WO2011132573A1 - Fullerene derivative and method for producing same - Google Patents

Fullerene derivative and method for producing same Download PDF

Info

Publication number
WO2011132573A1
WO2011132573A1 PCT/JP2011/059115 JP2011059115W WO2011132573A1 WO 2011132573 A1 WO2011132573 A1 WO 2011132573A1 JP 2011059115 W JP2011059115 W JP 2011059115W WO 2011132573 A1 WO2011132573 A1 WO 2011132573A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
fullerene derivative
group
fullerene
formula
Prior art date
Application number
PCT/JP2011/059115
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 敏幸
上谷 保則
Original Assignee
住友化学株式会社
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人鳥取大学 filed Critical 住友化学株式会社
Publication of WO2011132573A1 publication Critical patent/WO2011132573A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fullerene derivative, a method for producing the fullerene derivative, a composition containing the fullerene derivative, and an organic photoelectric conversion device using the composition.
  • An organic semiconductor material having a property of transporting an electron or hole (hole) has been studied for application to an organic photoelectric conversion element such as an organic thin film solar cell or an optical sensor.
  • an organic thin film using a fullerene derivative Solar cells are being considered.
  • [6,6] -phenyl C 61 -butyric acid methyl ester (hereinafter sometimes referred to as [60] -PCBM) is known (see Non-Patent Document 1).
  • a fullerene derivative having a structure represented by the following formula (1) [In Formula (1), the A ring represents a fullerene ring having 60 or more carbon atoms. B 1 ring and B 2 ring represents a heterocyclic carbon number of 3-6. R 1 and R 2 independently represent a monovalent functional organic group. Q represents a divalent organic group and is bonded to the carbon atom of the B 1 ring and the B 2 ring. j and k each independently represents an integer of 0 to 8. When a plurality of R 1 are present, R 1 may be different from each other. If the R 2 is plurally present, R 2 to each other may be different from each other.
  • C1, C2, C3 and C4 are carbon atoms constituting the A ring, and C1 and C2, C3 and C4 are adjacent to each other in the A ring.
  • a composition comprising the fullerene derivative according to [1] and an electron donating compound.
  • [3] a pair of electrodes consisting of an anode and a cathode;
  • the organic photoelectric conversion element which has a layer containing the fullerene derivative as described in [1] clamped between a pair of electrodes.
  • a pair of electrodes consisting of an anode and a cathode;
  • An organic photoelectric conversion device having a layer containing the composition according to [2] sandwiched between a pair of electrodes.
  • a pair of electrodes consisting of an anode and a cathode;
  • An organic photoelectric conversion element having an active layer.
  • [6] Fullerene and a glycine derivative selected from the group consisting of N-methoxymethylglycine, N- (2- (2-methoxyethoxy) ethyl) glycine and [2- (2-methoxyethoxy) ethylamino] acetic acid; Reacting the bisaldehyde compound 5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde with heating under reflux in a solvent; The method for producing a fullerene derivative according to [1], comprising a step of removing the solvent and separating and purifying by silica gel flash column chromatography and preparative thin layer chromatography.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of an organic photoelectric conversion element.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example (2) of the organic photoelectric conversion element.
  • the fullerene derivative of the present invention has a structure represented by the following formula (1).
  • R 1 and R 2 represent a monovalent functional group.
  • the monovalent functional group an alkyl group, an alkoxy group, an aryl group, a halogen atom, a monovalent heterocyclic group, a group having an ester structure, and a group represented by the following formula (5) are preferable.
  • R 1 may be different from each other.
  • R 2 is plurally present, R 2 to each other may be different from each other.
  • m represents an integer of 1 to 6
  • n represents an integer of 1 to 4
  • r represents an integer of 0 to 5.
  • the plurality of m may be different from each other.
  • the alkyl group represented by R 1 and R 2 usually has 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the chain may be branched or branched, and may be a cycloalkyl group.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, sec-butyl, 3-methylbutyl, pentyl, hexyl and 2-ethylhexyl.
  • the hydrogen atom in the alkyl group may be substituted with a halogen atom.
  • a hydrogen atom is substituted with a halogen atom
  • the alkyl group in which a hydrogen atom is substituted with a halogen atom include a monohalomethyl group, a dihalomethyl group, a trihalomethyl group, and a pentahaloethyl group.
  • a fluorine atom is preferable.
  • alkyl group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the alkoxy group represented by R 1 and R 2 usually has 1 to 20 carbon atoms and may be linear or branched. It may be a group. Specific examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, Examples include heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group.
  • the hydrogen atom in the alkoxy group may be substituted with a halogen atom.
  • a halogen atom for substituting a hydrogen atom a fluorine atom is preferable.
  • Specific examples of the alkoxy group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the aryl group represented by R 1 and R 2 usually has 6 to 60 carbon atoms and may have a substituent.
  • the substituent that the aryl group may have, a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, A cycloalkyl group having usually 3 to 20 carbon atoms, preferably 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms, usually 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably Is a linear or branched alkyl group having 1 to 6 and a cycloalkyl group having usually 3 to 20, preferably 3 to 12, more preferably 3 to 6 carbon atoms in the structure.
  • the alkoxy group contained in is mentioned.
  • the aryl group which may be substituted include a phenyl group and a C 1 to C 12 alkoxyphenyl group (C 1 to C 12 indicate that the number of carbon atoms is 1 to 12. In the following description, Similarly, the number attached to C representing a carbon atom may represent the number of carbon.), C 1 -C 12 alkylphenyl group, 1-naphthyl group, 2-naphthyl group, and the like. An aryl group of 6 to 20 is preferable, and a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group are more preferable.
  • a hydrogen atom in the aryl group may be substituted with a halogen atom. As the halogen atom for substituting a hydrogen atom, a fluorine atom is preferable.
  • examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the monovalent heterocyclic group represented by R 1 and R 2 is preferably a monovalent aromatic heterocyclic group.
  • Examples of the monovalent heterocyclic group represented by R 1 and R 2 include a thienyl group, a pyridyl group, a furyl group, a piperidyl group, a quinolyl group, an isoquinolyl group, and a pyrrolyl group.
  • Examples of the group having an ester structure represented by R 1 and R 2 in the structure of the formula (1) include methyl butyrate, butyl butyrate, isopropyl butyrate, and 3-ethylthienyl butyrate from the alcohol side portion of the ester. Examples include groups in which one hydrogen atom has been removed.
  • One embodiment of the group having an ester structure includes a group represented by the following formula (6).
  • p represents an integer of 0 to 10.
  • q represents an integer of 0 to 10.
  • m is preferably 2 from the viewpoint of easy availability of raw materials.
  • r is preferably an integer of 0 to 3 from the viewpoint of charge transportability.
  • the hydrogen atom in the alkyl group, alkoxy group, aryl group or monovalent heterocyclic group represented by R 1 and R 2 is an alkoxy group, aryl group, halogen atom, 1 It may be substituted with a valent heterocyclic group or a group having an ester structure.
  • Specific examples of the alkyl group, alkoxy group, aryl group, halogen atom, monovalent heterocyclic group, and group having an ester structure include the same groups as the corresponding groups already described.
  • j and k independently represent an integer of 0 to 8. Among these, j and k are preferably integers of 1 to 3.
  • the A ring represents a fullerene ring (fullerene skeleton) having 60 or more carbon atoms.
  • the A ring is preferably a C 60 fullerene ring or a C 70 fullerene ring from the viewpoint of easy availability of the raw material (fullerene).
  • C1, C2, C3 and C4 are carbon atoms constituting the A ring (fullerene ring), and are carbon atoms shared by the A ring and the B ring (B 1 ring and B 2 ring) described later.
  • each of the B 1 ring and the B 2 ring includes a pair of adjacent carbon atoms (C 1 and C 2 and C 3 and C 4) of the A ring so as to be adjacent to the A ring.
  • An added ring structure Specific examples of the B 1 ring and B 2 ring include ring B 3, ring B 4 and ring B 5 having the following structures.
  • the ring B4 is preferable as the ring B from the viewpoint of ease of synthesis. From the viewpoint of further increasing the Voc (open end voltage) of the fullerene derivative, it is preferable that both of the two B rings are the ring B4. In Ring B3 and Ring B4, any two adjacent pairs of carbon atoms are also carbon atoms that constitute Ring A (shared with Ring A) as described above.
  • Q represents a divalent organic group.
  • the divalent organic group that is Q is preferably an alkylene group, an oxaalkylene group, an arylene group, or a divalent heterocyclic group.
  • a fullerene derivative having a structure represented by the formula (1) a fullerene derivative having a structure represented by the following formula (2) is preferable.
  • a preferred embodiment of the divalent organic group Q is a group having a structure represented by the following formula (3).
  • R a and R b independently represent a hydrogen atom or an alkyl group.
  • c represents an integer of 1 to 5.
  • R a may be different from each other.
  • Rb may mutually differ.
  • the carbon number and specific examples of the alkyl group represented by R a and R b are the same as the carbon number and specific examples described above for the alkyl group represented by R 1 and R 2 .
  • Examples of the group having the structure represented by the formula (3) include the following groups (a) to (e).
  • fullerene derivative of the present invention include compounds having the following structures (fullerene derivatives) (A1) to (A7).
  • ring C 60 represents a C 60 fullerene ring
  • ring C 70 represents a C 70 fullerene ring
  • a fullerene derivative represented by the formula (1) and the formula (2) a fullerene derivative having a structure represented by the following formula (4) is preferable.
  • Ring C 60 represents a C 60 fullerene ring.
  • C1, C2, C3 and C4 have the same definition as in the above formula (1).
  • the fullerene derivative having the structure represented by the formula (1) has, for example, j substituents R 1 and k substituents R 2 in a C 60 fullerene ring or a C 70 fullerene ring (fullerene). Further, a compound in which a group capable of forming a B 1 ring and a B 2 ring is connected to a divalent organic group Q is added by an addition reaction such as a carbenoid addition reaction or a 1,3-dipole addition reaction to form a B ring. It can be manufactured by forming.
  • a fullerene derivative having the structure represented by the formula (1) is produced by a production method in which the above-mentioned linked compound is added to fullerene to form a B 1 ring and a B 2 ring, 2 fullerenes are obtained in high yield.
  • a fullerene derivative to which one ring (B 1 ring and B 2 ring) is added can be produced.
  • the production method in the production of a fullerene derivative in which two rings are added to fullerene, by-product formation of isomers that are fullerene derivatives having different numbers of ring additions or fullerene derivatives having different ring addition positions is suppressed. Can do.
  • the fullerene derivative having the structure represented by the formula (2) is, for example, 1,3-dipolar cycloaddition of an iminium cation generated by decarboxylation from an imine generated from a glycine derivative and a bisaldehyde compound and fullerene. It can be synthesized by reaction (Prato reaction; Accounts of Chemical Research Vol.31, 1998, pages 519-526).
  • Examples of the glycine derivative used in the addition reaction include N-methoxymethylglycine, N- (2- (2-methoxyethoxy) ethyl) glycine, [2- (2-methoxyethoxy) ethylamino] acetic acid, and the like. .
  • the amount of these glycine derivatives used is usually in the range of 0.1 mol to 10 mol, preferably in the range of 0.5 mol to 3 mol, relative to 1 mol of fullerene.
  • a bisaldehyde compound includes, for example, 5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbo
  • Examples include aldehyde (5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde).
  • the amount of the bisaldehyde compound used is usually in the range of 0.1 mol to 10 mol, preferably in the range of 0.5 mol to 4 mol, relative to 1 mol of fullerene.
  • the above addition reaction is carried out in a solvent.
  • a solvent inert to the addition reaction such as toluene, xylene, hexane, octane, chlorobenzene and the like is used.
  • the amount of the solvent used is usually in the range of 1 to 100000 times the weight of fullerene.
  • the reaction step may be performed, for example, by mixing a glycine derivative, bisaldehyde, and fullerene in a solvent and reacting the mixture by heating.
  • the reaction temperature is usually in the range of 50 ° C to 350 ° C.
  • the reaction time is usually 30 minutes to 50 hours.
  • the obtained reaction mixture After completion of the reaction step by heating, the obtained reaction mixture is allowed to cool to room temperature, and the solvent is distilled off under reduced pressure using a rotary evaporator to obtain a solid.
  • the obtained solid is separated and purified by silica gel flash column chromatography and preparative thin layer chromatography (silica gel thin layer chromatography).
  • the target fullerene derivative can be obtained by the above steps.
  • Fullerene derivatives having a desired structure can be selectively obtained by appropriately adjusting the reaction conditions such as the amount of glycine derivative and bisaldehyde compound used as raw materials and the reaction time, and by appropriately adjusting the separation and purification conditions. .
  • the fullerene derivative of the present invention can be used as both an electron accepting compound and an electron donating compound. It is particularly preferable to use it as an electron-accepting compound.
  • the fullerene derivative of the present invention can be suitably used as a material for an active layer formed by a coating method.
  • the property of the composition containing the fullerene derivative of the present invention is not particularly limited. For example, when it is set as the composition for coating used for the apply
  • a layer in which an active layer contains a layer containing an electron-accepting compound (electron-accepting layer) and a layer containing an electron-donating compound (electron-donating layer) When configured as a structure, a composition (first composition) containing the fullerene derivative of the present invention as an electron-accepting compound and not containing an electron-donating compound is used as the structure of the electron-accepting layer. It can be used as a component.
  • composition of the present invention When the fullerene derivative of the present invention is used in a single active layer containing both an electron-accepting compound and an electron-donating compound in an organic photoelectric conversion device, the composition of the present invention (second composition). Includes the fullerene derivative of the present invention and an electron donating compound.
  • first composition and the second composition may further include any other suitable component selected according to the use mode.
  • the electron donating compound combined with the fullerene derivative of the present invention as the electron accepting compound is preferably a polymer compound from the viewpoint of coatability.
  • the polymer compound as used herein preferably has a polystyrene-equivalent number average molecular weight of 10 3 or more and a polystyrene-equivalent number average molecular weight of usually 10 8 or less.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene Examples include vinylene and its derivatives, polythienylene vinylene and its derivatives, and polyfluorene and its derivatives.
  • the electron donating compound used in the organic photoelectric conversion element is selected from the group consisting of a repeating unit represented by the following formula (7) and a repeating unit represented by the following formula (8) from the viewpoint of photoelectric conversion efficiency.
  • a polymer compound having a repeating unit having an average molecular weight in the range of about 5 ⁇ 10 3 to 10 6 is preferable, and a polymer compound having a repeating unit represented by the formula (7) is more preferable.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 And R 12 independently represents a hydrogen atom, an alkyl group, an alkoxy group or an aryl group.
  • the carbon number and specific examples when R 3 and R 4 are alkyl groups include the same alkyl groups as R 1 and R 2 described and exemplified above. Can be mentioned. Examples of the carbon number and specific examples when R 3 and R 4 are alkoxy groups include the same alkoxy groups as R 1 and R 2 described and exemplified above. Examples of the carbon number and specific examples when R 3 and R 4 are aryl groups include the same aryl groups as R 1 and R 2 described and exemplified above.
  • R 3 and R 4 are an alkyl group having 1 to 20 carbon atoms, It is more preferable that the number is an alkyl group having 4 to 8.
  • a suitable high molecular compound comprising the repeating unit represented by the formula (7) for example, a poly (3-hexylthiophene) polymer (P3HT) in which R 3 is H and R 4 is C 6 H 13 is used. Can be mentioned.
  • the number of carbon atoms and specific examples in the case where R 5 to R 12 are alkyl groups include the same alkyl groups as R 1 and R 2 described and exemplified above. Can be mentioned. Examples of the carbon number and specific examples when R 5 to R 12 are alkoxy groups include the same alkoxy groups as R 1 and R 2 described and exemplified as described above. Examples of the carbon number and specific examples when R 5 to R 12 are aryl groups include the same aryl groups as R 1 and R 2 described and exemplified above.
  • R 7 to R 12 are preferably hydrogen atoms from the viewpoint of ease of monomer synthesis.
  • R 5 and R 6 are preferably alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 20 carbon atoms, and have 5 carbon atoms. More preferably, it is an alkyl group having ⁇ 8 or an aryl group having 6 to 15 carbon atoms.
  • the fullerene derivative which is an electron accepting substance contained in the second composition of the present invention, is preferably 10 parts by weight to 1000 parts by weight, and 50 parts by weight to 100 parts by weight of the electron donating compound. More preferably, it is 500 parts by weight.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of an organic photoelectric conversion element.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example (2) of the organic photoelectric conversion element.
  • the organic photoelectric conversion element of the present invention has a pair of electrodes composed of an anode and a cathode, and a layer containing a fullerene derivative sandwiched between the pair of electrodes.
  • the pair of electrodes at least the electrode on the light incident side, that is, at least one of the electrodes is a transparent or translucent electrode that transmits the incident light.
  • the organic photoelectric conversion element 10 of the configuration example (1) includes, for example, a pair of electrodes including a first electrode 32 that is an anode and a second electrode 34 that is a cathode, and the pair of electrodes. And an active layer 40 including a sandwiched fullerene derivative.
  • the polarities of the first electrode 32 and the second electrode 34 may be any suitable polarity corresponding to the element structure, and the first electrode 32 may be a cathode and the second electrode 34 may be an anode.
  • the organic photoelectric conversion element is usually formed on a substrate. That is, the organic photoelectric conversion element 10 is provided on the main surface of the substrate 20.
  • the material of the substrate 20 may be any material that does not change chemically when forming an electrode and forming a layer containing an organic substance.
  • Examples of the material of the substrate 20 include glass, plastic, polymer film, silicon, and the like.
  • the second electrode 34 (that is, the electrode far from the substrate 20) provided on the opposite side of the substrate facing the first electrode 32 may be transparent or translucent. preferable.
  • the active layer 40 is sandwiched between the first electrode 32 and the second electrode 34.
  • the active layer 40 is an organic layer containing, for example, the fullerene derivative of the present invention, which is an electron-accepting compound, and an electron-donating compound, and is a layer having an essential function for the photoelectric conversion function.
  • a first electrode 32 is provided on the main surface of the substrate 20.
  • the active layer 40 is provided so as to cover the first electrode 32.
  • the second electrode 34 is provided in contact with the surface of the active layer 40.
  • the organic photoelectric conversion element of the configuration example (2) is sandwiched between a pair of electrodes including a first electrode 32 (anode) and a second electrode 34 (cathode) and the pair of electrodes.
  • the active layer 40 includes an electron accepting layer 44 containing the fullerene derivative of the present invention, and the electron donating layer 42 containing an electron donating compound bonded to the electron accepting layer 44. And an active layer 40.
  • the organic photoelectric conversion element 10 is provided on one main surface viewed from the thickness direction of the substrate 20.
  • a first electrode 32 is provided on the main surface of the substrate 20.
  • the active layer 40 is held in contact with both the first electrode 32 and the second electrode 34.
  • the active layer 40 of Structural Example 2 has a laminated structure in which, for example, an electron accepting layer 44 containing the fullerene derivative of the present invention as an electron accepting compound and an electron donating layer 42 containing an electron donating compound are joined. Has been.
  • the electron donating layer 42 is provided so as to cover the first electrode 32.
  • the electron accepting layer 44 is provided so as to cover the entire surface of the electron donating layer 32.
  • the second electrode 34 is provided in contact with the surface of the electron accepting layer 44.
  • the fullerene derivative of the present invention has been described as an electron-accepting compound.
  • the active layer 40 of the structural example (1) or the fullerene derivative of the present invention is used as an electron-donating compound. It can also be contained in the electron donating layer 42 of the structural example (2).
  • the active layer 40 has a configuration in which the electron accepting compound and the electron donating compound are contained in a single layer, and includes more heterojunction interfaces. From the viewpoint of further improving the photoelectric conversion efficiency.
  • the organic photoelectric conversion element 10 may be provided with an additional layer between at least one of the first electrode 32 and the second electrode 34 and the active layer containing the fullerene derivative of the present invention.
  • additional layer include a charge transport layer that transports holes or electrons (a hole transport layer or an electron transport layer).
  • the material constituting the charge transport layer any conventionally known suitable material can be used.
  • the charge transport layer is an electron transport layer
  • examples of the material include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • PEDOT polyethylenedioxythiophene
  • the additional layer that may be provided between the first electrode 32 and / or the second electrode 34 and the layer containing the fullerene derivative may be a buffer layer.
  • alkali metals such as lithium halide, halides of alkaline earth metals, oxides such as titanium oxide, and the like.
  • an inorganic semiconductor it can be used in the form of fine particles.
  • an example of the layer structure which the organic photoelectric conversion element of this Embodiment can take is shown below.
  • a) Anode / active layer / cathode b) Anode / hole transport layer / active layer / cathode c) Anode / active layer / electron transport layer / cathode d) Anode / hole transport layer / active layer / electron transport layer / cathode e) Anode / electron supply layer / electron acceptor layer / cathode f) Anode / hole transport layer / electron supply layer / electron acceptor layer / cathode g) Anode / electron supply layer / electron acceptor layer / electron Transport layer / cathode h) Anode / hole transport layer / electron supply layer / electron accepting layer / electron transport layer / cathode (herein, the symbol “/” indicates that the layers sandwiching the symbol “/” are adjacent to each other) Is shown)
  • the layer configuration may be any of a form in which the anode is provided on the side closer to the substrate and a form in which the cathode is provided on the side closer to the substrate.
  • the ratio of the fullerene derivative in the active layer 40 containing the fullerene derivative as the electron-accepting compound and the electron-donating compound is 100 parts by weight of the electron-donating compound.
  • the amount is preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight.
  • the active layer 40 containing the fullerene derivative and the electron donating compound can be produced using a composition containing the fullerene derivative and the electron donating compound.
  • the layer containing the fullerene derivative used in the organic photoelectric conversion element 10 is preferably formed from an organic thin film containing the fullerene derivative.
  • the thickness of the organic thin film is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • Examples of the electrode material in the case where the first electrode 32 and / or the second electrode 34 are electrodes formed of a transparent or translucent film (thin film) include conductive metal oxides, translucent metals, and the like. Can be mentioned.
  • Examples of the electrode material include indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO) which is a composite thereof, conductive material made of indium zinc oxide, NESA, gold, platinum, silver, copper, etc. ITO, indium zinc oxide, and tin oxide are preferable. Further, polyaniline and derivatives thereof, polythiophene and derivatives thereof, and the like may be used as electrode materials.
  • Examples of the method for forming the electrodes (the first electrode 32 and the second electrode 34) include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • An electrode including a material having a low work function may be transparent or translucent.
  • the material include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like, And alloys of two or more of them, or one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite or graphite
  • a compound (interlayer compound) in which the aforementioned metal element is disposed between the layers is used.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the energy of light incident through the transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined.
  • the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent (junction)
  • the difference between the HOMO energy and the LUMO energy at the heterojunction interface causes positive and negative electrons.
  • Charges (electrons and holes) are generated that separate from the holes and can move independently.
  • the generated electric charge moves to the electrode and can be taken out as electric energy (current).
  • the method for producing the organic thin film is not particularly limited.
  • a manufacturing method for example, a film forming method using a solution (composition) containing a fullerene derivative used in the present invention and using this solution can be mentioned.
  • the solvent used in the solution is not particularly limited as long as it can dissolve the fullerene derivative of the present invention.
  • the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane.
  • Halogenated saturated hydrocarbon solvents such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran, etc.
  • An ether solvent is mentioned.
  • the fullerene derivative of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • the solution may further contain the polymer compound already described.
  • Specific examples of the solvent used in the solution include the same solvents as described above. From the viewpoint of the solubility of the polymer compound, aromatic hydrocarbon solvents are preferable, and toluene, xylene, and mesitylene are more preferable.
  • An organic photoelectric conversion element generates photovoltaic power between electrodes sandwiching an active layer by allowing light such as sunlight to enter a transparent or translucent electrode, and operates as an organic thin film solar cell. be able to. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the reagents and solvents used in the synthesis (production) were either commercially available products or used after being purified by distillation in the presence of a desiccant.
  • C 60 fullerene a product manufactured by Frontier Carbon Co. was used.
  • the NMR spectrum was measured using MH500 manufactured by JEOL or ECX500 manufactured by JEOL, and tetramethylsilane (TMS) was used as an internal standard.
  • TMS tetramethylsilane
  • the infrared absorption spectrum was measured using FT-IR 8000 manufactured by Shimadzu Corporation.
  • the MALDI-TOF MS spectrum was measured using an AutoFLEX-T2 manufactured by BRUKER.
  • the composition of the developing solvent is a volume ratio (the same applies to the following examples).
  • the reaction mixture was then stirred at room temperature for 20 hours, and water was added while cooling with an ice bath to stop the reaction.
  • reaction solution After allowing to cool to room temperature, the reaction solution is quenched with 1M sodium acetate aqueous solution and extracted with dichloromethane. The organic phase is dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure, and silica gel column chromatography.
  • Fullerene derivative A was synthesized according to the following scheme.
  • Fullerene derivative (C) was synthesized according to the following scheme. In a 100 mL two-necked flask equipped with a Dimroth condenser, C 60 fullerene (216 mg, 0.30 mmol) and compound [2]: [2- (2-methoxyethoxy) ethylamino] acetic acid (89 mg, 0.50 mmol) And compound [8]: 5,5- (2,1,3-benzothiadiazole-4,7-diyl) bis-2-thiophenecarboxaldehyde (5,5- (2,1,3-Benzothiadiazole-4 , 7-diyl) bis-2-thiophenecarboxaldehyde) (71 mg, 0.20 mmol), 100 mL of chlorobenzene was added, and the mixture was heated to reflux for 3 hours.
  • a fullerene derivative in which two ring structures (B ring) connected to each other by a divalent organic group (Q) are added can be manufactured efficiently.
  • the addition position in the fullerene ring is limited due to the structure of the addition group or the raw material bisaldehyde compound or glycine derivative. And the formation of isomers can be effectively suppressed. Therefore, the fullerene derivative of the present invention can be obtained in an extremely high yield. Therefore, the production method of the fullerene derivative of the present invention is an extremely excellent production method, and greatly contributes to the reduction of the production cost of the applied organic photoelectric conversion element, for example.
  • the fullerene derivative manufactured by such a manufacturing method greatly contributes to further improvement of the electrical characteristics of the organic photoelectric conversion element, and consequently the photoelectric conversion efficiency.
  • Fullerene derivative B IR (Neat, cm -1 ) 2864, 2827, 1489, 1460, 1425, 1284, 1244, 1179, 1109, 1048, 1026, 754, 729, 527; MALDI-TOF-MS (matrix: SA) found 1222.3297 (calcd for C 88 H 42 N 2 O 6 : Exact Mass: 1222.3, Mol.Wt .: 1223.28.m / e: 1222.30 (100.0%), 1223.31 (95.9% ), 1224.31 (46.7%), 1225.31 (15.4%), 1226.32 (3.8%).
  • Example 3> (Production and evaluation of organic thin-film solar cell) Regioregular poly 3-hexylthiophene (manufactured by Aldrich, lot number: 09007 KH) as an electron donor was dissolved in chlorobenzene at a concentration of 1% (weight%). Thereafter, the fullerene derivative A was mixed into the solution as an electron acceptor so as to have an equal weight with respect to the weight of the electron donor. Thereafter, 1 part by weight of silica gel (Wakogel C-300 particle size: 45 to 75 ⁇ m, manufactured by Wako Pure Chemical Industries, Ltd.) was added as an adsorbent to 100 parts by weight of the solution and stirred for 12 hours. Subsequently, it filtered with the Teflon (trademark) filter with a hole diameter of 1.0 micrometer, and produced the coating solution.
  • silica gel Wigel C-300 particle size: 45 to 75 ⁇ m, manufactured by Wako Pure Chemical Industries, Ltd.
  • An ITO film having a thickness of 150 nm was formed on one main surface of the glass substrate by sputtering.
  • the ITO film was subjected to surface treatment by ozone UV treatment.
  • the coating solution was applied onto the ITO film by spin coating, and baked in a vacuum at 90 ° C. for 60 minutes to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell.
  • lithium fluoride was deposited on the active layer with a thickness of 4 nm by a vacuum deposition machine, and then aluminum (Al) was deposited with a thickness of 100 nm to obtain an organic thin film solar cell.
  • the degree of vacuum during the vapor deposition process was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases.
  • the shape of the obtained organic thin-film solar cell was a regular square of 2 mm ⁇ 2 mm.
  • the open-circuit voltage (Voc) of the obtained organic thin-film solar cell is irradiated with constant light using a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.). The current and voltage generated are measured and determined. The results are shown in Table 1.
  • the organic thin film solar cell of Example 2 containing the fullerene derivative (fullerene derivative A) of the present invention in the active layer is the same as the organic thin film solar cell of Comparative Example 2 corresponding to the prior art. In comparison, a higher open-circuit voltage was obtained.
  • the layer containing the fullerene derivative of the present invention is used as an active layer of an organic photoelectric conversion element such as an organic thin film solar cell or an organic photosensor, it has extremely important characteristics particularly from the viewpoint of photoelectric conversion efficiency. A certain open end voltage can be further increased. Therefore, the fullerene derivative of the present invention greatly contributes to further increasing the photoelectric conversion efficiency of the organic photoelectric conversion element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Disclosed is a fullerene derivative having superior electrical characteristics. Specifically disclosed is a fullerene derivative having the structure represented by formula (1). [In formula (1), ring A represents a C60 or more fullerene ring. Ring B1 and ring B2 are independent and represent C3-6 heterocycles. R1 and R2 are independent and represent monovalent functional groups. Q represents a divalent organic group, bonded to a carbon atom of ring B1 and ring B2. j and k represent integers of 0 - 8. When a plurality of R1's is present, each R1 can be different from the others. When a plurality of R2's is present, each R2 can be different from the others. C1, C2, C3 and C4 are carbon atoms constituting ring A, and C1 and C2 and also C3 and C4 are each adjacent in ring A.]

