JP5366200B2 - Method for producing phosphor, amorphous red phosphor - Google Patents

Method for producing phosphor, amorphous red phosphor

Info

Publication number
JP5366200B2
JP5366200B2 JP2009056671A JP2009056671A JP5366200B2 JP 5366200 B2 JP5366200 B2 JP 5366200B2 JP 2009056671 A JP2009056671 A JP 2009056671A JP 2009056671 A JP2009056671 A JP 2009056671A JP 5366200 B2 JP5366200 B2 JP 5366200B2
Authority
JP
Japan
Prior art keywords
phosphor
amorphous
producing
precursor
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009056671A
Other languages
Japanese (ja)
Other versions
JP2010209210A (en
Inventor
芳行 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2009056671A priority Critical patent/JP5366200B2/en
Priority to PCT/JP2010/052815 priority patent/WO2010103925A1/en
Publication of JP2010209210A publication Critical patent/JP2010209210A/en
Application granted granted Critical
Publication of JP5366200B2 publication Critical patent/JP5366200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、新規な蛍光体の製造方法及び非晶質赤色蛍光体に関する。   The present invention relates to a novel phosphor manufacturing method and an amorphous red phosphor.

白色LEDは、近紫外線や青色光を発するLEDと、LEDの発する光を吸収して、赤色に発光する蛍光体および緑色に発光する蛍光体とを組み合わせて作製されている。
白色LEDに使用される赤色蛍光体としては、CaAlSiN:Eu(以下、「CASN」と略記する)が知られている。しかし、CASNは1200〜2200℃の高温で合成されるため、特別な設備が必要となる。また、原料として、カルシウム、アルミニウム、珪素の窒化物を使用しており(特許文献1参照)、これらは一般的に高価である。このため、得られる蛍光体も高価になる。
そこで、安価で簡単に作製できる赤色蛍光体が望まれている。
The white LED is manufactured by combining an LED that emits near-ultraviolet light or blue light with a phosphor that absorbs light emitted from the LED and emits red light and a phosphor that emits green light.
As a red phosphor used for a white LED, CaAlSiN 3 : Eu (hereinafter abbreviated as “CASN”) is known. However, since CASN is synthesized at a high temperature of 1200 to 2200 ° C., special equipment is required. Moreover, the nitride of calcium, aluminum, and silicon is used as a raw material (refer patent document 1), and these are generally expensive. For this reason, the phosphor obtained is also expensive.
Therefore, a red phosphor that is inexpensive and can be easily produced is desired.

一方、比較的低温で蛍光体を合成する方法としては、メタケイ酸ナトリウム水溶液を原料としたゾルゲル法により得られたゲルを、還元性雰囲気中で800〜1400℃で焼成し、mM1O・nM2O・2SiO(式中、M1は、Ca、Sr及びBaから選ばれる1以上、M2は、Mg及びZnから選ばれる1以上、0.5≦m≦3.5、0.5≦n≦2.5)で表される、146nmで励起すると青色に発光するケイ酸塩蛍光体を製造する方法(例えば特許文献2参照)や、pH1〜3にしたメタケイ酸ナトリウム水溶液とアルカリ性水溶液を反応させて得られた前駆体を、1260℃で焼成し、(Zn(2-x)Mn)SiO(式中、0<x≦0.3)で表される、146nmで励起すると緑色に発光するPDPパネル用ケイ酸亜鉛マンガン蛍光体を製造する方法(例えば特許文献3参照)が提案されている。 On the other hand, as a method of synthesizing a phosphor at a relatively low temperature, a gel obtained by a sol-gel method using a sodium metasilicate aqueous solution as a raw material is baked at 800 to 1400 ° C. in a reducing atmosphere, and mM1O.nM2O.2SiO. 2 (wherein M1 is 1 or more selected from Ca, Sr and Ba, M2 is 1 or more selected from Mg and Zn, 0.5 ≦ m ≦ 3.5, 0.5 ≦ n ≦ 2.5) ) And a method for producing a silicate phosphor that emits blue light when excited at 146 nm (see, for example, Patent Document 2), or by reacting a sodium metasilicate aqueous solution adjusted to pH 1 to 3 with an alkaline aqueous solution. The PDP panel which emits green light when fired at 1260 ° C. and excited at 146 nm represented by (Zn (2-x) Mn x ) SiO 4 (where 0 <x ≦ 0.3) For silicic acid Method of manufacturing a lead manganese phosphor (for example, see Patent Document 3) are proposed.

