecular compound which has a repeating unit represented by following formula (5).
Figure 0005366434

(5) (6)
[In the formulas (5) and (6), R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 are each independently a hydrogen atom, alkyl Represents a group, an alkoxy group or an aryl group. ]

式(5)中、R4およびR5がアルキル基である場合の具体例としては、前述のR1の場合と同様の基があげられる。R4およびR5がアリール基である場合の具体例としては、前述のR1の場合と同様の基があげられる。 In the formula (5), specific examples in the case where R 4 and R 5 are alkyl groups include the same groups as those in the case of R 1 described above. Specific examples of the case where R 4 and R 5 are aryl groups include the same groups as those for R 1 described above.

4およびR5で表されるアルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、n−プロピルオキシ基、i−プロピルオキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、シクロヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、3,7−ジメチルオクチルオキシ基、n−ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子の中では、フッ素原子で置換されていることが好ましい。フッ素原子で水素原子が置換されたアルコキシ基としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。 The alkoxy group represented by R 4 and R 5 may be linear or branched, and may be a cycloalkyloxy group. Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, and n-pentyloxy. Group, n-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, 3,7-dimethyloctyloxy group, n -Lauryloxy group etc. are mentioned. A hydrogen atom in the alkoxy group may be substituted with a halogen atom. Of the halogen atoms, it is preferably substituted with a fluorine atom. Examples of the alkoxy group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyl group, and a perfluorooctyl group.

式(5)中、有機光電変換素子の変換効率の観点からは、R4およびR5の少なくとも一方が、炭素数1〜20のアルキル基であることが好ましく、炭素数4〜8のアルキル基であることがより好ましい。 In formula (5), from the viewpoint of the conversion efficiency of the organic photoelectric conversion element, at least one of R 4 and R 5 is preferably an alkyl group having 1 to 20 carbon atoms, and an alkyl group having 4 to 8 carbon atoms. It is more preferable that

前記式(6)中、R6〜R13がアルキル基である場合の具体例としては、前述のR1の場合と同様の基があげられる。R6〜R13がアルコキシ基である場合の具体例としては、前述のR4の場合と同様の基があげられる。R6〜R13がアリール基である場合の具体例としては、前述のR1の場合と同様の基があげられる。 In the above formula (6), specific examples in the case where R 6 to R 13 are alkyl groups include the same groups as those in the case of R 1 described above. Specific examples of the case where R 6 to R 13 are alkoxy groups include the same groups as those described above for R 4 . Specific examples of the case where R 6 to R 13 are aryl groups include the same groups as those for R 1 described above.

式(6)中、モノマーの合成の行いやすさの観点からは、R8〜R13は水素原子であることが好ましい。また、有機光電変換素子に用いた場合の変換効率の観点からは、R6およびR7は炭素数1〜20のアルキル基または炭素数6〜20のアリール基であることが好ましく、炭素数5〜8のアルキル基または炭素数6〜15のアリール基であることがより好ましい。 In the formula (6), R 8 to R 13 are preferably hydrogen atoms from the viewpoint of ease of monomer synthesis. From the viewpoint of conversion efficiency when used in an organic photoelectric conversion element, R 6 and R 7 are preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and 5 carbon atoms. It is more preferably an alkyl group of ˜8 or an aryl group of 6 to 15 carbon atoms.

電子供与性化合物として用いられる高分子化合物の具体例は、例えば、式(7)で表される繰り返し単位からなる高分子化合物があげられる。

Figure 0005366434
(7) Specific examples of the polymer compound used as the electron-donating compound include a polymer compound composed of a repeating unit represented by the formula (7).
Figure 0005366434
(7)

本発明の有機光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。   The organic photoelectric conversion element of the present invention is usually formed on a substrate. This substrate may be any substrate that does not change when an electrode is formed and an organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.

前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜(NESA等)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。さらに電極材料としては、金属、導電性高分子等を用いることができ、好ましくは一対の電極のうち一方の電極は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又はそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイト又はグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。   Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and a composite film thereof (NESA) manufactured using a conductive material made of indium / tin / oxide (ITO), indium / zinc / oxide, or the like. Etc.), gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material. Furthermore, as the electrode material, a metal, a conductive polymer, or the like can be used. Preferably, one of the pair of electrodes is preferably a material having a small work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and two of them One or more alloys, or one or more of them and an alloy of one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite, or a graphite intercalation compound are used. It is done. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.

付加的な層としてのバッファ層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化物等を用いることができる。また、酸化チタン等無機半導体の微粒子を用いることもできる。   As a material used as a buffer layer as an additional layer, an alkali metal such as lithium fluoride, a halide of an alkaline earth metal, an oxide, or the like can be used. In addition, fine particles of an inorganic semiconductor such as titanium oxide can be used.

<有機薄膜の製造方法>
前記有機薄膜の製造方法は、特に制限されず、例えば、本発明のフラーレン誘導体を含む溶液からの成膜による方法が挙げられる。
<Method for producing organic thin film>
The method for producing the organic thin film is not particularly limited, and examples thereof include a method by film formation from a solution containing the fullerene derivative of the present invention.

溶液からの成膜に用いる溶媒は、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、t−ブチルベンゼン等の炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒等が挙げられる。前記フラーレン誘導体は、通常、前記溶媒に0.1重量%以上溶解させることができる。   Solvents used for film formation from solution include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, t-butylbenzene, carbon tetrachloride, chloroform, Halogenated saturated hydrocarbon solvents such as dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene And ether solvents such as tetrahydrofuran, tetrahydropyran and the like. The fullerene derivative can usually be dissolved in the solvent in an amount of 0.1% by weight or more.

前記溶液は、さらに高分子化合物を含んでいてもよい。該溶液に用いられる溶媒の具体例としては、前述の溶媒があげられるが、高分子化合物の溶解性の観点からは、炭化水素系溶媒が好ましく、トルエン、キシレン、メシチレンがより好ましい。   The solution may further contain a polymer compound. Specific examples of the solvent used in the solution include the above-mentioned solvents. From the viewpoint of the solubility of the polymer compound, a hydrocarbon solvent is preferable, and toluene, xylene, and mesitylene are more preferable.

溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。   For film formation from solution, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.

有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。   By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.

また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。   In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。   Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.

合成に用いた試薬および溶媒は、市販品をそのまま使用するか、乾燥剤存在下蒸留精製した品を使用した。NMRスペクトルはJEOL社製 MH500を用いて測定し、テトラメチルシラン(TMS)を内部標準に使用した。赤外吸収スペクトルは島津製作所社製 FT−IR 8000を用いて測定した。MALDI−TOF MSスペクトルはBRUKER AutoFLEX−T2を用いて測定した。 As reagents and solvents used in the synthesis, commercially available products were used as they were, or products purified by distillation in the presence of a desiccant. The NMR spectrum was measured using MH500 manufactured by JEOL, and tetramethylsilane (TMS) was used as an internal standard. The infrared absorption spectrum was measured using FT-IR 8000 manufactured by Shimadzu Corporation. The MALDI-TOF MS spectrum was measured using BRUKER AutoFLEX-T2.

ベンジル(2−(2−ヒドロキシエトキシ)エチルアミノ)アセテートの合成

Figure 0005366434
Step 1: Dean-Stark トラップを装着した2口フラスコにブロモ酢酸 (20.8 g, 150 mmol)、ベンジルアルコール(16.2 g, 150 mmol)、パラートルエンスルホン酸 (258 mg, 1.5 mmol)、ベンゼン (300 mL)を加え120 ℃ で 24 時間脱水縮合した。溶媒をエバポレーターで減圧留去し、ついでシリカゲルフラッシュカラムクロマトグラフィー (展開溶媒:ヘキサン/エチルアセテート=10/1, 5/1)で精製してブロモ酢酸ベンジルエステル(34.3 g, 150 mmol) を黄色油状物として定量的に得た。: Rf 0.71 (hexane/ethyl acetate=4/1); 1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 3.81 (s, 2H), 5.14 (s, 2H), 7.31 (s, 5H); 13C NMR (125 MHz, ppm, CDCl3) δ 25.74, 67.79, 128.27, 128.48, 128.54, 134.88, 166.91; IR (neat, cm-1) 2959, 1751, 1458, 1412, 1377, 1167, 972, 750, 698. Synthesis of benzyl (2- (2-hydroxyethoxy) ethylamino) acetate
Figure 0005366434
Step 1: In a two-necked flask equipped with a Dean-Stark trap, bromoacetic acid (20.8 g, 150 mmol), benzyl alcohol (16.2 g, 150 mmol), para-toluenesulfonic acid (258 mg, 1.5 mmol), benzene (300 mL) ) Was added and subjected to dehydration condensation at 120 ° C for 24 hours. The solvent was distilled off under reduced pressure with an evaporator, and then purified by silica gel flash column chromatography (developing solvent: hexane / ethyl acetate = 10/1, 5/1) to give bromoacetic acid benzyl ester (34.3 g, 150 mmol) as a yellow oil It was obtained quantitatively as a product. : R f 0.71 (hexane / ethyl acetate = 4/1); 1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 3.81 (s, 2H), 5.14 (s, 2H), 7.31 (s, 5C); 13 C NMR (125 MHz, ppm, CDCl 3 ) δ 25.74, 67.79, 128.27, 128.48, 128.54, 134.88, 166.91; IR (neat, cm -1 ) 2959, 1751, 1458, 1412, 1377, 1167, 972, 750, 698.

Step 2: アルゴン雰囲気下ブロモ酢酸ベンジルエステル (13.7 g, 60 mmol) のジクロロメタン(90 mL) 溶液にトリエチルアミン (17 mL, 120 mmol)を0 ℃ で加え、得られた混合液を20分同温度で攪拌し、ついで、2−(2−アミノエトキシ)エタノール (12 mL, 120 mmol) のジクロロメタン (40 mL) 溶液を加え,室温で4時間攪拌した。ついで、有機層を水洗(3回)後、無水硫酸マグネシウムで乾燥し、エバポレーターで溶媒を減圧留去後、シリカゲルフラッシュカラムクロマトグラフィー (展開溶媒:酢酸エチル /メタノール =1/0, 10/1, 5/1) 精製しグリシンエステル 2 (12.2 g, 48.0 mmol) を収率 80 % で無色油状物として得た。: Rf 0.48 (エチルアセテート/メタノール=2/1); 1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 2.83 (t, 2H, J=5.1 Hz), 3.50 (s, 2H), 3.52 (t, 2H, J= 4.6 Hz), 3.58 (t, 2H, J= 5.0 Hz), 3.65 (t, 2H, J= 4.6 Hz), 5.11 (s, 2H), 7.28-7.30 (m, 5H); 13C NMR (125 MHz, ppm, CDCl3) δ 48.46, 50.25, 61.29, 66.38, 69.80, 72.23, 126.63, 128.12, 128.37, 135.30, 171.78; IR (neat, cm-1) 3412, 2880, 1719, 1638, 1560, 1508, 1458, 1067, 669. Step 2: Triethylamine (17 mL, 120 mmol) was added to a solution of bromoacetic acid benzyl ester (13.7 g, 60 mmol) in dichloromethane (90 mL) at 0 ° C under an argon atmosphere, and the resulting mixture was added at the same temperature for 20 min. Then, a solution of 2- (2-aminoethoxy) ethanol (12 mL, 120 mmol) in dichloromethane (40 mL) was added, and the mixture was stirred at room temperature for 4 hours. Next, the organic layer was washed with water (3 times), dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure with an evaporator, and silica gel flash column chromatography (developing solvent: ethyl acetate / methanol = 1/0, 10/1, 5/1) Purification gave glycine ester 2 (12.2 g, 48.0 mmol) in 80% yield as a colorless oil. : R f 0.48 (ethyl acetate / methanol = 2/1); 1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 2.83 (t, 2H, J = 5.1 Hz), 3.50 (s, 2H) , 3.52 (t, 2H, J = 4.6 Hz), 3.58 (t, 2H, J = 5.0 Hz), 3.65 (t, 2H, J = 4.6 Hz), 5.11 (s, 2H), 7.28-7.30 (m, 5H); 13 C NMR (125 MHz, ppm, CDCl 3 ) δ 48.46, 50.25, 61.29, 66.38, 69.80, 72.23, 126.63, 128.12, 128.37, 135.30, 171.78; IR (neat, cm -1 ) 3412, 2880, 1719, 1638, 1560, 1508, 1458, 1067, 669.