Description

フラーレン誘導体及びその製造方法Fullerene derivative and method for producing the same
 本発明は、フラーレン誘導体、該フラーレン誘導体の製造方法、フラーレン誘導体を含有する組成物及び該組成物を用いた有機光電変換素子に関する。 The present invention relates to a fullerene derivative, a method for producing the fullerene derivative, a composition containing the fullerene derivative, and an organic photoelectric conversion device using the composition.
 電子又は正孔(ホール)である電荷の輸送性を有する有機半導体材料は、有機薄膜太陽電池、光センサといった有機光電変換素子等への適用が検討されており、例えばフラーレン誘導体を用いた有機薄膜太陽電池が検討されている。 An organic semiconductor material having a property of transporting an electron or hole (hole) has been studied for application to an organic photoelectric conversion element such as an organic thin film solar cell or an optical sensor. For example, an organic thin film using a fullerene derivative Solar cells are being considered.
 このようなフラーレン誘導体としては、例えば、[6,6]-フェニルC61-酪酸メチルエステル(以下、[60]-PCBMという場合がある)が知られている(非特許文献1参照)。 As such fullerene derivatives, for example, [6,6] -phenyl C 61 -butyric acid methyl ester (hereinafter sometimes referred to as [60] -PCBM) is known (see Non-Patent Document 1).
 すなわち本発明は、下記を提供する。
[1] 下記式(1)で表される構造を有するフラーレン誘導体。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、A環は炭素数が60以上であるフラーレン環を表す。B環及びB環は炭素数が3~6である複素環を表す。R及びRは、独立して1価の官能有機基を表す。Qは2価の有機基を表し、B環及びB環が有する炭素原子と結合している。j及びkは、独立して0~8の整数を表す。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。C1、C2、C3及びC4は、A環を構成する炭素原子であり、C1及びC2、C3及びC4は、それぞれA環において隣り合っている。]
[2] [1]に記載のフラーレン誘導体と電子供与性化合物とを含む組成物。
[3] 陽極及び陰極からなる一対の電極と、
 一対の電極間に挟持された[1]に記載のフラーレン誘導体を含む層と
を有する有機光電変換素子。
[4] 陽極及び陰極からなる一対の電極と、
 一対の電極間に挟持された[2]に記載の組成物を含む層と
を有する有機光電変換素子。
[5] 陽極及び陰極からなる一対の電極と、
 一対の電極間に挟持される活性層であって、[1]に記載のフラーレン誘導体を含む電子受容性層及び該電子受容性層に接合される電子供与性化合物を含む電子供与性層を有している活性層と
を有する有機光電変換素子。
[6] フラーレンと、N-メトキシメチルグリシン、N-(2-(2-メトキシエトキシ)エチル)グリシン及び[2-(2-メトキシエトキシ)エチルアミノ]酢酸からなる群から選ばれるグリシン誘導体と、ビスアルデヒド化合物である5-(5-(5-ホルミルチオフェン-2-イル)チオフェン-2-イル)チオフェン-2-カルボアルデヒドとを、溶媒中で加熱還流して反応させる工程と、
 溶媒を除去し、シリカゲルフラッシュカラムクロマトグラフィ及び分取薄層クロマトグラフィにより分離精製する工程と
を含む、[1]に記載のフラーレン誘導体の製造方法。
That is, the present invention provides the following.
[1] A fullerene derivative having a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
[In Formula (1), the A ring represents a fullerene ring having 60 or more carbon atoms. B 1 ring and B 2 ring represents a heterocyclic carbon number of 3-6. R 1 and R 2 independently represent a monovalent functional organic group. Q represents a divalent organic group and is bonded to the carbon atom of the B 1 ring and the B 2 ring. j and k each independently represents an integer of 0 to 8. When a plurality of R 1 are present, R 1 may be different from each other. If the R 2 is plurally present, R 2 to each other may be different from each other. C1, C2, C3 and C4 are carbon atoms constituting the A ring, and C1 and C2, C3 and C4 are adjacent to each other in the A ring. ]
[2] A composition comprising the fullerene derivative according to [1] and an electron donating compound.
[3] a pair of electrodes consisting of an anode and a cathode;
The organic photoelectric conversion element which has a layer containing the fullerene derivative as described in [1] clamped between a pair of electrodes.
[4] A pair of electrodes consisting of an anode and a cathode;
An organic photoelectric conversion device having a layer containing the composition according to [2] sandwiched between a pair of electrodes.
[5] A pair of electrodes consisting of an anode and a cathode;
An active layer sandwiched between a pair of electrodes, comprising an electron-accepting layer containing the fullerene derivative according to [1] and an electron-donating layer containing an electron-donating compound bonded to the electron-accepting layer. An organic photoelectric conversion element having an active layer.
[6] Fullerene and a glycine derivative selected from the group consisting of N-methoxymethylglycine, N- (2- (2-methoxyethoxy) ethyl) glycine and [2- (2-methoxyethoxy) ethylamino] acetic acid; Reacting the bisaldehyde compound 5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde with heating under reflux in a solvent;
The method for producing a fullerene derivative according to [1], comprising a step of removing the solvent and separating and purifying by silica gel flash column chromatography and preparative thin layer chromatography.
図1は、有機光電変換素子の構成例(1)を示す概略的な断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of an organic photoelectric conversion element. 図2は、有機光電変換素子の構成例(2)を示す概略的な断面図である。FIG. 2 is a schematic cross-sectional view showing a configuration example (2) of the organic photoelectric conversion element.
 10 有機光電変換素子
 20 基板
 32 第1電極
 34 第2電極
 40 活性層
 42 電子供与性層
 44 電子受容性層
DESCRIPTION OF SYMBOLS 10 Organic photoelectric conversion element 20 Substrate 32 1st electrode 34 2nd electrode 40 Active layer 42 Electron donating layer 44 Electron accepting layer
 以下、本発明を詳細に説明する。なお以下の説明において図を参照して説明する場合があるが、図には発明が理解できる程度に構成要素の形状、大きさ及び配置が概略的に示されているに過ぎず、これにより本発明が特に限定されるものではない。また複数の図に示される同様の構成成分については同一の符号を付して示し、その重複する説明を省略する場合がある。 Hereinafter, the present invention will be described in detail. In the following description, there are cases where description is made with reference to the drawings, but the drawings only schematically show the shape, size, and arrangement of the components to the extent that the invention can be understood. The invention is not particularly limited. In addition, the same components shown in a plurality of drawings are denoted by the same reference numerals, and redundant description thereof may be omitted.
 <フラーレン誘導体>
 本発明のフラーレン誘導体は、下記式(1)で表される構造を有する。
<Fullerene derivative>
The fullerene derivative of the present invention has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記式(1)の構造において、R及びRは1価の官能基を表す。1価の官能基の例としては、アルキル基、アルコキシ基、アリール基、ハロゲン原子、1価の複素環基、エステル構造を有する基、下記式(5)で表される基が好ましい。また、Rが複数個存在する場合には、R同士は互いに異なっていてもよい。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。 In the structure of the formula (1), R 1 and R 2 represent a monovalent functional group. As examples of the monovalent functional group, an alkyl group, an alkoxy group, an aryl group, a halogen atom, a monovalent heterocyclic group, a group having an ester structure, and a group represented by the following formula (5) are preferable. Further, when a plurality of R 1 are present, R 1 may be different from each other. If the R 2 is plurally present, R 2 to each other may be different from each other.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(5)中、mは1~6の整数を表し、nは1~4の整数を表し、rは0~5の整数を表す。mが複数個存在する場合には、複数個のmは互いに異なっていてもよい。 In the formula (5), m represents an integer of 1 to 6, n represents an integer of 1 to 4, and r represents an integer of 0 to 5. When a plurality of m are present, the plurality of m may be different from each other.
 前記式(1)の構造において、R及びRで表されるアルキル基は、炭素数が通常1~20であり、好ましくは1~12であり、より好ましくは1~6であり、直鎖状であっても分岐状であってもよく、シクロアルキル基であってもよい。 In the structure of the above formula (1), the alkyl group represented by R 1 and R 2 usually has 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms. The chain may be branched or branched, and may be a cycloalkyl group.
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、3-メチルブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基が挙げられる。 Specific examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, sec-butyl, 3-methylbutyl, pentyl, hexyl and 2-ethylhexyl. Group, heptyl group, octyl group, nonyl group, decyl group, lauryl group.
 前記アルキル基中の水素原子はハロゲン原子で置換されていてもよい。水素原子がハロゲン原子で置換されたアルキル基の具体例としては、モノハロメチル基、ジハロメチル基、トリハロメチル基、ペンタハロエチル基が挙げられる。水素原子を置換するハロゲン原子としては、フッ素原子が好ましい。フッ素原子で水素原子が置換されたアルキル基の具体例としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基が挙げられる。 The hydrogen atom in the alkyl group may be substituted with a halogen atom. Specific examples of the alkyl group in which a hydrogen atom is substituted with a halogen atom include a monohalomethyl group, a dihalomethyl group, a trihalomethyl group, and a pentahaloethyl group. As the halogen atom for substituting a hydrogen atom, a fluorine atom is preferable. Specific examples of the alkyl group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
 前記式(1)の構造において、R及びRで表されるアルコキシ基は、炭素数が通常1~20であり、直鎖状であっても分岐状であってもよく、シクロアルキルオキシ基であってもよい。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。 In the structure of the above formula (1), the alkoxy group represented by R 1 and R 2 usually has 1 to 20 carbon atoms and may be linear or branched. It may be a group. Specific examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, Examples include heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group.
 前記アルコキシ基中の水素原子はハロゲン原子で置換されていてもよい。水素原子を置換するハロゲン原子としては、フッ素原子が好ましい。フッ素原子で水素原子が置換されたアルコキシ基の具体例としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基が挙げられる。 The hydrogen atom in the alkoxy group may be substituted with a halogen atom. As the halogen atom for substituting a hydrogen atom, a fluorine atom is preferable. Specific examples of the alkoxy group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
 前記式(1)の構造において、R及びRで表されるアリール基は、炭素数が通常6~60であり、置換基を有していてもよい。アリール基が有していてもよい置換基としては、炭素数が通常1~20であり、好ましくは1~12であり、より好ましくは1~6である直鎖状、分岐状のアルキル基、炭素数が通常3~20であり、好ましくは3~12であり、より好ましくは3~6であるシクロアルキル基、炭素数が通常1~20であり、好ましくは1~12であり、より好ましくは1~6である直鎖状、分岐状のアルキル基、及び炭素数が通常3~20であり、好ましくは3~12であり、より好ましくは3~6であるシクロアルキル基をその構造中に含むアルコキシ基が挙げられる。 In the structure of the formula (1), the aryl group represented by R 1 and R 2 usually has 6 to 60 carbon atoms and may have a substituent. As the substituent that the aryl group may have, a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, A cycloalkyl group having usually 3 to 20 carbon atoms, preferably 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms, usually 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably Is a linear or branched alkyl group having 1 to 6 and a cycloalkyl group having usually 3 to 20, preferably 3 to 12, more preferably 3 to 6 carbon atoms in the structure. The alkoxy group contained in is mentioned.
 置換されていてもよいアリール基の具体例としては、フェニル基、C1~C12アルコキシフェニル基(C1~C12は、炭素数が1~12であることを示す。なお以下の説明においても同様に、炭素原子を表すCに付された数字は炭素数を表す場合がある。)、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基が挙げられ、炭素数が6~20であるアリール基が好ましく、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基がより好ましい。
 前記アリール基中の水素原子はハロゲン原子で置換されていてもよい。水素原子を置換するハロゲン原子としては、フッ素原子が好ましい。
Specific examples of the aryl group which may be substituted include a phenyl group and a C 1 to C 12 alkoxyphenyl group (C 1 to C 12 indicate that the number of carbon atoms is 1 to 12. In the following description, Similarly, the number attached to C representing a carbon atom may represent the number of carbon.), C 1 -C 12 alkylphenyl group, 1-naphthyl group, 2-naphthyl group, and the like. An aryl group of 6 to 20 is preferable, and a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group are more preferable.
A hydrogen atom in the aryl group may be substituted with a halogen atom. As the halogen atom for substituting a hydrogen atom, a fluorine atom is preferable.
 前記式(1)の構造において、R及びRで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 In the structure of the formula (1), examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記式(1)の構造において、R及びRで表される1価の複素環基としては、1価の芳香族複素環基が好ましい。R及びRで表される1価の複素環基の例としては、チエニル基、ピリジル基、フリル基、ピペリジル基、キノリル基、イソキノリル基、ピロリル基が挙げられる。 In the structure of the formula (1), the monovalent heterocyclic group represented by R 1 and R 2 is preferably a monovalent aromatic heterocyclic group. Examples of the monovalent heterocyclic group represented by R 1 and R 2 include a thienyl group, a pyridyl group, a furyl group, a piperidyl group, a quinolyl group, an isoquinolyl group, and a pyrrolyl group.
 前記式(1)の構造において、R及びRで表されるエステル構造を有する基の例としては、酪酸メチル、酪酸ブチル、酪酸イソプロピル、酪酸3-エチルチエニルにおいて、エステルのアルコール側部位から水素原子を1個除去した基が挙げられる。
 エステル構造を有する基の一態様としては、下記式(6)で表される基が挙げられる。
Examples of the group having an ester structure represented by R 1 and R 2 in the structure of the formula (1) include methyl butyrate, butyl butyrate, isopropyl butyrate, and 3-ethylthienyl butyrate from the alcohol side portion of the ester. Examples include groups in which one hydrogen atom has been removed.
One embodiment of the group having an ester structure includes a group represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(6)中、pは0~10の整数を表す。qは0~10の整数を表す。 In formula (6), p represents an integer of 0 to 10. q represents an integer of 0 to 10.
 前記式(5)の基において、mは、原料の入手しやすさの観点から、2であるのが好ましい。rは、電荷輸送性の観点から、0~3の整数であるのが好ましい。 In the group of the formula (5), m is preferably 2 from the viewpoint of easy availability of raw materials. r is preferably an integer of 0 to 3 from the viewpoint of charge transportability.
 前記式(1)の構造において、R及びRで表される、アルキル基、アルコキシ基、アリール基、1価の複素環基中の水素原子は、アルコキシ基、アリール基、ハロゲン原子、1価の複素環基又はエステル構造を有する基で置換されていてもよい。アルキル基、アルコキシ基、アリール基、ハロゲン原子、1価の複素環基、エステル構造を有する基の具体例としては、既に説明した対応する各基と同様の基が挙げられる。 In the structure of the formula (1), the hydrogen atom in the alkyl group, alkoxy group, aryl group or monovalent heterocyclic group represented by R 1 and R 2 is an alkoxy group, aryl group, halogen atom, 1 It may be substituted with a valent heterocyclic group or a group having an ester structure. Specific examples of the alkyl group, alkoxy group, aryl group, halogen atom, monovalent heterocyclic group, and group having an ester structure include the same groups as the corresponding groups already described.
 前記式(1)の構造において、j及びkは、独立して0~8の整数を表す。中でも、j及びkは1~3の整数であるのが好ましい。 In the structure of the formula (1), j and k independently represent an integer of 0 to 8. Among these, j and k are preferably integers of 1 to 3.
 前記式(1)の構造において、A環は炭素数が60以上であるフラーレン環(フラーレン骨格)を表す。A環は、原料(フラーレン)の入手しやすさの観点から、C60フラーレン環、C70フラーレン環が好ましい。C1、C2、C3及びC4は、A環(フラーレン環)を構成する炭素原子であって、A環及び後述するB環(B環及びB環)により共有されている炭素原子である。 In the structure of the formula (1), the A ring represents a fullerene ring (fullerene skeleton) having 60 or more carbon atoms. The A ring is preferably a C 60 fullerene ring or a C 70 fullerene ring from the viewpoint of easy availability of the raw material (fullerene). C1, C2, C3 and C4 are carbon atoms constituting the A ring (fullerene ring), and are carbon atoms shared by the A ring and the B ring (B 1 ring and B 2 ring) described later.
 前記式(1)の構造において、B環及びB環それぞれは、A環の隣り合う2つの炭素原子の組(C1及びC2、並びにC3及びC4)を含んでA環に隣接するように付加された環構造である。B環及びB環の具体例としては、下記の構造を有する環B3、環B4及び環B5が挙げられる。 In the structure of the formula (1), each of the B 1 ring and the B 2 ring includes a pair of adjacent carbon atoms (C 1 and C 2 and C 3 and C 4) of the A ring so as to be adjacent to the A ring. An added ring structure. Specific examples of the B 1 ring and B 2 ring include ring B 3, ring B 4 and ring B 5 having the following structures.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 B環としては、合成の容易さの観点から、上記環B4が好ましい。フラーレン誘導体のVoc(開放端電圧)をより高めるという観点からも、2つのB環がいずれも上記環B4であることが好ましい。なお環B3及び環B4において、隣り合ういずれか2つの炭素原子の組は、上述したようにA環を構成する(A環と共有される)炭素原子でもある。 The ring B4 is preferable as the ring B from the viewpoint of ease of synthesis. From the viewpoint of further increasing the Voc (open end voltage) of the fullerene derivative, it is preferable that both of the two B rings are the ring B4. In Ring B3 and Ring B4, any two adjacent pairs of carbon atoms are also carbon atoms that constitute Ring A (shared with Ring A) as described above.
 前記式(1)の構造において、Qは2価の有機基を表す。Qである2価の有機基としては、アルキレン基、オキサアルキレン基、アリーレン基、2価の複素環基が好ましい。 In the structure of the formula (1), Q represents a divalent organic group. The divalent organic group that is Q is preferably an alkylene group, an oxaalkylene group, an arylene group, or a divalent heterocyclic group.