しかしながら、これらの蛍光体は励起光が146nmの紫外線であるため主としてPDP用であり、また、赤色蛍光体を開示するものではない。   However, these phosphors are mainly for PDP because the excitation light is ultraviolet light having a wavelength of 146 nm, and do not disclose a red phosphor.

特開2005−336253号公報JP 2005-336253 A 特開2005−89688号公報JP 2005-89688 A 特開2006−321692号公報JP 2006-321692 A

そこで本発明の目的は、合成に特殊な装置を必要とせず、比較的低温で合成できる、近紫外から青色で励起すると赤色に発光する蛍光体およびその製造方法を提案することである。   Accordingly, an object of the present invention is to propose a phosphor that can be synthesized at a relatively low temperature without requiring a special device for synthesis and emits red light when excited from near ultraviolet to blue, and a method for producing the same.

本発明の蛍光体の製造方法のうち請求項1に係るものは、メタケイ酸ナトリウムを含む溶液と、塩化ユウロピウム(III)6水和物及び塩化カルシウムを含む溶液とを20〜90°Cで1〜120分間撹拌混合することによる溶液反応により得られた蛍光体前駆体を800〜930℃で焼成し、一般式Ca EuSiO2+x+1.5y(式中、0.6≦x+1.5y≦0.9、0.1≦y≦0.33)で表される非晶質赤色蛍光体を得ることを特徴とする。 Among the methods for producing the phosphor of the present invention, the method according to claim 1 includes a solution containing sodium metasilicate and a solution containing europium (III) chloride hexahydrate and calcium chloride at 20 to 90 ° C. A phosphor precursor obtained by a solution reaction by stirring and mixing for ˜120 minutes is calcined at 800 to 930 ° C., and the general formula Ca x Eu y SiO 2 + x + 1.5y (where 0.6 ≦ x + 1.5y ≦ 0) .9 , 0.1 ≦ y ≦ 0.33 ), an amorphous red phosphor is obtained.

請求項2に係るものは、請求項1の蛍光体の製造方法において、蛍光体前駆体は電気炉に導入することによって焼成することを特徴とする。 According to a second aspect of the present invention, in the phosphor manufacturing method of the first aspect, the phosphor precursor is fired by being introduced into an electric furnace .

請求項3に係るものは、請求項2に記載の蛍光体の製造方法において、蛍光体前駆体は800°C、870°C、又は、900°Cに維持した前記電気炉に導入することによって焼成することを特徴とする。 According to a third aspect of the present invention, in the phosphor manufacturing method according to the second aspect, the phosphor precursor is introduced into the electric furnace maintained at 800 ° C, 870 ° C, or 900 ° C. It is characterized by firing .

請求項に係る蛍光体は、請求項1からのいずれかの蛍光体の製造方法により得られることを特徴とする。 A phosphor according to claim 4 is obtained by the phosphor manufacturing method according to any one of claims 1 to 3 .

本発明によれば、非晶質赤色蛍光体を800〜930℃で合成できるので、特殊な装置を必要としない。
また、蛍光体が非晶質であるため、CASNなどの結晶性蛍光体であれば濃度消光が発生するような付活剤の添加量であっても、濃度消光が起きない。
According to the present invention, since the amorphous red phosphor can be synthesized at 800 to 930 ° C., no special apparatus is required.
Further, since the phosphor is amorphous, concentration quenching does not occur even if the amount of the activator added is such that concentration quenching occurs if the phosphor is a crystalline phosphor such as CASN.

実施例1の蛍光体のX線回折図形を示すThe X-ray diffraction pattern of the fluorescent substance of Example 1 is shown. 実施例1の蛍光体の励起及び発光スペクトルを示すThe excitation and emission spectra of the phosphor of Example 1 are shown. 実施例1〜4の蛍光体の発光スペクトルを示すThe emission spectrum of the fluorescent substance of Examples 1-4 is shown. 実施例5、6及び比較例1、2の蛍光体のX線回折図形を示すThe X-ray diffraction patterns of the phosphors of Examples 5 and 6 and Comparative Examples 1 and 2 are shown. 実施例5、6及び比較例1、2の蛍光体の発光スペクトルを示すThe emission spectra of the phosphors of Examples 5 and 6 and Comparative Examples 1 and 2 are shown.

本発明の蛍光体の製造方法は、まず、溶液反応により蛍光体前駆体を製造する。具体的には、Si原料を含む溶液と、Eu(III)原料とM1原料を含む溶液とを反応させることにより、蛍光体前駆体を製造することができる。   In the phosphor production method of the present invention, first, a phosphor precursor is produced by a solution reaction. Specifically, the phosphor precursor can be produced by reacting a solution containing the Si raw material with a solution containing the Eu (III) raw material and the M1 raw material.