(2−(2−メトキシエトキシ)エチルアミノ)酢酸(1)の合成

Figure 0005366434
Step 1: アルゴン雰囲気下ベンジル2−(2−(2−ヒドロキシエトキシ)エチルアミノ)アセテート(2) (6.58 g, 26 mmol) のジクロロメタン (50 mL) 溶液にトリエチルアミン (4.3 mL, 31 mmol)を0℃で加え、ついで4−(N,N-ジメチルアミノ)ピリジン (DMAP) (32 mg, 0.26 mmol) を加え、得られた混合液を20分攪拌後、これにジ-tert-ブチルジカルボネート (6.77 g, 31 mmol) のジクロロメタン(10 mL)溶液を滴下した。反応混合液を室温で4時間攪拌後、水を入れた3角フラスコ中に注ぎ入れて反応を停止しジエチルエーテル抽出(3回)を行った。有機層を乾燥後、減圧濃縮、ついでシリカゲルフラッシュカラムクロマトグラフィー (展開溶媒:ヘキサン/酢酸エチル= 3/1, 2.5/1, 2/1) 精製を行い、ベンジル{tert-ブトキシカルボニル−[2−(2−ヒドロキシ−エトキシ)エチル]アミノ}アセテート(5.83 g, 16.5 mmol) を収率 63 % で無色油状物として得た。: Rf 0.58 (エチルアセテート/メタノール=20/1); 1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 1.34 (d, 9H, J= 54.5 Hz), 2.19 (brs, 1H), 3.38-3.45 (m, 4H), 3.50-3.60 (m, 4H), 3.99 (d, 2H, J= 41.3 Hz), 5.09 (d, 2H, J= 4.1 Hz), 7.25-7.30 (m, 5H); 13C NMR (125 MHz, ppm, CDCl3) δ 27.82, 28.05, 47.90, 48.20, 49.81, 50.39, 61.23, 66.42, 69.92, 72.12, 80.08, 127.93, 128.14, 135.25, 154.99, 155.19, 169.94, 170.07; IR (neat, cm-1) 3449, 2934, 2872, 1751, 1701, 1458, 1400, 1367, 1252, 1143; Anal. Calcd for C18H27NO6: C, 61.17; H, 7.70; N, 3.96. Found: C, 60.01; H, 7.75; N, 4.13. Synthesis of (2- (2-methoxyethoxy) ethylamino) acetic acid (1)
Figure 0005366434
Step 1: Triethylamine (4.3 mL, 31 mmol) was added to a solution of benzyl 2- (2- (2-hydroxyethoxy) ethylamino) acetate (2) (6.58 g, 26 mmol) in dichloromethane (50 mL) under an argon atmosphere. Then, 4- (N, N-dimethylamino) pyridine (DMAP) (32 mg, 0.26 mmol) was added, and the resulting mixture was stirred for 20 minutes, after which di-tert-butyl dicarbonate ( 6.77 g, 31 mmol) in dichloromethane (10 mL) was added dropwise. The reaction mixture was stirred at room temperature for 4 hours, poured into a triangular flask containing water, the reaction was stopped, and diethyl ether extraction (three times) was performed. The organic layer was dried, concentrated under reduced pressure, and then purified by silica gel flash column chromatography (developing solvent: hexane / ethyl acetate = 3/1, 2.5 / 1, 2/1) to obtain benzyl {tert-butoxycarbonyl- [2- (2-Hydroxy-ethoxy) ethyl] amino} acetate (5.83 g, 16.5 mmol) was obtained as a colorless oil in a yield of 63%. : R f 0.58 (ethyl acetate / methanol = 20/1); 1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 1.34 (d, 9H, J = 54.5 Hz), 2.19 (brs, 1H) , 3.38-3.45 (m, 4H), 3.50-3.60 (m, 4H), 3.99 (d, 2H, J = 41.3 Hz), 5.09 (d, 2H, J = 4.1 Hz), 7.25-7.30 (m, 5H ); 13 C NMR (125 MHz, ppm, CDCl 3 ) δ 27.82, 28.05, 47.90, 48.20, 49.81, 50.39, 61.23, 66.42, 69.92, 72.12, 80.08, 127.93, 128.14, 135.25, 154.99, 155.19, 169.94, 170.07 ; IR (neat, cm -1 ) 3449, 2934, 2872, 1751, 1701, 1458, 1400, 1367, 1252, 1143; Anal.Calcd for C 18 H 27 NO 6 : C, 61.17; H, 7.70; N, 3.96.Found: C, 60.01; H, 7.75; N, 4.13.