 前記式(1)で表される構造を有するフラーレン誘導体としては、下記式(2)で表される構造を有するフラーレン誘導体が好ましい。 As the fullerene derivative having a structure represented by the formula (1), a fullerene derivative having a structure represented by the following formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(2)中、A環、R、R、Q、C1、C2、C3及びC4は前記式(1)で定義された対応する構造と同義である。 In formula (2), ring A, R 1 , R 2 , Q, C 1, C 2, C 3 and C 4 have the same meaning as the corresponding structure defined in formula (1).
 2価の有機基Qの好ましい一態様は、下記式(3)で表される構造を有する基である。 A preferred embodiment of the divalent organic group Q is a group having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(3)中、R及びRは、独立して水素原子又はアルキル基を表す。cは1~5の整数を表す。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。
 Ra及びRで表されるアルキル基の炭素数及び具体例は、R及びRで表されるアルキル基に関して前述した炭素数及び具体例と同じである。
In formula (3), R a and R b independently represent a hydrogen atom or an alkyl group. c represents an integer of 1 to 5. When a plurality of R a are present, R a may be different from each other. When two or more Rb exists, Rb may mutually differ.
The carbon number and specific examples of the alkyl group represented by R a and R b are the same as the carbon number and specific examples described above for the alkyl group represented by R 1 and R 2 .
 前記式(3)で表される構造を有する基としては、例えば、下記基(a)~(e)が挙げられる。 Examples of the group having the structure represented by the formula (3) include the following groups (a) to (e).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本発明のフラーレン誘導体の具体例としては、下記の構造を有する化合物(フラーレン誘導体)(A1)~(A7)が挙げられる。 Specific examples of the fullerene derivative of the present invention include compounds having the following structures (fullerene derivatives) (A1) to (A7).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記化合物(A1)~(A7)中、環C60はC60フラーレン環を表し、環C70はC70フラーレン環を表す。 In the compounds (A1) to (A7), ring C 60 represents a C 60 fullerene ring, and ring C 70 represents a C 70 fullerene ring.
 前記式(1)及び前記式(2)で表されるフラーレン誘導体としては、下記式(4)で表される構造を有するフラーレン誘導体が好ましい。 As the fullerene derivative represented by the formula (1) and the formula (2), a fullerene derivative having a structure represented by the following formula (4) is preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(4)中、環C60は、C60フラーレン環を表す。C1、C2、C3及びC4は前記式(1)における定義と同義である。 In the formula (4), Ring C 60 represents a C 60 fullerene ring. C1, C2, C3 and C4 have the same definition as in the above formula (1).
 <フラーレン誘導体の製造方法>
 前記式(1)で表される構造を有するフラーレン誘導体は、例えばC60フラーレン環、C70フラーレン環(フラーレン)に、置換基Rをj個有し、置換基Rをk個有し、さらに2価の有機基QにB環及びB環を構成できる基が連結された化合物を、カルベノイド付加反応あるいは1,3-双極子付加反応等の付加反応によって付加させてB環を形成することにより製造することができる。
<Method for producing fullerene derivative>
The fullerene derivative having the structure represented by the formula (1) has, for example, j substituents R 1 and k substituents R 2 in a C 60 fullerene ring or a C 70 fullerene ring (fullerene). Further, a compound in which a group capable of forming a B 1 ring and a B 2 ring is connected to a divalent organic group Q is added by an addition reaction such as a carbenoid addition reaction or a 1,3-dipole addition reaction to form a B ring. It can be manufactured by forming.
 フラーレンに前述の連結された化合物を付加させてB環及びB環を形成する製造方法により式(1)で表される構造を有するフラーレン誘導体を製造すれば、高収率でフラーレンに2個の環(B環及びB環)が付加したフラーレン誘導体を製造することができる。前記製造方法によれば、フラーレンに2個の環が付加したフラーレン誘導体の製造において、環の付加数が異なるフラーレン誘導体や環の付加位置が異なるフラーレン誘導体である異性体の副生を抑制することができる。 If a fullerene derivative having the structure represented by the formula (1) is produced by a production method in which the above-mentioned linked compound is added to fullerene to form a B 1 ring and a B 2 ring, 2 fullerenes are obtained in high yield. A fullerene derivative to which one ring (B 1 ring and B 2 ring) is added can be produced. According to the production method, in the production of a fullerene derivative in which two rings are added to fullerene, by-product formation of isomers that are fullerene derivatives having different numbers of ring additions or fullerene derivatives having different ring addition positions is suppressed. Can do.
 前記式(2)で表される構造を有するフラーレン誘導体は、例えばグリシン誘導体及びビスアルデヒド化合物から生成するイミンから脱炭酸して生じるイミニウムカチオンと、フラーレンとの1,3-双極子環化付加反応(Prato反応;Accounts of Chemical Research Vol.31 1998 519-526ページ参照)により合成することができる。 The fullerene derivative having the structure represented by the formula (2) is, for example, 1,3-dipolar cycloaddition of an iminium cation generated by decarboxylation from an imine generated from a glycine derivative and a bisaldehyde compound and fullerene. It can be synthesized by reaction (Prato reaction; Accounts of Chemical Research Vol.31, 1998, pages 519-526).
 上記付加反応で用いられるグリシン誘導体としては、N-メトキシメチルグリシン、N-(2-(2-メトキシエトキシ)エチル)グリシン、[2-(2-メトキシエトキシ)エチルアミノ]酢酸などが例示される。 Examples of the glycine derivative used in the addition reaction include N-methoxymethylglycine, N- (2- (2-methoxyethoxy) ethyl) glycine, [2- (2-methoxyethoxy) ethylamino] acetic acid, and the like. .
 これらのグリシン誘導体の使用量は、フラーレン1モルに対して、通常0.1モル~10モルの範囲であり、好ましくは0.5モル~3モルの範囲である。 The amount of these glycine derivatives used is usually in the range of 0.1 mol to 10 mol, preferably in the range of 0.5 mol to 3 mol, relative to 1 mol of fullerene.
 付加基(置換基)を付加するためのもう1つの原料であるビスアルデヒド化合物としては、例えば5-(5-(5-ホルミルチオフェン-2-イル)チオフェン-2-イル)チオフェン-2-カルボアルデヒド(5-(5-(5-formylthiophen-2-yl)thiophen-2-yl)thiophene-2-carbaldehyde)が挙げられる。 As another raw material for adding an addition group (substituent), a bisaldehyde compound includes, for example, 5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbo Examples include aldehyde (5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde).
 このビスアルデヒド化合物の使用量は、フラーレン1モルに対して、通常0.1モル~10モルの範囲であり、好ましくは0.5モル~4モルの範囲である。 The amount of the bisaldehyde compound used is usually in the range of 0.1 mol to 10 mol, preferably in the range of 0.5 mol to 4 mol, relative to 1 mol of fullerene.
 通常、上記付加反応は溶媒中で行なわれる。上記付加反応が溶媒中で行われる場合には、溶媒としては、例えばトルエン、キシレン、ヘキサン、オクタン、クロルベンゼンなどの上記付加反応に対して不活性な溶媒が用いられる。溶媒の使用量は、フラーレンに対して通常、1重量倍~100000重量倍の範囲である。 Usually, the above addition reaction is carried out in a solvent. When the addition reaction is carried out in a solvent, as the solvent, for example, a solvent inert to the addition reaction such as toluene, xylene, hexane, octane, chlorobenzene and the like is used. The amount of the solvent used is usually in the range of 1 to 100000 times the weight of fullerene.
 反応工程は、例えば溶媒中でグリシン誘導体とビスアルデヒドとフラーレンとを混合し、混合物を加熱して反応させることにより実施すればよい。反応温度は、通常50℃~350℃の範囲である。反応時間は、通常30分間から50時間である。 The reaction step may be performed, for example, by mixing a glycine derivative, bisaldehyde, and fullerene in a solvent and reacting the mixture by heating. The reaction temperature is usually in the range of 50 ° C to 350 ° C. The reaction time is usually 30 minutes to 50 hours.
 加熱による反応工程の終了後、得られた反応混合物を室温まで放冷し、溶媒をロータリーエバポレータで減圧留去して固形物を得る。得られた固形物をシリカゲルフラッシュカラムクロマトグラフィ及び分取薄層クロマトグラフィ(シリカゲル薄層クロマトグラフィ)により分離精製する。以上の工程により目的とするフラーレン誘導体を得ることができる。 After completion of the reaction step by heating, the obtained reaction mixture is allowed to cool to room temperature, and the solvent is distilled off under reduced pressure using a rotary evaporator to obtain a solid. The obtained solid is separated and purified by silica gel flash column chromatography and preparative thin layer chromatography (silica gel thin layer chromatography). The target fullerene derivative can be obtained by the above steps.
 原料であるグリシン誘導体、ビスアルデヒド化合物の使用量、反応時間といった反応条件等を適宜調整し、また分離精製条件を適宜調整することにより、所望の構造を有するフラーレン誘導体を選択的に得ることができる。 Fullerene derivatives having a desired structure can be selectively obtained by appropriately adjusting the reaction conditions such as the amount of glycine derivative and bisaldehyde compound used as raw materials and the reaction time, and by appropriately adjusting the separation and purification conditions. .
 <組成物>
 本発明のフラーレン誘導体は、電子受容性化合物としても電子供与性化合物としても用いることができる。特に電子受容性化合物として用いるのが好適である。また本発明のフラーレン誘導体は、特に塗布法により形成される活性層の材料として好適に用い得る。
 本発明のフラーレン誘導体を含有する組成物の性状は特に限定されない。例えば塗布法に用いられる塗工用の組成物とする場合には、本発明のフラーレン誘導体を任意好適な溶媒と混合して液体状(溶液状)とすればよい。
<Composition>
The fullerene derivative of the present invention can be used as both an electron accepting compound and an electron donating compound. It is particularly preferable to use it as an electron-accepting compound. The fullerene derivative of the present invention can be suitably used as a material for an active layer formed by a coating method.
The property of the composition containing the fullerene derivative of the present invention is not particularly limited. For example, when it is set as the composition for coating used for the apply | coating method, what is necessary is just to mix the fullerene derivative of this invention with arbitrary suitable solvents, and to make it liquid (solution state).
 (第1の組成物)
 詳細は後述するが、有機光電変換素子において、活性層が電子受容性化合物を含有する層(電子受容性層)と電子供与性化合物を含有する層(電子供与性層)とが接合された積層構造として構成される場合には、本発明のフラーレン誘導体を電子受容性化合物として含有し、かつ電子供与性化合物を不含とした組成物(第1の組成物)を、電子受容性層の構成成分として用いることができる。
(First composition)
As will be described in detail later, in an organic photoelectric conversion element, a layer in which an active layer contains a layer containing an electron-accepting compound (electron-accepting layer) and a layer containing an electron-donating compound (electron-donating layer) When configured as a structure, a composition (first composition) containing the fullerene derivative of the present invention as an electron-accepting compound and not containing an electron-donating compound is used as the structure of the electron-accepting layer. It can be used as a component.
 (第2の組成物)
 本発明のフラーレン誘導体が、有機光電変換素子において、電子受容性化合物及び電子供与性化合物の双方を含有する一層の活性層に用いられる場合には、本発明の組成物(第2の組成物)は、本発明のフラーレン誘導体と電子供与性化合物とを含む。
(Second composition)
When the fullerene derivative of the present invention is used in a single active layer containing both an electron-accepting compound and an electron-donating compound in an organic photoelectric conversion device, the composition of the present invention (second composition). Includes the fullerene derivative of the present invention and an electron donating compound.
 また前記第1の組成物及び第2の組成物は、使用態様に応じて選択された任意好適なその他の成分をさらに含んでいてもよい。 In addition, the first composition and the second composition may further include any other suitable component selected according to the use mode.
 電子受容性化合物としての本発明のフラーレン誘導体と組み合わせられる電子供与性化合物は、塗布性の観点からは、高分子化合物であることが好ましい。なお本明細書でいう高分子化合物とは、ポリスチレン換算の数平均分子量が好ましくは10以上であり、ポリスチレン換算の数平均分子量が通常10以下であり得る。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。
The electron donating compound combined with the fullerene derivative of the present invention as the electron accepting compound is preferably a polymer compound from the viewpoint of coatability. The polymer compound as used herein preferably has a polystyrene-equivalent number average molecular weight of 10 3 or more and a polystyrene-equivalent number average molecular weight of usually 10 8 or less.
Examples of the polymer compound include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene Examples include vinylene and its derivatives, polythienylene vinylene and its derivatives, and polyfluorene and its derivatives.
 有機光電変換素子に用いる電子供与性化合物は、光電変換効率の観点からは、下記式(7)で表される繰り返し単位及び式(8)で表される繰り返し単位からなる群から選ばれる、重量平均分子量がおよそ5×10~10の範囲の繰り返し単位を有する高分子化合物であることが好ましく、式(7)で表される繰り返し単位を有する高分子化合物であることがより好ましい。 The electron donating compound used in the organic photoelectric conversion element is selected from the group consisting of a repeating unit represented by the following formula (7) and a repeating unit represented by the following formula (8) from the viewpoint of photoelectric conversion efficiency. A polymer compound having a repeating unit having an average molecular weight in the range of about 5 × 10 3 to 10 6 is preferable, and a polymer compound having a repeating unit represented by the formula (7) is more preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記式(7)で表される繰り返し単位及び式(8)で表される繰り返し単位において、R、R、R、R、R、R、R、R10、R11及びR12は、独立して水素原子、アルキル基、アルコキシ基又はアリール基を表す。 In the repeating unit represented by the formula (7) and the repeating unit represented by the formula (8), R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 And R 12 independently represents a hydrogen atom, an alkyl group, an alkoxy group or an aryl group.
 前記式(7)で表される繰り返し単位において、R及びRがアルキル基である場合の炭素数及び具体例としては、前述の通り説明し例示したR及びRと同じアルキル基が挙げられる。R及びRがアルコキシ基である場合の炭素数及び具体例としては、前述の通り説明し例示したR及びRと同じアルコキシ基が挙げられる。R及びRがアリール基である場合の炭素数及び具体例としては、前述の通り説明し例示したR及びRと同じアリール基が挙げられる。 In the repeating unit represented by the formula (7), the carbon number and specific examples when R 3 and R 4 are alkyl groups include the same alkyl groups as R 1 and R 2 described and exemplified above. Can be mentioned. Examples of the carbon number and specific examples when R 3 and R 4 are alkoxy groups include the same alkoxy groups as R 1 and R 2 described and exemplified above. Examples of the carbon number and specific examples when R 3 and R 4 are aryl groups include the same aryl groups as R 1 and R 2 described and exemplified above.
 前記式(7)で表される繰り返し単位において、光電変換効率の観点からは、R及びRのうちの少なくとも一方が、炭素数が1~20であるアルキル基であることが好ましく、炭素数が4~8のアルキル基であることがより好ましい。
 前記式(7)で表される繰り返し単位からなる好適な高分子化合物としては、例えばRがHであり、RがC13であるポリ(3-ヘキシルチオフェン)ポリマー(P3HT)が挙げられる。
In the repeating unit represented by the formula (7), from the viewpoint of photoelectric conversion efficiency, it is preferable that at least one of R 3 and R 4 is an alkyl group having 1 to 20 carbon atoms, It is more preferable that the number is an alkyl group having 4 to 8.
As a suitable high molecular compound comprising the repeating unit represented by the formula (7), for example, a poly (3-hexylthiophene) polymer (P3HT) in which R 3 is H and R 4 is C 6 H 13 is used. Can be mentioned.
 前記式(8)で表される繰り返し単位において、R~R12がアルキル基である場合の炭素数及び具体例としては、前述の通り説明し例示したR及びRと同じアルキル基が挙げられる。R~R12がアルコキシ基である場合の炭素数及び具体例としては、前述の通り説明し例示したR及びRと同じアルコキシ基が挙げられる。R~R12がアリール基である場合の炭素数及び具体例としては、前述の通り説明し例示したR1及びRと同じアリール基が挙げられる。 In the repeating unit represented by the formula (8), the number of carbon atoms and specific examples in the case where R 5 to R 12 are alkyl groups include the same alkyl groups as R 1 and R 2 described and exemplified above. Can be mentioned. Examples of the carbon number and specific examples when R 5 to R 12 are alkoxy groups include the same alkoxy groups as R 1 and R 2 described and exemplified as described above. Examples of the carbon number and specific examples when R 5 to R 12 are aryl groups include the same aryl groups as R 1 and R 2 described and exemplified above.
 前記式(8)で表される繰り返し単位において、モノマーの合成の行いやすさの観点から、R~R12は水素原子であることが好ましい。また、光電変換効率の観点から、R及びRは炭素数が1~20であるアルキル基であるか、又は炭素数が6~20であるアリール基であることが好ましく、炭素数が5~8であるアルキル基であるか、又は炭素数が6~15のアリール基であることがより好ましい。 In the repeating unit represented by the formula (8), R 7 to R 12 are preferably hydrogen atoms from the viewpoint of ease of monomer synthesis. From the viewpoint of photoelectric conversion efficiency, R 5 and R 6 are preferably alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 20 carbon atoms, and have 5 carbon atoms. More preferably, it is an alkyl group having ˜8 or an aryl group having 6 to 15 carbon atoms.
 本発明の前記第2の組成物に含まれる電子受容性物質であるフラーレン誘導体は、電子供与性化合物100重量部に対して、10重量部~1000重量部であることが好ましく、50重量部~500重量部であることがより好ましい。 The fullerene derivative, which is an electron accepting substance contained in the second composition of the present invention, is preferably 10 parts by weight to 1000 parts by weight, and 50 parts by weight to 100 parts by weight of the electron donating compound. More preferably, it is 500 parts by weight.
 <有機光電変換素子>
 図1及び図2を参照して、本発明の有機光電変換素子の構成例につき説明する。
 図1は、有機光電変換素子の構成例(1)を示す概略的な断面図である。図2は、有機光電変換素子の構成例(2)を示す概略的な断面図である。
<Organic photoelectric conversion element>
With reference to FIG.1 and FIG.2, it demonstrates per structural example of the organic photoelectric conversion element of this invention.
FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of an organic photoelectric conversion element. FIG. 2 is a schematic cross-sectional view showing a configuration example (2) of the organic photoelectric conversion element.
 本発明の有機光電変換素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持されたフラーレン誘導体を含む層とを有している。
 この一対の電極のうち、少なくとも光が入射する側の電極、すなわち少なくとも一方の電極は、入射光を透過させる透明又は半透明の電極とされる。
The organic photoelectric conversion element of the present invention has a pair of electrodes composed of an anode and a cathode, and a layer containing a fullerene derivative sandwiched between the pair of electrodes.
Of the pair of electrodes, at least the electrode on the light incident side, that is, at least one of the electrodes is a transparent or translucent electrode that transmits the incident light.
 構成例(1)
 図1に示すように、構成例(1)の有機光電変換素子10は、例えば陽極である第1電極32及び例えば陰極である第2電極34からなる一対の電極と、該一対の電極間に挟持されたフラーレン誘導体を含む活性層40とを備えている。第1電極32及び第2電極34の極性は素子構造に対応した任意好適な極性とすればよく、第1電極32を陰極とし、かつ第2電極34を陽極とすることもできる。
Configuration example (1)
As shown in FIG. 1, the organic photoelectric conversion element 10 of the configuration example (1) includes, for example, a pair of electrodes including a first electrode 32 that is an anode and a second electrode 34 that is a cathode, and the pair of electrodes. And an active layer 40 including a sandwiched fullerene derivative. The polarities of the first electrode 32 and the second electrode 34 may be any suitable polarity corresponding to the element structure, and the first electrode 32 may be a cathode and the second electrode 34 may be an anode.
 有機光電変換素子は、通常、基板上に形成される。すなわち有機光電変換素子10は、基板20の主面上に設けられている。 The organic photoelectric conversion element is usually formed on a substrate. That is, the organic photoelectric conversion element 10 is provided on the main surface of the substrate 20.
 この基板20の材料は、電極を形成し、有機物を含有する層を形成する際に化学的に変化しないものであればよい。基板20の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。 The material of the substrate 20 may be any material that does not change chemically when forming an electrode and forming a layer containing an organic substance. Examples of the material of the substrate 20 include glass, plastic, polymer film, silicon, and the like.
 基板20が不透明である場合には、第1電極32と対向する、基板側とは反対側に設けられる第2電極34(すなわち基板20から遠い方の電極)が透明又は半透明であることが好ましい。 When the substrate 20 is opaque, the second electrode 34 (that is, the electrode far from the substrate 20) provided on the opposite side of the substrate facing the first electrode 32 may be transparent or translucent. preferable.
 活性層40は、第1電極32と第2電極34とに接して挟持されている。活性層40は、例えば電子受容性化合物である本発明のフラーレン誘導体と電子供与性化合物とを含有する有機層であって、光電変換機能にとって本質的な機能を有する層である。 The active layer 40 is sandwiched between the first electrode 32 and the second electrode 34. The active layer 40 is an organic layer containing, for example, the fullerene derivative of the present invention, which is an electron-accepting compound, and an electron-donating compound, and is a layer having an essential function for the photoelectric conversion function.
 基板20の主面上には、第1電極32が設けられている。活性層40は、第1電極32を覆って設けられている。第2電極34は、活性層40の表面に接触させて設けられている。 A first electrode 32 is provided on the main surface of the substrate 20. The active layer 40 is provided so as to cover the first electrode 32. The second electrode 34 is provided in contact with the surface of the active layer 40.
 構成例(2)
 図2に示すように、構成例(2)の有機光電変換素子は、第1電極32(陽極)及び第2電極34(陰極)からなる一対の電極と、前記一対の電極間に挟持される活性層40であって、本発明のフラーレン誘導体を含有する電子受容性層44、及び該電子受容性層44に接合される、電子供与性化合物を含む電子供与性層42を有している前記活性層40とを備えている。
Configuration example (2)
As shown in FIG. 2, the organic photoelectric conversion element of the configuration example (2) is sandwiched between a pair of electrodes including a first electrode 32 (anode) and a second electrode 34 (cathode) and the pair of electrodes. The active layer 40 includes an electron accepting layer 44 containing the fullerene derivative of the present invention, and the electron donating layer 42 containing an electron donating compound bonded to the electron accepting layer 44. And an active layer 40.
 有機光電変換素子10は、基板20の厚み方向から見た一方の主面上に設けられている。基板20の主面上には第1電極32が設けられている。 The organic photoelectric conversion element 10 is provided on one main surface viewed from the thickness direction of the substrate 20. A first electrode 32 is provided on the main surface of the substrate 20.
 活性層40は、第1電極32と第2電極34との双方に接して挟持されている。構成例2の活性層40は、例えば本発明のフラーレン誘導体を電子受容性化合物として含有する電子受容性層44と電子供与性化合物とを含有する電子供与性層42とが接合された積層構造とされている。 The active layer 40 is held in contact with both the first electrode 32 and the second electrode 34. The active layer 40 of Structural Example 2 has a laminated structure in which, for example, an electron accepting layer 44 containing the fullerene derivative of the present invention as an electron accepting compound and an electron donating layer 42 containing an electron donating compound are joined. Has been.
 電子供与性層42は、第1電極32を覆って設けられている。電子受容性層44は、電子供与性層32の全面を覆って設けられている。第2電極34は、電子受容性層44の表面に接触させて設けられている。 The electron donating layer 42 is provided so as to cover the first electrode 32. The electron accepting layer 44 is provided so as to cover the entire surface of the electron donating layer 32. The second electrode 34 is provided in contact with the surface of the electron accepting layer 44.
 なお、構成例(1)及び(2)では、本発明のフラーレン誘導体を電子受容性化合物として説明したが、本発明のフラーレン誘導体を電子供与性化合物として、構成例(1)の活性層40又は構成例(2)の電子供与性層42に含有させることもできる。 In the structural examples (1) and (2), the fullerene derivative of the present invention has been described as an electron-accepting compound. However, the active layer 40 of the structural example (1) or the fullerene derivative of the present invention is used as an electron-donating compound. It can also be contained in the electron donating layer 42 of the structural example (2).
 前記構成例(1)の有機光電変換素子10は、活性層40が電子受容性化合物と電子供与性化合物とを単一の層に含有する構成を備えており、ヘテロ接合界面をより多く含むため、光電変換効率がより向上するという観点から好ましい。 In the organic photoelectric conversion element 10 of the configuration example (1), the active layer 40 has a configuration in which the electron accepting compound and the electron donating compound are contained in a single layer, and includes more heterojunction interfaces. From the viewpoint of further improving the photoelectric conversion efficiency.
 有機光電変換素子10には、第1電極32及び第2電極34のうちの少なくとも一方の電極と本発明のフラーレン誘導体を含む活性層との間に付加的な層を設けてもよい。付加的な層としては、例えば、正孔又は電子を輸送する電荷輸送層(正孔輸送層、電子輸送層)が挙げられる。 The organic photoelectric conversion element 10 may be provided with an additional layer between at least one of the first electrode 32 and the second electrode 34 and the active layer containing the fullerene derivative of the present invention. Examples of the additional layer include a charge transport layer that transports holes or electrons (a hole transport layer or an electron transport layer).
 電荷輸送層を構成する材料としては、従来公知の任意好適な材料を用いることができる。電荷輸送層が電子輸送層である場合には、材料として2,9-ジメチル-4,7-ジフェニル-1,10-フェナンスロリン(BCP)が例示される。電荷輸送層が正孔輸送層である場合には、材料としてポリエチレンジオキシチオフェン(PEDOT)が例示される。 As the material constituting the charge transport layer, any conventionally known suitable material can be used. When the charge transport layer is an electron transport layer, examples of the material include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP). In the case where the charge transport layer is a hole transport layer, polyethylenedioxythiophene (PEDOT) is exemplified as the material.
 第1電極32及び/又は第2電極34と、フラーレン誘導体を含む層との間に設けてもよい付加的な層は、バッファ層であってもよく、バッファ層として用いられる材料としては、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタン等の酸化物等が挙げられる。また、無機半導体を用いる場合には、微粒子の形態で用いることもできる。 The additional layer that may be provided between the first electrode 32 and / or the second electrode 34 and the layer containing the fullerene derivative may be a buffer layer. And alkali metals such as lithium halide, halides of alkaline earth metals, oxides such as titanium oxide, and the like. When an inorganic semiconductor is used, it can be used in the form of fine particles.
 ここで本実施の形態の有機光電変換素子のとりうる層構成の一例を以下に示す。
a)陽極/活性層/陰極
b)陽極/正孔輸送層/活性層/陰極
c)陽極/活性層/電子輸送層/陰極
d)陽極/正孔輸送層/活性層/電子輸送層/陰極
e)陽極/電子供給性層/電子受容性層/陰極
f)陽極/正孔輸送層/電子供給性層/電子受容性層/陰極
g)陽極/電子供給性層/電子受容性層/電子輸送層/陰極
h)陽極/正孔輸送層/電子供給性層/電子受容性層/電子輸送層/陰極
(ここで記号「/」は、記号「/」を挟む層同士が隣接して積層されていることを示す)
Here, an example of the layer structure which the organic photoelectric conversion element of this Embodiment can take is shown below.
a) Anode / active layer / cathode b) Anode / hole transport layer / active layer / cathode c) Anode / active layer / electron transport layer / cathode d) Anode / hole transport layer / active layer / electron transport layer / cathode e) Anode / electron supply layer / electron acceptor layer / cathode f) Anode / hole transport layer / electron supply layer / electron acceptor layer / cathode g) Anode / electron supply layer / electron acceptor layer / electron Transport layer / cathode h) Anode / hole transport layer / electron supply layer / electron accepting layer / electron transport layer / cathode (herein, the symbol “/” indicates that the layers sandwiching the symbol “/” are adjacent to each other) Is shown)
 上記層構成は、陽極が基板により近い側に設けられる形態、及び陰極が基板により近い側に設けられる形態のいずれであってもよい。
 前記構成例(1)の有機光電変換素子10において、電子受容性化合物としてのフラーレン誘導体及び電子供与性化合物を含有する活性層40におけるフラーレン誘導体の割合は、電子供与性化合物100重量部に対して、10重量部~1000重量部とすることが好ましく、50重量部~500重量部とすることがより好ましい。
The layer configuration may be any of a form in which the anode is provided on the side closer to the substrate and a form in which the cathode is provided on the side closer to the substrate.
In the organic photoelectric conversion element 10 of the structural example (1), the ratio of the fullerene derivative in the active layer 40 containing the fullerene derivative as the electron-accepting compound and the electron-donating compound is 100 parts by weight of the electron-donating compound. The amount is preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight.
 前記構成例(1)の有機光電変換素子10において、フラーレン誘導体及び電子供与性化合物を含有する活性層40は、フラーレン誘導体と電子供与性化合物とを含む組成物を用いて製造することができる。 In the organic photoelectric conversion element 10 of the structural example (1), the active layer 40 containing the fullerene derivative and the electron donating compound can be produced using a composition containing the fullerene derivative and the electron donating compound.
 有機光電変換素子10に用いられるフラーレン誘導体を含む層(活性層40、電子供与性層42、電子受容性層44)は、該フラーレン誘導体を含む有機薄膜から形成されていることが好ましい。該有機薄膜の厚さは、通常1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。 The layer containing the fullerene derivative used in the organic photoelectric conversion element 10 (the active layer 40, the electron donating layer 42, and the electron accepting layer 44) is preferably formed from an organic thin film containing the fullerene derivative. The thickness of the organic thin film is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
 第1電極32及び/又は第2電極34を透明又は半透明の膜(薄膜)により形成される電極とする場合の電極材料の例としては、導電性の金属酸化物、半透明の金属等が挙げられる。電極材料としては、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウムスズ酸化物(ITO)、インジウム亜鉛酸化物等からなる導電性材料、NESA、金、白金、銀、銅等が用いられ、ITO、インジウム亜鉛酸化物、酸化スズが好ましい。また電極の材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等を用いてもよい。電極(第1電極32及び第2電極34)の形成方法の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。 Examples of the electrode material in the case where the first electrode 32 and / or the second electrode 34 are electrodes formed of a transparent or translucent film (thin film) include conductive metal oxides, translucent metals, and the like. Can be mentioned. Examples of the electrode material include indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO) which is a composite thereof, conductive material made of indium zinc oxide, NESA, gold, platinum, silver, copper, etc. ITO, indium zinc oxide, and tin oxide are preferable. Further, polyaniline and derivatives thereof, polythiophene and derivatives thereof, and the like may be used as electrode materials. Examples of the method for forming the electrodes (the first electrode 32 and the second electrode 34) include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
 透明又は半透明の電極と対向する他方の電極の電極材料としては、仕事関数の小さい材料が好ましい。仕事関数の小さい材料を含む電極は、透明又は半透明であってもよい。該材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又はそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイト又はグラファイトの層間に例えば前述の金属元素が配置された化合物(層間化合物)が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。 As the electrode material of the other electrode facing the transparent or translucent electrode, a material having a small work function is preferable. An electrode including a material having a low work function may be transparent or translucent. Examples of the material include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like, And alloys of two or more of them, or one or more of them and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite or graphite For example, a compound (interlayer compound) in which the aforementioned metal element is disposed between the layers is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
 次に、有機光電変換素子の動作機構を説明する。透明又は半透明の電極を透過して入射した光のエネルギーが電子受容性化合物及び/又は電子供与性化合物において吸収され、電子とホールの結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接(接合)しているヘテロ接合界面に達するとヘテロ接合界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子と正孔とが分離し、独立に動くことができる電荷(電子及び正孔)が発生する。発生した電荷が電極に移動することにより外部へ電気エネルギー(電流)として取り出すことができる。 Next, the operation mechanism of the organic photoelectric conversion element will be described. The energy of light incident through the transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent (junction), the difference between the HOMO energy and the LUMO energy at the heterojunction interface causes positive and negative electrons. Charges (electrons and holes) are generated that separate from the holes and can move independently. The generated electric charge moves to the electrode and can be taken out as electric energy (current).
 <有機薄膜の製造方法>
 前記有機薄膜の製造方法は、特に制限されない。製造方法としては、例えば、本発明に用いられるフラーレン誘導体を含む溶液(組成物)を調製し、この溶液を用いる成膜方法が挙げられる。
<Method for producing organic thin film>
The method for producing the organic thin film is not particularly limited. As a manufacturing method, for example, a film forming method using a solution (composition) containing a fullerene derivative used in the present invention and using this solution can be mentioned.
 前記溶液に用いられる溶媒は、本発明のフラーレン誘導体を溶解させるものであれば特に制限はない。溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。本発明のフラーレン誘導体は、通常、前記溶媒に0.1重量%以上溶解させることができる。 The solvent used in the solution is not particularly limited as long as it can dissolve the fullerene derivative of the present invention. Examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane. , Halogenated saturated hydrocarbon solvents such as chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydropyran, etc. An ether solvent is mentioned. The fullerene derivative of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
 前記溶液は、既に説明した高分子化合物をさらに含んでいてもよい。溶液に用いられる溶媒の具体例としては、前述と同様の溶媒が挙げられるが、高分子化合物の溶解性の観点からは、芳香族の炭化水素溶媒が好ましく、トルエン、キシレン、メシチレンがより好ましい。 The solution may further contain the polymer compound already described. Specific examples of the solvent used in the solution include the same solvents as described above. From the viewpoint of the solubility of the polymer compound, aromatic hydrocarbon solvents are preferable, and toluene, xylene, and mesitylene are more preferable.
 溶液を用いる成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 As a film forming method using a solution, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a spray coating method, a screen printing method, Flexographic printing methods, offset printing methods, inkjet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, and other coating methods can be used, and spin coating methods, flexographic printing methods, inkjet printing methods, and dispenser printing methods are preferred. .