Si原料としては、オルトケイ酸ナトリウム9水和物、水ガラス、アルコキシシランなどが挙げられるが、安価で反応しやすいオルトケイ酸ナトリウム9水和物が好ましい。
Si原料を溶解させる溶媒としては、アルコールなどの有機溶媒、水などが挙げられるが、Si原料がオルトケイ酸ナトリウム9水和物、水ガラスの場合は水、アルコキシシランの場合は有機溶媒が好ましい。
Examples of the Si raw material include sodium orthosilicate nonahydrate, water glass, alkoxysilane and the like, but sodium orthosilicate nonahydrate which is inexpensive and easily reacts is preferable.
Examples of the solvent for dissolving the Si raw material include organic solvents such as alcohol, water, and the like. However, when the Si raw material is sodium orthosilicate nonahydrate, water glass, water and alkoxysilane are preferable.

M1原料としては、M1元素の塩またはアルコキシドが挙げられる。M1の塩としては、溶媒に溶解すれば特に限定されず、塩化物、硝酸塩、酢酸塩などが挙げられる。M1のアルコキシドのアルコキシ基としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基などが挙げられる。
M1原料を溶解させる溶液としては、アルコールなどの有機溶媒、水などが挙げられるが、Si原料を溶解させた溶媒と同じものを用いるのが好ましい。
Examples of the M1 raw material include salts and alkoxides of the M1 element. The salt of M1 is not particularly limited as long as it is dissolved in a solvent, and examples thereof include chlorides, nitrates, and acetates. Examples of the alkoxy group of the alkoxide of M1 include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
Examples of the solution for dissolving the M1 raw material include organic solvents such as alcohol, water, and the like, but it is preferable to use the same solvent as that for dissolving the Si raw material.

Eu(III)原料としては、Eu(III)の塩またはアルコキシドが挙げられる。Eu(III)の塩としては、溶媒に溶解すれば特に限定されず、塩化ユウロピウム6水和物、硝酸ユウロピウム6水和物などが挙げられる。Eu(III)のアルコキシドのアルコキシ基としては、メトキシ基、エトキシ基、プロピオキシ基、ブトキシ基などが挙げられる。   Examples of the Eu (III) raw material include Eu (III) salts and alkoxides. The salt of Eu (III) is not particularly limited as long as it is dissolved in a solvent, and examples thereof include europium chloride hexahydrate and europium nitrate hexahydrate. Examples of the alkoxy group of the alkoxide of Eu (III) include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.

Si原料、M1原料、Eu(III)原料の配合比は、得ようとする蛍光体のSi:M1:Eu(III)のモル比とほぼ同じにすればよい。
Si原料を含む溶液と、Eu(III)原料及びM1原料を含む溶液とを、通常20〜90℃、好ましくは40〜60℃で、通常1〜120分間、好ましくは10〜60分間、撹拌混合することにより白色生成物が生成する。
The mixing ratio of the Si raw material, the M1 raw material, and the Eu (III) raw material may be substantially the same as the molar ratio of Si: M1: Eu (III) of the phosphor to be obtained.
The solution containing the Si raw material and the solution containing the Eu (III) raw material and the M1 raw material are usually stirred at 20 to 90 ° C., preferably 40 to 60 ° C., usually 1 to 120 minutes, preferably 10 to 60 minutes. This produces a white product.

この生成物をろ過することにより固体が得られる。得られた固体を水または有機溶媒により洗浄した後、必要に応じて300℃以下で乾燥することにより、蛍光体前駆体が得られる。   A solid is obtained by filtering the product. After the obtained solid is washed with water or an organic solvent, the phosphor precursor is obtained by drying at 300 ° C. or lower as necessary.

本発明においては、得られた蛍光体前駆体を800〜930℃、好ましくは860〜910℃、特に好ましくは865〜875℃の温度で焼成し、蛍光体前駆体に含まれる付着水、構造水およびOH基をほぼ完全に除去して、非晶質蛍光体を得ることが特徴である。   In the present invention, the obtained phosphor precursor is baked at a temperature of 800 to 930 ° C., preferably 860 to 910 ° C., particularly preferably 865 to 875 ° C., and the adhering water and structural water contained in the phosphor precursor are used. It is characteristic that an amorphous phosphor is obtained by almost completely removing OH groups.