Step 2: アルゴンガス雰囲気下、水素化ナトリウム (1.2 g, 24.8 mmol, 50% in meneral oil) のテトラヒドロフラン(THF) (10 mL)溶液にベンジル{tert-ブトキシカルボニル−[2−(2−ヒドロキシ−エトキシ)エチル]アミノ}アセテート(5.83 g, 16.5 mmol)のTHF (20 mL) 溶液を 0 ℃ で滴下し、同温度で20分攪拌後、ヨードメタン(1.6 mL, 24.8 mmol) を0 ℃で加えた。 反応混合液を室温で 20 時間攪拌し、ついでアイスバスで冷却しながら水を加えて反応を停止した.エーテル抽出(3回)し,有機層を乾燥後,減圧濃縮、シリカゲルフラッシュカラムクロマトグラフィー (展開溶媒:ヘキサン/酢酸エチル=5/1, 3/1)精製して ベンジル{tert-ブトキシカルボニル−[2−(2−メトキシ−エトキシ)エチル]アミノ}アセテート(3.02 g, 8.21 mmol) を収率50 %で無色油状物として得た。: Rf 0.54 (ヘキサン/エチルアセテート=1/1); 1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 1.34 (d, 9H, J= 51.8 Hz), 3.28 (d, 3H, J= 2.7 Hz), 3.37-3.46 (m, 6H), 3.52 (dt, 2H, J= 5.4Hz, 16.5 Hz), 4.02 (d, 2H, J= 34.8 Hz), 5.09 (d, 2H, J=4.5 Hz), 7.24-7.30 (m, 5H); 13C NMR (125 MHz, ppm, CDCl3) δ 24.93, 25.16, 44.68, 45.00, 46.70, 47.40, 55.78, 63.30, 67.22, 68.60, 76.95, 124.98, 125.14, 125.36, 132.49, 151.99, 152.31, 166.84, 166.96; IR (neat, cm-1) 2880, 1751, 1701, 1560, 1458, 1400, 1366, 1117, 698, 617; Anal. Calcd for C19H29NO6: C, 62.11; H, 7.96; N, 3.81. Found: C, 62.15; H, 8.16; N, 3.83. Step 2: Under a argon gas atmosphere, sodium hydride (1.2 g, 24.8 mmol, 50% in meneral oil) in tetrahydrofuran (THF) (10 mL) solution in benzyl {tert-butoxycarbonyl- [2- (2-hydroxy- Ethoxy) ethyl] amino} acetate (5.83 g, 16.5 mmol) in THF (20 mL) was added dropwise at 0 ° C., and the mixture was stirred at the same temperature for 20 min, and then iodomethane (1.6 mL, 24.8 mmol) was added at 0 ° C. . The reaction mixture was stirred at room temperature for 20 hours, and then the reaction was stopped by adding water while cooling with an ice bath. Extracted with ether (3 times), dried organic layer, concentrated under reduced pressure, purified by silica gel flash column chromatography (developing solvent: hexane / ethyl acetate = 5/1, 3/1) and purified by benzyl {tert-butoxycarbonyl- [ 2- (2-Methoxy-ethoxy) ethyl] amino} acetate (3.02 g, 8.21 mmol) was obtained as a colorless oil in a yield of 50%. : R f 0.54 (hexane / ethyl acetate = 1/1); 1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 1.34 (d, 9H, J = 51.8 Hz), 3.28 (d, 3H, J = 2.7 Hz), 3.37-3.46 (m, 6H), 3.52 (dt, 2H, J = 5.4Hz, 16.5 Hz), 4.02 (d, 2H, J = 34.8 Hz), 5.09 (d, 2H, J = 4.5 Hz), 7.24-7.30 (m, 5H); 13 C NMR (125 MHz, ppm, CDCl 3 ) δ 24.93, 25.16, 44.68, 45.00, 46.70, 47.40, 55.78, 63.30, 67.22, 68.60, 76.95, 124.98, 125.14, 125.36, 132.49, 151.99, 152.31, 166.84, 166.96; IR (neat, cm -1 ) 2880, 1751, 1701, 1560, 1458, 1400, 1366, 1117, 698, 617; Anal.Calcd for C 19 H 29 NO 6 : C, 62.11; H, 7.96; N, 3.81. Found: C, 62.15; H, 8.16; N, 3.83.

Step 3: アルゴン雰囲気下、ベンジル{tert-ブトキシカルボニル−[2−(2−メトキシ−エトキシ)エチル]アミノ}アセテート (3.02 g, 8.21 mmol) のジクロロメタン (17 mL) 溶液にトリフルオロ酢酸 (TFA) (9.0 mL)を加え室温で7時間攪拌した。ついで、10% 炭酸ナトリウム水溶液を加えて pH10に調整し、ジクロロメタン抽出し、有機層を無水硫酸マグネシウムで乾燥、減圧濃縮してベンジル[2−(2−メトキシ−エトキシ)エチルアミノ]アセテート (2.18 g, 8.19 mmol) を黄色油状物として定量的に得た。: Rf 0.32 (エチルアセテート/メタノール=20/1); 1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 1.99 (brs, 1H), 2.83 (t, 2H, J= 5.3 Hz), 3.38 (s, 3H), 3.50 (s, 2H), 3.54 (t, 2H, J= 4.6 Hz), 3.60-3.62 (m, 4H), 5.17 (s, 2H), 7.32-7.38 (m, 5H); 13C NMR (125 MHz, ppm, CDCl3) δ 48.46, 50.66, 58.76, 66.20, 70.00, 70.44, 71.64, 128.09, 128.33, 135.44, 171.84; IR (neat, cm-1) 3350, 2876, 1736, 1560, 1458, 1117, 1030, 698, 619; Anal. Calcd for C14H21NO4: C, 62.90; H, 7.92; N, 5.24. Found: C, 62.28; H, 8.20; N, 5.05. Step 3: Trifluoroacetic acid (TFA) in a solution of benzyl {tert-butoxycarbonyl- [2- (2-methoxy-ethoxy) ethyl] amino} acetate (3.02 g, 8.21 mmol) in dichloromethane (17 mL) under argon atmosphere (9.0 mL) was added and stirred at room temperature for 7 hours. Subsequently, 10% aqueous sodium carbonate solution was added to adjust the pH to 10, followed by extraction with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and benzyl [2- (2-methoxy-ethoxy) ethylamino] acetate (2.18 g). , 8.19 mmol) was obtained quantitatively as a yellow oil. : R f 0.32 (ethyl acetate / methanol = 20/1); 1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 1.99 (brs, 1H), 2.83 (t, 2H, J = 5.3 Hz) , 3.38 (s, 3H), 3.50 (s, 2H), 3.54 (t, 2H, J = 4.6 Hz), 3.60-3.62 (m, 4H), 5.17 (s, 2H), 7.32-7.38 (m, 5H ); 13 C NMR (125 MHz, ppm, CDCl 3 ) δ 48.46, 50.66, 58.76, 66.20, 70.00, 70.44, 71.64, 128.09, 128.33, 135.44, 171.84; IR (neat, cm -1 ) 3350, 2876, 1736 , 1560, 1458, 1117, 1030, 698, 619; Anal.Calcd for C 14 H 21 NO 4 : C, 62.90; H, 7.92; N, 5.24. Found: C, 62.28; H, 8.20; N, 5.05.