 有機光電変換素子は、透明又は半透明の電極を透過するように太陽光等の光を入射させることにより、活性層を挟持する電極間に光起電力を発生させ、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。 An organic photoelectric conversion element generates photovoltaic power between electrodes sandwiching an active layer by allowing light such as sunlight to enter a transparent or translucent electrode, and operates as an organic thin film solar cell. be able to. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
 また有機光電変換素子の電極間に電圧を印加した状態で、透明又は半透明の電極を透過するように光を照射すると、光電流が流れる。よって有機光センサとして動作させることができる。有機光センサを複数集積することにより有機イメージセンサとして用いることもできる。 When a voltage is applied between the electrodes of the organic photoelectric conversion element and light is applied so as to pass through the transparent or translucent electrode, a photocurrent flows. Therefore, it can be operated as an organic light sensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
 合成(製造)に用いた試薬および溶媒は、市販品をそのまま使用するか、乾燥剤存在下で蒸留精製して使用した。C60フラーレンはフロンティアカーボン社製の製品を使用した。NMRスペクトルはJEOL社製 MH500又はJEOL社製 ECX500を用いて測定し、テトラメチルシラン(TMS)を内部標準に使用した。赤外吸収スペクトルは島津製作所社製 FT-IR 8000を用いて測定した。MALDI-TOF MSスペクトルはBRUKER社製AutoFLEX-T2を用いて測定した。 The reagents and solvents used in the synthesis (production) were either commercially available products or used after being purified by distillation in the presence of a desiccant. As C 60 fullerene, a product manufactured by Frontier Carbon Co. was used. The NMR spectrum was measured using MH500 manufactured by JEOL or ECX500 manufactured by JEOL, and tetramethylsilane (TMS) was used as an internal standard. The infrared absorption spectrum was measured using FT-IR 8000 manufactured by Shimadzu Corporation. The MALDI-TOF MS spectrum was measured using an AutoFLEX-T2 manufactured by BRUKER.
<実施例1>(フラーレン誘導体Aの合成)
 化合物[1]:ベンジル[2-(2-ヒドロキシエトキシ)エチルアミノ]アセタートを下記スキームに従って合成した。
<Example 1> (Synthesis of fullerene derivative A)
Compound [1]: Benzyl [2- (2-hydroxyethoxy) ethylamino] acetate was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 [第1ステップ]
 Dean-Starkトラップを装着した2口フラスコにブロモ酢酸(20.8g、150mmol)、ベンジルアルコール(16.2g、150mmol)、パラ-トルエンスルホン酸(258mg、1.5mmol)、ベンゼン(300mL)を加え、120℃で24時間脱水縮合した。次に溶媒をエバポレータで減圧留去した。次いで残留物をシリカゲルフラッシュカラムクロマトグラフィ(展開溶媒;ヘキサン:酢酸エチル=10:1、5:1)により精製し、黄色油状のブロモ酢酸ベンジルエステル(34.3g、150mmol)を定量的に得た。なお展開溶媒の組成は体積比である(以下の例においても同様である)。
[First step]
Bromoacetic acid (20.8 g, 150 mmol), benzyl alcohol (16.2 g, 150 mmol), para-toluenesulfonic acid (258 mg, 1.5 mmol), and benzene (300 mL) were added to a two-necked flask equipped with a Dean-Stark trap. And dehydration condensation at 120 ° C. for 24 hours. Next, the solvent was distilled off under reduced pressure using an evaporator. The residue was then purified by silica gel flash column chromatography (developing solvent; hexane: ethyl acetate = 10: 1, 5: 1) to quantitatively obtain bromoacetic acid benzyl ester (34.3 g, 150 mmol) as a yellow oil. The composition of the developing solvent is a volume ratio (the same applies to the following examples).
Rf 0.71(ヘキサン:酢酸エチル=4:1);
1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 3.81 (s, 2H), 5.14 (s, 2H), 7.31 (s, 5H);
13C NMR (125 MHz, ppm, CDCl3) δ 25.74, 67.79, 128.27, 128.48, 128.54, 134.88, 166.91;
IR (neat, cm-1) 2959, 1751, 1458, 1412, 1377, 1167, 972, 750, 698。
R f 0.71 (hexane: ethyl acetate = 4: 1);
1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 3.81 (s, 2H), 5.14 (s, 2H), 7.31 (s, 5H);
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 25.74, 67.79, 128.27, 128.48, 128.54, 134.88, 166.91;
IR (neat, cm -1 ) 2959, 1751, 1458, 1412, 1377, 1167, 972, 750, 698.
 [第2ステップ]
 アルゴン雰囲気下、上記第1ステップで得られたブロモ酢酸ベンジルエステル(13.7g、60mmol)のジクロロメタン(90mL)溶液を0℃に保ち、トリエチルアミン(17mL、120mmol)を加え、20分間、0℃で混合して混合液とした。次いで得られた混合液に2-(2-アミノエトキシ)エタノール(12mL、120mmol)のジクロロメタン(40mL)溶液を加え、室温で4時間攪拌して反応液とした。次に得られた反応液の有機相を3回水洗した後、無水硫酸マグネシウムで乾燥し、エバポレータで溶媒を減圧留去した。得られた残留物をシリカゲルフラッシュカラムクロマトグラフィ(展開溶媒;酢酸エチル:メタノール=1:0(酢酸エチルのみ)、10:1、5:1)により精製し、無色油状のグリシンエステルである化合物[1]:ベンジル[2-(2-ヒドロキシエトキシ)エチルアミノ]アセタート(12.2g、48.0mmol)を得た。収率は80%であった。
[Second step]
Under argon atmosphere, a solution of bromoacetic acid benzyl ester (13.7 g, 60 mmol) obtained in the first step above in dichloromethane (90 mL) was kept at 0 ° C., triethylamine (17 mL, 120 mmol) was added, and 20 minutes at 0 ° C. A mixed solution was obtained by mixing. Next, a solution of 2- (2-aminoethoxy) ethanol (12 mL, 120 mmol) in dichloromethane (40 mL) was added to the resulting mixture, and the mixture was stirred at room temperature for 4 hours to obtain a reaction solution. Next, the organic phase of the obtained reaction solution was washed with water three times, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure using an evaporator. The obtained residue was purified by silica gel flash column chromatography (developing solvent; ethyl acetate: methanol = 1: 0 (ethyl acetate only), 10: 1, 5: 1) to give a colorless oily glycine ester compound [1 ]: Benzyl [2- (2-hydroxyethoxy) ethylamino] acetate (12.2 g, 48.0 mmol) was obtained. The yield was 80%.
Rf 0.48(酢酸エチル:メタノール=2:1);
1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 2.83 (t, 2H, J=5.1 Hz), 3.50 (s, 2H), 3.52 (t, 2H, J= 4.6 Hz), 3.58 (t, 2H, J= 5.0 Hz), 3.65 (t, 2H, J= 4.6 Hz), 5.11 (s, 2H), 7.28-7.30 (m, 5H);
13C NMR (125 MHz, ppm, CDCl3) δ 48.46, 50.25, 61.29, 66.38, 69.80, 72.23, 126.63, 128.12, 128.37, 135.30, 171.78;
IR (neat, cm-1) 3412, 2880, 1719, 1638, 1560, 1508, 1458, 1067, 669。
R f 0.48 (ethyl acetate: methanol = 2: 1);
1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 2.83 (t, 2H, J = 5.1 Hz), 3.50 (s, 2H), 3.52 (t, 2H, J = 4.6 Hz), 3.58 ( t, 2H, J = 5.0 Hz), 3.65 (t, 2H, J = 4.6 Hz), 5.11 (s, 2H), 7.28-7.30 (m, 5H);
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 48.46, 50.25, 61.29, 66.38, 69.80, 72.23, 126.63, 128.12, 128.37, 135.30, 171.78;
IR (neat, cm −1 ) 3412, 2880, 1719, 1638, 1560, 1508, 1458, 1067, 669.
 化合物[2]:[2-(2-メトキシエトキシ)エチルアミノ]酢酸を下記スキームに従って合成した。 Compound [2]: [2- (2-methoxyethoxy) ethylamino] acetic acid was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 [第1ステップ]
 アルゴン雰囲気下、化合物[1]:ベンジル[2-(2-ヒドロキシエトキシ)エチルアミノ]アセタート(6.58g、26mmol)のジクロロメタン(50mL)溶液を0℃に保ち、トリエチルアミン(4.3mL、31mmol)を加えた。次いで4-(N,N-ジメチルアミノ)ピリジン(DMAP)(32mg、0.26mmol)を加えて混合液とした。得られた混合液を20分間攪拌した。次に混合液にジ-tert-ブチルジカルボネート(6.77g、31mmol)のジクロロメタン(10mL)溶液を滴下して反応混合液とした。次いで反応混合液を室温で4時間攪拌後、水を入れた3角フラスコ中に注ぎ入れて反応を停止し、ジエチルエーテル抽出を3回行った。得られた有機相を乾燥後、減圧濃縮した。次いでシリカゲルフラッシュカラムクロマトグラフィ(展開溶媒;ヘキサン:酢酸エチル=3:1、2.5:1、2:1)により精製して、無色油状のベンジル{tert-ブトキシカルボニル-[2-(2-ヒドロキシ-エトキシ)エチル]アミノ}アセタート(5.83g、16.5mmol)を得た。収率は63%であった。
[First step]
Under an argon atmosphere, a solution of compound [1]: benzyl [2- (2-hydroxyethoxy) ethylamino] acetate (6.58 g, 26 mmol) in dichloromethane (50 mL) was kept at 0 ° C. to obtain triethylamine (4.3 mL, 31 mmol). Was added. Then 4- (N, N-dimethylamino) pyridine (DMAP) (32 mg, 0.26 mmol) was added to make a mixture. The resulting mixture was stirred for 20 minutes. Next, a solution of di-tert-butyl dicarbonate (6.77 g, 31 mmol) in dichloromethane (10 mL) was added dropwise to the mixture to prepare a reaction mixture. Next, the reaction mixture was stirred at room temperature for 4 hours, poured into a triangular flask containing water, the reaction was stopped, and diethyl ether extraction was performed three times. The obtained organic phase was dried and concentrated under reduced pressure. Then, the residue was purified by silica gel flash column chromatography (developing solvent; hexane: ethyl acetate = 3: 1, 2.5: 1, 2: 1) to give colorless oily benzyl {tert-butoxycarbonyl- [2- (2-hydroxy -Ethoxy) ethyl] amino} acetate (5.83 g, 16.5 mmol) was obtained. The yield was 63%.
Rf 0.58(酢酸エチル:メタノール=20:1);
1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 1.34 (d, 9H, J= 54.5 Hz), 2.19 (brs, 1H), 3.38-3.45 (m, 4H), 3.50-3.60 (m, 4H), 3.99 (d, 2H, J= 41.3 Hz), 5.09 (d, 2H, J= 4.1 Hz), 7.25-7.30 (m, 5H);
13C NMR (125 MHz, ppm, CDCl3) δ 27.82, 28.05, 47.90, 48.20, 49.81, 50.39, 61.23, 66.42, 69.92, 72.12, 80.08, 127.93, 128.14, 135.25, 154.99, 155.19, 169.94, 170.07;
IR (neat, cm-1) 3449, 2934, 2872, 1751, 1701, 1458, 1400, 1367, 1252, 1143;
Anal. Calcd for C18H27NO6: C, 61.17; H, 7.70; N, 3.96. Found: C, 60.01; H, 7.75; N, 4.13。
R f 0.58 (ethyl acetate: methanol = 20: 1);
1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 1.34 (d, 9H, J = 54.5 Hz), 2.19 (brs, 1H), 3.38-3.45 (m, 4H), 3.50-3.60 (m , 4H), 3.99 (d, 2H, J = 41.3 Hz), 5.09 (d, 2H, J = 4.1 Hz), 7.25-7.30 (m, 5H);
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 27.82, 28.05, 47.90, 48.20, 49.81, 50.39, 61.23, 66.42, 69.92, 72.12, 80.08, 127.93, 128.14, 135.25, 154.99, 155.19, 169.94, 170.07;
IR (neat, cm -1 ) 3449, 2934, 2872, 1751, 1701, 1458, 1400, 1367, 1252, 1143;
. Anal Calcd for C 18 H 27 NO 6:. C, 61.17; H, 7.70; N, 3.96 Found: C, 60.01; H, 7.75; N, 4.13.
 [第2ステップ]
 アルゴンガス雰囲気下、水素化ナトリウム(1.2g、24.8mmol、50% in meneral oil)のテトラヒドロフラン(THF)(10mL)溶液にベンジル{tert-ブトキシカルボニル-[2-(2-ヒドロキシ-エトキシ)エチル]アミノ}アセタート(5.83g、16.5mmol)のTHF(20mL)溶液を0℃で滴下し、0℃で20分間攪拌後、ヨードメタン(1.6mL、24.8mmol)を0℃で加えて反応混合液とした。次いで反応混合液を室温で20時間攪拌した後、アイスバスで冷却しながら水を加えて反応を停止した。エーテル抽出を3回行って、有機相を乾燥後、減圧濃縮し、シリカゲルフラッシュカラムクロマトグラフィ(展開溶媒;ヘキサン:酢酸エチル=5:1、3:1)により精製して、無色油状のベンジル{tert-ブトキシカルボニル-[2-(2-メトキシ-エトキシ)エチル]アミノ}アセタート(3.02g、8.21mmol)を得た。収率は50%であった。
[Second step]
Under an argon gas atmosphere, sodium hydride (1.2 g, 24.8 mmol, 50% in general oil) in tetrahydrofuran (THF) (10 mL) was added to benzyl {tert-butoxycarbonyl- [2- (2-hydroxy-ethoxy)]. Ethyl] amino} acetate (5.83 g, 16.5 mmol) in THF (20 mL) was added dropwise at 0 ° C., stirred at 0 ° C. for 20 minutes, and then iodomethane (1.6 mL, 24.8 mmol) was added at 0 ° C. The reaction mixture was prepared. The reaction mixture was then stirred at room temperature for 20 hours, and water was added while cooling with an ice bath to stop the reaction. The organic phase was dried, concentrated under reduced pressure, and purified by silica gel flash column chromatography (developing solvent; hexane: ethyl acetate = 5: 1, 3: 1) to give a colorless oily benzyl {tert -Butoxycarbonyl- [2- (2-methoxy-ethoxy) ethyl] amino} acetate (3.02 g, 8.21 mmol) was obtained. The yield was 50%.
Rf 0.54(ヘキサン:酢酸エチル=1:1);
1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 1.34 (d, 9H, J= 51.8 Hz), 3.28 (d, 3H, J= 2.7 Hz), 3.37-3.46 (m, 6H), 3.52 (dt, 2H, J= 5.4Hz, 16.5 Hz), 4.02 (d, 2H, J= 34.8 Hz), 5.09 (d, 2H, J=4.5 Hz), 7.24-7.30 (m, 5H);
13C NMR (125 MHz, ppm, CDCl3) δ 24.93, 25.16, 44.68, 45.00, 46.70, 47.40, 55.78, 63.30, 67.22, 68.60, 76.95, 124.98, 125.14, 125.36, 132.49, 151.99, 152.31, 166.84, 166.96;
IR (neat, cm-1) 2880, 1751, 1701, 1560, 1458, 1400, 1366, 1117, 698, 617;
Anal. Calcd for C19H29NO6: C, 62.11; H, 7.96; N, 3.81. Found: C, 62.15; H, 8.16; N, 3.83。
R f 0.54 (hexane: ethyl acetate = 1: 1);
1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 1.34 (d, 9H, J = 51.8 Hz), 3.28 (d, 3H, J = 2.7 Hz), 3.37-3.46 (m, 6H), 3.52 (dt, 2H, J = 5.4Hz, 16.5 Hz), 4.02 (d, 2H, J = 34.8 Hz), 5.09 (d, 2H, J = 4.5 Hz), 7.24-7.30 (m, 5H);
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 24.93, 25.16, 44.68, 45.00, 46.70, 47.40, 55.78, 63.30, 67.22, 68.60, 76.95, 124.98, 125.14, 125.36, 132.49, 151.99, 152.31, 166.84, 166.96 ;
IR (neat, cm -1 ) 2880, 1751, 1701, 1560, 1458, 1400, 1366, 1117, 698, 617;
Anal. Calcd for C 19 H 29 NO 6 : C, 62.11; H, 7.96; N, 3.81. Found: C, 62.15; H, 8.16; N, 3.83.
 [第3ステップ]
 アルゴン雰囲気下、ベンジル{tert-ブトキシカルボニル-[2-(2-メトキシ-エトキシ)エチル]アミノ}アセタート(3.02g、8.21mmol)のジクロロメタン(17mL)溶液にトリフルオロ酢酸(TFA)(9.0mL)を加え室温で7時間攪拌した。次いで10%炭酸ナトリウム水溶液を加えてpH10に調整し、ジクロロメタン抽出を行った。得られた有機相を無水硫酸マグネシウムで乾燥して、減圧濃縮することにより、黄色油状のベンジル[2-(2-メトキシ-エトキシ)エチルアミノ]アセタート(2.18g、8.19mmol)を定量的に得た。
[Third step]
To a solution of benzyl {tert-butoxycarbonyl- [2- (2-methoxy-ethoxy) ethyl] amino} acetate (3.02 g, 8.21 mmol) in dichloromethane (17 mL) under an argon atmosphere was added trifluoroacetic acid (TFA) (9 0.0 mL) and stirred at room temperature for 7 hours. Subsequently, 10% sodium carbonate aqueous solution was added to adjust to pH 10, and dichloromethane extraction was performed. The obtained organic phase was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to quantitatively analyze yellow oily benzyl [2- (2-methoxy-ethoxy) ethylamino] acetate (2.18 g, 8.19 mmol). I got it.
Rf 0.32 (酢酸エチル:メタノール=20:1);
1H NMR (500 MHz, ppm, CDCl3, J=Hz) δ 1.99 (brs, 1H), 2.83 (t, 2H, J= 5.3 Hz), 3.38 (s, 3H), 3.50 (s, 2H), 3.54 (t, 2H, J= 4.6 Hz), 3.60-3.62 (m, 4H), 5.17 (s, 2H), 7.32-7.38 (m, 5H);
13C NMR (125 MHz, ppm, CDCl3) δ 48.46, 50.66, 58.76, 66.20, 70.00, 70.44, 71.64, 128.09, 128.33, 135.44, 171.84;
IR (neat, cm-1) 3350, 2876, 1736, 1560, 1458, 1117, 1030, 698, 619;
Anal. Calcd for C14H21NO4: C, 62.90; H, 7.92; N, 5.24. Found: C, 62.28; H, 8.20; N, 5.05。
R f 0.32 (ethyl acetate: methanol = 20: 1);
1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 1.99 (brs, 1H), 2.83 (t, 2H, J = 5.3 Hz), 3.38 (s, 3H), 3.50 (s, 2H), 3.54 (t, 2H, J = 4.6 Hz), 3.60-3.62 (m, 4H), 5.17 (s, 2H), 7.32-7.38 (m, 5H);
13 C NMR (125 MHz, ppm, CDCl 3 ) δ 48.46, 50.66, 58.76, 66.20, 70.00, 70.44, 71.64, 128.09, 128.33, 135.44, 171.84;
IR (neat, cm -1 ) 3350, 2876, 1736, 1560, 1458, 1117, 1030, 698, 619;
Anal. Calcd for C 14 H 21 NO 4 : C, 62.90; H, 7.92; N, 5.24. Found: C, 62.28; H, 8.20; N, 5.05.
 [第4ステップ]
 ベンジル[2-(2-メトキシ-エトキシ)エチルアミノ]アセタート(2.19g、8.19mmol)のメタノール(27mL)溶液に、パラジウムを10重量%担持させた活性炭(219mg)を室温で加えた。水素ガスをパージした後、水素雰囲気下、室温で7時間攪拌した。セライトパッドをしきつめたグラスフィルタでPd/Cを除去し、セライト層をメタノールで洗浄して、得られた濾液を減圧濃縮することにより、黄色油状の化合物[2]:[2-(2-メトキシエトキシ)エチルアミノ]酢酸(1.38g、7.78mmol)を得た。収率は95%であった。
[Fourth step]
Activated carbon (219 mg) on which 10% by weight of palladium was supported was added to a solution of benzyl [2- (2-methoxy-ethoxy) ethylamino] acetate (2.19 g, 8.19 mmol) in methanol (27 mL) at room temperature. After purging with hydrogen gas, the mixture was stirred at room temperature for 7 hours under a hydrogen atmosphere. Pd / C was removed with a glass filter with a celite pad, the celite layer was washed with methanol, and the filtrate obtained was concentrated under reduced pressure to give yellow oily compound [2]: [2- (2-methoxy Ethoxy) ethylamino] acetic acid (1.38 g, 7.78 mmol) was obtained. The yield was 95%.
1H NMR (500 MHz, ppm, MeOD, J=Hz) δ 3.21 (t, 2H, J= 5.1 Hz), 3.38 (s, 3H), 3.51 (s, 2H), 3.57 (t, 2H, J= 4.4 Hz), 3.65 (t, 2H, J= 4.6 Hz), 3.73 (t, 2H, J= 5.1 Hz);
13C NMR (125 MHz, ppm, MeOD) δ 48.13, 50.49, 59.16, 67.08, 71.05, 72.85, 171.10;
IR (neat, cm-1) 3414, 2827, 1751, 1630, 1369, 1111, 1028, 851, 799;
Anal. Calcd for C7H15NO4: C, 47.45; H, 8.53; N, 7.90. Found: C, 46.20; H, 8.49; N, 7.43。
1 H NMR (500 MHz, ppm, MeOD, J = Hz) δ 3.21 (t, 2H, J = 5.1 Hz), 3.38 (s, 3H), 3.51 (s, 2H), 3.57 (t, 2H, J = 4.4 Hz), 3.65 (t, 2H, J = 4.6 Hz), 3.73 (t, 2H, J = 5.1 Hz);
13 C NMR (125 MHz, ppm, MeOD) δ 48.13, 50.49, 59.16, 67.08, 71.05, 72.85, 171.10;
IR (neat, cm -1 ) 3414, 2827, 1751, 1630, 1369, 1111, 1028, 851, 799;
. Anal Calcd for C 7 H 15 NO 4:. C, 47.45; H, 8.53; N, 7.90 Found: C, 46.20; H, 8.49; N, 7.43.