焼成時間が短すぎると蛍光体前駆体に含まれる水およびOH基をほぼ完全に除去することができない。一方、焼成時間が長すぎるとウォラストナイトの結晶が生成するので、非晶質が維持される程度の時間であることが必要である。焼成時間は、焼成に供される蛍光体前駆体の量や蛍光体前駆体の乾燥状態などにより異なるが、通常5分間〜3時間、好ましくは10〜70分間、特に好ましくは10〜30分間である。
焼成は、大気雰囲気などの酸化雰囲気で行う。還元雰囲気だとEu(III)がEu(II)に還元され、蛍光体の発光色が赤色ではなくなるので好ましくない。
If the firing time is too short, water and OH groups contained in the phosphor precursor cannot be removed almost completely. On the other hand, if the firing time is too long, crystals of wollastonite are generated, so it is necessary that the time is sufficient to maintain the amorphous state. The firing time varies depending on the amount of the phosphor precursor subjected to firing and the dry state of the phosphor precursor, but is usually 5 minutes to 3 hours, preferably 10 to 70 minutes, particularly preferably 10 to 30 minutes. is there.
Firing is performed in an oxidizing atmosphere such as an air atmosphere. A reducing atmosphere is not preferable because Eu (III) is reduced to Eu (II) and the emission color of the phosphor is not red.

このようにして得られる蛍光体は、非晶質であり、一般式M1EuSiO2+x+1.5yで表される。
一般式中、M1は、Ca、Sr及びBaから選ばれる1以上の元素を表し、x、yは、0.6≦x+1.5y≦0.9、好ましくは0.7≦x+1.5y≦0.8で表される数である。酸素は2+x+1.5yで表される量より欠損していてもよい。また、一般式で表される非晶質蛍光体は、蛍光体1モルに対し、水換算で0.1モル未満の水またはOH基を含んでいてもよいが、含まないのが好ましい。
The phosphor thus obtained is amorphous and is represented by the general formula M1 x Eu y SiO 2 + x + 1.5y .
In the general formula, M1 represents one or more elements selected from Ca, Sr and Ba, and x and y are 0.6 ≦ x + 1.5y ≦ 0.9, preferably 0.7 ≦ x + 1.5y ≦ 0. .8. Oxygen may be deficient from the amount represented by 2 + x + 1.5y. Further, the amorphous phosphor represented by the general formula may contain less than 0.1 mol of water or OH group in terms of water with respect to 1 mol of the phosphor, but preferably does not contain it.

蛍光体の組成は、得られた非晶質蛍光体が塩酸に溶解しにくいことから、蛍光体前駆体のCa、Eu及びSiの量を測定し、焼成によってこれらの元素は揮発しないとして、蛍光体の組成を決定した。蛍光体前駆体の組成は、蛍光体前駆体を塩酸で溶解した後、ICP(誘導結合プラズマ発光分析)などによりCa、Eu及びSiの量を測定することにより割合を決定した。Oの割合は、便宜的に、Caのモル数に対して1倍、Euのモル数に対して1.5倍、Siのモル数に対して2倍して得られた数を和することにより決定した。また、非晶質蛍光体に含まれる水及びOH基の量は、TG(示差熱分析)の100〜800℃の減量により決定した。   The composition of the phosphor is that the obtained amorphous phosphor is difficult to dissolve in hydrochloric acid. Therefore, the amount of Ca, Eu and Si of the phosphor precursor is measured, and these elements are not volatilized by firing. The body composition was determined. The composition of the phosphor precursor was determined by measuring the amount of Ca, Eu and Si by ICP (inductively coupled plasma emission analysis) after dissolving the phosphor precursor with hydrochloric acid. For the sake of convenience, the ratio of O is 1 times the number of moles of Ca, 1.5 times the number of moles of Eu, and 2 times the number of moles of Si. Determined by. The amounts of water and OH groups contained in the amorphous phosphor were determined by reducing TG (differential thermal analysis) at 100 to 800 ° C.

蛍光体が非晶質であることは、X線回折により確認することができる。
このようにして得られる本発明の非晶質蛍光体は、395nmの近紫外線により励起され、600〜620nmの範囲に主発光ピークを有する。
It can be confirmed by X-ray diffraction that the phosphor is amorphous.
The amorphous phosphor of the present invention thus obtained is excited by near ultraviolet light of 395 nm and has a main emission peak in the range of 600 to 620 nm.

本発明の非晶質赤色蛍光体は、近紫外線の照射により、赤色に高い発光強度を示すので、近紫外線LEDを用いた白色LEDに極めて有用である。   Since the amorphous red phosphor of the present invention exhibits high emission intensity in red when irradiated with near ultraviolet rays, it is extremely useful for white LEDs using near ultraviolet LEDs.