Step 4: ベンジル[2−(2−メトキシ−エトキシ)エチルアミノ]アセテート(2.19 g, 8.19 mmol) のメタノール (27 mL) 溶液に、パラジウムを10重量%担持させた活性炭 (219 mg) を室温で加え、水素ガスをパージした後,水素雰囲気下、室温で7時間攪拌した。セライトパッドをしきつめたグラスフィルターでPd/Cを除去し、セライト層をメタノールで洗浄し、濾液を減圧濃縮し [2−(2−メトキシエトキシ)エチルアミノ]酢酸 (1) (1.38 g, 7.78 mmol) を収率95%で黄色油状物として得た。: 1H NMR (500 MHz, ppm, MeOD, J=Hz) δ 3.21 (t, 2H, J= 5.1 Hz), 3.38 (s, 3H), 3.51 (s, 2H), 3.57 (t, 2H, J= 4.4 Hz), 3.65 (t, 2H, J= 4.6 Hz), 3.73 (t, 2H, J= 5.1 Hz); 13C NMR (125 MHz, ppm, MeOD) δ 48.13, 50.49, 59.16, 67.08, 71.05, 72.85, 171.10; IR (neat, cm-1) 3414, 2827, 1751, 1630, 1369, 1111, 1028, 851, 799; Anal. Calcd for C7H15NO4: C, 47.45; H, 8.53; N, 7.90. Found: C, 46.20; H, 8.49; N, 7.43. Step 4: Activated carbon (219 mg) supported on 10% by weight of palladium on a solution of benzyl [2- (2-methoxy-ethoxy) ethylamino] acetate (2.19 g, 8.19 mmol) in methanol (27 mL) at room temperature. In addition, after purging with hydrogen gas, the mixture was stirred for 7 hours at room temperature in a hydrogen atmosphere. Pd / C was removed with a glass filter with a celite pad, the celite layer was washed with methanol, and the filtrate was concentrated under reduced pressure. [2- (2-Methoxyethoxy) ethylamino] acetic acid (1) (1.38 g, 7.78 mmol ) Was obtained as a yellow oil in 95% yield. : 1 H NMR (500 MHz, ppm, MeOD, J = Hz) δ 3.21 (t, 2H, J = 5.1 Hz), 3.38 (s, 3H), 3.51 (s, 2H), 3.57 (t, 2H, J = 4.4 Hz), 3.65 (t, 2H, J = 4.6 Hz), 3.73 (t, 2H, J = 5.1 Hz); 13 C NMR (125 MHz, ppm, MeOD) δ 48.13, 50.49, 59.16, 67.08, 71.05 , 72.85, 171.10; IR (neat, cm -1 ) 3414, 2827, 1751, 1630, 1369, 1111, 1028, 851, 799; Anal.Calcd for C 7 H 15 NO 4 : C, 47.45; H, 8.53; N, 7.90. Found: C, 46.20; H, 8.49; N, 7.43.

実施例1(フラーレン誘導体1の合成)
ジムロートコンデンサーを装着した3口フラスコに,C70(フロンティアカーボン社製)(100mg,0.12mmol)、グリシン誘導体1(32mg,0.18mmol)、および1−ナフトアルデヒド(37mg,0.24mmol)、クロロベンゼン(30mL)を混合し,アルゴン雰囲気下150℃で1時間加熱還流を行った。室温まで放冷し、溶媒をロータリーエバポレーターで減圧留去し、得られた固形物をシリカゲルフラッシュカラムクロマトグラフィーで分離精製し(展開溶媒:二硫化炭素/酢酸エチル=1/0〜20/1)、目的とするフラーレン誘導体(化合物4)(68mg,0.06mmol, 収率51%)を得た。本フラーレン誘導体を、フラーレン誘導体1とよぶ。
Rf0.3(トルエンのみ);IR(KBr)2874,1427,1132,1103,795,752cm-1
MALDI-TOF-MS (matrix: SA) found 1111.428 (calcd for C87H21NO2, exact mass: 1111.16).

Figure 0005366434
Example 1 (Synthesis of fullerene derivative 1)
In a three-necked flask equipped with a Dimroth condenser, C 70 (manufactured by Frontier Carbon) (100 mg, 0.12 mmol), glycine derivative 1 (32 mg, 0.18 mmol), and 1-naphthaldehyde (37 mg, 0.24 mmol), Chlorobenzene (30 mL) was mixed and refluxed by heating at 150 ° C. for 1 hour under an argon atmosphere. The mixture is allowed to cool to room temperature, the solvent is distilled off under reduced pressure using a rotary evaporator, and the resulting solid is separated and purified by silica gel flash column chromatography (developing solvent: carbon disulfide / ethyl acetate = 1/0 to 20/1). The desired fullerene derivative (Compound 4) (68 mg, 0.06 mmol, yield 51%) was obtained. This fullerene derivative is referred to as fullerene derivative 1.
Rf 0.3 (toluene only); IR (KBr) 2874, 1427, 1132, 1103, 795, 752 cm −1 .
MALDI-TOF-MS (matrix: SA) found 1111.428 (calcd for C 87 H 21 NO 2 , exact mass: 1111.16).
Figure 0005366434

実施例2(有機薄膜太陽電池の作製、評価)
電子供与体としてレジオレギュラーポリ3−ヘキシルチオフェン(アルドリッチ社製、ロット番号:01004AH、Mw=43000、Mn=22000)を1%(重量%)の濃度でo−ジクロロベンゼンに溶解させた。その後、フラーレン誘導体1の位置異性体混合物を電子供与体の重量に対して等倍重量電子受容体として溶液に混合した。ついで、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液を作製した。
Example 2 (Production and Evaluation of Organic Thin Film Solar Cell)
Regioregular poly-3-hexylthiophene (manufactured by Aldrich, lot number: 01004AH, Mw = 43000, Mn = 22000) as an electron donor was dissolved in o-dichlorobenzene at a concentration of 1% (weight%). Thereafter, the mixture of regioisomers of fullerene derivative 1 was mixed into the solution as an equal weight electron acceptor with respect to the weight of the electron donor. Subsequently, it filtered with the Teflon (trademark) filter with the hole diameter of 1.0 micrometer, and produced the application | coating solution.

スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、前記塗布溶液を用い、スピンコートにより塗布し、有機薄膜太陽電池の活性層(膜厚約100nm)を得た。その後、真空中90℃の条件で60分間ベークを行った。その後、真空蒸着機によりフッ化リチウムを4nmの厚さで蒸着し、次いでAlを100nmの厚さで蒸着した。蒸着のときの真空度は、すべて1〜9×10-3Paであった。また、得られた有機薄膜太陽電池の形状は、2mm×2mmの正四角形であった。得られた有機薄膜太陽電池の光電変換効率は、ソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して求めた。結果を表1に示す。 A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, the coating solution was applied by spin coating to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell. Thereafter, baking was performed in a vacuum at 90 ° C. for 60 minutes. Then, lithium fluoride was vapor-deposited with a thickness of 4 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 × 10 −3 Pa in all cases. Moreover, the shape of the obtained organic thin-film solar cell was a regular square of 2 mm × 2 mm. The photoelectric conversion efficiency of the obtained organic thin-film solar cells is generated by irradiating a certain amount of light using a solar simulator (product name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 ). The current and voltage were measured and determined. The results are shown in Table 1.

比較例1(有機薄膜太陽電池の作製、評価)
フラーレン誘導体1のかわりに[70]PCBMを用いた以外は、実施例2同様の方法で有機薄膜太陽電池を作製し、光電変換効率を求めた。結果を表1に示す。なお、[70]PCBMは、商品名ADS71BFA(アメリカンダイソース社製、ロット番号:07L022E)を用いた。
Comparative Example 1 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was prepared in the same manner as in Example 2 except that [70] PCBM was used instead of the fullerene derivative 1, and the photoelectric conversion efficiency was determined. The results are shown in Table 1. [70] The product name ADS71BFA (manufactured by American Dice Source, lot number: 07L022E) was used as [70] PCBM.

実施例3(フラーレン誘導体2の合成)
アルゴン雰囲気下、ジムロートコンデンサーを装着した3口フラスコにC70(アルドリッチ社製)(194mg、0.23mmol)、グリシン誘導体1(80mg、0.45mmol)、および1−ナフトアルデヒド(0.1g、0.64mmol)、トルエン(500mL)を混合し、10時間加熱還流を行った。室温まで放冷し、溶媒をロータリーエバポレータで減圧留去し、得られた固形物をシリカゲルフラッシュカラムクロマトグラフィーで分離精製し(展開溶媒:二硫化炭素/酢酸エチル=1/0〜95/5)、得られた結晶をトルエン/メタノール混合溶媒で再結晶することで目的とするフラーレン誘導体(化合物5)(54mg、21%)を位置異性体混合物として得た(褐色粉末、TLC:Rf=0.52 (トルエン))。本フラーレン誘導体を、フラーレン誘導体2と呼ぶ。

Figure 0005366434
Example 3 (Synthesis of fullerene derivative 2)
Under an argon atmosphere, a three-necked flask equipped with a Dimroth condenser was charged with C 70 (Aldrich) (194 mg, 0.23 mmol), glycine derivative 1 (80 mg, 0.45 mmol), and 1-naphthaldehyde (0.1 g, 0.64 mmol). Toluene (500 mL) was mixed and heated to reflux for 10 hours. The mixture is allowed to cool to room temperature, the solvent is distilled off under reduced pressure using a rotary evaporator, and the resulting solid is separated and purified by silica gel flash column chromatography (developing solvent: carbon disulfide / ethyl acetate = 1/0 to 95/5). The obtained crystals were recrystallized from a toluene / methanol mixed solvent to obtain the desired fullerene derivative (compound 5) (54 mg, 21%) as a mixture of regioisomers (brown powder, TLC: Rf = 0.52 ( toluene)). This fullerene derivative is referred to as fullerene derivative 2.
Figure 0005366434

(液体クロマトグラフィー分析)
フラーレン誘導体の位置異性体混合物5mgを5mLのトルエン(溶媒)に溶解させた。本溶液5μLを液体クロマトグラフィー(アライアンス2690型、Waters社製)に注入した。液体クロマトグラフィーの移動相はトルエン/アセトニトリル(55/45,体積比)であり、流量は1mL/minであった。面積百分率法によりもとめた(溶媒トルエンを除く)液体クロマトグラムの、フラーレン誘導体2の位置異性体混合物の面積百分率値は59.5%であった。
(Liquid chromatography analysis)
5 mg of a regioisomer mixture of fullerene derivatives was dissolved in 5 mL of toluene (solvent). 5 μL of this solution was injected into liquid chromatography (Alliance 2690, manufactured by Waters). The mobile phase of liquid chromatography was toluene / acetonitrile (55/45, volume ratio), and the flow rate was 1 mL / min. The area percentage value of the mixture of regioisomers of fullerene derivative 2 in the liquid chromatogram obtained by the area percentage method (excluding the solvent toluene) was 59.5%.