 化合物[3]:5-(5-(5-ホルミルチオフェン-2-イル)チオフェン-2-イル)チオフェン-2-カルボアルデヒド(5-(5-(5-formylthiophen-2-yl)thiophen-2-yl)thiophene-2-carbaldehyde)を下記スキームに従って合成した。 Compound [3]: 5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde (5- (5- (5-formylthiophen-2-yl) thiophen-2 -yl) thiophene-2-carbaldehyde) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 容量30mLの2口フラスコにターチオフェン(terthiophene;分子量248.39)(250mg、1.01mmol)を加えた。フラスコ内の気体をアルゴンで置換後、N、N-ジメチルホルムアミド(DMF)(162mg、2.21mmol)及びジクロロエタン(5.0mL)を加え、得られた混合液を0℃に保ち、塩化ホスホリル(POCl3)(0.21mL、2.21mmol)を加え、50℃で6時間撹拌して反応溶液とした。室温まで放冷後、反応溶液に1M-酢酸ナトリウム水溶液を加えて反応を停止した後、ジクロロメタンで抽出を行い、有機相を無水硫酸ナトリウムで乾燥し、濾過し、減圧濃縮して、シリカゲルカラムクロマトグラフィ(展開溶媒;ジクロロメタン:酢酸エチル=1:0、10:1、1:1)により精製することで、化合物[3]:5-(5-(5-ホルミルチオフェン-2-イル)チオフェン-2-イル)チオフェン-2-カルボアルデヒド(5-(5-(5-formylthiophen-2-yl)thiophen-2-yl)thiophene-2-carbaldehyde;分子量304.41)(38mg、0.125mmol)を得た。収率は12%であった。なお反応が途中で止まった化合物[4]:モノカルボアルデヒド(分子量276.4)(231mg、0.84mmol)が併せて得られた。収率は83%であった。 Terthiophene (molecular weight 248.39) (250 mg, 1.01 mmol) was added to a 30-mL two-necked flask. After replacing the gas in the flask with argon, N, N-dimethylformamide (DMF) (162 mg, 2.21 mmol) and dichloroethane (5.0 mL) were added, and the resulting mixture was kept at 0 ° C. and phosphoryl chloride ( POCl 3 ) (0.21 mL, 2.21 mmol) was added and stirred at 50 ° C. for 6 hours to obtain a reaction solution. After allowing to cool to room temperature, the reaction solution is quenched with 1M sodium acetate aqueous solution and extracted with dichloromethane. The organic phase is dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure, and silica gel column chromatography. (Developing solvent; dichloromethane: ethyl acetate = 1: 0, 10: 1, 1: 1) to purify compound [3]: 5- (5- (5-formylthiophen-2-yl) thiophene-2 -Yl) thiophene-2-carbaldehyde (5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde; molecular weight 304.41) (38 mg, 0.125 mmol) It was. The yield was 12%. In addition, Compound [4]: Monocarbaldehyde (molecular weight 276.4) (231 mg, 0.84 mmol) which stopped reaction in the middle was also obtained. The yield was 83%.
 フラーレン誘導体Aを下記スキームに従って合成した。 Fullerene derivative A was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物[3]:5-(5-(5-ホルミルチオフェン-2-イル)チオフェン-2-イル)チオフェン-2-カルボアルデヒド(5-(5-(5-formylthiophen-2-yl)thiophen-2-yl)thiophene-2-carbaldehyde)(21mg、0.070mmol)、化合物[2]:[2-(2-メトキシエトキシ)エチルアミノ]酢酸(71mg、0.40mmol)、C60フラーレン(630mg、0.88mmol)を容量100mLの2口ナスフラスコに加え、クロロベンゼン(60mL)に溶解した反応溶液を7時間加熱還流した。反応溶液を室温まで放冷後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィ(展開溶媒;二硫化炭素:酢酸エチル=1:0、30:1)を用いて未反応のC60フラーレンを除去し、残渣をシリカゲル薄層クロマトグラフィ(展開溶媒;トルエン:酢酸エチル=10:1)により精製した。フラーレンに2個の環が付加したフラーレン誘導体であるフラーレン誘導体A(分子量1255.40)(67mg、0.050mmol)を得た。収率は76%であった。 Compound [3]: 5- (5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde (5- (5- (5-formylthiophen-2-yl) thiophen-2 -yl) thiophene-2-carbaldehyde) (21 mg, 0.070 mmol), compound [2]: [2- (2-methoxyethoxy) ethylamino] acetic acid (71 mg, 0.40 mmol), C 60 fullerene (630 mg, 0 .88 mmol) was added to a 100 mL two-necked eggplant flask, and the reaction solution dissolved in chlorobenzene (60 mL) was heated to reflux for 7 hours. The reaction solution is allowed to cool to room temperature, the solvent is distilled off under reduced pressure, and unreacted C 60 fullerene is removed using silica gel column chromatography (developing solvent; carbon disulfide: ethyl acetate = 1: 0, 30: 1). The residue was purified by silica gel thin layer chromatography (developing solvent; toluene: ethyl acetate = 10: 1). Fullerene derivative A (molecular weight 1255.40) (67 mg, 0.050 mmol), which is a fullerene derivative in which two rings were added to fullerene, was obtained. The yield was 76%.
<実施例2>(フラーレン誘導体Cの合成)
 フラーレン誘導体(C)を下記スキームに従って合成した。
 ジムロートコンデンサを装着した容量100mLの2口フラスコに、C60フラーレン(216mg、0.30mmol)と、化合物[2]:[2-(2-メトキシエトキシ)エチルアミノ]酢酸(89mg、0.50mmol)と、化合物[8]:5,5-(2,1,3-ベンゾチアジアゾール-4,7-ジイル)ビス-2-チオフェンカルボキサルデヒド(5,5-(2,1,3-Benzothiadiazole-4,7-diyl)bis-2-thiophenecarboxaldehyde)(71mg、0.20mmol)とを入れ、100mLのクロロベンゼンを加えて3時間加熱還流した。室温まで放冷後、ロータリーエバポレータで溶媒を除去し、残渣をメタノールで5回洗浄した。次いで、洗浄後の残渣をシリカゲルフラッシュカラムクロマトグラフィ(展開溶媒;二硫化炭素:酢酸エチル=1:0、10:1)、分取薄層クロマトグラフィ(展開溶媒;二硫化炭素:酢酸エチル=10:1)で精製し、フラーレン誘導体Cを113mg(0.09mmol)得た。フラーレン誘導体Cは褐色粉末として得られた。フラーレン誘導体Cの収率は43%であった。
<Example 2> (Synthesis of fullerene derivative C)
Fullerene derivative (C) was synthesized according to the following scheme.
In a 100 mL two-necked flask equipped with a Dimroth condenser, C 60 fullerene (216 mg, 0.30 mmol) and compound [2]: [2- (2-methoxyethoxy) ethylamino] acetic acid (89 mg, 0.50 mmol) And compound [8]: 5,5- (2,1,3-benzothiadiazole-4,7-diyl) bis-2-thiophenecarboxaldehyde (5,5- (2,1,3-Benzothiadiazole-4 , 7-diyl) bis-2-thiophenecarboxaldehyde) (71 mg, 0.20 mmol), 100 mL of chlorobenzene was added, and the mixture was heated to reflux for 3 hours. After cooling to room temperature, the solvent was removed with a rotary evaporator, and the residue was washed 5 times with methanol. Subsequently, the washed residue is subjected to silica gel flash column chromatography (developing solvent; carbon disulfide: ethyl acetate = 1: 0, 10: 1), preparative thin layer chromatography (developing solvent; carbon disulfide: ethyl acetate = 10: 1). ) To obtain 113 mg (0.09 mmol) of fullerene derivative C. Fullerene derivative C was obtained as a brown powder. The yield of fullerene derivative C was 43%.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 実施例1及び2から明らかなように、本発明のフラーレン誘導体の製造方法によれば、2価の有機基(Q)により互いに連結された2個の環構造(B環)が付加したフラーレン誘導体を効率よく製造することができる。本発明のフラーレン誘導体の製造方法によれば、付加基、又は原料であるビスアルデヒド化合物、グリシン誘導体の構造に起因してこれらのフラーレン環における付加位置が限定されるため、付加数の異なる副生物や異性体の生成を効果的に抑制することができる。よって本発明のフラーレン誘導体を極めて高い収率で得ることができる。従って本発明のフラーレン誘導体の製造方法は生産性において極めて優れた製造方法であり、適用される例えば有機光電変換素子の製造コストの削減に大いに寄与する。 As is clear from Examples 1 and 2, according to the method for producing a fullerene derivative of the present invention, a fullerene derivative in which two ring structures (B ring) connected to each other by a divalent organic group (Q) are added. Can be manufactured efficiently. According to the method for producing a fullerene derivative of the present invention, the addition position in the fullerene ring is limited due to the structure of the addition group or the raw material bisaldehyde compound or glycine derivative. And the formation of isomers can be effectively suppressed. Therefore, the fullerene derivative of the present invention can be obtained in an extremely high yield. Therefore, the production method of the fullerene derivative of the present invention is an extremely excellent production method, and greatly contributes to the reduction of the production cost of the applied organic photoelectric conversion element, for example.
 また本発明のフラーレン誘導体の製造方法によれば、上述したように目的とするフラーレン誘導体の収率が極めて高いため、精製によるさらなる高純度化が容易である。よってかかる製造方法により製造されたフラーレン誘導体は、有機光電変換素子の電気的特性、ひいては光電変換効率のさらなる向上に大いに寄与する。 Further, according to the method for producing a fullerene derivative of the present invention, since the yield of the target fullerene derivative is extremely high as described above, further purification by purification is easy. Therefore, the fullerene derivative manufactured by such a manufacturing method greatly contributes to further improvement of the electrical characteristics of the organic photoelectric conversion element, and consequently the photoelectric conversion efficiency.
<比較例1>(フラーレン誘導体Bの合成)
 フラーレン誘導体Bを下記スキームに従って合成した。
<Comparative Example 1> (Synthesis of fullerene derivative B)
Fullerene derivative B was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 ジムロートコンデンサを装着した2口フラスコ(200mL)にフラーレンC60(500mg、0.69mmol)、化合物[2]:[2-(2-メトキシエトキシ)エチルアミノ]酢酸(369mg、2.08mmol)、化合物[5]:2-メトキシベンズアルデヒド(2-methoxybenzaldehyde)(470mg、3.45mmol)を入れ、クロロベンゼン(100mL)を加えて3時間加熱還流した。室温まで放冷後、ロータリーエバポレータで溶媒を除去し、ついでシリカゲルフラッシュカラムクロマトグラフィ(展開溶媒;トルエン:酢酸エチル=1:0から10:0)を用いて精製した後、分取薄層クロマトグラフィ(展開溶媒;二硫化炭素:酢酸エチル=10:1)を用いて分取し、フラーレンC60(95mg、0.13mmol)、化合物[6]:モノ付加体(フラーレン誘導体C)(302mg、0.31mmol)、褐色粉末である化合物[7]:ジ付加体(フラーレン誘導体B)(237mg、0.19mmol)を得た。フラーレンに2個の環が付加したフラーレン誘導体であるフラーレン誘導体Bの収率は28%であった。 Fullerene C 60 (500 mg, 0.69 mmol), compound [2]: [2- (2-methoxyethoxy) ethylamino] acetic acid (369 mg, 2.08 mmol), compound in a two-necked flask (200 mL) equipped with a Dimroth condenser [5]: 2-Methoxybenzaldehyde (470 mg, 3.45 mmol) was added, chlorobenzene (100 mL) was added, and the mixture was heated to reflux for 3 hours. After allowing to cool to room temperature, the solvent was removed with a rotary evaporator, and after purification using silica gel flash column chromatography (developing solvent; toluene: ethyl acetate = 1: 0 to 10: 0), preparative thin layer chromatography (development) Solvent; carbon disulfide: ethyl acetate = 10: 1), fractionated, fullerene C 60 (95 mg, 0.13 mmol), compound [6]: monoadduct (fullerene derivative C) (302 mg, 0.31 mmol) ), Compound [7]: Diadduct (fullerene derivative B) (237 mg, 0.19 mmol) as a brown powder. The yield of fullerene derivative B, which is a fullerene derivative in which two rings were added to fullerene, was 28%.
フラーレン誘導体B:
IR (Neat, cm-1) 2864, 2827, 1489, 1460, 1425, 1284, 1244, 1179, 1109, 1048, 1026, 754, 729, 527; 
MALDI-TOF-MS (matrix: SA) found 1222.3297 (calcd for C88H42N2O6: Exact Mass: 1222.3, Mol. Wt.: 1223.28. m/e: 1222.30 (100.0%), 1223.31 (95.9%), 1224.31 (46.7%), 1225.31 (15.4%), 1226.32 (3.8%)。
フラーレン誘導体C:
1H NMR (500 MHz, ppm, CDCl3, J= Hz) δ 2.77-2.82 (1H, m), 3.39 (3H, s), 3.61 (2H, t, J= 4.5 Hz), 3.69 (3H, s), 3.71-3.78 (2H, m), 3.92-4.02 (2H, m), 4.27 (1H, d, J= 9.6 Hz), 5.18 (1H, d, J=9.6 Hz), 5.73 (1H, s), 6.85 (1H, d, J=8.2 Hz), 7.01 (2H, t, J=7.5 Hz), 7.20 (1H, m), 7.94 (1H, d, J= 7.8Hz); 13C NMR (125 MHz, ppm, CDCl3) δ52.19, 54.71, 58.77, 67.45, 69.17, 70.49, 70.57, 71.96, 73.92, 75.24, 76.75, 110.67, 121.10, 125.42, 128.80, 129.74, 134.32, 135.79, 136.21, 136.31, 139.09, 139.17, 139.86, 139.96, 141.27, 141.42, 141.52, 141.69, 141.78, 141.88, 141.96, 142.00, 142.05, 142.27, 142.33, 142.36, 142.71, 142.76, 144.08, 144.13, 144.29, 144.77, 144.94, 144.97, 145.03, 145.28, 145.44, 145.59, 145.74, 145.81, 145.86, 145.90, 145.94, 146.25, 146.47, 146.96, 153.86, 153.91, 154.76, 156.72, 157.79;
 IR (Neat, cm-1) 2864, 2827, 1489, 1460, 1425, 1284, 1244, 1179, 1109, 1048, 1026, 754, 729, 527; MALDI-TOF-MS (matrix: SA) found 971.1526 (calcd for C74H21NO3Exact Mass: 971.1521).
Fullerene derivative B:
IR (Neat, cm -1 ) 2864, 2827, 1489, 1460, 1425, 1284, 1244, 1179, 1109, 1048, 1026, 754, 729, 527;
MALDI-TOF-MS (matrix: SA) found 1222.3297 (calcd for C 88 H 42 N 2 O 6 : Exact Mass: 1222.3, Mol.Wt .: 1223.28.m / e: 1222.30 (100.0%), 1223.31 (95.9% ), 1224.31 (46.7%), 1225.31 (15.4%), 1226.32 (3.8%).
Fullerene derivative C:
1 H NMR (500 MHz, ppm, CDCl 3 , J = Hz) δ 2.77-2.82 (1H, m), 3.39 (3H, s), 3.61 (2H, t, J = 4.5 Hz), 3.69 (3H, s ), 3.71-3.78 (2H, m), 3.92-4.02 (2H, m), 4.27 (1H, d, J = 9.6 Hz), 5.18 (1H, d, J = 9.6 Hz), 5.73 (1H, s) , 6.85 (1H, d, J = 8.2 Hz), 7.01 (2H, t, J = 7.5 Hz), 7.20 (1H, m), 7.94 (1H, d, J = 7.8Hz); 13 C NMR (125 MHz , ppm, CDCl 3 ) δ52.19, 54.71, 58.77, 67.45, 69.17, 70.49, 70.57, 71.96, 73.92, 75.24, 76.75, 110.67, 121.10, 125.42, 128.80, 129.74, 134.32, 135.79, 136.21, 136.31, 139.09, 139.17, 139.86, 139.96, 141.27, 141.42, 141.52, 141.69, 141.78, 141.88, 141.96, 142.00, 142.05, 142.27, 142.33, 142.36, 142.71, 142.76, 144.08, 144.13, 144.29, 144.77, 144.94, 144.97, 145.028, 145.97, 145.028 145.44, 145.59, 145.74, 145.81, 145.86, 145.90, 145.94, 146.25, 146.47, 146.96, 153.86, 153.91, 154.76, 156.72, 157.79;
IR (Neat, cm -1 ) 2864, 2827, 1489, 1460, 1425, 1284, 1244, 1179, 1109, 1048, 1026, 754, 729, 527; MALDI-TOF-MS (matrix: SA) found 971.1526 (calcd for C 74 H 21 NO 3 Exact Mass: 971.1521).
<実施例3>(有機薄膜太陽電池の作製、評価)
 電子供与体としてレジオレギュラーポリ3-ヘキシルチオフェン(アルドリッチ社製、ロット番号:09007KH)を1%(重量%)の濃度でクロロベンゼンに溶解させた。その後、フラーレン誘導体Aを電子供与体の重量に対して等倍重量となるように電子受容体として溶液に混合した。その後、吸着剤として溶液100重量部に対し1重量部のシリカゲル(和光純薬製 Wakogel C-300 粒径45~75μm)を添加し、12時間攪拌した。次いで孔径1.0μmのテフロン(登録商標)フィルタで濾過し、塗布溶液を作製した。
<Example 3> (Production and evaluation of organic thin-film solar cell)
Regioregular poly 3-hexylthiophene (manufactured by Aldrich, lot number: 09007 KH) as an electron donor was dissolved in chlorobenzene at a concentration of 1% (weight%). Thereafter, the fullerene derivative A was mixed into the solution as an electron acceptor so as to have an equal weight with respect to the weight of the electron donor. Thereafter, 1 part by weight of silica gel (Wakogel C-300 particle size: 45 to 75 μm, manufactured by Wako Pure Chemical Industries, Ltd.) was added as an adsorbent to 100 parts by weight of the solution and stirred for 12 hours. Subsequently, it filtered with the Teflon (trademark) filter with a hole diameter of 1.0 micrometer, and produced the coating solution.
 ガラス基板の一方の主面に、スパッタ法により150nmの厚みでITO膜を成膜した。ITO膜に対しオゾンUV処理による表面処理を行った。次にITO膜上に、前記塗布溶液をスピンコートにより塗布し、真空中90℃の条件で60分間ベークを行って、有機薄膜太陽電池の活性層(膜厚約100nm)を得た。その後、真空蒸着機により活性層上にフッ化リチウムを4nmの厚さで蒸着し、次いでアルミニウム(Al)を100nmの厚さで蒸着して有機薄膜太陽電池とした。蒸着工程の際の真空度は、すべて1~9×10-3Paであった。また得られた有機薄膜太陽電池の形状は、2mm×2mmの正四角形であった。得られた有機薄膜太陽電池の開放端電圧(Voc)は、ソーラシミュレータ(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルタ、放射照度100mW/cm)を用いて一定の光を照射することにより発生する電流及び電圧を測定して求めた。結果を表1に示す。 An ITO film having a thickness of 150 nm was formed on one main surface of the glass substrate by sputtering. The ITO film was subjected to surface treatment by ozone UV treatment. Next, the coating solution was applied onto the ITO film by spin coating, and baked in a vacuum at 90 ° C. for 60 minutes to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell. Thereafter, lithium fluoride was deposited on the active layer with a thickness of 4 nm by a vacuum deposition machine, and then aluminum (Al) was deposited with a thickness of 100 nm to obtain an organic thin film solar cell. The degree of vacuum during the vapor deposition process was 1 to 9 × 10 −3 Pa in all cases. Moreover, the shape of the obtained organic thin-film solar cell was a regular square of 2 mm × 2 mm. The open-circuit voltage (Voc) of the obtained organic thin-film solar cell is irradiated with constant light using a solar simulator (trade name OTENTO-SUNII: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.). The current and voltage generated are measured and determined. The results are shown in Table 1.
<比較例2>(有機薄膜太陽電池の作製、評価)
 フラーレン誘導体Aを、[60]-PCBM(フロンティアカーボン社製、商品名E100、ロット番号:9B0024-A)に代えた以外は実施例3と同様にして有機薄膜太陽電池を作成し、同様の操作を行って開放端電圧を求めた。結果を表1に示す。
<Comparative Example 2> (Production and Evaluation of Organic Thin Film Solar Cell)
An organic thin film solar cell was prepared in the same manner as in Example 3 except that the fullerene derivative A was replaced with [60] -PCBM (manufactured by Frontier Carbon Co., Ltd., trade name E100, lot number: 9B0024-A). To determine the open circuit voltage. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1から明らかなように、本発明のフラーレン誘導体(フラーレン誘導体A)を活性層に含有している実施例2の有機薄膜太陽電池は、従来技術に相当する比較例2の有機薄膜太陽電池と比較して、より高い開放端電圧が得られた。 As is clear from Table 1, the organic thin film solar cell of Example 2 containing the fullerene derivative (fullerene derivative A) of the present invention in the active layer is the same as the organic thin film solar cell of Comparative Example 2 corresponding to the prior art. In comparison, a higher open-circuit voltage was obtained.
 上述の説明から明らかなように、本発明のフラーレン誘導体を含む層を有機薄膜太陽電池、有機光センサといった有機光電変換素子の活性層として用いれば、特に光電変換効率という観点から極めて重要な特性である開放端電圧をより高めることができる。
 よって本発明のフラーレン誘導体は、有機光電変換素子の光電変換効率をより高めるのに大いに寄与する。
As is clear from the above description, if the layer containing the fullerene derivative of the present invention is used as an active layer of an organic photoelectric conversion element such as an organic thin film solar cell or an organic photosensor, it has extremely important characteristics particularly from the viewpoint of photoelectric conversion efficiency. A certain open end voltage can be further increased.
Therefore, the fullerene derivative of the present invention greatly contributes to further increasing the photoelectric conversion efficiency of the organic photoelectric conversion element.