以下、本発明の実施例について図面を参照して説明する。
塩化カルシウム(例えば関東化学株式会社製)1.1321g(0.05モル)を純水200mlに溶解した溶液に塩化ユウロピウム(III)6水和物(例えば関東化学株式会社製)1.1956g(0.016モル)を固体で添加、溶解させてこの溶液を50℃に保持した。
Embodiments of the present invention will be described below with reference to the drawings.
1.9556 g (0) of europium (III) chloride hexahydrate (eg, manufactured by Kanto Chemical Co., Ltd.) in a solution obtained by dissolving 1.1321 g (0.05 mol) of calcium chloride (eg, manufactured by Kanto Chemical Co., Ltd.) in 200 ml of pure water. .016 mol) was added and dissolved as a solid to keep the solution at 50 ° C.

メタケイ酸ナトリウム9水和物(ナカライテスク(株)製)3.6723g(0.066モル)を純水200mlに溶解して、50℃に保持した。塩化カルシウムと塩化ユウロピウムを含む溶液と、メタケイ酸ナトリウムを含む溶液とを混合したところ白色生成物が得られた。これを50℃に保持しながら、30分間撹拌して反応を完結させた。
3.6723 g (0.066 mol) of sodium metasilicate nonahydrate (manufactured by Nacalai Tesque) was dissolved in 200 ml of pure water and kept at 50 ° C. When a solution containing calcium chloride and europium chloride was mixed with a solution containing sodium metasilicate, a white product was obtained. While maintaining this at 50 ° C., the reaction was completed by stirring for 30 minutes.

反応生成物を吸引ろ過し、得られた固体を純水100mlで洗浄、ろ過した後、40℃で24時間乾燥させ、蛍光体前駆体を得た。得られた蛍光体前駆体の組成をICPを用いて測定した結果、CaO:15.3mass%,Eu:22.9mass%,SiO:37.0mass%,HO:24.8mass%であった。 The reaction product was suction filtered, and the resulting solid was washed with 100 ml of pure water, filtered, and then dried at 40 ° C. for 24 hours to obtain a phosphor precursor. As a result of measuring the composition of the obtained phosphor precursor using ICP, CaO: 15.3 mass%, Eu 2 O 3 : 22.9 mass%, SiO 2 : 37.0 mass%, H 2 O: 24.8 mass %Met.

得られた蛍光体前駆体を870℃に維持した電気炉に導入し、30分間焼成を行い、蛍光体を得た。得られた蛍光体のTGにおける100〜800℃の減量は観察されず、蛍光体の組成はCa0.44Eu0.21SiO2.76であった。 The obtained phosphor precursor was introduced into an electric furnace maintained at 870 ° C. and baked for 30 minutes to obtain a phosphor. The obtained phosphor had a weight loss of 100 to 800 ° C. in TG, and the composition of the phosphor was Ca 0.44 Eu 0.21 SiO 2.76 .

得られた蛍光体の結晶性をCu-Kαを用いるX線回折により確認した。結果を図1に示す。図1より明らかなように得られた蛍光体は非晶質であった。また、得られた蛍光体の励起スペクトル及び発光スペクトルを日立社製F−4500を用いて測定した。この結果を図2に示す。さらに、得られた蛍光体に395nmの近紫外線を照射したところ、波長613nm付近に発光が確認された。このときの発光スペクトルを図3に示す。 The crystallinity of the obtained phosphor was confirmed by X-ray diffraction using Cu-K alpha. The results are shown in FIG. As apparent from FIG. 1, the obtained phosphor was amorphous. Moreover, the excitation spectrum and emission spectrum of the obtained phosphor were measured using Hitachi F-4500. The result is shown in FIG. Further, when the obtained phosphor was irradiated with near ultraviolet rays having a wavelength of 395 nm, light emission was confirmed in the vicinity of a wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

塩化カルシウムを1.0286g(0.044モル)、塩化ユウロピウム(III)6水和物を1.3966g(0.019モル)、メタケイ酸ナトリウムを3.5748g(0.063モル)とした他は、実施例1と同様に行い、蛍光体を得た。   Other than using 1.0286 g (0.044 mol) of calcium chloride, 1.3966 g (0.019 mol) of europium (III) chloride hexahydrate, and 3.5748 g (0.063 mol) of sodium metasilicate. In the same manner as in Example 1, a phosphor was obtained.