実施例4(フラーレン誘導体3の合成)
シリカゲルフラッシュカラムクロマトグラフィーを用いた精製条件を、(展開溶媒:トルエン/酢酸エチル=1/0 〜 95/5)とした以外は実施例2と同様の方法でフラーレン誘導体の位置異性体混合物を合成した。本フラーレン誘導体をフラーレン誘導体3と呼ぶ。面積百分率法によりもとめた(溶媒トルエンを除く)液体クロマトグラムの、フラーレン誘導体3の位置異性体混合物の面積百分率値は82.5%であった。
Example 4 (Synthesis of fullerene derivative 3)
A regioisomer mixture of fullerene derivatives was synthesized in the same manner as in Example 2 except that the purification conditions using silica gel flash column chromatography were changed to (developing solvent: toluene / ethyl acetate = 1/0 to 95/5). did. This fullerene derivative is referred to as fullerene derivative 3. The area percentage value of the mixture of positional isomers of fullerene derivative 3 in the liquid chromatogram (excluding the solvent toluene) determined by the area percentage method was 82.5%.

実施例5(フラーレン誘導体4の合成)
フラーレン C70 (250 mg, 0.30 mmol)、グリシン誘導体 1 (79 mg, 0.45 mmol)及び4-メトキシベンズアルデヒド(81 mg, 0.60 mmol)にクロロベンゼン50mLを加え、2時間加熱還流した。実施例1と同様の操作で精製を行い、フラーレン誘導体4を121 mg (0.11 mmol, 37 %) 得た。
1H NMR (400 MHz, ppm, CDCl3, J= Hz) δ; 13C NMR (100 MHz, ppm, CDCl3) δ; IR (Neat, cm-1) 3443, 2866, 2805, 1609, 1508, 1427, 1032, 1248, 1171, 1131, 1105, 1030, 833, 795, 727, 640, 581, 534; MALDI-TOF-MS (matrix: SA) found 1091.4326 (calcd for C84H21NO3 +exact Mass: 1091.1521)。

Figure 0005366434
フラーレン誘導体4 Example 5 (Synthesis of fullerene derivative 4)
Fullerene C 70 (250 mg, 0.30 mmol ), glycine derivatives 1 (79 mg, 0.45 mmol) and 4-methoxybenzaldehyde (81 mg, 0.60 mmol) and chlorobenzene 50mL was added, and the mixture was heated to reflux for 2 hours. Purification was carried out in the same manner as in Example 1 to obtain 121 mg (0.11 mmol, 37%) of fullerene derivative 4.
1 H NMR (400 MHz, ppm, CDCl 3 , J = Hz) δ; 13 C NMR (100 MHz, ppm, CDCl 3 ) δ; IR (Neat, cm -1 ) 3443, 2866, 2805, 1609, 1508, 1427, 1032, 1248, 1171, 1131, 1105, 1030, 833, 795, 727, 640, 581, 534; MALDI-TOF-MS (matrix: SA) found 1091.4326 (calcd for C 84 H 21 NO 3 + exact Mass : 1091.1521).
Figure 0005366434
Fullerene derivative 4

実施例6(有機薄膜太陽電池の作製、評価)
フラーレン誘導体1のかわりにフラーレン誘導体4を用いた以外は、実施例2同様の方法で有機薄膜太陽電池を作製し、光電変換効率を求めた。結果を表1に示す。
Example 6 (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was prepared in the same manner as in Example 2 except that the fullerene derivative 4 was used instead of the fullerene derivative 1, and the photoelectric conversion efficiency was determined. The results are shown in Table 1.

Figure 0005366434
Figure 0005366434

−評価−
表1から分かるように、フラーレン誘導体1の位置異性体混合物は、[70]PCBMに比べて有機光電変換素子に用いた場合に高い光電変換効率を示した。
-Evaluation-
As can be seen from Table 1, the positional isomer mixture of fullerene derivative 1 showed higher photoelectric conversion efficiency when used in an organic photoelectric conversion device than [70] PCBM.

Claims (9)