Claims (11)

  1.  下記式(1)で表される構造を有するフラーレン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、A環は炭素数が60以上であるフラーレン環を表す。B環及びB環は、独立して炭素数が3~6である複素環を表す。R及びRは、独立して1価の官能基を表す。Qは2価の有機基を表し、B環及びB環が有する炭素原子と結合している。j及びkは、独立して0~8の整数を表す。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。C1、C2、C3及びC4は、A環を構成する炭素原子であり、C1及びC2、C3及びC4は、それぞれA環において隣り合っている。]
    The fullerene derivative which has a structure represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1), the A ring represents a fullerene ring having 60 or more carbon atoms. The B 1 ring and the B 2 ring independently represent a heterocyclic ring having 3 to 6 carbon atoms. R 1 and R 2 independently represent a monovalent functional group. Q represents a divalent organic group and is bonded to the carbon atom of the B 1 ring and the B 2 ring. j and k each independently represents an integer of 0 to 8. When a plurality of R 1 are present, R 1 may be different from each other. If the R 2 is plurally present, R 2 to each other may be different from each other. C1, C2, C3 and C4 are carbon atoms constituting the A ring, and C1 and C2, C3 and C4 are adjacent to each other in the A ring. ]
  2.  下記式(2)で表される、請求項1に記載のフラーレン誘導体。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、A環、R、R、Q、C1、C2、C3及びC4は前記式(1)における定義と同義である。]
    The fullerene derivative of Claim 1 represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [In Formula (2), Ring A, R 1 , R 2 , Q, C 1, C 2, C 3 and C 4 have the same definitions as in Formula (1). ]
  3.  前記Qが式(3)で表される構造を有する、請求項1に記載のフラーレン誘導体。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R及びRは、独立して水素原子又はアルキル基を表す。cは1~5の整数を表す。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。Rが複数個存在する場合には、R同士は互いに異なっていてもよい。]
    The fullerene derivative according to claim 1, wherein Q has a structure represented by Formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (3), R a and R b independently represent a hydrogen atom or an alkyl group. c represents an integer of 1 to 5. When a plurality of R a are present, R a may be different from each other. When two or more Rb exists, Rb may mutually differ. ]
  4.  下記式(4)で表される、請求項1に記載のフラーレン誘導体。
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、環C60は、C60フラーレン環を表す。C1、C2、C3及びC4は前記式(1)における定義と同義である。]
    The fullerene derivative of Claim 1 represented by following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    Wherein (4), Ring C 60 represents a C 60 fullerene ring. C1, C2, C3 and C4 have the same definition as in the above formula (1). ]
  5.  請求項1に記載のフラーレン誘導体と電子供与性化合物とを含む組成物。 A composition comprising the fullerene derivative according to claim 1 and an electron donating compound.
  6.  電子供与性化合物が、高分子化合物である請求項5に記載の組成物。 The composition according to claim 5, wherein the electron donating compound is a polymer compound.
  7.  陽極及び陰極からなる一対の電極と、
     一対の電極間に挟持された請求項1に記載のフラーレン誘導体を含む層と
    を有する有機光電変換素子。
    A pair of electrodes consisting of an anode and a cathode;
    The organic photoelectric conversion element which has a layer containing the fullerene derivative of Claim 1 pinched | interposed between a pair of electrodes.
  8.  陽極及び陰極からなる一対の電極と、
     一対の電極間に挟持された請求項5に記載の組成物を含む層と
    を有する有機光電変換素子。
    A pair of electrodes consisting of an anode and a cathode;
    The organic photoelectric conversion element which has a layer containing the composition of Claim 5 clamped between a pair of electrodes.
  9.  陽極及び陰極からなる一対の電極と、
     一対の電極間に挟持される活性層であって、請求項1に記載のフラーレン誘導体を含む電子受容性層及び電子受容性層に接合される電子供与性化合物を含む電子供与性層を有している前記活性層と
    を有する有機光電変換素子。
    A pair of electrodes consisting of an anode and a cathode;
    An active layer sandwiched between a pair of electrodes, comprising: an electron accepting layer comprising the fullerene derivative according to claim 1; and an electron donating layer comprising an electron donating compound bonded to the electron accepting layer. An organic photoelectric conversion element having the active layer.
  10.  フラーレンと、N-メトキシメチルグリシン、N-(2-(2-メトキシエトキシ)エチル)グリシン及び[2-(2-メトキシエトキシ)エチルアミノ]酢酸からなる群から選ばれるグリシン誘導体と、5-(5-(5-ホルミルチオフェン-2-イル)チオフェン-2-イル)チオフェン-2-カルボアルデヒドとを、溶媒中で加熱還流して反応させる工程と、
     溶媒を除去し、シリカゲルフラッシュカラムクロマトグラフィ及び分取薄層クロマトグラフィにより分離精製する工程と
    を含む、請求項1に記載のフラーレン誘導体の製造方法。
    Fullerene, a glycine derivative selected from the group consisting of N-methoxymethylglycine, N- (2- (2-methoxyethoxy) ethyl) glycine and [2- (2-methoxyethoxy) ethylamino] acetic acid, and 5- ( Reacting 5- (5-formylthiophen-2-yl) thiophen-2-yl) thiophene-2-carbaldehyde with heating under reflux in a solvent;
    The method for producing a fullerene derivative according to claim 1, comprising a step of removing the solvent and separating and purifying by silica gel flash column chromatography and preparative thin layer chromatography.
  11.  グリシン誘導体が、[2-(2-メトキシエトキシ)エチルアミノ]酢酸である、請求項10に記載のフラーレン誘導体の製造方法。 The method for producing a fullerene derivative according to claim 10, wherein the glycine derivative is [2- (2-methoxyethoxy) ethylamino] acetic acid.
PCT/JP2011/059115 2010-04-22 2011-04-12 Fullerene derivative and method for producing same WO2011132573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010098955 2010-04-22
JP2010-098955 2010-04-22