得られた蛍光体の組成はCa0.38Eu0.33SiO2.875で、X線回折の結果、非晶質であった。また、得られた蛍光体に395nmの近紫外線を照射したところ、波長613nm付近に発光が確認された。このときの発光スペクトルを図3に示す。 The composition of the obtained phosphor was Ca 0.38 Eu 0.33 SiO 2.875 , and was amorphous as a result of X-ray diffraction. Further, when the obtained phosphor was irradiated with near ultraviolet rays having a wavelength of 395 nm, light emission was confirmed in the vicinity of a wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

塩化カルシウムを0.8372g(0.036モル)、塩化ユウロピウム(III)6水和物を1.7683g(0.024モル)、メタケイ酸ナトリウム3.3945g(0.060モル)とした他は、実施例1と同様に行い、蛍光体を得た。   In addition to 0.8372 g (0.036 mol) of calcium chloride, 1.7683 g (0.024 mol) of europium (III) chloride hexahydrate, and 3.3945 g (0.060 mol) of sodium metasilicate, The same procedure as in Example 1 was performed to obtain a phosphor.

得られた蛍光体の組成はCa0.17Eu0.31SiO2.635で、X線回折の結果、非晶質であった。また、得られた蛍光体に395nmの近紫外線を照射したところ、波長613nm付近に発光が確認された。このときの発光スペクトルを図3に示す。 The composition of the obtained phosphor was Ca 0.17 Eu 0.31 SiO 2.635 , and was amorphous as a result of X-ray diffraction. Further, when the obtained phosphor was irradiated with near ultraviolet rays having a wavelength of 395 nm, light emission was confirmed in the vicinity of a wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

塩化カルシウムを1.4796g(0.063モル)、塩化ユウロピウム(III)6水和物を0.5209g(0.007モル)、メタケイ酸ナトリウム3.9995g(0.070モル)とした他は、実施例1と同様に行い、蛍光体を得た。   Except for calcium chloride of 1.4796 g (0.063 mol), europium chloride (III) hexahydrate of 0.5209 g (0.007 mol), and sodium metasilicate 3.995 g (0.070 mol), The same procedure as in Example 1 was performed to obtain a phosphor.

得られた蛍光体の組成はCa0.70Eu0.10SiO2.85で、X線回折の結果、非晶質であった。また、得られた蛍光体に395nmの近紫外線を照射したところ、波長613nm付近に発光が確認された。このときの発光スペクトルを図3に示す。 The composition of the obtained phosphor was Ca 0.70 Eu 0.10 SiO 2.85 , and was amorphous as a result of X-ray diffraction. Further, when the obtained phosphor was irradiated with near ultraviolet rays having a wavelength of 395 nm, light emission was confirmed in the vicinity of a wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

実施例1において、得られた蛍光体前駆体を800℃に維持した電気炉に導入した他は実施例1と同様に行い、蛍光体を得た。   In Example 1, a phosphor was obtained in the same manner as in Example 1 except that the obtained phosphor precursor was introduced into an electric furnace maintained at 800 ° C.

得られた蛍光体の結晶性をX線回折により確認したところ、非晶質であった。結果を図5に示す。また、得られた蛍光体に395nmの近紫外線を照射したところ、発光波長613nm付近に発光が確認された。このときの発光スペクトルを図4に示す。   When the crystallinity of the obtained phosphor was confirmed by X-ray diffraction, it was amorphous. The results are shown in FIG. Further, when the obtained phosphor was irradiated with near ultraviolet rays of 395 nm, light emission was confirmed in the vicinity of an emission wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

実施例1において、得られた蛍光体前駆体を900℃に維持した電気炉に導入した他は実施例1と同様に行い、蛍光体を得た。   In Example 1, a phosphor was obtained in the same manner as in Example 1 except that the obtained phosphor precursor was introduced into an electric furnace maintained at 900 ° C.

得られた蛍光体の結晶性をX線回折により確認したところ、非晶質であった。結果を図5に示す。また、得られた蛍光体に395nmの近紫外線を照射したところ、発光波長613nm付近に発光が確認された。このときの発光スペクトルを図4に示す。   When the crystallinity of the obtained phosphor was confirmed by X-ray diffraction, it was amorphous. The results are shown in FIG. Further, when the obtained phosphor was irradiated with near ultraviolet rays of 395 nm, light emission was confirmed in the vicinity of an emission wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