式(1)で表されるフラーレン誘導体。
Figure 0005366434
(1)
[式(1)中、A環は炭素数70以上のフラーレン骨格を表す。R1は、下記式(2)で示される基を表す。R2は、ハロゲン原子;炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基および下記式(2)で示される基から選ばれる置換基を有していてもよいアリール基;置換基を有していてもよいアリールアルキル基;置換基を有していてもよく、ピロリル基、フリル基、ピペリジル基キノリル基およびイソキノリル基から選ばれる1価の複素環基;または下記式(2)で示される基を表す。R3は、水素原子、ハロゲン原子、アルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基または下記式(2)で示される基を表す。]
Figure 0005366434
(2)
[式(2)中、mは1〜6の整数を、nは1〜4の整数を、pは0〜5の整数を表す。Xは、メチル基または置換基を有していてもよいアリール基を表す。mが複数個ある場合、複数のmは同一でも異なっていてもよい。]
A fullerene derivative represented by the formula (1):
Figure 0005366434
(1)
[In Formula (1), the A ring represents a fullerene skeleton having 70 or more carbon atoms. R 1 represents a group represented by the following formula (2). R 2 is a halogen atom; an aryl group which may have a substituent selected from an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and a group represented by the following formula (2); An arylalkyl group which may have a group; a monovalent heterocyclic group which may have a substituent and is selected from a pyrrolyl group, a furyl group, a piperidyl group , a quinolyl group and an isoquinolyl group; The group shown by 2) is represented. R 3 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group which may have a substituent, an arylalkyl group which may have a substituent, or a monovalent which may have a substituent. A heterocyclic group or a group represented by the following formula (2) is represented. ]
Figure 0005366434
(2)
[In Formula (2), m represents an integer of 1 to 6, n represents an integer of 1 to 4, and p represents an integer of 0 to 5. X represents a methyl group or an aryl group which may have a substituent. When there are a plurality of m, the plurality of m may be the same or different. ]
2が炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基および記式(2)で示される基から選ばれる置換基を有していてもよいアリール基であり、R3が水素原子である請求項1に記載のフラーレン誘導体。 R 2 is an alkyl group, an alkoxy group and before following formula (2) an aryl group optionally having a substituent selected from the group represented by 1 to 20 carbon atoms having 1 to 20 carbon atoms, R 3 The fullerene derivative according to claim 1, wherein is a hydrogen atom. A環が炭素数70のフラーレン骨格である請求項1または2に記載のフラーレン誘導体。   The fullerene derivative according to claim 1 or 2, wherein the A ring is a fullerene skeleton having 70 carbon atoms. 炭素数70以上のフラーレン、式(3)で表されるグリシン誘導体および式(4)で表されるアルデヒド化合物を反応させる請求項1に記載のフラーレン誘導体の製造方法。
Figure 0005366434
(3) (4)
(式(3)中、R1は、前記式(2)で示される基を表し、R3は、水素原子、ハロゲン原子、アルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよい1価の複素環基または前記式(2)で示される基を表す。式(4)中、R2は、ハロゲン原子;炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基および前記式(2)で示される基から選ばれる置換基を有していてもよいアリール基;置換基を有していてもよいアリールアルキル基;置換基を有していてもよく、ピロリル基、フリル基、ピペリジル基、キノリル基およびイソキノリル基から選ばれる1価の複素環基;または前記式(2)で示される基を表す。)
The method for producing a fullerene derivative according to claim 1, wherein a fullerene having 70 or more carbon atoms, a glycine derivative represented by the formula (3), and an aldehyde compound represented by the formula (4) are reacted.
Figure 0005366434
(3) (4)
(In Formula (3), R 1 represents a group represented by Formula (2), and R 3 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group which may have a substituent, or a substituent. Represents an arylalkyl group which may have a monovalent heterocyclic group which may have a substituent or a group represented by the formula (2), wherein R 2 is a halogen atom An atom; an aryl group which may have a substituent selected from an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and a group represented by the formula (2); An arylalkyl group which may have a substituent, a monovalent heterocyclic group selected from a pyrrolyl group, a furyl group, a piperidyl group, a quinolyl group and an isoquinolyl group; or represented by the formula (2) Represents a group.)
請求項4に記載の反応で得られた反応生成物を、芳香族炭化水素および酢酸エステルを展開溶媒として用いるシリカゲルカラムクロマトグラフィーで精製する式(1)で表されるフラーレン誘導体の精製方法。   A method for purifying a fullerene derivative represented by formula (1), wherein the reaction product obtained by the reaction according to claim 4 is purified by silica gel column chromatography using an aromatic hydrocarbon and an acetate as a developing solvent. 請求項1〜3のいずれかに記載のフラーレン誘導体と電子供与性化合物とを含み、前記フラーレン誘導体の割合が、前記電子供与性化合物100重量部に対して、10〜1000重量部である、有機光電変換素子用組成物。 Look containing a fullerene derivative and an electron-donating compound according to any one of claims 1 to 3, the ratio of the fullerene derivative, with respect to the electron-donating compound 100 parts by weight, 10 to 1000 parts by weight, Composition for organic photoelectric conversion element . 電子供与性化合物が高分子化合物である請求項6に記載の有機光電変換素子用組成物。 The composition for organic photoelectric conversion elements according to claim 6, wherein the electron donating compound is a polymer compound. 請求項1〜3のいずれかに記載のフラーレン誘導体を含む層を有する有機光電変換素子。   The organic photoelectric conversion element which has a layer containing the fullerene derivative in any one of Claims 1-3. 請求項6または7に記載の組成物を含む層を有する有機光電変換素子。   The organic photoelectric conversion element which has a layer containing the composition of Claim 6 or 7.
JP2008128099A 2007-11-15 2008-05-15 Fullerene derivative and organic photoelectric conversion device using the same Active JP5366434B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008128099A JP5366434B2 (en) 2007-11-15 2008-05-15 Fullerene derivative and organic photoelectric conversion device using the same
PCT/JP2008/070168 WO2009063785A1 (en) 2007-11-15 2008-11-06 Fullerene derivative and organic photoelectric converter using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007296371 2007-11-15
JP2007296371 2007-11-15
JP2008128099A JP5366434B2 (en) 2007-11-15 2008-05-15 Fullerene derivative and organic photoelectric conversion device using the same

Publications (2)

Publication Number Publication Date
JP2009137932A JP2009137932A (en) 2009-06-25
JP5366434B2 true JP5366434B2 (en) 2013-12-11

Family

ID=40868942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128099A Active JP5366434B2 (en) 2007-11-15 2008-05-15 Fullerene derivative and organic photoelectric conversion device using the same

Country Status (1)

Country Link
JP (1) JP5366434B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428670B2 (en) * 2009-09-08 2014-02-26 東レ株式会社 Material for photovoltaic element and photovoltaic element
JP2011241205A (en) * 2010-04-22 2011-12-01 Sumitomo Chemical Co Ltd Fullerene derivative and method for producing the same
JP6141423B2 (en) * 2013-05-16 2017-06-07 ダイキン工業株式会社 Fullerene derivative and n-type semiconductor material
JP2015013844A (en) * 2013-07-08 2015-01-22 住友化学株式会社 Fullerene derivative
JP7125702B2 (en) * 2017-11-02 2022-08-25 ダイキン工業株式会社 fullerene derivative

Also Published As

Publication number Publication date
JP2009137932A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5323393B2 (en) Fullerene derivatives
JP5425438B2 (en) Fullerene derivatives
JP5639753B2 (en) Fullerene derivatives
JP5682108B2 (en) Fullerene derivatives
JP5213392B2 (en) Fullerene derivatives
JP5229150B2 (en) Fullerene derivatives
JP5366434B2 (en) Fullerene derivative and organic photoelectric conversion device using the same
JP2011181719A (en) Fullerene derivative and method of manufacturing the same
JP5534714B2 (en) Fullerene derivatives
JP2013095683A (en) Fullerene derivative
JPWO2016013461A1 (en) Polymer compound and organic semiconductor device using the same
JP6945841B2 (en) Near-infrared absorption squarylium derivatives and organic electronic devices containing them
JP2015013844A (en) Fullerene derivative
JP5503184B2 (en) Fullerene derivative, composition and organic photoelectric conversion device
JP5481911B2 (en) Fullerene derivatives
JP2015105233A (en) Fullerene derivative
WO2011132573A1 (en) Fullerene derivative and method for producing same
JP6101007B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5366434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350