Publications (1)

Publication Number Publication Date
WO2011132573A1 true WO2011132573A1 (en) 2011-10-27

Family

ID=44834097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059115 WO2011132573A1 (en) 2010-04-22 2011-04-12 Fullerene derivative and method for producing same

Country Status (2)

Country Link
JP (1) JP2011241205A (en)
WO (1) WO2011132573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084264A (en) * 2007-09-12 2009-04-23 Sumitomo Chemical Co Ltd Fullerene derivative
JP2009137932A (en) * 2007-11-15 2009-06-25 Sumitomo Chemical Co Ltd Fullerene derivative and organic photoelectric converter using the same
WO2010041575A1 (en) * 2008-10-06 2010-04-15 住友化学株式会社 Fullerene derivative, composition, and organic photoelectric conversion element
JP2010254587A (en) * 2009-04-22 2010-11-11 Sumitomo Chemical Co Ltd Fullerene derivative, composition and organic photoelectric transfer element
JP2011093848A (en) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Fullerene derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084264A (en) * 2007-09-12 2009-04-23 Sumitomo Chemical Co Ltd Fullerene derivative
JP2009137932A (en) * 2007-11-15 2009-06-25 Sumitomo Chemical Co Ltd Fullerene derivative and organic photoelectric converter using the same
WO2010041575A1 (en) * 2008-10-06 2010-04-15 住友化学株式会社 Fullerene derivative, composition, and organic photoelectric conversion element
JP2010254587A (en) * 2009-04-22 2010-11-11 Sumitomo Chemical Co Ltd Fullerene derivative, composition and organic photoelectric transfer element
JP2011093848A (en) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Fullerene derivative

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HWANG, S. ET AL.: "Electronic structures of a macrocyclic fulleropyrrolidine", BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 17, no. 12, 1996, pages 1112 - 1117 *
KEI MATSUMOTO ET AL.: "Fulleropyrrolidine Kokkaku o Yusuru Yuki Usumaku Taiyo Denchi Soshi no Gosei", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 77 KAI TAIKAI KOEN YOSHISHU, 26 March 2010 (2010-03-26), pages 447 *
P.A.VAN HAL. ET AL.: "Full temporal resolution of the two-step photoinduced energy-electron transfer in a fullerene-oligothiophene- fullerene triad using sub-10 fs pump-probe spectroscopy", CHEMICAL PHYSICS LETTERS, vol. 345, no. 1, 2, 2001, pages 33 - 38 *
ROTAS, G. ET AL.: "Regioselective triphenylamine-tether-directed synthesis of [60]fullerene bis-adducts", TETRAHEDRON LETTERS, vol. 50, no. 4, 2009, pages 398 - 401 *
SMITH, P.M. ET AL.: "Bis-tunctionalized fullerene-dibenzo[18]crown-6 conjugate: synthesis and cation-complexation dependent redox behavior", CHEMICAL COMMUNICATIONS, no. 14, 2003, pages 1754 - 1755 *
ZHOU, Z. ET AL.: "Tether-Directed Selective Synthesis of Fulleropyrrolidine Bisadducts", JOURNAL OF ORGANIC CHEMISTRY, vol. 71, no. 4, 2006, pages 1545 - 1551 *

Also Published As

Publication number Publication date
JP2011241205A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5639753B2 (en) Fullerene derivatives
JP5323393B2 (en) Fullerene derivatives
JP5425438B2 (en) Fullerene derivatives
US20120111411A1 (en) Fullerene derivative
JP2011181719A (en) Fullerene derivative and method of manufacturing the same
JP5906803B2 (en) Organic photoelectric conversion element material and method for producing organic photoelectric conversion element
US8673958B2 (en) Fullerene derivatives
JP5213392B2 (en) Fullerene derivatives
JPWO2017002742A1 (en) Photoelectric conversion element
JP5366434B2 (en) Fullerene derivative and organic photoelectric conversion device using the same
JP5534714B2 (en) Fullerene derivatives
JP2012186462A (en) Manufacturing method of organic photoelectric conversion element
JP2013095683A (en) Fullerene derivative
JP2015013844A (en) Fullerene derivative
JP5503184B2 (en) Fullerene derivative, composition and organic photoelectric conversion device
WO2011132573A1 (en) Fullerene derivative and method for producing same
JP2015105233A (en) Fullerene derivative
JP2012186463A (en) Manufacturing method of organic photoelectric conversion element
JP6101007B2 (en) Photoelectric conversion element
JP5481911B2 (en) Fullerene derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771908

Country of ref document: EP

Kind code of ref document: A1