<比較例1>
実施例1において、得られた蛍光体前駆体を700℃に維持した電気炉に導入した他は実施例1と同様に行い、蛍光体を得た。得られた蛍光体の結晶性をX線回折により確認したところ、非晶質であった。結果を図5に示す。また、得られた蛍光体に395nmの近紫外線を照射したところ、発光波長613nm付近に発光が確認された。このときの発光スペクトルを図4に示す。得られた蛍光体のTGにおける100〜800℃の減量をHO換算すると、蛍光体1モルに対して0.1モルの水に相当した。
<Comparative Example 1>
In Example 1, a phosphor was obtained in the same manner as in Example 1 except that the obtained phosphor precursor was introduced into an electric furnace maintained at 700 ° C. When the crystallinity of the obtained phosphor was confirmed by X-ray diffraction, it was amorphous. The results are shown in FIG. Further, when the obtained phosphor was irradiated with near ultraviolet rays of 395 nm, light emission was confirmed in the vicinity of an emission wavelength of 613 nm. The emission spectrum at this time is shown in FIG. When the loss of 100 to 800 ° C. in TG of the obtained phosphor was converted to H 2 O, it corresponded to 0.1 mol of water with respect to 1 mol of the phosphor.

<比較例2>
実施例1において、得られた蛍光体前駆体を950℃に維持した電気炉に導入した他は実施例1と同様に行い、蛍光体を得た。
<Comparative example 2>
A phosphor was obtained in the same manner as in Example 1 except that the phosphor precursor obtained in Example 1 was introduced into an electric furnace maintained at 950 ° C.

得られた蛍光体の結晶性をX線回折により確認したところ、ウォラストナイトが生成していた。結果を図5に示す。また、得られた蛍光体に395nmの近紫外線を照射したところ、発光波長613nm付近に発光が確認された。このときの発光スペクトルを図4に示す。   When the crystallinity of the obtained phosphor was confirmed by X-ray diffraction, wollastonite was generated. The results are shown in FIG. Further, when the obtained phosphor was irradiated with near ultraviolet rays of 395 nm, light emission was confirmed in the vicinity of an emission wavelength of 613 nm. The emission spectrum at this time is shown in FIG.

本発明により得られる非晶質赤色蛍光体は、近紫外線の照射により、赤色に高い発光強度を示すので、近紫外線LEDを用いた白色LEDに極めて有用である。また、EL素子用の蛍光体、バックライト用のパネル、面発光体、照明体、掲示板などに用いられる。
The amorphous red phosphor obtained by the present invention exhibits a high emission intensity in red when irradiated with near ultraviolet rays, and is thus extremely useful for white LEDs using near ultraviolet LEDs. Further, it is used for phosphors for EL elements, panels for backlights, surface light emitters, illumination bodies, bulletin boards, and the like.

Claims (4)

メタケイ酸ナトリウムを含む溶液と、塩化ユウロピウム(III)6水和物及び塩化カルシウムを含む溶液とを20〜90°Cで1〜120分間撹拌混合することによる溶液反応により得られた蛍光体前駆体を800〜930℃で焼成し、一般式Ca EuSiO2+x+1.5y(式中、0.6≦x+1.5y≦0.9、0.1≦y≦0.33)で表される非晶質赤色蛍光体を得ることを特徴とする蛍光体の製造方法。 A phosphor precursor obtained by a solution reaction by stirring and mixing a solution containing sodium metasilicate with a solution containing europium (III) chloride hexahydrate and calcium chloride at 20 to 90 ° C. for 1 to 120 minutes Is calcined at 800 to 930 ° C., and is represented by the general formula Ca x Eu y SiO 2 + x + 1.5y (where 0.6 ≦ x + 1.5y ≦ 0.9 , 0.1 ≦ y ≦ 0.33 ) A method for producing a phosphor, comprising obtaining a crystalline red phosphor. 前記蛍光体前駆体は電気炉に導入することによって焼成することを特徴とする請求項1に記載の蛍光体の製造方法。 The method for producing a phosphor according to claim 1, wherein the phosphor precursor is fired by being introduced into an electric furnace . 前記蛍光体前駆体は800°C、870°C、又は、900°Cに維持した前記電気炉に導入することによって焼成することを特徴とする請求項2に記載の蛍光体の製造方法。 The method for producing a phosphor according to claim 2, wherein the phosphor precursor is fired by being introduced into the electric furnace maintained at 800 ° C, 870 ° C, or 900 ° C. 請求項1ないし3のいずれに記載の蛍光体の製造方法により得られることを特徴とする非晶質赤色蛍光体。An amorphous red phosphor obtained by the method for producing a phosphor according to any one of claims 1 to 3.
JP2009056671A 2009-03-10 2009-03-10 Method for producing phosphor, amorphous red phosphor Expired - Fee Related JP5366200B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009056671A JP5366200B2 (en) 2009-03-10 2009-03-10 Method for producing phosphor, amorphous red phosphor
PCT/JP2010/052815 WO2010103925A1 (en) 2009-03-10 2010-02-24 Phosphor production method and amorphous red phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056671A JP5366200B2 (en) 2009-03-10 2009-03-10 Method for producing phosphor, amorphous red phosphor

Publications (2)

Publication Number Publication Date
JP2010209210A JP2010209210A (en) 2010-09-24
JP5366200B2 true JP5366200B2 (en) 2013-12-11

Family

ID=42728216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056671A Expired - Fee Related JP5366200B2 (en) 2009-03-10 2009-03-10 Method for producing phosphor, amorphous red phosphor

Country Status (2)

Country Link
JP (1) JP5366200B2 (en)
WO (1) WO2010103925A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178823A (en) * 2010-02-26 2011-09-15 Nihon Univ Production method of phosphor and amorphous green phosphor
JP6008073B2 (en) * 2011-06-23 2016-10-19 学校法人日本大学 Phosphor production method
JP5907485B2 (en) * 2011-11-14 2016-04-26 学校法人日本大学 Method for manufacturing phosphor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433029A (en) * 1987-07-28 1989-02-02 Seiko Epson Corp Quartz glass doped with europium and production thereof
US5356447A (en) * 1993-03-11 1994-10-18 At&T Bell Laboratories Manufacture of high proof-test optical fiber using sol-gel
JP3974211B2 (en) * 1996-12-12 2007-09-12 株式会社住田光学ガラス Oxide fluorescent glass exhibiting visible fluorescence
JPH11255536A (en) * 1998-03-12 1999-09-21 Kazuyuki Hirao Glass having afterglow
JP2004296434A (en) * 2003-03-13 2004-10-21 Matsushita Electric Ind Co Ltd Fluorescent light emitting device, fluorescent lamp, and glass composition
JP2005089688A (en) * 2003-09-19 2005-04-07 Sumitomo Chemical Co Ltd Preparation process of silicate phosphor

Also Published As

Publication number Publication date
JP2010209210A (en) 2010-09-24
WO2010103925A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
KR101172143B1 (en) OXYNITRIDE-BASED PHOSPHORS COMPOSING OF SiON ELEMENT FOR WHITE LEDs, MANUFACTURING METHOD THEREOF AND LEDs USING THE SAME
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
JP2009506185A (en) Carbide nitride silicate luminescent material
RU2010110543A (en) LUMINOPHORS BASED ON NON-STEHOIOMETRIC TETRAGONAL COPPER SILICATES AND ALKALI EARTH METAL AND METHOD FOR PRODUCING THEM
WO2012063707A1 (en) Process for manufacturing fluorescent material
JP5366200B2 (en) Method for producing phosphor, amorphous red phosphor
JP2010520325A (en) Method for producing green luminescent borate phosphor
JP2008045080A (en) Method for producing inorganic compound
JP2011052099A (en) Method for producing nitride phosphor
JP4904694B2 (en) Oxide phosphor, and light emitting element, image display device, and illumination device using the same
JP2011178823A (en) Production method of phosphor and amorphous green phosphor
JP5775742B2 (en) Method for producing blue-emitting phosphor
KR101538173B1 (en) Blue light-emitting phosphor
JP4861722B2 (en) Blue light emitting phosphor powder and method for producing the same
JP2016511297A (en) Almosilicate-based phosphor
WO2016111200A1 (en) Fluorescent material, light-emitting device, and method for producing fluorescent material
CN107118772B (en) Eu (Eu)2+Activated phosphor of phosphor aluminate blue luminescence and preparation method
KR100537725B1 (en) Ce3+ - doped yellow emitting phosphor of a3b2c3o12 structure
KR100515825B1 (en) Composition for surface-washing zinc silicate phosphor and surface-washing mtehod of zinc silicate phosphor using the composition
JP2014189592A (en) Phosphor and phosphor-containing composition, light-emitting device, image display device and lighting device
KR100656993B1 (en) Phospher including sulfur and manufacturing method for it
JP5444271B2 (en) Method for producing alkaline earth metal silicate phosphor
JP5528320B2 (en) Method for producing alkaline earth metal silicate phosphor
KR101863083B1 (en) Oxynitride-based long-afterglow phosphor and method of preparing the same
WO2012043879A1 (en) Phosphor and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees